

AIRIS: High-Precision Optical Follow-Up Telescope for Gamma-Ray Burst Observation with ADAPT

WashU Satellite Team

ADAPT: Our Collaborators in WashU Physics

The Antarctic Demonstrator for the Advanced Particle-astrophysics Telescope (ADAPT) is a high-altitude balloon mission developed to detect and localize gamma-ray bursts (GRBs) across the entire sky. GRBs offer early notifications of the most energetic astrophysical phenomena in the universe, allowing follow-up observations as an element of multi-messenger astrophysics.

The ADAPT Detector Stack

The ADAPT Gondola

AIRIS Mission Goals

Precision Localization: Improve GRB localization accuracy from ADAPT data. Data Acquisition: Capture highresolution optical afterglow images. Algorithm Development: Innovate imaging and search algorithms for multimessenger astronomy through flight demonstration.

Technology Demonstration: Lay the groundwork for WashU's VECTOR CubeSat proposal.

VECTOR Preliminary CAD

AIRIS (ADAPT Incidence Resolution and Imaging Subsystem)

AIRIS is an rapidly slewing optical follow-up telescope designed to complement the ADAPT mission by capturing high-resolution images of the GRB afterglows to improve the localization precision of ADAPT. AIRIS will be mounted on the same highaltitude balloon as ADAPT, and use real-time localization probability distribution data from ADAPT.

Current Plans

- Design of a 200mm aperture optical telescope with integrated stabilization.
- Implementation of a GPU-accelerated image processing pipeline.
- Simulation and validation of the rapid-slewing mechanism under high-altitude conditions.

Canon 200 mm f/1.8 Lens Diagram

Challenges

Visualization of HEALPix sphere pixel distribution.

Washington University in St.Louis Department of Physics

WashU McKelvey Engineering

• Control system needs to rapidly slew to imaging targets, know pointing to arc-second accuracy, and not disturb the rest of the gondola GPU/FPGA pipeline for image blur removal techniques/search strategy.

Collaborators

This work is supported by WashU Satellite, ESE Department, and Physics Department. Special thanks to James Buckley, Andrew Clark, and Marion Sudvarg, and all other advisors.

Website

References

