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ABSTRACT: One primary goal of many science courses is for students to learn creative problem-solving skills; that is,
integrating concepts, explaining concepts in a problem context, and using concepts to solve problems. However, what science
instructors see is that many students, even those having excellent SAT/ACT and Advanced Placement scores, struggle in the
introductory science courses. As faculty work to adopt more evidence-based teaching methods, the question arises of how to
determine early on who may have difficulty in these introductory courses. Recent basic cognitive science research suggests that
there are individual differences in how learners approach conceptual tasks: some learners tend toward rote concept-learning
(exemplar learners), whereas other learners tend to use abstraction concept-learning. We explored the possibility that this
individual difference in concept-building might have consequences for classroom learning. In the current study, using an online
concept-building task, we differentiated students based on their concept-building approach and then tracked their exam grades in
general chemistry and organic chemistry courses. Abstraction learners demonstrated advantages over exemplar learners even after
taking into account preparation via ACT scores and prior chemistry performance. Further, these performance differences grow
even more pronounced in Organic Chemistry 2. Our results suggest that individual differences in how learners acquire and

represent concepts persist from laboratory concept learning to learning complex concepts in introductory chemistry courses.
KEYWORDS: First-Year Undergraduate, Second-Year Undergraduate, Chemical Education Research

FEATURE: Chemical Education Research

B INTRODUCTION

Over the years, there has been much interest in variables that
could be used to predict student success in university lower-
level chemistry courses because unsatisfactory grades obtained
in these courses are one of the reasons students migrate out of
STEM. Hence, being able to predict which students might
struggle in these courses would allow instructors to modify
their curriculum to help those students most at risk. There have
been numerous studies that have examined various factors to
determine their predictive ability such as general math
ability,l_5 formal thought,6 scientific reasoning ::1bility,7 affective
characteristics,® ™ '° and language comprehension.11 In addition,
chemical education researchers over many years have been
examining how students solve problems and whether students
are understanding the concepts behind the problems or just
solving the problems algorithmically.””~'* Also, even some
students with excellent preparation and high ability (based on
standard preparation exams) can struggle in these lower-level
chemistry courses.">~'” Thus, there remains intense interest in
identifying which students will struggle in these key
introductory science courses.

In this paper, we propose that students’ individual differences
in concept building is one potentially crucial factor in
explaining these differing outcomes of otherwise similar
students and examine how this individual difference in concept
building might predict course performance in lower-level
chemistry courses. In addition, following previous analyses
that organic chemistry is typically more process-oriented than
general chemistry,19 we test the hypothesis that the association

© 2017 American Chemical Society and

-4 ACS Publications  Division of Chemical Education, Inc.

1185

between concept-learning tendencies (assessed by the concept-
building task) and course performance is amplified in organic
chemistry relative to general chemistry.

Individual differences in concept-building approach were
demonstrated initially in cognitive psychology laboratory
experiments conducted by two of the coauthors (M.A.M. and
MJ.C.).*° Using the concept-buildin§ task (termed a function-
learning task in McDaniel et al.),”” which involves learning
input—output relationships (described in detail below), learners
were classified as having one of two distinct concept-building
approaches. One set of students (abstraction learners) focused
on learning the functional relationship among points and used
this information to solve novel inputs. Therefore, abstraction
learners may orient toward extracting underlying principles,
encouraging a relatively deep understanding of content. In
contrast, other students (exemplar learners) focused on
learning the individual input—output pairs, thereby failing to
learn the functional relationship; consequently, these students
could not successfully solve novel inputs. That is, exemplar
learners may instead develop conceptual representations based
on memory of studied examples and algorithms rather than
abstractions that summarize and relate particular examples. In a
recent study,21 we showed that individual concept-building
approaches persist from laboratory-concept learning (the
concept-building task) to learning complex concepts in a
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general chemistry course by examining performance differences
on retention and transfer questions on the final exam. We
found that abstraction learners performed better than exemplar
learners on the transfer questions even after controlling for
ACT Math, but the two groups had equivalent performance on
retention questions. Hence, in that recent study, we showed
that individual concept-building approaches persist from
laboratory-concept learning (the concept-building task) to
learning complex concepts in a general chemistry course.

In the present study, we expand upon the previous classroom
study to examine whether the students’ concept-building
approaches affect their exam performances in general chemistry
and organic chemistry courses and whether this effect is
different across these courses. We suggest, based on instructors’
observations in the classroom, the chemical-education literature
on problem solving, and the cognitive psychology literature,
that there are some key commonalities in a student’s concept-
building approach and how students approach their chemistry
and possibly other science courses.

M RESEARCH QUESTIONS

Because of the focus on complex problem-solving in most
science courses, we hypothesize that it is the exemplar learners
who have difficulty succeeding in these courses and are
consequently the ones who are likely to perform poorly.
Anecdotally, this is also the belief of many science instructors,
also reflected in the chemical education literature,">™'* that
students who memorize studied examples and algorithms
(exemplar learners) are the ones who struggle in science
courses. Therefore, we hypothesize that exemplar students will
fare more poorly in these chemistry courses than the
abstraction learners. Further, we posit that this difference
might be greater in organic chemistry compared to general
chemistry given the different demands of organic chemistry
relative to general chemistry. A recent review of the research on
student problem-solving in organic chemistry'® suggests that
because the use of mechanisms is essential in organic chemistry,
students need to modify their thinking from a product-oriented
thinking (used primarily in general chemistry) to a process-
oriented thinking (used primarily in organic chemistry). The
use of combinations of reaction-types required to design
mechanisms requires in-depth chemical reasoning and con-
ceptual understanding; hence, mechanistic problems cannot be
easily solved by using memorized patterns.

Assuming that in many chemistry classes (including those
involved in the present research), the course assessments
(exams) focus on testing new problems not covered in class
and homework, abstraction learners would be expected to
generally outperform exemplar learners on the course exams.
To explore this possibility, in the current study, we examined
the relation between concept-building tendency and exam
performances. In addition, because Math ACT scores and
general math ability consistently correlate with performance in
general chemistry, we included ACT Math as a covariate in our
analyses for the general chemistry courses.' > For organic
chemistry, there seems to be little correlation between organic
chemistry performance and the standard student meas-
ures,”>™> but instructors have seen correlation with general
chemistry performance.”””** Therefore, ACT Composite and
general chemistry performances were included as covariates in
the organic chemistry analyses.

Our hypotheses are:
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1. Students’ concept-building approaches will predict
performances on examinations in general and organic
chemistry such that students identified as abstraction
learners will outperform those identified as exemplar
learners.

2. Concept-building approach will be a unique predictor of
exam performance; that is, it will remain as a predictor
when ACT math, composite, and other achievement
variables are included in the analyses.

3. Concept-building approach will be a more robust
predictor for organic chemistry performance than general
chemistry performance such that performance advan-
tages for abstraction learners relative to exemplar learners
will be magnified in organic relative to general chemistry.

If these hypotheses are correct, then the concept-building
assessment could be a fruitful tool for anticipating which
students might fare more poorly in chemistry classes. Further,
this assessment would directly shed light on the cognitive
underpinnings of these students’ difficulty.

B BASIC CONCEPT-LEARNING THEORIES AND
CONCEPT-BUILDING APPROACH

Cognitive psychologists have attempted to characterize human
concept-learning with two competing classes of models:
exemplar models*®*™>* and abstraction models.”” ™" Exemplar
models assume that individuals learn concepts by storing
specific instances and features of those instances, and they
respond to new stimuli based on how similar the new stimuli
are to stored instances. For instance, according to these
exemplar models, in a category-learning task, a new stimulus is
assigned to the category for which the stored instances of the
category are more similar to the new stimulus than are stored
instances of other categories. In contrast, abstraction models
assume that learners extract underlying principles that govern
the instances rather than storing specific instances and that they
respond to new stimuli by applying the learned principles to
them. Thus, in a category-learning task, a new stimulus is
considered in terms of the underlying abstract features (or
principles) that determine membership in a category (not in
terms of particular category members). These theoretical
approaches have been viewed as competitive because both
can successfully characterize learning across a number of
conceptual tasks.””*>**

However, recently, in a range of conceptual tasks (category
learning,‘?""‘?’5 function Iearning,20 multiple-cue prediction
learning,‘g(”g’7 and skill learning38), studies have integrated
these two existing approaches by suggesting that for conceptual
tasks, some learners tend toward rote concept-learning
(exemplar learners), whereas other learners tend to use
abstraction concept-learning. In the function-learning studies
by McDaniel et al,”® a participant’s concept-building approach
was assessed with a computer-based concept-building task,
described below, in which they had to learn to predict an
output variable based on input-variable values. It is important to
note that the concept-building task is independent of course-
domain knowledge. More generally, these laboratory studies
showed that the tendency to be an abstraction versus exemplar
learner remained relatively stable across different types of
concept-learning tasks, suggesting that concept-building
approach may exert influence in a wide range of learning
contexts, perhaps including classroom settings.
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Figure 1. Screen shots from the concept-building task, adapted from Figure 2 in McDaniel, M. A; Cahill, M. J.; Robbins, M.; Wiener, C. Individual
differences in learning and transfer: Stable tendencies for learning exemplars versus abstracting rules. J. Exp. Psych.: Gen. 2014, 143, 668—693,
Publisher: American Psychological Association, adapted with permission.”’

B METHODS

Concept-Building Task

The task involves a fictional organism and two fictional
elements, so students have no prior knowledge about the task.
Unknown to the students, these input—output points follow a
particular function form (i.e., a V function or an inverted-V
function). During a training phase, students make output
predictions on training inputs and learn the true outputs via
teedback.

Students are given instructions on a computer monitor that
ask them to pretend they have just been hired by NASA. On
Mars, NASA discovered two completely new elements and one
organism that absorbs an element Zebon and releases an
element Beros. Their job is to determine how the absorption of
Zebon and the release of Beros are related; that is, they need to
determine how much of Beros is excreted after absorbing a
certain amount of Zebon.

After students read this cover story, they are presented with
training trials consisting of 10 blocks of 20 training points. As
seen in Figure 1, the students are presented with three vertical
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bars. The leftmost bar gives the input value, and students make
their output predictions by moving the middle bar. Three forms
of feedback are then given: the rightmost bar shows the correct
output value, the exact number of units of error is displayed in
text, and an encouraging message is displayed. The training
points are selected within a training range of a bilinear function
(see Figure 2). After the training trial, all students are given a
test block; note that the students are not told about the test
block until after the training is complete. They see new inputs
inside (interpolation trials) and outside (extrapolation trials)
the range of the training inputs and make predictions, this time
without receiving feedback. Figure 2 shows the mean predicted
values (outputs) using both the V function and the inverted-V
function for the students in this study. Note that these output
graphs are not seen by the students. These graphs result from
the analysis of the data set containing the output results from all
of the students in the study.

Students who are able to make accurate extrapolation
predictions are classified as abstraction learners. Students who
learn the training points but give extrapolation points that are
consistent with an exemplar model (for the V-shaped functions,

DOI: 10.1021/acs.jchemed.7b00059
J. Chem. Educ. 2017, 94, 1185—-1194


http://dx.doi.org/10.1021/acs.jchemed.7b00059

Journal of Chemical Education

A.
Extrapolation Training Extrapolation
125- Output Source
D 100- Actual Function
=2 L Output
S
5 75- Exemplar Learner
o Mean Prediction
=
3 50-
o Abstraction Learner
Mean Prediction
25-
0- ' ' ' '
40 60 80 100 120 140 160
Input Value
B.
200 Extrapolation Training Extrapolation
Output Source
g 175- Actual Function
= Output
©
> 150-
5 Exemplar Learner
o Mean Prediction
5125~
o Abstraction Learner
100 - Mean Prediction
75 U 1 U 1 '
20 40 60 80 100 120 140
Input Value

Figure 2. Input and mean output values from the training and
extrapolation components of the concept-building function for the
students in this study. Graphs A and B show the mean output values
for the V and inverted-V functions, respectively.

this is relatively flat extrapolation extending from the training
point that is just inside the extrapolation range; Figure 2) are
classified as exemplar learners. The classification procedure for
the concept-building task utilizes the mean absolute error
(MAE) between a student’s predictions and the correct outputs
based on the function. In other words, abstraction learners were
those students who performed statistically significantly better
than an exemplar model, suggesting that they extracted some
rule-based information from the training points that helped
them make predictions on extrapolation trials (additional
details of the classification procedure are given in the
Supporting Information). Consistent with exemplar models of
concept-learning, the exemplar learners apparently learned
specific input—output associations but did not extract the
function rule necessary to make predictions on the novel test
inputs.””*' In addition, the concept-building approach only
modestly relates to traditional measures of cognitive ability
(e.g, working memory capacity, fluid intelligence)*® and
achievement (e.g, ACT/SAT),” suggesting that it taps a
unique cognitive characteristic. The validity of the concept-
building task is demonstrated by findings that on different
category tasks students continued to show different underluying
representations for the two concept-building approaches.”

Setting of Study

This research was performed at a medium-size selective
research university in the Midwest United States. There are
approximately 7500 undergraduates, and the average ACT
composite score is 33. Our study focused on three large
introductory courses (General Chemistry 1 and 2 and Organic
Chemistry 2). General Chemistry 1 is taught in the fall
semester, and General Chemistry 2 and Organic Chemistry 2
are taught in the spring semester. Both general chemistry
courses enrolled 650—800 students, had weekly subsections
taught by graduate students, and had a separate, independent
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laboratory course. Each general chemistry course had multiple
sections that were taught by different instructors, but the overall
course was managed as a single course with the same content,
homework assignments, quizzes, and exams across sections. In
the subsections, students were mixed from all of the sections.
The Organic Chemistry 2 course enrolled about 200 students,
had no weekly subsections, had the laboratory included as part
of the course, and was taught by a single instructor. Both
general chemistry courses had three midterm exams, quizzes,
and a cumulative final; the majority of the students were first-
year students. The Organic Chemistry 2 course had four
midterm exams and a cumulative final; the majority of the
students were second-semester sophomores.

Procedure

For academic years 2012—2013, 2013—2014, and 2014—-2015,
students in General Chemistry 1 and 2 were asked to take the
online concept-building task in the first part of the fall semester
and in the middle of the spring semester, respectively. For
spring 2014, students in Organic Chemistry 2 were asked to
take the online concept-building task in the middle of the
spring semester. The average amount of time taken on the
online concept-building task was approximately 33 min. In each
case, the students were offered a small amount of extra credit in
the corresponding chemistry laboratory courses (6 points out
of a total of 1200 laboratory course points) to participate in
taking the concept-building approach task (approved by the
university’s IRB). The study included two different versions of
the task; the two versions were identical except different
functions were used. The two functions were a V function and
an inverted-V function (see Figure 2).

We collected three years of data for the two general
chemistry courses and two years of data for the Organic
Chemistry 2 course; hence, we examined the relation between
concept-building tendency and exam performances for over 10
chemistry classes. During the study, for each course, there were
different instructors and variations in the exams. Our outcome
measure for each course was the exam average, as calculated by
the course grading structure; we did not use course grade as
that contained homework, quizzes, or laboratory reports. For
the general chemistry courses, the exam-average score is the
weighted average of the two highest midterm exams and the
cumulative final. For the Organic Chemistry 2 course, the
exam-average score is the weighted average of the four midterm
exams and the cumulative final.

Out of the multiple assessments using both versions of the
function, preliminary analyses showed that the inverted-V
function is more robust in the correlation with exam
performance. The results using the V function still show the
abstraction learners outperforming the exemplar learners in all
of the courses, but the differences were not always statistically
significant after taking into account the appropriate ACT score.
These results are shown in the Supporting Information. We
acknowledge that the emergence of using the inverted-V
function is post hoc and have no theoretical reason for it being
more robust than the V function. However, we are interested in
using the concept-building approach as a tool for anticipating
which students might fare more poorly in chemistry classes.
Thus, we identified that one particular function (the inverted-
V) is most useful in predicting classroom performance.
Therefore, in future work, we will use the inverted-V function
and not the original V function.
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Table 1. Sample Sizes for the Analyses

Full Sample

Courses Abstraction Learners (N)
Gen Chem 1 (Fall 2012—2014) 306
Gen Chem 2 (Spring 2013—2015) 293
Orgo Chem 2° (Spring 2014—2015) 80

Exemplar Learners (IN) % of Class in Sample”

163 20
156 23
30 24

Common Sample

Abstraction Learners (N)

All 3 courses (Gen Chem 1, Gen Chem 2, and Orgo Chem 2)

Exemplar Learners (N)
29

% of Class in Sample

80 S, 6, and 24, respectively

“Includes everyone who completed the course (consenters and nonconsenters). 94% of the students in General Chemistry 1 and 2 consented, and
95% of the students in Organic Chemistry 2 consented. bThere was one student in the organic sample who did not take General Chemistry 1 but
took General Chemistry 2 and Organic Chemistry 2; hence, there is a difference of one student between the full and common samples in Organic

Chemistry 2.

Table 2. Proportion of Sample and Nonsample Binned in Quintiles by Exam Average”

General Chemistry 1

General Chemistry 2

Organic Chemistry 2

Percentiles for
Exam Average

Proportion of

Proportion of
Sample, % (N)

Nonsample, % (N)

Proportion of
Sample, % (N)

Proportion of

Proportion of
Nonsample, % (N)

Proportion of
Sample, % (N)

Nonsample, % (N)

Below 20th 11.73 (88) 2220 (395) 13.81 (62) 22.14 (312) 14.55 (16) 2222 (72)
20—40th 13.86 (65) 21.59 (384) 17.37 (78) 20.87 (294) 2091 (23) 19.44 (63)
40—60th 21.32 (100) 19.67 (350) 19.15 (86) 20.37 (287) 21.82 (24) 19.44 (63)
60—80th 24.95 (117) 18.94 (337) 23.39 (105) 18.59 (262) 16.36 (18) 20.99 (68)
Above 80th 28.14 (132) 17.49 (313) 26.28 (118) 18.03 (254) 26.36 (29) 17.9 (58)

“The nonsample students are students who consented but either (1) did not take either version of the concept-building task, (2) took the V-function

task, or (3) was a nonlearner in the inverted-function task.

Table 3. Exam Averages of Abstraction and Exemplar Learners Across Courses Using the Full Sample”

Unadjusted Means Adjusted Means p-Value, 1,” p-Value, 1,”
Abstraction Abstraction Exemplar For concept-building For ACT
Course Semester (SE, N) Exemplar (SE, N) (SE) (SE) approach score”
Gen Chem 1 Fall 2012-2014 7240 (0.61, 306)  68.08 (0.91, 163) 7197 (0.59)  68.88 (0.81) 0.002, 0.02 0.001, 0.13
Gen Chem 2 Spring 2013- 2015 7122 (0.81,293) 6424 (115, 156)  70.54 (0.75)  65.51 (1.04) 0.001, 0.03 0.001, 0.16
Orgo Chem 2 Spring 2014—2015 7129 (149, 80)  $7.57 (347,30) 7107 (1.69)  $8.15 (2.77) 0.001, 0.13 0.18, 0.02

“p-Value and npz are from an ANCOVA with ACT Math or ACT Composite included as a covariate. YACT Math score was used for general
chemistry courses, and ACT Composite was used for the Organic Chemistry 2 course.

B RESULTS

Having identified students’ concept-building approaches using
the inverted-V function, we examined the effect a student’s
concept-building approach has on their performances in these
three courses in a series of analyses. We took into account prior
preparation based on ACT Math (for general chemistry) and
ACT Composite (for Organic Chemistry 2). In Organic
Chemistry 2, we also performed an additional analysis taking
into account prior general chemistry grades. For each course,
we first examined the effect using all of the students in that
course who consented and completed the inverted-V function
concept-building task (i.e., the full sample); hence, the analyses
for General Chemistry 1 and 2 and Organic Chemistry 2
include different (but overlapping) samples. See Table 1 for
sample sizes for all of the analyses.

To compare the students in the sample to the students in the
rest of the class who consented (94% of students in General
Chemistry 1 and 2, and 95% of students in Organic Chemistry
2 consented), we compared the ACT Math and ACT
Composite means for the sample and nonsample students for
each of the courses. Note: the nonsample students are students
who consented but either (1) did not take either version of the
concept-building task, (2) took the V-function task; or (3) was
a nonlearner in the inverted-V-function task. In General
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Chemistry 1 and 2, the ACT Math means were not statistically
different (p > 0.0S, for both courses). In General Chemistry 1
and 2, the ACT Composite means were statistically different (p
< 0.05, for both courses); however, the differences (0.23 of the
means) were not of practical difference. In Organic Chemistry
2, both the ACT Math and ACT Composite means were not
statistically significant (p > 0.05). We also binned the students
into quintiles by exam averages and compared the proportion
in each percentile bin of the students in the sample with
students in the rest of the class for each course. Table 2 shows
the proportion of students in each bin for the three courses. For
General Chemistry 1 and 2, the distributions of students across
quintiles significantly differed between the sample and the rest
of the class (p < 0.05), though the largest difference in the
proportion of students in any particular quintile was 10%. For
Organic Chemistry 2, the distributions of students across
quintiles between the sample and the rest of the class was not
statistically significant (p < 0.05). Hence, the students in the
sample are not dramatically different in terms of their
distribution of exam performances relative to the rest of the
class for all three courses.

In all of these analyses, we compared the ACT Math and
ACT Composite means for the abstraction and exemplar
learners (these results are shown in the Supporting
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Information). In almost all cases, the means of the two groups
(abstraction vs exemplar) were statistically different. However,
for the statistically different cases, there was not a practical
difference in the means of the two groups. The largest
difference in the means of the two groups for either ACT Math
or Composite was 0.87. Hence, there is no difference in ability
(at least as determined by ACT Math or ACT Composite)
between the abstraction and exemplar learners in any of these
analyses. Even though there is not a practical difference in the
ACT scores between the abstraction and exemplar learners, our
calculations included either ACT math or ACT composite as a
covariate, as described below.

For each course, an analysis of covariance (ANCOVA) was
conducted in which the concept-building approach was an
independent variable, and ACT scores (ACT Math for General
Chemistry 1 and 2; ACT Composite for Organic 2) were
included as a covariate. To combine exam averages across
different semesters of the same course, exam scores were z-
scored within each semester and then combined. These z-
scores were used as the dependent measure in the ANCOVAs.
The results are shown in Table 3. For presentation purposes,
untransformed exam-average means are shown in Figure 3,

Abstraction and Exemplar Learner
Performance- Full Samples

* * *
80-
71.22 Vi

L ;o-6808
o 64.24 _
[ Abstraction
<>( 5757 Learners
c 60 Exemplar
S Learners
x
L

Intro Chem | Intro Chem |l Orgo Chem I

Course

Figure 3. Unadjusted means for the exam averages for each course
using the full sample; * represents p < 0.05 after accounting for ACT
score.

which display the performances of abstraction and exemplar
learners across the three courses. Asterisks denote statistically
significant differences between groups for the course (ie., p <
0.05), as determined by the ANCOVAs on z-scored exam
averages described above.

Both ACT Math and the concept-building approach were
significantly associated with General Chemistry 1 and 2 exam
scores: abstraction learners performed significantly better than
exemplar learners with the average exam differences being 4.32
(n,” = 0.02) and 6.98 (1,” = 0.03), respectively. Higher ACT
Math scores were associated with better exam performance
with large effect sizes (77, = 0.13 and 0.16, respectively). By
contrast, in Organic Chemistry 2, ACT (Composite) was not
significantly associated with exam performance, but the
advantage for abstraction learners relative to exemplar learners
was robust with an average mean difference of 13.72 (np
0.13; approaching a large effect size). Hence, on overall
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performance (exam average), we found consistent advantages
for abstraction learners across the three courses even after
accounting for preparation in terms of ACT Math and ACT
Composite.

Recall that the full sample analyzed everyone in that course
who consented and completed the concept-building task;
therefore, the samples for each course were slightly different,
although overlapping. Hence, the large difference in perform-
ance in Organic Chemistry 2 between the abstraction and
exemplar learners could be due to that particular sample of
students. Therefore, our second set of analyses used a common
sample of students. In the common-sample analyses, students
were included only if they were in General Chemistry 1 and 2
and Organic Chemistry 2 and successfully completed the
specific concept-building task. Hence, in the common-sample
analyses, the exact same students were used in the analyses for
all three courses, which allowed us to follow the effect on
performance on the same students as they progressed through
the course series. The sample sizes are shown in Table 1.

Abstraction and Exemplar Learner
Performance- Common Sample

* *
807 55 75.08
70.72 71.29
[0} 67.91
D 70
o
[ Abstraction
<>( 57.55 Learners
c 60 Exemplar
] Learners
x
L
50
40 3 | |
Intro Chem | Intro Chem |l Orgo Chem I
Course

Figure 4. Unadjusted means for the exam averages for each course
using the inverted-V function and the common sample; * represents p
< 0.0S after accounting for ACT score.

As shown in Figure 4 and Table 4, following the same
students through these three major STEM courses, abstraction
learners again consistently outperformed exemplar learners in
all three courses. The effect of concept-building approach in
General Chemistry 2 just misses significance (p = 0.06); this is
likely because ACT Math accounts for more variance in
General Chemistry 2 (which is more quantitative than General
Chemistry 1), and the standard error of the means is higher in
General Chemistry 2 than in General Chemistry 1. Hence, the
concept-building approach seems to be capturing a unique
characteristic of the student with the largest effect being seen in
Organic Chemistry 2 even taking into account prior
preparation (np = 0.06 for General Chemistry 1 and np =
0.13 for Organic Chemistry 2).

Recall that in some studies, performance in organlc has been
correlated with prior chemistry performance.””~>> Hence, to
see if the concept-building approach was still important in
Organic Chemistry 2 after taking into account ACT composite
and General Chemistry 1 and 2 performance, we ran an
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Table 4. Exam Average of Abstraction and Exemplar Learners Across Courses Using the Common Sample”

Unadjusted Means Adjusted Means p-Value, 11P2 p-Value, npz
Abstraction Abstraction Exemplar For concept-building For ACT
Course Semester (SE, N) Exemplar (SE, N) (SE) (SE approach score
Gen Chem 1 Fall 2012-2014 7675 (097, 80) 7072 (1.76,29) 7653 (0.98)  71.33 (1.65) 0.008, 0.06 0.03, 0.04
Gen Chem 2 Spring 2013- 2015 75.08 (148, 80)  67.91 (2.52,29) 7459 (143)  69.24 (2.40) 0.06, 0.03 0.001, 0.09
Orgo Chem 2°  Spring 2014—2015 7129 (149, 80)  57.55 (3.60,29) 7110 (1.69)  5$8.06 (2.82) 0.001, 0.13 0.17, 0.02

“p-Value and rypz are from an ANCOVA with ACT math or ACT Composite. "ACT Math score was used for General Chemistry courses, and ACT
Composite was used for Organic Chemistry 2 course. “There was one student in the organic sample who did not take General Chemistry 1 but took
General Chemistry 2 and Organic Chemistry 2; hence, there is a difference of one student between the full and common samples in Organic

Chemistry 2.

Table S. Exam Average of Abstraction and Exemplar Learners in Organic Chemistry®

Unadjusted Means Unadjusted Means  Adjusted Means for ~ Adjusted Means p-Value, 5,” for ~ p-Value, 5> for  p-Value, > for p-Value,
for Abstraction for Exemplar Abstraction for Exemplar Concept-Building Gen Chem 1 Gen Chem 2 1,2 for
Learners (SE, N) Learners (SE, N) Learners (SE) Learners (SE) Approach Performance Performance ACT Score
71.29 (1.49, 80) 57.57 (3.47, 29) 69.92 (1.47) 61.31 (2.49) 0.004, 0.08 0.005, 0.07 0.07, 0.03 0.17, 0.02

“p-Value and 17P2 are from an ANCOVA with average exam performance in General Chemistry 1, 2, and ACT Composite used as covariates.

additional analysis on these data using the average exam scores
in General Chemistry 1 and 2 as covariates. As seen in Table S,
we found that average exam performance in Organic Chemistry
2 was dependent on performance in General Chemistry 1
(medium effect size, 7, = 0.07) but not General Chemistry 2
(p > 0.05). Most importantly, concept-building approach
remained significantly associated with Organic Chemistry 2
performance (medium effect size, 77,” = 0.08). It seems that the
concept-building approach captures something in students’
learning of Organic Chemistry 2 that is not represented in ACT
Composite or in general chemistry performance.

One possible interpretation of the difference in course
performances between abstraction and exemplar learners is that
the exemplar learners are less motivated or less able students.
There was little difference in ability, however, according to the
ACT Math and ACT Composite scores. Table 1 in the
Supporting Information shows comparisons of abstraction and
exemplar learners across all samples (all General Chemistry 1,
all General Chemistry 2, all Organic Chemistry 2, and common
sample), classification functions (Inverted-V and V), and ACT
scores (Math and Composite). Although most of these
comparisons show a statistically significant advantage for
abstraction learners, the differences between groups are small
and unlikely to hold practical significance. These differences
ranged from 0.38 to 0.87 with a mean of 0.60. Further, we
accounted for this difference by adding ACT Math and ACT
Composite scores into the analyses.

The interpretation that the exemplar learners are less
motivated students is disfavored by several observations. First,
note that this concept-building task is a difficult task; therefore,
the exemplar learners displayed as much motivation as the
abstraction learners in completing the task to a stringent
learning criterion. Still, they were not as successful in the
chemistry courses because of their concept-building approach.
Second, there is a set of students (nonlearners, approximately
49% of participants) who start the concept-building task and do
not reach learning criterion at the end of the training period.
Upon close examination of these nonlearners, many of them
did not take the task seriously. Third, it turns out that in this
study, many students consented to participate but did not
actually participate in taking the concept-building task (we are
denoting these students as nonparticipants). The percentages
of nonparticipants are 53, 53, and 45% for General Chemistry 1

and 2 and Organic Chemistry 2, respectively. Hence, there is a
large number of students (ie., the nonlearners and the
nonparticipants) who are less motivated than the exemplar
learners. Certainly, the students who were not motivated to
take the concept-building task may have been motivated in
chemistry, but we have no reason to believe that the exemplar
learners would have been less motivated than these students to
learn chemistry.

It is interesting to compare the Organic Chemistry 2
performances for these four groups (ie., abstraction learners,
exemplar learners, nonlearners, and nonparticipants). As seen
in Figure S below, it turns out that the abstraction learners (M
= 71.29) and the nonlearners (M = 67.37) outperform
exemplar learners (M = 57.57). Even after adjusting for ACT
Composite scores, least square mean pairwise contrasts
(Tukey-adjusted for multiple comparisons) reveal statistically

Organic Chemistry Performance Across
all Concept-Building Classifications

80-

70- | ‘ |
60 -
50-
40-

Abstraction Exemplar Nonlearner Nonparticipant

Concept-Building Classification

Exam Average

Figure 5. Unadjusted means for the exam averages for Organic 2 using
the inverted-V function; connected bars represent significant (p <
0.05) pairwise comparisons, even after accounting for ACT score.
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significant advantages for both abstraction learners, #(383) =
4.06, p < 0.001, and nonlearners, #(383) = 3.17, p < 0.01, over
exemplar learners. In addition, the abstraction learners have a
statistically significant performance advantage over nonpartici-
pants (M = 63.34), t(383) = 3.62, p < 0.01. Hence, the
exemplar learners have the lowest performance. It seems that,
for Organic Chemistry, the types of mental representations that
exemplar learners have result in poorer performance even
relative to the presumably less motivated students.

B LIMITATIONS

There are several limitations to this study that should be noted.
One limitation is that completing the task online in an
unstructured environment resulted in more nonlearners than
has been observed in the structured psychology laboratory
environment. Previous laboratory studies have reported a
nonlearner rate of ~15%° compared to the 45% (inverted-V)
and 32% (V) nonlearner rates in the current data collected
online. In this study, the nonlearner rates for the full sample are
45, 45, and 49% for General Chemistry 1 and 2 and Organic
Chemistry 2, respectively; for the common sample, the
nonlearner rate is 49%. Perhaps, in the unstructured,
unproctored online environment, students take the task less
seriously. In fact, upon close examination of a sample of 170
nonlearners, we found that approximately 73% these online
nonlearners demonstrate at least one of the following markers
of nonsustained effort on the task: (a) averaging <2 s per trial
(the average for a learner is approximately 8 s per trial, (b)
repeatedly using only one or a handful of prediction values for
multiple training blocks, and (c) resulting increases in training
error across blocks. It might be that students would likely take
this task seriously if it were linked to a course and potentially
had a practical impact like being part of their course grade or
determining if they may participate a given supplemental
program. Also, some students may have a more difficult time
concentrating in an unstructured online environment. How-
ever, the advantage of giving the task online instead of in a
structured setting is that the students can take this task at their
convenience and before they arrive on campus.

Another potential limitation is that a student’s concept-
building approach might change over time. To inform this
possibility, we did a preliminary study on the stability of a
student’s concept-building approach with respect to time. We
checked the change across time by comparing the results using
the V function that students took both in General Chemistry 1
(fall 2012) and Organic Chemistry 2 (spring 2014), which is
one and half years apart. The results showed that 85% of the 41
students who successfully completed both tests were identified
with the same concept-building approach both times. The other
15% of these students changed to the other concept-building
approach. Hence, it seems that a student’s concept-building
approach does not necessarily change across time (at least over
1.5 years). Thus, we are able to identify the concept-building
approaches of students outside of the structured cognitive
science laboratory, using the online concept-building task, and
it seems that students’ approach to concept learning does not
change over time (at least, if no intervention occurs).

A third potential limitation is the use of course exam average
to evaluate student learning instead of standardized instruments
such as the ACS exams. However, standardized exams are
problematic if the exam is not one that is used in the course for
a grade, as students may not try their best. Because the courses
that we studied do not use standard exams in their courses to
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evaluate learning (the instructors write the exams), we opted
not to use standardized exams. Still, one concern about using
course exams is that the psychometric properties of the course
exams are unknown. To establish provisional reliability of the
exams, we reasoned that because the midterms and the
cumulative final exams were assessing similar constructs,
performances should be correlated. Therefore, we correlated
the midterm exam performances with the cumulative final exam
performances in each course for all years. We found that for
each course, all of these correlations were statistically significant
(p < 0.001). For all of the courses, the average correlation
between the midterms and the cumulative final exam was 0.63
with the lowest correlation being 0.49 and the highest
correlation being 0.79. Thus, this is some evidence that the
exams reliably assessed student performance on acquiring
chemistry content and skills in all three courses.

A final limitation is that the sample in this study consisted of
students from a highly selective private university who
volunteered to participate and where students in the study
average between the 98th and 99th percentile on math and
verbal achievement (ACT or SAT). Nevertheless, these
volunteers show a similar distribution of exam grades to the
rest of the students in each class, which shows they are
representative of these courses. There was no difference in
exam grade distribution for Organic Chemistry 2, where we
found the most robust effect of concept-building approach with
performance. In General Chemistry 1 and 2, where the
distribution of the sample tended to be more skewed toward
higher exam performances than did the rest of the class, we still
find that concept building is associated with exam performance.
However, students in this study would be considered in the
very high range of ability on standard measures. Accordingly,
the results in this study could be limited in generalizing to
students reflecting a broader ability profile. We are currently
working with a range of institutions to determine how the
concept-building approaches of students with a broader range
of ACT/SAT scores affect their performance in lower-level
chemistry courses.

B DISCUSSION

In this paper, we examined the “extension” of cognitive science
laboratory results in identifying students’ concept-building
approaches to the classroom. The cognitive psychology
experimental work identified two concept-building approaches:
abstraction (learns to extract more abstract ideas and
underlying concepts) and exemplar (focuses on memorizing
facts and algorithms) learners. Because science courses focus on
complex problem-solving, we hypothesized that the exemplar
learners have a more difficult time succeeding in these courses
and are therefore the ones who are likely to perform poorly.
There is a need to find a measure that can determine early on
students who are likely to struggle in these introductory science
courses. In this study, we presented this novel measure (the
concept-building task) that seems to be associated with course
performance above the standard preparation ACT tests. In
addition, this task is domain-independent, can be easily given
online, and therefore it can be given outside of class time and
before students arrive on campus.

We determined that there was a correlation with chemistry
course performance, and the task using the inverted-V function
resulted in higher correlation with chemistry course perform-
ance. Using either the full sample or the common sample, we
found a consistent advantage for the abstraction learners over
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the exemplar learners. For general chemistry, ACT Math was
statistically associated with course performance with a large
effect size, but the concept-building approach was still
significant albeit with a small effect size. However, in Organic
Chemistry 2, ACT Composite was not found to be statistically
related to course performance among the concept-building-task
learners, but the concept-building approach was statistically
related, approaching a large effect size (0.13 for both samples).
This large effect is reflected by large differences in the means at
13.72 and 13.74 percentage points (for full and common
samples, respectively). Just as importantly for purposes of using
this measure to predict student success in an Organic
Chemistry 2 course, the concept-building test was administered
1—1.5 years prior to taking Organic Chemistry 2.

Because prior chemistry course performance has been found
to correlate with Organic Chemistry course performance, we
also conducted analyses using general chemistry course
performance. We found that average exam performance in
Organic Chemistry 2 was dependent on performance in
General Chemistry 1 with a medium effect size of 0.08. Still,
Organic Chemistry 2 was dependent on the concept-building
approach with a medium effect size of 0.07. Thus, it seems that
the concept-building approach captures something in the
student learning that is not represented in ACT Composite for
Organic Chemistry 2 or in prior chemistry course performance.

Having determined that abstraction learners are outperform-
ing exemplar learners in general and organic chemistry, what
might we do as instructors to help students who are exemplar
learners? We are starting to examine the effect of active learning
in the form of the peer-led team learning approach (PLTL) on
the different learners’ performances in general chemistry. In our
sample, we are finding that there is a consistent advantage for
student participating in PLTL versus students not participating
in PLTL even after accounting for ACT Math. These findings
are consistent with our earlier PLTL study’ and other studies
nationally.**~** More interestingly, preliminary data show that
a certain subset of exemplar learners seem to receive a
tremendous benefit from PLTL and really struggle without this
active learning support. We are currently attempting to better
classify this subset of learners and the effect that PLTL has on
their performance in general chemistry.

In summary, a student’s concept-building approach may be a
possible domain-independent indicator of student performance
in the lower-level chemistry courses such as general chemistry
and organic chemistry. Our results indicate that the student’s
concept-building approach captures a characteristic of student
learning that is not captured by preparation or prior
performance. Preliminary data in general chemistry seems to
indicate that active learning, at least in the form of PLTL, helps
a subset of the exemplar learners. Hence, this is an additional
reason for instructors to incorporate more active learning into
their courses. Also, this concept-building task is an online test;
therefore, students could take it on their own time (outside of
class) and even before arriving on campus. The online setting
also allows us to easily disseminate this concept-building task to
other institutions. To see if these results emerge in other
introductory STEM courses and institutions, we are currently
studying these effects in different STEM courses and at
different institutions.
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