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Abstract

We give a proof of the Minimax Theorem where the key step involves reducing the
strategy sets. The proof is self-contained and elementary, avoiding appeals to theorems
from geometry, analysis or algebra, such as the separating hyperplane theorem or
linear-programming duality. The argument is valid with any ordered field in place of
the usual field of real numbers. We give a second proof with similar merits which is
closely modeled on an argument from Loomis (1946). This one is a bit simpler, but
uses the existence of maxima on compact domains and hence is only valid in R.
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1 Introduction

The Minimax Theorem was the first major existence theorem in game theory, and as such
it paved the way for game theory as a modern mathematical discipline. Perhaps it can
best be described to a modern audience as saying that a Nash Equilibrium exists for any
finite two-player zero-sum game. For a statement closer to the original, which avoids the
anachronistic reference to Nash, see the next section. Since the time the Minimax Theorem
was first proved in von Neumann (1928), many other proofs have appeared. Perhaps best-
known is the argument in von Neumann and Morgenstern (1947), which uses the separating
hyperplane theorem. This approach, as well as von Neumann’s original proof, used properties
special to the real numbers, specifically the Weirstrass Theorem for continuous functions on
compact sets. But the Minimax Theorem actually holds when payoffs lie in any ordered field
F, and probabilities in the mixed strategies are allowed to range over F, as was shown in
Kuhn and Tucker (1950). The proof there relies on a result from Stiemke (1915), which was a
forerunner of duality results in linear programming. Indeed, linear-programming duality, or
related results such as Farkas’ Lemma, also leads to a quick proof of the Minimax Theorem
– see for instance Vohra (2004).

I have often felt a bit unsatisfied by these proofs. Because the Minimax Theorem is so
fundamental to our understanding of strategic interaction, I wanted to create a proof that
reasons directly about strategies. That is, an argument that harnesses strategic intuition,
avoiding the use of theorems from geometry, algebra or analysis as the primary engine.
Such a proof is provided here, with some preliminaries in Section 2 and the proof of the
workhorse lemma in Section 3. The proof is valid for any ordered field, because it avoids
any arguments based on continuity or compactness. I can only hope that others feel as I do
that it contributes understanding beyond the existing proofs. The most similar proof I have
seen, pointed out by a referee, is in Peck (1958), which has a similar method of eliminating
strategies. It relies on properties of the real numbers, however: the results are stated in
terms of sup and inf over mixed strategy sets, which are guaranteed to exist only over the
field of reals, and the proof begins with this existence.

If one is willing to use basic properties of the real numbers and compactness, there is a
very simple argument which was first given by Loomis (1946). Loomis comments that von
Neumann had given a recent lecture where he challenged the audience to give an elementary
proof of the Minimax Theorem, or, more precisely, of an algebraic theorem which was a slight
generalization of Minimax. Apparently von Neumann, too, thought there was value in finding
a more elementary approach than his own proofs. Loomis succeeded at this admirably, giving
a very simple proof. It relies on the Weierstrass Theorem to show that the max-min and
min-max in (1) exist, which both calls into question how “elementary” it is, and means it is
valid only for R. Nonetheless, it is the simplest proof of the original theorem I have seen,
subject to the constraint of using no advanced theorems other than Weierstrass. Certainly,
it is far more elegant than von Neumann’s 1928 proof. For purposes of comparison, I have
included an adaptation of it here, in Section 4, which I believe has two advantages for the
modern student of game theory over the original Loomis paper: I have stripped it of some
extra generality, which simplifies the notation, and I have rewritten it in the notation of game
theory, in a way which emphasizes strategic intuition. The resulting argument is simpler than
my proof, but with the relative weakness of its appeal to compactness. The simplicity of this
argument is evidenced by its rediscovery by Owen (1967) and Thomassen (2000). Binmore
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(2004), inspired specifically by Owen, expands the argument, using transfinite induction, to
prove a more general version of the minimax theorem with more general strategy spaces.

2 Definitions and Proof Outline

All of our games will be finite two-player zero-sum games, allowing a streamlining of notation.
Such a game will be a triple G = (A1, A2, u) where A1, A2 are finite sets and u is a function
from A1 ×A2 to F for some ordered field F.1 We refer to elements of Ai as either actions or
pure strategies. The function u is the utility of Player 1; Player 2’s utility is −u. The game
is symmetric if A1 = A2 and for all a1 and a2, u(a1, a2) = −u(a2, a1).

For each player i, a mixed strategy is, formally, a non-negative-valued function from Ai

to F which sums to 1, and Σi is the set of mixed strategies. In a slight overloading of notation,
any ai ∈ Ai will sometimes be considered to be the mixed strategy assigning probability 1
to ai. We extend the function u to Σ1 × Σ2 by linearity as usual. For any σ1

i , σ
2
i ∈ Σi and

α ∈ [0, 1], the mixture ασ1
i +(1−α)σ2

i ∈ Σi has the expected meaning, assigning probability
ασ1

i (ai) + (1− α)σ2
i (ai) to each ai.
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The minimax theorem can then be stated as follows:

Theorem 1 (Minimax Theorem) For any finite two-player zero-sum game G,

max
σ1∈Σ1

min
σ2∈Σ2

u(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u(σ1, σ2) (1)

Note that when we work in an arbitrary F, there is no immediate reason that either
side of (1) must be well-defined. It is part of the content of the theorem that they are. The
common value in (1) is called the value of G. It is straightforward to see that the theorem
is equivalent to the existence of a Nash equilibrium (σ∗

1, σ
∗
2). Indeed, σ

∗
1 would optimize the

left-hand-side, and σ∗
2 the right-hand-side, with the common value u(σ∗

1, σ
∗
2).

We call a mixed strategy bulletproof if it guarantees non-negative utility. Our main
lemma will be the following:

Lemma 1 (Bulletproof Lemma) In any two-player zero-sum game, at least one player
has a bulletproof strategy.

From the Bulletproof Lemma, the Minimax Theorem follows in two simple and intuitive
steps. First, the lemma easily implies the theorem for symmetric games. Indeed, the lemma
along with symmetry tells us that both players have bulletproof strategies, and then both
sides of (1) equal 0.

Next, we show that the symmetric case implies the general case.3 Given G = (A1, A2, u),
we create a symmetric version where both players simultaneously play both roles and we

1The most familiar examples of ordered fields are R and subsets of R which are closed under the field
operations, such as the rationals Q. There are also ordered fields which cannot be embedded in R, called
non-Archimedean; such a field includes infinite and infinitesimal elements. One useful introduction to the
topic is Propp (2013).

2The interval [0,1] should be interpreted as a subset of F, not a subset of R as per usual.
3This reduction of the general case to the symmetric case appears in Kuhn and Tucker (1950), p. 81.

The authors credit it to von Neumann. It is equivalent to flipping a coin to decide who plays what role.
That article also uses a version of the Bulletproof Lemma on the way to the main result. The lemma is also
very similar to Ville’s Theorem, which has been used in many proofs of the minimax theorem. Our lemma
is slightly weaker.
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add the payoffs. That is, we let Ḡ = (A1 × A2, A1 × A2, ū) where ū((a1, a2), (a
′
1, a

′
2)) =

u(a1, a
′
2) − u(a′1, a2). Then, a minimax strategy in Ḡ must have marginal distributions on

each coordinate which solve the min-max and max-min problem of G and establish (1).
Indeed, let σ be a max-min strategy for Player 1 in Ḡ, which we know has value zero, and let
its marginals be σ∗

1, σ
∗
2. Player 2’s best response, which is to best-respond in each coordinate,

must give total value zero, i.e.

min
σ2

u(σ∗
1, σ2)−max

σ1

u(σ1, σ
∗
2) = 0

and this implies that both players in G can guarantee value

v = min
σ2

u(σ∗
1, σ2) = max

σ1

u(σ1, σ
∗
2)

via the strategies (σ∗
1, σ

∗
2).

So, the bulk of the work is in the proof of the lemma. It is here that I believe my approach
is somewhat novel. The details are in the next section; here is the idea. We proceed by
induction on the size of A1, by an elimination step which shrinks both players’ mixed strategy
sets in a way which preserves the existence (or non-existence) of a bulletproof strategy for
each player. Specifically, we remove one of P1’s pure strategies a∗1, and simultaneously
remove those of P2’s mixed strategies which lose to a∗1. This is precisely the way to leave
the “balance of power” unchanged: in P2’s search for a bulletproof strategy, some options
are foreclosed by a∗1; if we remove a∗1, we should remove these options as well. The reduction
does not necessarily preserve the value of the game; it does preserve its sign. The remaining
mixed strategies of P2 form a polytope; its corners are the new pure strategies for P2. This
reduction may actually increase the number of pure strategies for P2, but always reduces
those of P1, so that the induction is valid. Please note that while the validity of the proof
does not rely on any knowledge of the properties of polytopes, such knowledge does help
understand why it works. In particular, the set of P2’s mixed strategies with non-negative
payoff against a∗1 is the convex hull of finitely many points, and this helps the proof operate.
Notice that the proof implies an algorithm for determining which player has a bulletproof
strategy, and for constructing one, by iterating the elimination step.

Of course, the special role of utility level 0 in the lemma is arbitrary; by subtracting
a constant from all payoffs, the lemma easily implies that for each k ∈ F, either P1 can
guarantee at least k or P2 can guarantee at least −k. If we knew that the max-min and
min-max were well-defined, this would quickly yield the main result, but in absence of this
knowledge we have relied on the symmetrization argument from Kuhn and Tucker (1950).

In most prominent examples of zero-sum games, utility level 0 does have a special
significance. Sometimes, as in poker, it represents zero monetary transfer, i.e. the utility
level a player would achieve by opting out of the game. In parlor games such as rock-
paper-scissors, it represents a tie. In Borel (1921), the original article introducing the idea
of mixed-strategy solutions to zero-sum games, Borel focused on games with only two final
outcomes, winning and losing (but perhaps a role for chance after the players act). This
avoided the need to think about expected utility, which wasn’t invented yet. For Borel,
players were simply maximizing the probability of a win. Here, utility 0 represents a .5
probability of winning. Thus, even though a bulletproof strategy certainly might not be
the best strategy, it does in all these examples guarantee that one is not, on average, a
“loser” in the game. Borel’s work was focused exclusively on symmetric games, so his initial
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papers (though taken in retrospect as introducing the general minimax idea) actually defined
the goal as guaranteeing non-negative value. He called such mixed strategies, which we call
“bulletproof,” simply “supérieures” (and claimed that they almost never existed, except with
three or fewer strategies.) So, there is historical reason to give a flattering name to such
strategies, though they may be suboptimal.

2.1 Further Comparison to Existing Proofs

The proof of the main lemma is reminiscent of the algorithm of Fourier-Motzkin (FM)
elimination, which eliminates one variable while adding constraints, to preserve feasibility
or infeasibility of a linear program. Consider the program of Player 1, trying to find a
bulletproof strategy σ1. This is a linear feasibility problem: the probability σ1(a1) attached
to each of his actions is a variable, and each of Player 2’s actions creates a linear constraint,
namely that u(σ1, a2) ≥ 0. In FM elimination, at each step one variable is eliminated and
a new set of constraints is created which may be larger in cardinality than before. This is
similar to how P1’s pure-strategy set shrinks by one element and P2’s may grow in cardinality
(though both sets of mixed strategies shrink). FM elimination can be used to prove Farkas’
Lemma, and another proof by reduction in dimensionality appears in Gale (1960). The
Farkas Lemma can be used to prove Ville’s Theorem, which is essentially a slightly stronger
version of the Bulletproof Lemma and has often been used in proofs of the minimax theorem.

The following proof, then, uses ideas similar to existing algebraic proofs to give an
algorithm which, through natural steps of strategic elimination, always finds a bulletproof
strategy for some player. I find it instructive to see how these ideas play out when the
elimination is specialized and described in terms of strategies, and the elimination has the
specific goal of preserving the existence of a bulletproof strategy for each player.

3 Proof of the Bulletproof Lemma

We will induct on |A1|. Let G = (A1, A2, u) be any two-player zero-sum game. If |A1| = 1
the result is easy, so let |A1| ≥ 2. Pick any action a∗1 ∈ A1; in order to apply the inductive
hypothesis, we will construct a new game G′ where Player 1 has action set A′

1 = A1 − {a∗1}.
Player 2’s new action set A′

2 will be a finite subset of Σ2. To construct it, we first partition
A2 as follows:

Ag
2 = {a2 ∈ A2 : u(a

∗
1, a2) ≤ 0}, Ab

2 = {a2 ∈ A2 : u(a
∗
1, a2) > 0}

That is, actions in Ag
2, the “good” actions, are those that defeat or tie the eliminated

action a∗1, and Ab
2, for “bad”, lose to action a∗1. If A

g
2 = ∅, then a∗1 is bulletproof, so assume

not. For each pair (g, b) ∈ Ag
2 ×Ab

2, there is a unique mixture of g and b which has expected
payoff 0 against a∗1, which we denote ⟨g, b⟩, i.e.

⟨g, b⟩ := u(a∗1, b)

u(a∗1, b)− u(a∗1, g)
g +

−u(a∗1, g)

u(a∗1, b)− u(a∗1, g)
b

Then we set

A′
2 = Ag

2 ∪ {⟨g, b⟩ : g ∈ Ag
2, b ∈ Ab

2}
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Notice that both players’ action sets are subsets of their mixed strategy sets from G, so
that payoffs in G′ can be simply inherited from those in G. We now can apply the inductive
hypothesis to G′ = (A′

1, A
′
2, u).

The case that Player 2 has a bulletproof strategy σ2 in G′ is very simple. This same
strategy σ2 is bulletproof in G, because all actions in A′

2 were chosen to have non-negative
payoff against the missing action a∗1.

If Player 1 has a bulletproof strategy σ1 in G′, there is a bit more work. If σ1 is also
bulletproof in G, we are done, so presume not; then let Ab′

2 = {b ∈ A2 : u(σ1, b) < 0} ̸= ∅.
Note that Ab′

2 ⊆ Ab
2 by definition of σ1, because Ag

2 ⊆ A′
2. We will construct an appropriate

mixture σα
1 := αa∗1+(1−α)σ1 which is bulletproof in G. Note that by definition of “bad”, a∗1

has positive payoff against bad actions, and since good actions are in A′
2, σ1 has non-negative

payoff against good actions. Therefore, a sufficiently large α works against all bad actions,
and a sufficiently small one against all good actions. The idea is to find an α which works
against both, and an obvious candidate is the smallest α which works against all bad actions.
We can restrict attention to Ab′

2 ; for other bad actions, any α suffices.
Indeed, for each action b ∈ Ab′

2 , define αb as the solution to the equation u(σαb
1 , b) = 0,

i.e.

αb =
−u(σ1, b)

−u(σ1, b) + u(a∗1, b)

Notice that αb > 0 by definition of Ab′
2 , and also αb < 1.

Then, let α = maxb∈Ab′
2
αb = αb̄ for appropriate b̄. By construction, u(σα

1 , b) ≥ 0 for each

b ∈ Ab
2. For any g ∈ Ag

2, recall that u(a
∗
1, ⟨g, b̄⟩) = 0, and also, because σ1 is bulletproof in G′,

u(σ1, ⟨g, b̄⟩) ≥ 0, which together imply (by linearity) u(σα
1 , ⟨g, b̄⟩) ≥ 0. But also u(σα

1 , b̄) = 0,
so we must have u(σα

1 , g) ≥ 0, and the proof is complete. □.
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4 The proof of Loomis (1946) for F = R
If the theorem fails, let G = (A1, A2, u) be a counterexample for which |A1|+ |A2| is smallest.
Because Σ1,Σ2 are compact, the expressions in (1) are well-defined. Let σ∗

1 optimize the left-
hand-side (the max-min problem) and σ∗

2 the right (the min-max problem), and call the
optimal values v and v̄. It is immediate that

v ≤ u(σ∗
1, σ

∗
2) ≤ v̄

and by assumption, at least one inequality is strict; say the first. Then there is some ab2 (a
“bad” strategy for Player 2) with v < u(σ∗

1, a
b
2). Form G′ from G by eliminating ab2. By

inductive hypothesis, (1) holds for G′, say with common value v. The min-max can only go
up when we eliminate one of Player 2’s strategies, so v̄ ≤ v and thus v < v. Let σ∗∗

1 solve the
max-min problem in G′. It is then easy to check that for small enough ε > 0, the strategy
σε
1 := (1 − ε)σ∗

1 + εσ∗∗
1 improves on the alleged solution σ∗

1 to the max-min problem of G.
Indeed, the strict inequality v < u(σε

1, a
b
2) holds for ε = 0, hence also in a neighborhood of

0, and for a2 ̸= ab2 we simply have, for any ε ∈ (0, 1),

v < (1− ε)v + εv ≤ (1− ε)u(σ∗
1, a2) + εu(σ∗∗

1 , a2) = u(σε
1, a2)

The contradiction proves the desired result. □

This proof requires that the underlying field be R in the first paragraph, in order to
apply compactness and conclude that the max-min and min-max exist. The implicit use
of continuity in the final paragraph is only for convenience and could be replaced by field
operations.
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Stiemke, E. (1915): “Über positive Lösungen homogener linearer Gleichungen,” Mathema-
tische Annalen, 76(2), 340–342.

Thomassen, C. (2000): “The rendezvous number of a symmetric matrix and a compact
connected metric space,” The American Mathematical Monthly, 107(2), 163–166.

Vohra, R. V. (2004): Advanced mathematical economics. Routledge.

von Neumann, J. (1928): “Zur Theorie der Gesellschaftsspiele,” Mathematische Annalen,
100, 295–320.

von Neumann, J., and O. Morgenstern (1947): Theory of Games and Economic Be-
havior. Princeton University Press, second edn.

8


