
Lecture 2: Exchange Economics with and without

Commitment

2..1 Ideas

1. Begin the study of unsecured or reputational borrowing, without any commitment to
repay or any form of collateral or asset backing. Suppose loans are backed by borrowers
reputation which vanishes forever if borrower defaults.

2. Assume perfect information but limited enforcement
Contracts are enforced by the threat of exclusion from asset markets:

• Kehoe-Levine: perpetual two-sided exclusion (no borrowing or lending after de-
fault) with stochastic monitoring: default is detected with probability ϕ, and goes
unpunished with probability 1− ϕ

• Bulow-Rogoff: perpetual one-sided exclusion (can lend out after default but cannot
borrow ever)

3. Complete markets leave no social role for default in equilibrium (default deterred for all
borrowers in all possible histories of events by endogenous debt limits on each borrower)

4. Binding debt limits reduce capital mobility and inhibit equalization of MRS’s among
consumers and MRK’s among firms.
⇒ misallocation of resources (Hsieh and Klenow 2009; Azariadis and Kaas 2009)

5. Idiosyncratic shocks are one order of magnitude larger than common or aggregate shocks
(Davis and Haltiwanger). Here we de-emphasize aggregate disturbances, and focus in-
stead on idiosyncratic shocks and also on the intermediate case of sectoral shocks.

2..2 Goals

Study misallocation in exchange economies and in production economies. What can monetary
or fiscal policy contribute to improve capital mobility and lessen misallocation?

Explore reasons why, in economies with complete markets and limited enforcement of unse-
cured loans, the first welfare theorem fails and second welfare theorem holds. Some equilibria
are socially optimal, others are not.

Demonstrate that in economies with sectoral or idiosyncratic shocks, aggregate TFP (total
factor productivity) and growth rate may fluctuate, as shown below, even though the economy’s
production possibilities frontier (PPF) is stable. More generally, sectoral shocks can amplify
or propagate common or aggregate shocks.
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2..3 Setting

We start from a pure exchange economy with constant total income in which assets are claims
on future income and exist in zero net supply. We focus on the distribution of consumption
over households first and later on the distribution of production over firms, all of which are
assumed to suffer from idiosyncratic or sectoral shocks. Throughout these notes we suppose
often but not always that aggregate shocks do not exist. In particular:

Assumption 2.1: Total income and consumption possibilities are constant in each exchange
economy.

Assumption 2.2: The aggregate production possibilities frontier is fixed in each production
economy.

We analyze economies with idiosyncratic shocks which are independent draws from a com-
mon probability distribution; and also economies with sectoral shocks, that is environments
in which income and productivity fluctuations are common to a significant fraction of house-
holds and firms, but not to all of them. All households have the same expected income or
productivity in the long run. States of nature are represented by s ∈ {L,H} for idiosyncratic
shocks or s ∈ {1, 2} for sectoral shocks, that is, by a binary Markov process with transition
probabilities

π(s, s′) = prob(st+1 = s′|st = s)

where πss ≡ prob{st+1 = s|st = s}, all s. State histories are represented by st = (s0, · · · , st).
For every household, the long-run probability of state s ∈ {L,H} is

πH =
1− πLL

2− πLL − πHH
, πL = 1− πH (1)

Because of the law of large numbers, the probabilities (πH , πL) also describe the fractions
of households in states H and L. The asymptotic values (πH , πL) are steady states for the
probabilities (πH

τ , πL
τ ) of being in state H or L after τ periods, conditional on the current

state. From the Markov transition matrix, we obtain

πH
τ = πHHπH

t−1 + (1− πLL)(1− πH
t−1)
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which leads to the difference equation

πH
τ = ρcπ

H
τ−1 + 1− πLL (2a)

Here the correlation coef?cient measures the persistence of Markov process.

ρc ≡ πHH + πLL − 1 ∈ (−1, 1) (2b)

It is easy to check the equation (1) describes the unique stable steady state of the difference
equation (2a).

Here are some additional assumptions:

Assumption 2.3: Let ω(α, s′) be the endowment of agent ω ∈ [0, 1] in history s′. Then

ω(α, s′) =

{
ωL = 1− α if st = L

ωH = 1 + 1−πH
πH

α if st = H

This specification of income means that the long-term expected income for each agent α equals
1. Expected income in the long run is:

ω̄(α) = πH(1 +
1− πH
πH

α) + (1− πH)(1− α) ∀α

Assumption 2.4: Households share a common utility function. Household α in history st

has payoff

υ(α, st) = E{
α∑

j=t

βj−tu[c(α, sj)]|st}

where c(α, st) is the consumption by α in history st.

Assumption 2.5: An economy with idiosyncratic shocks is populated by a continuum of
households indexed α ∈ [0, 1] and distributed on the unit interval according to the p.d.f. G.
Each household’s history is an independent draw from a common Markov process. Endow-
ments are described in Assumption 3. The initial distribution of households over states is the
same as the stationary distribution in equation (1).

Remark: Because this economy has a unit population with average income of 1 unit, aggre-
gate income also equals 1.

Assumption 2.6: An economy with sectoral shocks contains two types of individuals, indexed
by i = 1, 2 with unit mass each. Sectoral shocks are indexed st ∈ {1, 2} and follow a common,
binary, symmetric Markov process such that

Pr{st+1 = st|st} = π, ∀ st ∈ {1, 2}
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Endowments for type i = 1, 2 in history st are

ω(i, st) = ω(i, st) =

{
1 + α if st = i
1− α if st ̸= i

Households have high income if the “state” agrees with their “type”. We assume a symmetric
Markov process to ensure that steady state equilibria exist. For that to happen we need agent
1 in state 1 to solve the same consumer problem as agent 2 in state 2.

2..4 Complete Markets with Perfect Enforcement: A Planning Problem

A central planner chooses consumption allocations c(α, s′) ∈ {c(α,H), c(α,L)}, which depend
on current events only, to maximize a social welfare function subject to an aggregate resource
constraint, i.e.,∫ 1

0
[πHc(α,H) + (1− πH)c(α,L)]G(dα) ≤ 1

The social welfare function (SWF) weighs households by their population fractions and by
their type, that is,

W =

∫ 1

0
[πHV (α,H) + (1− πH)V (α,L)]λ(α)G(dα)

Here λ(α) is the social weight of household α and V (α, s) is the expected value of discounted
utility (or continuation payoff) for household α in current state s = H,L. Note that a recursive
definition of the payoff satisfies:

V (α,H) = u[c(α,H)] + βπHHV (α,H) + β(1− πHH)V (α,L) (3a)

V (α,L) = u[c(α,L)] + βπLLV (α,L) + β(1− πLL)V (α,H) (3b)

To solve equations (3a) and (3b) for {V (α,H), V (α,L)}, we define ρc from equation (2b).
(Then ρc = 0 means that idiosyncratic shocks are i.i.d, when ρc = 1 shocks are perfectly
positively correlated; when ρc = −1, shocks are perfectly negatively correlated). Solving
equations (3a) and (3b), we obtain

(1− β)(1− βρc)V (α,H) = (1− βπLL)u[c(α,H)] + β(1− πHH)u[c(α,L)] (3c)

(1− β)(1− βρc)V (α,L) = (1− βπHH)u[c(α,L)] + β(1− πLL)u[c(α,H)] (3d)

To solve the planner’s problem defined above, we look for a saddlepoint of the Lagrangean

L = W + µ{1−
∫ 1

0
[πHc(α,H) + (1− πH)c(α,L)c(α,L)]λ(α)G(dα)}

Set ∂L
∂c(α,s) = 0 for s ∈ {L,H} and obtain

λ(α)u′[c(α,H)] =
µ

1− βρ
= λ(α)u′[c(α,L)], ∀ α ∈ [0, 1]

=⇒ c(α, s) = c∗(α), ∀ s ∈ {L,H}
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Therefore consumption may depend on agent type and an aggregate income but not on id-
iosyncratic or sectoral state histories.

Equal-treatment optimum:

If λ(α) = 1, ∀ α, then c(α, s) = 1, ∀ (α, s), and V (α,H) = V (α,L) =
u(1)

1− β

Question: If households were allowed to deviate permanently from the equal-treatment opti-
mum allocations to autarky, would any household α ∈ [0, 1] ever do so?

Before we answer this question, we duplicate the planner’s allocation through competitive
markets.

2..5 Complete Markets with Perfect Enforcement: Competitive equilibrium

We decentralize the planner’s optimal allocation by allowing households to trade Arrow se-
curities contingent on future idiosyncratic or future sectoral states s′ = L,H. Households
buy securities contingent on s′ = L, and sell securities contingent on s′ = H. The former
deliver income when individual endowment is low; the latter pledge to give up income when
individual endowment is high. Let p(s; s′) be the price at st = s of security paying 1 unit
of consumption at st+1 = s′ and paying zero if st+1 ̸= s′. Then the standard de?nition of
competitive equilibrium is:

Definition 2.1: An equilibrium is a list of security prices p(s, s′), security holdings Q(α, s′)
and consumption allocations c(α, s) for each α ∈ [0, 1] and (s, s′) ∈ {L,H}×{L,H} such that:

1. Household α maximizes the continuation payoff at time t = 0,

V (α, s0) = E{
∞∑
t=0

βtu[c(α, st)]|s0}

under the budget constraints

c(α, s) +
∑
s′

p(s, s′)Q(α, s′) = ω(α, s) +Q(α, s) (4)

The household takes as given the initial state s0, prices p(s, s
′) and initial security hold-

ings Q(α, s0).

2. Markets clear, that is∫ 1

0
{πH [c(α,H)− ω(α,H)] + (1− πH)[c(α,L)− ω(α,L)]}G(dα) = 0 (5a)

in the goods market; and

πH

∫ 1

0
Q(α,H)G(dα) + (1− πH)

∫ 1

0
Q(α,L)G(dα) = 0 (5b)

in the claim market.

5



The market clearing condition in the goods market states that the excess demands of
high income people and low income people sums to zero when weighted by their population
proportions. The corresponding securities market condition means that the supply of claims
contingent on future states of high income is exactly balanced by the demand for claims con-
tingent on future states of low income.

As expected, an equilibrium with perfect enforcement delivers an optimal allocation of
resources for any initial distribution of individual securities that satisfies equation (5b). One
can easily show the following result:

Theorem 2.1: There is a unique equilibrium with complete consumption smoothing. In
particular,

1. c(α, s) = c∗(α)

2. Security prices satisfy p(s, s′) = βπ(s, s′)

3. Sectoral or idiosyncratic holdings (Q(α,H), Q(α,L)) satisfy the budget constraints (4)
at the prices listed in part (2)

4. There exists an initial distribution of assets that replicates itself and supports a sym-
metric equilibrium with equal consumption for all agents, i.e., such that c∗(α) = 1, ∀
α ∈ [0, 1]. Specifically,

Q∗(α,H) = − 1

(1− β)(1− βρc)
[(1− βπLL)ω(α,H) + β(1− πHH)ω(α,L) + βρc − 1]

Q∗(α,L) = − 1

(1− β)(1− βρc)
[(1− βπHH)ω(α,L) + β(1− πLL)ω(α,H) + βρc − 1]

where ρc ≡ πHH + πLL − 1 ∈ [−1, 1]

Example 2.1: (Deterministic symmetric economy): Suppose πHH = πLL = 0, i.e., ρc = −1.
Then state histories for the two agents or sectors are

st =

{
H,L,H,L, . . .
L,H,L,H, . . .

and the asymptotic distribution of states is (πH , πL) = (1/2, 1/2). Assume that endowments
are

ω(α,L) ≡ yL(α) = 1− α

ω(α,H) ≡ yH(α) = 1 + α

Then theorem 2.1.4 says that we can choose an initial distribution of asset holdings

Q(α,H) = −1 + α+ β(1− α)− 1− β

1− β2
= − α

1 + β
= −Q(α,L)

which generates for each agent a constant consumption stream c1t = c2t = 1, ∀ t.
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This distribution aggregates to zero and replicates itself in equilibrium. The present value
of consumption equals Q(α, s) plus the PV of endowment income. For example, in current
state L, the PV is Q plus the value of the endowment stream (1 − α, 1 + α, 1 − α, 1 + α, . . .)
discounted at the equilibrium yield R = 1/β. This turns out to be

PV (income) +Q =
1− α+ β(1− α)

1− β2
+

α

1 + β
=

1

1− β

The same is true in current state H. Therefore, c(α,L) = c(α,H) = 1. To understand this
example, note that the initial holding Q(α,L) is equivalent to adding income δ = (1− β)α to
the endowment of low income agents and subtracting the same amount from the endowment
of high income agents. In fact, QL is the present value of the endowment stream (δ, 0, δ, 0, . . .).
Figure 3 shows how the vector (cH , cL) = (1, 1) is the common claim of all households α ∈ [0, 1]
maximizing utility when βR = 1 and endowment is 1+α− δ when s = H, and 1−α+ δ when
s = L.

Figure 2.1: Symmetric equilibrium with perfect enforcement
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Now we return to the question asked previously

Question: What if we allow high state households to deviate from the allocation c(α, s) = 1,
∀(α, s), for one period and pay some penalty? Would any household exercise this option?

The answer clearly depends on the economic consequences of deviating from c(α, s) = 1.
Suppose we specify the following penalty: Let ϕ ∈ [0, 1] be the exogenous probability of
detecting default. Then a detected defaulter goes into perpetual autarky. An undetected
defaulter obtains costless debt relief. Under this arrangement, the payoff from solvency is:

V (α, s) =
u(1)

1− β
, ∀ (α, s)

Payoff from default for a high-state household is:

VD(α,H) = ϕVA(α,H) + (1− ϕ)
u[1 + (1− β)α/(1 + β)]

1− β
(6a)

where by analogy with equation (3c), we replace consumption with income and obtain

(1− βρc)(1− β)VA(α,H) = (1− βπLL)u[ω(α,H)] + β(1− πHH)u[ω(α,L)] (6b)

Here VA is the value of autarky for a high income household and (1−β)α/(1+β) is the perma-
nent consumption increment for undetected defaulters. The present value of that increment is
α/(1− β) and equals the value of the forgiven debt QH = −α/(1 + β).

Remember that the payoff from autarky in the high state satisfies equation (6b). In the
deterministic example, ρc = −1 and the autarky payoff becomes

(1− β)VA(α,H) =
u(1 + α) + βu(1− α)

1 + β
(5c)

From (6a) and (6b) it is easy to see that any household α ∈ [0, 1] with deterministic income
will not deviate from the first-best outcome if and only if

(1 + β)u(1) ≥ ϕ[u(1 + α) + βu(1− α)] + (1− ϕ)(1 + β)u(1 +
1− β

1 + β
α) (7)

A particularly interesting special case of (7) is that of perfect monitoring ϕ = 1, when (7)
reduces to

(1 + β)u(1) ≥ u(1 + α) + βu(1− α) (*)

As shown in the following figure, condition (*) is satisfied, and the first-best allocation
determines autarky, if and only if the endowment point Ω = (1 + α, 1− α) is between E’ and
F; (*) fails iff Ω is in the interval (EE’).

Inspecting Figure 5 reveals that (*) is likely to fail for ϕ = 1 if β is low or α is low or u(·)
is nearly linear.

8



Figure 2.2: Symmetric Equilibrium with Limited Enforcement

In addition, if (*) holds for ϕ = 1, it will still fail for smaller values of ϕ unless ϕ is “large
enough”, because it is violated at ϕ = 0.

In a more general stochastic setting of random monitoring and random income which
obeys a symmetric two state Markov process with πHH = πLL = π and correlation coefficient
ρc = 2π − 1, equation (7) generalizes easily by combining (6a) with (6b) to:

(1 + β − 2βπ)u(1) ≥ ϕ[(1− βπ)u(1 + α) + β(1− π)u(1− α)] + (1 + β − 2βπ)(1− ϕ)u(1 +
1− β

1 + β
α)

(8)

When individual income shocks are very persistent and π is close to 1, this relation will fail
for all values of (α, β, ϕ). Problem 3.2 asks you to prove this result and explain it.

Problem 2.1: An economy consists of two groups of agents i = 1, 2 with mass 1 each and
constant income stream yit = 1 for all agents i and all times t. Initial assets are zero for all i.
Utility functions ui =

∑∞
t=0 β

i
t log(c

i
t) with 0 < β1 < β2 < 1.

1. Describe the equilibrium outcome under perfect enforcement. What are the asymptotic
values of consumption and of the rate of interest?

2. Is the perfect enforcement outcome achievable under limited enforcement? If so, for what
parameter values?

[Assume default is punished with perpetual autarky with probability 1]

Problem 2.2: Show that high-income households will want to default at the symmetric equi-
librium outcome of an Arrow-Debreu economy if their household incomes follow a highly
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autocorrelated two-state symmetric Markov process.

Problem 2.3: Study asymmetric equilibrium outcomes in Arrow-Debreu economies and show
that agents with high enough initial debt will always want to deviate. What is the critical
stock of initial debt that will lead a household into default?

Problem 2.4:

1. Extend theorem 2.1 to a deterministic exchange economy with a continuum of agents
with mass 1. Agent types are indexed on the income variability parameter α ∈ [0, 1]
with a known distribution.

2. Describe the symmetric Arrow-Debreu allocation and find a condition that will prevent
agent α from defaulting.

3. Show that the no-default condition you discovered in part (b) cannot hold for a high
income household with low enough value of the income variability parameter α.
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