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Abstract Synaptic cell adhesion molecules (CAMs) promote synapse formation in the developing

nervous system. To what extent they maintain and can restore connections in the mature nervous

system is unknown. Furthermore, how synaptic CAMs affect the growth of synapse-bearing

neurites is unclear. Here, we use adeno-associated viruses (AAVs) to delete, re-, and overexpress

the synaptic CAM NGL2 in individual retinal horizontal cells. When we removed NGL2 from

horizontal cells, their axons overgrew and formed fewer synapses, irrespective of whether Ngl2

was deleted during development or in mature circuits. When we re-expressed NGL2 in knockout

mice, horizontal cell axon territories and synapse numbers were restored, even if AAVs were

injected after phenotypes had developed. Finally, overexpression of NGL2 in wild-type horizontal

cells elevated synapse numbers above normal levels. Thus, NGL2 promotes the formation,

maintenance, and restoration of synapses in the developing and mature retina, and restricts axon

growth throughout life.

DOI: https://doi.org/10.7554/eLife.30388.001

Introduction
Nervous system functions rely on the precise connectivity of neural circuits. Several synaptic CAMs

have been shown to regulate circuit development (de Wit and Ghosh, 2016; Siddiqui and Craig,

2011). Discrepancies with results obtained in vitro highlight the importance of analyzing the function

of synaptic CAMs in vivo (Südhof, 2017). Most in vivo studies of synaptic CAMs have compared con-

nectivity of wild-type and germline knockout mice, which remove synaptic CAMs from all cells

throughout life. Whether synaptic CAMs act cell-autonomously or not; and whether they maintain

synapses and can restore them in mature circuits, therefore, remains unknown. Synapse loss can

long precede cell death in neurodegenerative diseases, and the ability to establish connections with

mature circuits limits benefits from transplantation of stem-cell-derived neuronal replacements

(Buckingham et al., 2008; Gamm et al., 2015; Hong et al., 2016; Scheff et al., 2006). Identifying

molecular mechanisms that maintain synapses and can promote their restoration is, therefore, an

important goal of therapeutic neuroscience.

Netrin-G ligand 2 (NGL2), a synaptic CAM with an extracellular leucine-rich repeat (LRR) domain,

regulates synapse development in the hippocampus and the retina (DeNardo et al., 2012; Nishi-

mura-Akiyoshi et al., 2007; Soto et al., 2013). In the hippocampus, NGL2 localizes to the proximal

segments of CA1 pyramidal neuron dendrites and promotes the formation of synapses with Schaffer

collateral axons (DeNardo et al., 2012; Nishimura-Akiyoshi et al., 2007). In the retina, NGL2 local-

izes to the axon tips of horizontal cells and promotes the formation of synapses with rod photore-

ceptors (Figure 1—figure supplement 1) (Soto et al., 2013). Whether NGL2 acts cell-autonomously

Soto et al. eLife 2018;7:e30388. DOI: https://doi.org/10.7554/eLife.30388 1 of 15

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.30388.001
https://doi.org/10.7554/eLife.30388
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


or not, and whether it maintains synapses and can promote their restoration in mature circuits is

unknown.

Here we use AAVs to delete (CRISPR/Cas9), re-, and overexpress NGL2 in individual horizontal

cells in the developing and mature retina to address these questions.

Results

A strategy for temporally controlled removal of NGL2
We devised the following AAV-mediated CRISPR/Cas9 strategy to delete Ngl2 with temporal control

in individual horizontal cells in vivo. We identified two short guide RNAs (sgRNAs) that reliably intro-

duced frame-shifting insertions and deletions (indels) near the start of the open reading frame of

Ngl2 (see Materials and methods). We generated AAVs (serotype: 1/2) expressing these sgRNAs

from a Pol III U6 promoter and tdTomato (tdT) from a Pol II CAG promoter (AAV-sgNGL2-tdT). We

injected AAV-sgNGL2-tdT into the vitreous chamber of mice ubiquitously expressing the Cas9 endo-

nuclease (Platt et al., 2014) (Cas9 mice, Figure 1A). To assess the efficiency of NGL2 removal, we

injected AAV-sgNGL2-tdT in newborn (postnatal day 0, P0) Cas9 mice and stained flat-mounted reti-

nas at P30 for NGL2. The NGL2 intensity at axon tips of tdT-positive horizontal cells in Cas9 mice

was lower than at neighboring axon tips in 19 of 20 cells (i.e., 95% of cells, Figure 1B and C),

whereas NGL2 intensity at axon tips of AAV-YFP-infected cells was indistinguishable from neighbor-

ing axon tips (Figure 1C). At many axon tips of AAV-sgNGL2-tdT-infected cells in Cas9 mice, NGL2

staining was reduced rather than absent. This could be, either because some NGL2 protein

remained in horizontal cells expressing sgRNAs, or because multiple horizontal cells contributed to

the NGL2 staining at each tip. Given that we injected AAV-sgNGL2-tdT at P0, nearly two weeks

before NGL2 is first expressed (Soto et al., 2013), residual protein seemed an unlikely explanation.

Co-injection of AAVs expressing spectrally separable fluorophores (cyan fluorescent protein [CFP]

and tdT) revealed that overlapping horizontal cell axons co-innervate more than 40% of the rods in

their shared territory (Figure 1D and E). As a population, horizontal cell axons cover the retina

Figure 1. AAV-mediated knockout of Ngl2 in horizontal cells. (A) Schematic illustrating AAV-mediated CRISPR/Cas9 strategy for Ngl2 knockout in

horizontal cells. In AAV-sgNGL2-tdT, small guide RNAs targeting NGL2 (sgNGL2) were expressed from a Pol III U6 promoter, and the red fluorescent

protein tdT was expressed from a Pol II CAG promoter. AAV-sgNGL2-tdT was injected intravitreally into Cas9 mice (Platt et al., 2014). (B)

Representative images of an axon of a horizontal cell infected with AAV-sgNGL2-tdT (injection at P0, analysis at P30) in a Cas9 retina. Left, overview of

the axon labeled by tdT; right, magnified excerpts showing NGL2 staining at tips of this axon and overlapping axons of uninfected horizontal cells. (C)

Relative NGL2 intensity in axon tips of infected vs. uninfected horizontal cell, for AAV-sgNGL2-tdT (sgNGL2) and AAV-YFP (YFP). Dots show data from

single cells compared to its neighbors, the circle (errorbar) indicates the mean (±SEM) of the population. In 19 of 20 horizontal cells (3 mice) infected

with AAV-sgNGL2-tdT, the NGL2 intensity was significantly reduced (p<0.01 for each, Wilcoxon rank sum test), whereas NGL2 intensity was unchanged

in five of five horizontal cells (2 mice) infected with AAV-YFP. (D) Representative images of two overlapping horizontal cell axons labeled with CFP and

tdT, respectively. Left, overview image; right, magnified excerpts from rods contacted by tips of either (top and middle) or both (bottom) axons. (E)

Summary data of shared rod contacts (i.e., overlapping axon tips) within the overlapping territory of two horizontal cell axons. Dots show data from

individual horizontal cell pairs, the circle (errorbar) indicates the mean (±SEM) of the population.

DOI: https://doi.org/10.7554/eLife.30388.002

The following figure supplement is available for figure 1:

Figure supplement 1. NGL2 localizes to tips of horizontal cell axons, not rod bipolar cell dendrites.

DOI: https://doi.org/10.7554/eLife.30388.003
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approximately ninefold (Soto et al., 2013; Keeley et al., 2014). Thus, multiple horizontal cells inner-

vate most rods, which likely explains the remaining NGL2 staining at axon tips labeled by infection

of single horizontal cells with AAV-sgNGL2-tdT. We conclude that our AAV-mediated CRISPR/Cas9

strategy removed NGL2 from horizontal cells with high efficiency (i.e., in 95% of infected cells).

NGL2 regulates horizontal cell axon development cell autonomously
We first used this strategy, to analyze the effects of early postnatal NGL2 removal from individual

horizontal cells on their development. In wild-type mice, P0 injection of AAV-sgNGL2-tdT affected

neither the size of horizontal cell axons nor the density of their tips at P30 (Figure 2A, B, F and G).

In Cas9 mice, axons of horizontal cells infected with AAV-sgNGL2-tdT were larger and had fewer

tips than axons of horizontal cells infected with AAV-YFP (Figure 2C–2G). Both in wild-type mice

and in Cas9 mice injected with AAV-sgNGL2-tdT, nearly all horizontal cell axon tips apposed ribbon

release sites of rod photoreceptors (Figure 2—figure supplement 1). We, therefore, use axon tips

throughout this study as an indicator of synapses between horizontal cells and rods. Changes in hori-

zontal cell axon size and tip density in Cas9 mice injected with AAV-sgNGL2-tdT matched those

observed in germline Ngl2 knockout mice (Ngl2-/- mice) (Soto et al., 2013). They were stable over

time (Figure 2—figure supplement 2) and indistinguishable between both sgRNAs (Figure 2C–2G).

Consistent with our findings in Ngl2-/- mice (Soto et al., 2013), removal of NGL2 from individual hor-

izontal cells did not affect the size of horizontal cell dendrites or the number of their contacts with

cones (Figure 2H–2N). Thus, during development, NGL2 appears to selectively and cell-autono-

mously regulate the growth of horizontal cell axons and the formation of synapses between horizon-

tal cell axons and rods.

In Ngl2-/- mice, horizontal cell axons frequently stray into the outer nuclear layer (Soto et al.,

2013). Stray processes were less abundant in horizontal cells targeted by our AAV-mediated

CRISPR/Cas9 strategy (Figure 2—figure supplement 3), indicating either that mistargeting involves

non-cell-autonomous actions of NGL2, or that delays in the AAV-mediated removal of NGL2

reduced the severity of laminar targeting deficits compared to germline knockouts.

NGL2 maintains horizontal cell axon tips and restrains axon growth in
mature circuits
In mice, neuronal morphology and connectivity in the outer retina are mature 3–4 weeks after birth

(Huckfeldt et al., 2009; Poché et al., 2007; Blanks et al., 1974). To test whether NGL2 contributes

to the maintenance of horizontal cell axons and synapses, we injected AAV-sgNGL2-tdT in P30 (i.e.,

young adult) Cas9 mice. By P60, axon arbors of tdT-positive horizontal cells had expanded and lost

many tips, compared to Cas9 mice injected with AAV-YFP (Figure 3A–3E). Axon expansion and tip

loss were stable at P90 (Figure 3—figure supplement 1), indicating that the same phenotypes pro-

duced by developmental NGL2 removal emerge rapidly and persist after removal of NGL2 in mature

circuits.

Many neurons exhibit heightened plasticity during critical periods that can extend several weeks

beyond their initial neurite growth and synaptogenesis (Hong et al., 2014; Hensch, 2005). To assess

whether injection of AAV-sgNGL2-tdT at P30 fell within such a critical period or whether NGL2 con-

tinues to be required throughout adulthood, we injected AAV-sgNGL2-tdT in mature adult (P150)

Cas9 mice. Strikingly, by P180, horizontal cell axons had expanded and lost tips to the same degree

observed for developmental and young adult manipulations (Figure 4A–4E). Injection of AAV-

sgNGL2-tdT in P150 wild-type mice produced no phenotypes (Figure 4—figure supplement 1).

Thus, NGL2 signaling appears to restrain horizontal cell axon growth and to maintain synapses

between horizontal cells and rods throughout adulthood.

AAV-mediated NGL2 expression in developing Ngl2-/- horizontal cells
normalizes axon growth and enhances axon tip density
Because removal of NGL2 from individual horizontal cells disrupted axon and synapse development,

we wanted to test whether expression of NGL2 in individual horizontal cells in Ngl2-/- mice could res-

cue axon and synapse development. We generated AAVs expressing full-length NGL2 (AAV-NGL2)

in horizontal cells and injected AAV-NGL2 or AAV-YFP intravitreally at P0. At P30, we counted axon

tips of infected horizontal cells by immunostaining for NGL2 (AAV-NGL2) or YFP (AAV-YFP), and
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Figure 2. NGL2 regulates horizontal cell axon size and tip density cell autonomously. (A–E) Representative images of horizontal cell axons labeled by

AAV-YFP (YFP) or AAV-sgNGL2-tdT (sgNGL21 and sgNGL22) in wild-type (WT) and Cas9 mice. Overview images are maximum intensity projections of

the complete axons; insets show maximum intensity projections limited to axon tips at higher magnification. (F and G) Summary data of axon territories

(F) and the density of axon tips in these territories (G). Dots show data from single cells, circles (errorbars) indicate means (±SEM) of the respective

populations. AAV-sgNGL2-tdT infection in wild-type mice did not affect horizontal cell axon size (WT YFP n = 29, 8 mice, WT sgNGL21n = 37, 12 mice,

p=1) or tip density (WT YFP n = 10, 3 mice, WT sgNGL21n = 23, 8 mice, p=0.25). Horizontal cell axons in Cas9 mice were similar in size (WT YFP n = 29,

8 mice, Cas9 YFP n = 20, 8 mice, p=0.11) and tip densities (WT YFP n = 10, 3 mice, Cas9 YFP n = 8, 4 mice, p=1) to horizontal cell axons in wild-type

mice. Both sgRNAs tested drastically increased horizontal cell axon size in Cas9 mice (Cas9 sgNGL21n = 35, 6 mice, p<10�7 for comparison to Cas9

YFP, Cas9 sgNGL22n = 32, 7 mice, p=10�9 for comparison to Cas9 YFP) and reduced tip densities (Cas9 sgNGL21n = 29, 5 mice, p < 10-12 for

comparison to Cas9 YFP, Cas9 sgNGL22n = 16, 3 mice, p<0.001 for comparison to Cas9 YFP). (H – L) Analogous to (A – E) for horizontal cell dendrites

and their contacts with cones. (M and N) Analogous to (F and G) for horizontal cell dendrites territories (WT YFP n = 15, 8 mice, WT sgNGL21n = 15 , 9

mice, Cas9 YFP n = 12, 8 mice, Cas9 sgNGL21n = 47, 6 mice, Cas9 sgNGL22n = 15, 7 mice) and terminal clusters within these territories (WT YFP n = 12,

6 mice, WT sgNGL21n = 15, 9 mice, Cas9 YFP n = 12, 8 mice, Cas9 sgNGL21n = 14, 3 mice, Cas9 sgNGL22n = 14, 6 mice). No significant differences

between genotypes and AAVs were observed for horizontal cell dendrites (p>0.9, for all comparisons). P-values reported in this figure legend are from

ANOVA tests with Bonferroni correction for multiple comparisons.

Figure 2 continued on next page

Soto et al. eLife 2018;7:e30388. DOI: https://doi.org/10.7554/eLife.30388 4 of 15

Research article Neuroscience

https://doi.org/10.7554/eLife.30388


measured axon territories as the area of the smallest convex polygon to encompass all tips of an

arbor. AAV-mediated expression of NGL2 exceeded wild-type protein levels at P30 (Figure 5—fig-

ure supplement 1). In Ngl2-/- mice, AAV-NGL2 restored the size of horizontal cell axons to wild-type

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.30388.004

The following figure supplements are available for figure 2:

Figure supplement 1. Nearly all horizontal cell axon tips are synaptic.

DOI: https://doi.org/10.7554/eLife.30388.005

Figure supplement 2. Stable changes in horizontal cell axon size and axon tip density after NGL2 removal.

DOI: https://doi.org/10.7554/eLife.30388.006

Figure supplement 3. Effects of NGL2 removal on horizontal cell axon targeting.

DOI: https://doi.org/10.7554/eLife.30388.007

Figure 3. NGL2 restrains horizontal cell axon growth and maintains axon tips in young adult mice. (A) Schematic

of the experimental timeline. AAVs were injected into the vitreous chamber of P30 mice and retinas collected on

P60. (B and C) Representative images of horizontal cell axons labeled by AAV-YFP (YFP) or AAV-sgNGL2-tdT

(sgNGL2) in Cas9 mice, imaged at P60. Overview images are maximum intensity projections of the complete

axons; insets show maximum intensity projections limited to axon tips at higher magnification. (D and E) Summary

data of axon territories (D) and the density of axon tips in these territories (E) at P60. Dots show data from single

cells, circles (errorbars) indicate means (±SEM) of the respective populations. At P60, axons of horizontal cells

infected with AAV-sgNGL2-tdT occupied larger territories (Cas9 YFP n = 35, 15 mice, Cas9 sgNGL2 n = 46, 6 mice,

p<10�9, Wilcoxon rank sum test), and had lower densities of axon tips (Cas9 YFP n = 10, 3 mice, Cas9 sgNGL2

n = 12, 4 mice, p<0.001, Wilcoxon rank sum test) compared to horizontal cells infected with AAV-YFP.

DOI: https://doi.org/10.7554/eLife.30388.008

The following figure supplement is available for figure 3:

Figure supplement 1. NGL2 restrains HC axon growth and maintains axon tips in adult mice.

DOI: https://doi.org/10.7554/eLife.30388.009
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levels and increased the density of axon tips beyond wild-type levels (Figure 5A–5D, F and G). In

wild-type mice, AAV-NGL2 did not significantly change horizontal cell axon size but elevated axon

tip density (Figure 5D–5G). The most parsimonious explanation for these findings is that a threshold

amount of NGL2 is required to restrict horizontal cell axon growth and that NGL2 protein levels con-

trol synapse density bidirectionally. These results also further support the notion that NGL2 regu-

lates horizontal cell development cell autonomously.

AAV-mediated NGL2 expression in adult Ngl2-/- horizontal cells shrinks
axons and restores axon tip density
We next explored whether restoring NGL2 to individual horizontal cells in adult Ngl2-/- circuits could

reverse axonal and synaptic phenotypes. Indeed, injection of AAV-NGL2 at P30 reduced axon size

and increased the density of axon tips of infected horizontal cells in Ngl2-/- mice to wild-type levels

by P60 (Figure 6A–D, F and G). In wild-type mice, AAV-NGL2 injection at P30 did not significantly

Figure 4. NGL2 restrains horizontal cell axon growth and maintains axon tips in mature adult mice. (A) Schematic

of the experimental timeline. AAVs were injected into the vitreous chamber of P150 mice and retinas collected on

P180. (B and C) Representative images of horizontal cell axons labeled by AAV-YFP (YFP) or AAV-sgNGL2-tdT

(sgNGL2) in Cas9 mice. Overview images are maximum intensity projections of the complete axons; insets show

maximum intensity projections limited to axon tips at higher magnification. (D and E) Summary data of axon

territories (D) and the density of axon tips in these territories (E). Dots show data from single cells, circles

(errorbars) indicate means (±SEM) of the respective populations. Axons of horizontal cells infected with AAV-

sgNGL2-tdT occupied larger territories (Cas9 YFP n = 34, 9 mice, Cas9 sgNGL2 n = 18, 11 mice, p<10�6, Wilcoxon

rank sum test), and had lower densities of axon tips (Cas9 YFP n = 11, 3 mice, Cas9 sgNGL2 n = 10, 3 mice,

p<0.001, Wilcoxon rank sum test) compared to horizontal cells infected with AAV-YFP.

DOI: https://doi.org/10.7554/eLife.30388.010

The following figure supplement is available for figure 4:

Figure supplement 1. Small guide RNAs targeting Ngl2 do not affect horizontal cell axons in mature adult wild-

type mice.

DOI: https://doi.org/10.7554/eLife.30388.011
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change the axon size of infected horizontal cells but elevated the density of axon tips (Figure 6D–

6G). AAV-mediated expression of NGL2 after P30 injections exceeded wild-type protein levels by

P60 (Figure 6—figure supplement 1). Thus, re- and overexpression of NGL2 in mature horizontal

cells shrink axons back to their normal size in Ngl2-/- mice, and can restore and even enhance their

connectivity in Ngl2-/- and wild-type mice.

Discussion
Synaptic CAMs like NGL2 typically localize to nascent connections during development and remain

at synapses for the lifetime of the animal (de Wit and Ghosh, 2014; Siddiqui and Craig, 2011;

Sytnyk et al., 2017). Because most in vivo studies have used knockout mice that remove targeted

genes in the germline, it is unclear whether synaptic CAMs contribute to the maintenance of synap-

ses as well as their development. Here, we devised an AAV-mediated CRISPR/Cas9 strategy to

Figure 5. AAV-mediated NGL2 expression normalizes axon growth and enhances axon tip formation of horizontal cells in developing Ngl2-/- mice. (A)

Schematic of the experimental timeline. AAVs were injected into the vitreous chamber of P0 mice and retinas collected at P30. (B–E) Representative

images of axons of horizontal cells infected with AAV-YFP (YFP, (B and D) or AAV-NGL2 (NGL2, C, and E) in Ngl2-/- mice (B and C) or wild-type

littermates (D and E). Overview images are maximum intensity projections of the complete axons; insets show maximum intensity projections limited to

axon tips at higher magnification. (F and G) Summary data of axon territories (F) and the density of axon tips in these territories (G). Dots show data

from single cells, circles (errorbars) indicate means (±SEM) of the respective populations. AAV-mediated expression of NGL2 reduced horizontal cell

axon territories (Ngl2-/- YFP n = 12, 4 mice, Ngl2-/- NGL2 n = 21, 4 mice, p<10�7), restoring them to wild-type levels (WT YFP n = 31, 5 mice, p=1 for

comparison to Ngl2-/- NGL2). In wild-type mice, axon territories of AAV-NGL2-infected horizontal cells were not significantly different from AAV-YFP-

infected horizontal cells (WT NGL2, n = 15, 3 mice, p=0.48 for comparison to WT YFP). AAV-mediated NGL2 expression increased axon tip density in

Ngl2-/- mice (Ngl2-/- YFP n = 10, 3 mice, Ngl2-/- NGL2 n = 12, 3 mice, p<10�10) beyond wild-type levels (WT YFP n = 12, 3 mice, p<10�6 for comparison

to Ngl2-/- NGL2). AAV-mediated expression of NGL2 in wild-type mice similarly increased the axon tip density of horizontal cell axons (WT NGL2,

n = 10, 3 mice, p<0.001 for comparison to WT YFP). P-values reported in this figure legend are from ANOVA tests with Bonferroni correction for

multiple comparisons.

DOI: https://doi.org/10.7554/eLife.30388.012

The following figure supplement is available for figure 5:

Figure supplement 1. AAV-mediated NGL2 expression in Ngl2-/- and wild-type P30 retinas.

DOI: https://doi.org/10.7554/eLife.30388.013
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remove NGL2 from horizontal cells with temporal control (Figure 1). Developmental removal of

NGL2 with this strategy reduced the density of synapses formed by horizontal cell axons to the

same extent as Ngl2-/- mice (Figure 2) (Soto et al., 2013). When we removed NGL2 in one- and

five-months-old mice, horizontal cell axons rapidly lost connections with rod photoreceptors (Fig-

ures 3 and 4). In the medial prefrontal cortex of adult mice, removal of neuroligin-2 reduces the

number of inhibitory synapses (Liang et al., 2015). In the cerebellum, parallel fiber inputs are lost

after deletion of GluRd2 in mature Purkinje cells (Takeuchi et al., 2005). Together, these findings

indicate that synaptic CAMs stabilize synapses and that the cues that maintain circuits overlap with

those that govern their formation.

Removal of NGL2 from individual horizontal cells (Figure 2) had the same effects on connectivity

as removal from all cells in Ngl2-/- mice (Soto et al., 2013), and AAV-mediated expression of NGL2

in individual horizontal cells of Ngl2-/- mice was sufficient to rescue their axon and synapse develop-

ment (Figure 5). Thus, NGL2 regulates horizontal cell connectivity cell autonomously. NGL2 appears

to act similarly in the hippocampus, where knockdown in individual pyramidal cells lowers spine

Figure 6. AAV-mediated NGL2 expression shrinks axon arbors and restores axon tips of horizontal cells in adult Ngl2-/- mice. (A) Schematic of the

experimental timeline. AAVs were injected into the vitreous chamber of P30 mice and retinas collected at P60. (B–E) Representative images of axons of

horizontal cells infected with AAV-YFP (YFP, (B and D) or AAV-NGL2 (NGL2, (C and E) in Ngl2-/- mice (B and C) or wild-type littermates (D and E).

Overview images are maximum intensity projections of the complete axons; insets show maximum intensity projections limited to axon tips at higher

magnification. (F and G) Summary data of axon territories (F) and the density of axon tips in these territories (G). Dots show data from single cells,

circles (errorbars) indicate means (±SEM) of the respective populations. AAV-mediated expression of NGL2 reduced horizontal cell axon territories

(Ngl2-/- YFP n = 12, four mice, Ngl2-/- NGL2 n = 12, two mice, p<10�4), restoring them to wild-type levels (WT YFP n = 11, four mice, p=1 for

comparison to Ngl2-/- NGL2). In wild-type mice, axon territories of AAV-NGL2-infected horizontal cells were not significantly different from AAV-YFP-

infected horizontal cells (WT NGL2, n = 15, four mice, p=1 for comparison to WT YFP). AAV-mediated NGL2 expression increased axon tip density in

Ngl2-/- mice (Ngl2-/- YFP n = 11, 4mice, Ngl2-/- NGL2 n = 10, two mice, p<10�7) to wild-type levels (WT YFP n = 11, four mice, p=1 for comparison to

Ngl2-/- NGL2). AAV-mediated expression of NGL2 in wild-type mice similarly increased the axon tip density of horizontal cells (WT NGL2, n = 13, four

mice, p<0.001 for comparison to WT YFP). P-values reported in this figure legend are from ANOVA tests with Bonferroni correction for multiple

comparisons.

DOI: https://doi.org/10.7554/eLife.30388.014

The following figure supplement is available for figure 6:

Figure supplement 1. AAV-mediated NGL2 expression in Ngl2-/- and wild-type P60 retinas.

DOI: https://doi.org/10.7554/eLife.30388.015
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density (DeNardo et al., 2012). The observation that AAV-mediated overexpression of NGL2 in hor-

izontal cells in wild-type and Ngl2-/- mice elevates axon tip density above wild-type levels (Figure 5)

suggests that NGL2 levels control connectivity bidirectionally and limit synapse formation in wild-

type retinas. Similarly, spine density in the hippocampus is reduced in Cadm1-/- mice and increased

in transgenic mice overexpressing SynCAM1, the protein encoded by Cadm1 (Robbins et al., 2010).

NGL2 interacts trans-synaptically with netrin-G2 (DeNardo et al., 2012; Kim et al., 2006; Nishi-

mura-Akiyoshi et al., 2007; Zhang et al., 2008). Whether this interaction localizes NGL2 to horizon-

tal cell axon tips, as it localizes NGL2 to proximal dendrites of CA1 pyramidal neurons (Nishimura-

Akiyoshi et al., 2007), and how netrin-G2 – NGL2 complexes transmit signals between rods and

horizontal cells remains to be explored. We know very little about the signaling mechanisms of syn-

aptic CAMs, whether they act cell-autonomously or not, and whether they control neuronal pro-

cesses (e.g., synapse formation) bidirectionally. Advances in viral targeting and genome editing

(Buchholz et al., 2015; Platt et al., 2014; Senı́s et al., 2014; Trapani et al., 2014), which we

exploited in our study, should accelerate progress in this area.

We found that NGL2 restricts horizontal cell axon growth throughout life (Figures 2–4). Similarly,

the auxiliary Ca2+ channel subunit a2d2, which mediates trans-synaptic interactions (Fell et al.,

2016), restricts axon growth in developing and mature mouse dorsal root ganglion neurons

(Tedeschi et al., 2016) and Ig-domain-containing CAMs contribute to axon maintenance in C. ele-

gans (Aurelio et al., 2002; Cherra and Jin, 2016). Together, these results indicate that synaptic

CAMs can control the size of neurite arbors during development and at maturity.

We found that manipulations of NGL2 co-regulate horizontal cell axon growth and synapse devel-

opment in seemingly homeostatic fashion: deletion of Ngl2 reduced synapse density and increased

axons size (Figures 2–4), whereas re-expression of NGL2 in Ngl2-/- mice increased synapse density

and reduced axon size (Figures 5 and 6). Whether neurite growth and synapse formation in horizon-

tal cells are coupled or independently controlled remains to be tested. A homeostatic relationship

between these processes was reported for aCC neurons in Drosophila embryos (Tripodi et al.,

2008). Bidirectional manipulations in the number of input synapses on aCC dendrites elicit opposite

changes in arbor size (Tripodi et al., 2008). By contrast, neurite growth appears positively coupled

to synapse formation of axons and dendrites in the optic tectum of Xenopus and Zebrafish, respec-

tively (Niell et al., 2004; Ruthazer et al., 2006). In the mouse retina, the size and morphology of

bipolar cell axons and ganglion cell dendrites are established and maintained independent of con-

nections between them (Johnson and Kerschensteiner, 2014; Kerschensteiner et al., 2009;

Morgan et al., 2011). What accounts for the differences in the relationship of synapses and neurite

arbors in different neurons, circuits, and species, remains to be identified.

AAV-mediated expression of NGL2 in individual horizontal cells in adult Ngl2-/- and wild-type

mice restored and enhanced their connectivity (Figure 6). In neurodegenerative diseases, synapse

loss can long precede cell death (Buckingham et al., 2008; Gamm et al., 2015; Hong et al., 2016;

Scheff et al., 2006). Molecular mechanisms that maintain synapses could, therefore, be utilized to

rescue circuit function in neurodegenerative diseases. We speculate that AAV-mediated expression

of NGL2 might help preserve outer retinal connectivity in retinal degeneration, the most common

heritable cause of visual impairment (Sohocki et al., 2001; Jones et al., 2012). Transplantation of

stem-cell-derived photoreceptors is being explored as a treatment for late stages of retinal degener-

ation (Gamm et al., 2015; Wahlin et al., 2017; Chirco et al., 2017). Our results suggest that AAV-

mediated expression of NGL2 in second-order neurons (i.e., bipolar and horizontal cells) could pro-

mote the integration of stem-cell-derived photoreceptors into host circuits and help restore vision.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Mouse strain Wild-type (C57Bl6/J) Jackson Laboratory RRID:IMSR_JAX000664

Mouse strain Cas9 Jackson Laboratory RRID:IMSR_JAX:024858

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Mouse strain Ngl2-/- (Soto et al., 2013)

Plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9 Addgene Plasmid # 42230

Plasmid pmaxGFP Lonza Catalog # VDC-1040

Virus AAV-YFP This paper

Virus AAV-Grm6-YFP (Johnson et al., 2017)

Virus AAV-sgNGL21-tdT This paper

Virus AAV-sgNGL22-tdT This paper

Virus AAV-NGL2 This paper

Antibody anti-NGL2 (mouse) NeuroMab RRID:AB_2137614 1:100 dilution

Antibody anti-Bassoon (mouse) Enzo RRID:AB_2313990 1:500 dilution

Antibody anti-DsRed (rabbit) Clontech Laboratories RRID:AB_10013483 1:1000 dilution

Antibody anti-GFP (chicken) ThermoFisher RRID:AB_2534023 1:500 dilution

Antibody anti-GFP (rabbit) ThermoFisher RRID:AB_221569 1:1000 dilution

Antibody anti-chicken IgY Alexa 488 ThermoFisher RRID:AB_2534096 1:1000 dilution

Antibody anti-rabbit IgG Alexa 488 ThermoFisher RRID:AB_2536097 1:1000 dilution

Antibody anti-rabbit IgG Alexa 568 ThermoFisher RRID:AB_143011 1:1000 dilution

Antibody anti-mouse IgG Alexa 568 ThermoFisher RRID:AB_2534072 1:1000 dilution

Antibody anti-mouse IgG Alexa 633 ThermoFisher RRID:AB_2535718 1:1000 dilution

Mice
In this study, we used mice in which the RNA-guided endonuclease Cas9 is ubiquitously expressed

from a CAG promoter in the Rosa26 locus (Cas9 mice, Jackson Labs, RRID:IMSR_JAX:024858)

(Platt et al., 2014). Cas9 mice were on a C57Bl6/N background. To confirm that sgRNAs had no

effect in the absence of Cas9, we used wild-type mice on a C57Bl6/J background (RRID:IMSR_

JAX000664). In addition, we used Ngl2-/- mice on a C57Bl6/J background. Mice of both sexes were

used in our experiments. All procedures were approved by the Animal Studies Committee of Wash-

ington University School (protocol # 20170033) of Medicine and performed in compliance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals.

DNA constructs and sgRNA testing
Single guide RNAs targeting the 5’ region of the mouse Ngl2 gene were designed using an open

access web tool provided by the Zhang lab at MIT (http://crispr.mit.edu:8079/) to search the first

250 bp of the Ngl2 gene coding region. A pair of complementary oligonucleotides encoding the 20-

nt guide sequences sgNGL21 (5’-gaatccacacttgcgccgtg-3’) and sgNGL22 (5’-aaggtggtgtgcacccgccg-

3’) were synthetized. Oligonucleotides used in the generation of sgRNA templates were: Guide1-F

5’-ACCgaatccacacttgcgccgtg-3’, Guide1-R 5’-AACcacggcgcaagtgtggattc-3’, Guide2-F 5’-

ACCaaggtggtgtgcacccgccg-3’, and Guide2-R 5’-AACcggcgggtgcacaccacctt-3’.

Plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9 containing the U6 promoter, the sgRNA targeting

sequence cloning site followed by the sgRNA scaffold, and the human codon-optimized Cas9 was

obtained from Addgene (# 42230) and was used to clone the corresponding sgRNAs for testing in

vitro. The Ngl2-/- cell line was generated from the mouse Neuro-2a line at the Genome Engineering

and iPSC Center (GEiC), Washington University in St. Louis. Approximately 4 * 105 Neuro-2a cells

were suspended in P3 primary buffer and electroporated using a 4D-Nucleofector (Lonza) with 0.5

mg of pmaxGFP (control, Lonza) or pX330-U6-Chimeric_BB-CBh-hSpCas9 containing sgNGL21 or

sgNGL22, in 20 mL wells. Sixty hours following nucleofection, cells were harvested, and genomic

DNA was isolated and screened with PCRs using tagged primer sets (5’-CACTCTTTCCCTACAC-

GACGCTCTTCCGATCTgctcctagctcacttaagccggggt-3’, 5’-GTGACTGGAGTTCAGACGTGTGCTC

TTCCGATCTaggtgcctgaaggtgtcggcctgaa-3’) specific to the targeted region. The targeted Ngl2

Soto et al. eLife 2018;7:e30388. DOI: https://doi.org/10.7554/eLife.30388 10 of 15

Research article Neuroscience

https://scicrunch.org/resolver/AB_2137614
https://scicrunch.org/resolver/AB_2313990
https://scicrunch.org/resolver/AB_10013483
https://scicrunch.org/resolver/AB_2534023
https://scicrunch.org/resolver/AB_221569
https://scicrunch.org/resolver/AB_2534096
https://scicrunch.org/resolver/AB_2536097
https://scicrunch.org/resolver/AB_143011
https://scicrunch.org/resolver/AB_2534072
https://scicrunch.org/resolver/AB_2535718
https://scicrunch.org/resolver/IMSR_JAX:024858
https://scicrunch.org/resolver/IMSR_JAX000664
https://scicrunch.org/resolver/IMSR_JAX000664
http://crispr.mit.edu:8079/
https://doi.org/10.7554/eLife.30388


locus region was sequence-confirmed using next-generation sequencing. Approximately 1000 inde-

pendent sequences were analyzed per plasmid used, and the percentage of non-homologous

recombinant events detected was normalized to the total number of reads. Recombination rates

were 60% and 68% for sgNGL21 or sgNGL22, respectively.

For constructing sgRNA-expressing AAV viral vectors, the original pX330 plasmid was altered by

adding a SapI site before the sgRNA scaffold. Then, the U6-sgRNA region of pX330 was isolated

with enzymes Acc65i-Afl III blunted with Klenow and cloned blunt upstream of the CAG promoter

into an existing pAAV-CAG-tdT plasmid available in the lab. The new plasmid, pAAV-U6-sgRNA-

CAG-tdT, was then digested with SapI to introduce the designed corresponding sgRNA oligos tar-

geting Ngl2. For constructing the AAV viral vector expressing NGL2, full-length Ngl2 cDNA cloned

in pEF-BOS (DeNardo et al., 2012) was amplified using EcoRI and NotI linkers and cloned using the

same sites into the pAAV-CAG-YFP vector in place of YFP. The PCR product was verified by

sequencing.

Adeno-associated viruses
Viral particles were packaged and purified as previously described (Grimm et al., 2003;

Klugmann et al., 2005). Briefly, AAV1/2 chimeric virions, which readily infect horizontal cells

(Soto et al., 2013), were produced by co-transfecting HEK293 cells with pAAV-U6-sgNGL21-CAG-

tdT (AAV-sgNGL21-tdT), pAAV-U6-sgNGL22-CAG-tdT (AAV-sgNGL22-tdT), pAAV-CAG-YFP (AAV-

YFP), pAAV-CAG-NGL2 (AAV-NGL2) or pAAV-Grm6-YFP (AAV-Grm6-YFP) (Johnson et al., 2017)

and helper plasmids encoding Rep2 and the Cap for serotype one and Rep2 and the Cap for sero-

type 2. Forty-eight hours after transfection, cells and supernatant were harvested and viral particles

purified using heparin affinity columns (Sigma, Saint Louis, MO). Viruses (250 nL) were injected with

a Nanoject II (Drummond) into the vitreous chamber of newborn mice anesthetized on ice

Tissue preparation
Mice were deeply anesthetized with CO2, killed by cervical dislocation, and enucleated. Retinas

were isolated in oxygenated mouse artificial cerebrospinal fluid (mACSFHEPES) containing (in mM):

119 NaCl, 2.5 KCl, 1 NaH2PO4, 2.5 CaCl2, 1.3 MgCl2, 20 HEPES, and 11 glucose (pH adjusted to

7.37 using NaOH) and mounted flat on black membrane discs (HABGO1300,

Millipore, Burlington, MA), or left in the eyecup for 30 min fixation with 4% paraformaldehyde in

mACSFHEPES.

Immunohistochemistry
After blocking for 2 hr with 5% Normal Donkey Serum in PBS, vibratome slices (thickness: 60 mm)

embedded in 4% agarose (Sigma) were incubated overnight at 4˚C with primary antibodies. Slices

were then washed in PBS (3 � 20 min) and incubated with secondary antibodies for 2 hr at room

temperature (RT). Flat-mount preparations were frozen and thawed three times after cryoprotection

(1 hr 10% sucrose in PBS at RT, 1 hr 20% sucrose in PBS at RT, and overnight 30% sucrose in PBS at

4˚C), blocked with 5% Normal Donkey Serum in PBS for 2 hr, and then incubated with primary anti-

bodies for 5 d at 4˚C and washed in PBS (3 � 1 hr) at RT. The following primary antibodies were

used in this study: mouse anti-NGL2 (1:100, NeuroMab, Davis, CA, RRID:AB_2137614), mouse anti-

Bassoon (1:500, Enzo, Farmingdale, NY, RRID:AB_2313990), rabbit anti-DsRed (1:1000, Clontech

Laboratories, RRID:AB_10013483), chicken anti-GFP (1:500, ThermoFisher, Waltham, MA, RRID:AB_

2534023), and rabbit anti-GFP (1:1000, ThermoFisher, RRID:AB_221569). Subsequently, flat mounts

were incubated 1 d at 4˚C with Alexa 488 (1:1000, ThermoFisher, anti-chicken IgY, RRID:AB_

2534096, anti-rabbit IgG RRID:AB_2536097), Alexa 568 (1:1000, ThermoFisher, anti-rabbit IgG,

RRID:AB_143011, anti-mouse IgG, RRID:AB_2534072), and Alexa 633 (1:1000, ThermoFisher, anti-

mouse IgG, RRID:AB_2535718) secondary antibodies for and washed in PBS (3 � 1 hr) at RT.

Imaging
Image stacks were acquired on an Fv1000 laser scanning confocal microscope (Olympus) with 20 �

0.85 NA and 60 � 1.35 NA oil immersion objectives at a voxel sizes of 0.206 mm – 0.3 mm (x/y – z

axis) and 0.082 mm – 0.3 mm (x/y – z axis), respectively, or on a Zeiss 810 laser scanning confocal
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microscope with an Airyscan detector through a 63 � 1.4 NA objective at a voxel size of 0.043 mm –

0.1 mm (x/y – z axis).

Image analysis
Horizontal cell axon and dendrite territories were defined as the areas of the smallest convex poly-

gons to encompass the respective arbors (Figures 1–4) or all synaptic tips (Figures 5 and 6) in z-pro-

jections of confocal image stacks acquired in retinal flat mounts, and were measured using Fiji

(Schindelin et al., 2012). Horizontal cell dendrite clusters at cone terminals and horizontal cell axon

tips, which penetrate rod spherules (Peichl and González-Soriano, 1994; Wässle, 2004), were iden-

tified by eye in confocal image stacks and their positions (x, y, and z) noted to count synapses and

analyze their stratification (Soto et al., 2013). To evaluate the efficiency of NGL2 removal in horizon-

tal cells infected with AAV-sgNGL2-tdT, we acquired confocal images of their axons in retinas

stained for NGL2. The intensity of NGL2 labeling in rod spherules penetrated by infected horizontal

cells was then compared to the NGL2 signal in neighboring rod spherules. For visual clarity, in some

of the representative images, horizontal cell axons and dendrites were digitally isolated using Amira

(ThermoFisher) to remove Mueller glia labeled within the field of view.

Statistics
A power analysis using G*Power (Faul et al., 2009) on our initial data sets of Cas9 retinas injected

with AAV-YFP and AAV-sgNGL2-tdT suggested that given the observed effect sizes for horizontal

cell axon territories and synapses, total sample sizes exceed 16 for all comparisons between groups

to achieve power of 0.95 at p<0.05. In our final data set, total sample sizes for all comparisons

ranged from 18 to 71. To assess the statistical significance of differences between two groups, we

used Wilcoxon rank sum for continuous quantitative data and X
2 tests for frequency observations of

categorical data. For comparisons of quantitative data between multiple groups, we used ANOVA

tests with Bonferroni correction for multiple comparisons.
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