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Section 1: Genome 
Module 1: Sequencing platforms 
!
 
In this module, we’ll introduce you to several of the sequencing platforms in use at our center 
and we’ll look into what makes these systems unique, and what traits may be important to you 
when you are deciding which platform(s) to use for your project. We’ll also talk about the 
specific case of the data we’ll be using during the genomic section of this workshop. We’ll 
describe the format in which it comes off the sequencing machine, and we’ll look at one method 
we use for assessing the quality of raw data. 
 
Illumina sequence-by-synthesis 
The Illumina sequencers primarily use a sequence-by-synthesis approach, using fluorescently 
labeled reversible-terminator nucleotides on clonally amplified DNA templates that are 
immobilized on an acrylamide coating on the surface of a glass flowcell. As nucleotides are 
incorporated onto the growing molecule attached to the flowcell, they release pulses of light that 
are captured by the sequencer and processed to derive base sequence. 
 
 

!
!
 
Pacific Biosciences (PacBio) sequencing 
PacBio’s sequencing method is dubbed Single Molecule Real Time (SMRT) sequencing. DNA 
polymerase molecules, bound to a dna template, are attached to the bottom of 50nm wells 
termed Zero-Mode Waveguides (ZMWs). Each ZMW is small enough to see a single nucleotide 
being incorporated by the bound polymerase. Each of the four bases is attached to a unique 
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fluorescent dye, and when a nucleotide is incorporated the fluorescent tag is released and 
diffuses away from the observable area in the ZMW. A detector watches these fluorescent 
signals are records the fluorescence to determine the base incorporated. These fluorescences 
and their intensity are recorded over time, and these kinetics are used to calculate the base 
sequence. 
!

!
!
!
Comparing capabilities 
Each of these systems brings unique strengths to the table, and careful thought should go into 
your choice of sequencing platform for any given project. 
 
For example, the Illumina platform (HiSeq2500 1T) is good for de novo genome sequencing if 
large insert size libraries used to facilitate scaffolding. However, in case of highly repetitive 
genomes, polymorphic genomes, or sequencing a population of individuals, the short Illumina 
reads would not provide optimal results. In such cases, one would need to use long read 
sequencing platforms such as the PacBio sequencers, and generate de novo PacBio assembly 
or hybrid Illumina/PacBio assembly. Illumina platforms are suitable for cost-effective re-
sequencing of isolates if a reference genome is already available and the rapid run of 
HiSeq2500 (27hrs vs 6 days) or MiSeq (21 days) could be used (depending on the amount of 
sequence data needed to be generated) as a time-efficient platform.  
 
Data used in ‘Section 1: Genome’ 
The data we’ll be using for the genomic section of the workshop is from the pig whipworm 
Trichuris suis which was chosen for its relatively small size compared to other worm genomes 
(~80Mb). For expediency’s sake, some of the demonstrations will only use a subset of the full 
dataset that would normally be involved in the genomic analysis of a standard helminth. We’ll 
also fast-forward through some of the lengthier steps and simply move to finished data after 
showing you how to start the programs involved in each step. 
!
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Getting data off the sequencing machine 
Our T. suis data was sequenced on a HiSeq 2000 machine. That machine (as with all Illumina 
platforms) first generates sequence data in a format called ‘Bcl’. Bcl is a binary format that 
contains base calls and quality scores, but is only machine readable and not anything a typical 
user will interact with directly. Illumina’s Real-Time Analysis (RTA) software calls and records 
the series of cycle-specific cluster images per spot on the flowcell and converts that image data 
into bases and quality values in the Bcl file. It then converts that Bcl file into paired end fastq 
format using another Illumina program called ‘bcl2fastq’. These paired-end fastq files are the 
starting point for our analysis. 
!
An introduction to the Fastq format 
While we plan to cover the common sequencing data formats in module 2 of this section, its 
useful at this point to introduce the fastq data format. 
 
Fastq is a plain-text-based file format that contains exactly four lines per sequence record. It 
starts with a header line, followed by the nucleotide sequence. Then is typically a line containing 
a plus sign (+), and finally a line containing encoded quality values: 
 
@K5HV3:00029:00029 
AAAAAGGGTAAAAACGATCGTCACAGG 
+ 
AB>>(44*44;;:/:447444C765?@- 
 
The sequence and quality lines must be of the same length (i.e. one quality value per base), 
and the third line (beginning with a ‘+’) is allowed to contain test (sometimes you may see this 
third line repeat the sequence header line after the starting plus sign). The quality values in line 
4 are encoded such that each numeric value can be represented by a single character. This 
coding involves converting these quality scores to ascii characters.  
 
Fastq files only support nucleotide sequence data, the format is not meant to house amino acid 
sequence. ‘Paired end’ fastq usually refers to a set of two fastq files with each file containing the 
sequencing data for each end of each read fragment. Very importantly, these ends must be 
ordered identically. There is an alternate form of paired end fastq in which the sequence of each 
end of the read fragment are kept one after the other within a single fastq file. This format is 
called ‘interleaved’ fastq. 
 
Assessing the quality of newly generated fastq 
We’ll use the program FastQC to check out the quality of the paired end fastq we’ll be using for 
the next few modules of this section. The FastQC program works on fastq files (as well as sam 
and bam files, which we’ll discuss in the next module) and runs a number of quality control 
metrics we can use to assess sequencing data. Its important to remember that while FastQC 
uses hard, fast rules to determine when to flag a quality metric with a warning or fail notice, 
those warning and fail notices do NOT always mean your data is bad. A simple example of this 
is if you have sequence data from a polyA primed sequencing library, FastQC will likely throw 
up a fail flag for Kmer Content and possibly for Overrepresented Sequences because many 
reads will have strings of the base ‘A’. You need to review FastQC results thoughtfully and with 
awareness of the data you are checking. 
 
Here is how to run FastQC: 
!
1.1.1: cd ~/WORKSHOP_RESOURCES/Section_1/module_1/QC_sequence_output 
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1.1.2: mkdir FASTQC_OUTPUT 
1.1.3: fastqc –o FASTQC_OUTPUT –extract –f fastq raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz 
!
Here is how to view the results 
!
1.1.4: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz/fastqc_report.html 
1.1.5: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz/fastqc_report.html 
!
Useful information: 
(IUPAC code) http://www.bioinformatics.org/sms/iupac.html 
(Illumina HiSeq 2000 information) 
http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf 
(Illumina MiSeq information) 
http://www.illumina.com/documents/products/datasheets/datasheet_miseq.pdf 
(PacBio RS II information) http://www.pacificbiosciences.com/products/ 
(FastQC) http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
!
 
 
Section 1: Genome 
Module 2: Sequence data files 
!
 
 
This module will be a review of the common formats used to store sequencing data. We’ll look 
at: fasta, fastq, sam & bam. You will also be introduced to the Picard & Fastx toolkits and shown 
how to convert between these formats. 
 
Fastq 
We’ve already discussed the fastq data format above. Just as a reminder, this is a four-line-per-
sequence-record, nucleotide-only data format that provides both base sequence as well as 
quality in a single file. Commonly this format will house paired-end data, with the read from each 
end of the DNA fragments housed in separate, paired fastq files. 
 
Fasta 
One of the most common sequence formats out there, fasta files, are simple text files with each 
sequence record represented by a header line, and then a variable number of lines containing 
the sequence data itself. The header lines must begin with the greater-than symbol (>), and 
after that the line is relatively free-form. Be aware that many programs will only recognize the 
first white-space delimited word on the header and use that as the identifier for that sequence. 
For this reason, you will often find the sequence IDs as the first string on these header lines. 
The sequence section of the fasta format is free-form. Sequence data is often listed using a 
fixed number of bases per line, but its completely valid to put an entire genome’s worth of 
sequence on a single line. Some older fasta files used to split the sequence lines with a blank 
every 10 characters to help make longer sequences more human-readable. You can’t make 
many assumptions about the specific format you will see inside a fasta file. The only safe 
assumption is that every sequence record will be separated by a header line: 

- 11 -



 
>gi|5524378|gb|AAD44166.1| Cytochrome b [Elephas maximus maximus] 
ATGATGATGATGATGATGAAGACAAGGTGAGCCTAAGTAAAACTATCAAA 
CGACGTCAATCAATACTTCTGTGAGGTGCGTTACGTAATCAATCAAGCAA 
TAATATGATAGAGGTGGATCAAAACGATTTCAAATTGCGCTAACAAAGAG 
TTAATGCTTCTTCTTATCCT 
 
The fasta format is valid for both nucleotide and protein data. 
 
Sam (and Bam) 
The sam format (Sequence Alignment/Map) is an information rich data format for hosting 
nucleotide (-only) base and quality values. This format also supports the storage of alignment 
information, but can be used as a simple sequence data format as well. The sam format 
consists of 11 tab-delimited columns per sequence record (or several lines worth of 11 columns 
for sequence alignment data in which the same sequence maps to multiple things), as well as a 
number of header lines. For sequence only sam files (no alignments), there will usually be very 
few header lines, but for sam files hosting alignment information, there will be at least one 
header line per reference used in the mapping. These alignment sam files tend to have many of 
these header lines, so it may be useful view the sam file without the headers (I’ll show you how 
to do this in a bit). 
 
The columns in a sam file are setup to contain a lot of information: 
!

!
Much of this complexity is in place to support the storage of alignment information. If you are 
dealing with sam as a format solely for hosting sequence data, the important columns are the 
QNAME, SEQ and QUAL columns (columns 1, 10 and 11 respectively). !
 
The bam file format is often mentioned interchangeably with the sam file format. A bam file is 
simply the binary (compressed) version of a sam file. It is convenient to keep sam files in their 
compressed bam format to save space. In fact, many programs prefer bam as input over sam 
files. The samtools package provides a number of convenient tools for manipulating sam and 
bam files. 
 
Converting between formats 
Here is how to view the contents of a bam file (with headers): 
!
samtools view –h <bam> 
!
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Here is how to view it without headers: 
!
samtools view <bam> 
!
Here is how to convert a sam file into a bam file: 
!
samtools view –bSh –o <bam output> <sam input> 
!
Here is how to convert a bam file back into sam: 
!
samtools view –h <input bam> > <output sam> 
!
Next, we’ll practice some ways to convert between fastq, fasta and sam/bam using the Picard 
and Fastx bioinformatics toolsets. First, we’ll create a sorted bam file from a set of paired end 
fastq files using the Picard toolset 
!
1.2.1: cd 
~/WORKSHOP_RESOURCES/Section_1/module_2/Convert_between_formats 
1.2.2: java -jar ~/bin/picard.jar FastqToSam F1=raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz F2=raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz SAMPLE_NAME=6p_7kb_TSAC-Adult1-g846_g847 
SORT_ORDER=queryname OUTPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam 
 
Here we introduce the idea of the ‘sorted’ bam file. A sorted bam file is simply a bam file that 
has been sorted either by ‘name order’ or by ‘coordinate order’. Coordinate order sorting is 
meant for alignment bam files. It re-orders the sequence records within the bam file based on 
their alignment positions to each reference piece, with the references themselves being ordered 
alphabetically. Note that if you coordinate sort a bam file that is not aligned, it will work but the 
ordering will not be correct. Name ordering is the only valid ordering for alignment-free bam 
files, and it simply orders the sequences based on their names. 
Here is how to extract paired end fastq from a bam file: 
 
1.2.3: java -jar ~/bin/picard.jar SamToFastq INPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam F=6p_7kb_TSAC-Adult1-
g846_g847.end1.new_fastq F2=6p_7kb_TSAC-Adult1-
g846_g847.end2.new_fastq 
!
Here is how to extract fasta from fastq using the Fastx toolset: 
!
1.2.4: fastq_to_fasta –i 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fastq –
o 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fasta 
!
Useful information: 
(Bam/Sam specification) https://samtools.github.io/hts-specs/SAMv1.pdf 
(Picard Tools) http://broadinstitute.github.io/picard/command-line-overview.html#Overview 
(Fastx toolkit) http://hannonlab.cshl.edu/fastx_toolkit/ 
!
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Section 1: Genome 
Module 3: Analytical processing of sequences 
!
 
In this module, we’ll demonstrate typical steps involved in processing raw sequence data from 
the HiSeq 2000 platform to an analysis-ready state for assembly. This tutorial will be done on a 
subset of the T. suis data that will be used in the full assembly. In a real world usage case you’d 
most likely be running this process on multiple pairs of fastq files. 
!
Why data is not analysis-ready directly off the sequencing machine 
Raw sequence-data from a sequencing machine is technically capable of being used directly in 
most downstream analyses, but there are a number if factors that make that very ill advised. 
 
Sequencing adapters 
To prepare DNA material for sequencing, a sequencing library must be made. In our example 
case, we used the TruSeq genomic library preparation kit for the HiSeq 2000. The DNA sample 
is first fragmented into pieces roughly 200bp in length. Then TruSeq universal adapters and a 
specific version of the TruSeq index adapter are ligated onto each end of the fragments via a 
single base (A) overhang. 
!

The adapter–DNA fragment 
complex is then denatured and 
amplified to produce a final 
product containing the DNA 
insert, end-specific sequencing 
primers on either end, as well as 
a specific index for use in 
identifying this library out of a 
pool of libraries.!
 
These TruSeq sequence 
adapters are normally not visible 
in the final, sequenced product, 
because the sequencing primers 
are immediately adjacent to the 
DNA insert. However, if some 
fraction of the DNA inserts are 
shorter than the expected length, 
it is possible that sequencing 
can go all the way across the 
insert and read into the adapter 
sequence on the far end. Many 
of the analyses we typically want 
can be negatively affected by 
having adapter sequence left 
within the reads. It decreases 
mapping efficiency, confuses 

assemblies, etc. It is a good practice to identify and trim off any adapter sequence that may be 
present in your reads. 
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Low sequence quality 
During sequencing, each called base is typically assigned a quality score that refers to the 
likelihood that the base was correctly called by the sequencer. The common value used to 
represent these per-base confidences is the Phred score. 
 
Q = -10 * log10 P 
Q ! Phred score 
P ! probability of an error occurring 
Eg. Phred 20 implies that you are likely to see 1 error per 100 bases, Phred 30 implies 1 error 
per 1000 bases, Phred 40 implies 1 error per 10000 bases 
!
Poor quality sequence can interfere with downstream analysis as seriously as untrimmed 
adapters. It makes mapping less reliable, confuses assemblers, and is a major impediment to 
variant calling. As with adapter sequence, it is a good practice to trim off low quality sequence 
that may be present in your reads. 
 
Length filtering 
After trimming reads for adapter and low quality, its possible that some of the reads have been 
cut down to a very short size. We typically apply a length filter requiring that after the above 
trimming there be at least 60 bases of read left, otherwise we discard the sequence as a ‘short 
read’. Note that the 60bp threshold is the value we will use for the T. suis dataset. If your reads 
are shorter or longer, you may need to adjust that cutoff. 
 
Low sequence complexity 
These are regions that have an unusual composition that can create problems in sequence 
similarity searching (as well as other kinds of analyses). These regions contain low information 
content and can be ‘sticky’ during alignments. It is a good practice to filter your sequence data 
for low complexity regions before running downstream analysis. 
 
Contaminant filtering 
Finally, we filter our reads to remove contaminant. By contaminant, we mean any read whose 
source is not what we expect (in our case, our reads should originate from T. suis). Typical 
sources of contamination are: 
 
Host, bacteria, other (environmental contaminants). Also, for RNA-Seq work, it is often common 
to filter for 18/16s ribosomal data. This is because the amount of ribosomal sequence present 
can sometimes dwarf the amount of actual expressed transcript amongst your reads. So it is 
helpful for downstream analysis to get rid of it. 
 
For this demonstration, we’ll be screening for host contaminant only, in this case from pig. In 
general, you will want to pick and choose the contaminant db’s you’ll use based on the situation 
of each project. To save compute resources, we only want to screen for contaminants we 
expect might be a problem. 
 
Finally, be aware that contamination screening should be done after filtering out adapters, low 
quality and low complexity sequence. Those earlier issues, if left unfixed, can impede the 
identification of a read as contaminant. 
!
Discard both ends or only one? 
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One thing that must be considered when filtering and screening your data is whether to discard 
both ends of a paired end set, or only one. Because most sequence data generated is actually 
sequence from both ends of a single DNA insert, you need to think about whether a problem 
seen on one end should be considered to apply to both ends or not. In general, issues with 
adapter, sequencing error, and low complexity are not issues that necessarily affect both ends 
of a sequence insert. In those cases, we usually will just discard the problem end and retain the 
other. In the case of one end being identified as a contaminant, we normally will consider both 
ends contaminants and discard them both. 
!
Processing raw reads into an analysis-ready 
state 
Now we’re going to walk through typical steps 
we’d use to prepare our T. suis reads for 
assembly. To do this we need to accomplish 
these things: 
 

a) remove any adapters that may have 
been introduced during sequencing 
library preparation 

b) remove low quality, terminal regions 
c) apply a length filter to remove short 

reads after trimming 
d) remove reads of low sequence 

complexity 
e) remove reads that originate from host 

organism 
 
We’ll use the program Trimmomatic for 
adapter removal, quality trimming and length 
filtering. The filter_by_complexity script from 
the seq_crumbs package will remove reads of low sequence complexity, and we’ll use the 
Bowtie2 aligner to map the trimmed reads against a host database. Between these steps some 
file manipulation is required to get the sequences into the format needed for the next step. This 
data shuffling will be done using parts of the samtools & KHMER packages, as well as some old 
fashioned command line unix. 
 
The analysis-ready output 
This processing will result in a set of paired end fastq, and an extra fastq of orphaned reads 
whose mates were discarded (due to filtering steps that removed only a single end from a pair). 
This process can be messy on a technical level due to the need to convert data between the 
bam & fastq formats, and the need to keep the paired-end data synchronized and free of 
orphans. In practice, we would normally assemble all these steps into a single pipeline script. 
For the purposes of this demonstration, we’ll walk through each step manually. 
 
Be aware that there are alternatives to the software we’re showing for most of these steps. The 
programs we’re using are generally robust, but you may want to experiment with other options 
for your data. No tool does a perfect job, and you may be able to find tools that perform better or 
more efficiently for your specific dataset.  
 
Finally, it’s often reasonable to simply work only with paired end data, and discard the small 
fraction of orphaned reads generated at each step. This simplifies the process at the expense of 
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a small fraction of your reads. This is actually a fairly common practice, especially if you find 
yourself doing an extra hour of coding work to preserve a few thousand reads out of 200 million 
reads. 
!
Processing the data 
Here are the steps involved in running Trimmomatic and preparing the output for the next step. 
This step trims off adapter, quality trims and filters the trimmed reads based on length. 
!
1.3.1: cd 
~/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_cle
aned_state 
1.3.2: java -jar ~/bin/trimmomatic-0.33.jar PE -threads 8 -phred33 -
trimlog TRIMLOG.txt raw_data/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz 6p_7kb_TSAC-Adult1-g846_g847.PE_end1.fastq 
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq 6p_7kb_TSAC-Adult1-
g846_g847.PE_end2.fastq 6p_7kb_TSAC-Adult1-
g846_g847.ORPHANS_end2.fastq 
ILLUMINACLIP:databases/TruSeq_adapters.fna:2:30:10 SLIDINGWINDOW:5:20 
LEADING:20 TRAILING:20 MINLEN:60 
1.3.3: cat 6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq 
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end2.fastq > 
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq 
1.3.4: java -jar ~/bin/picard.jar FastqToSam F1=6p_7kb_TSAC-Adult1-
g846_g847.PE_end1.fastq F2=6p_7kb_TSAC-Adult1-g846_g847.PE_end2.fastq 
SAMPLE_NAME=Tsuis_genomic_7kb_insert SORT_ORDER=coordinate 
OUTPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam 
1.3.5: java -jar ~/bin/picard.jar SamToFastq 
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam 
INTERLEAVE=true 
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq 
 
Next we filter out low complexity data using filter_by_complexity from the seq_crumbs package, 
and then prepare the output for the final Bowtie2 mapping step 
!
1.3.6: filter_by_complexity -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq --paired_reads --fail_drags_pair False 
Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq 
1.3.7: filter_by_complexity -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq 
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq 
1.3.8: source /home/ec2-user/bin/KHMER/khmerEnv/bin/activate 
1.3.9: extract-paired-reads.py -f 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq 
1.3.10: deactivate 
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1.3.11: cat 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.se > 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq 
1.3.12: paste - - - - - - - - < 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.pe | tee >(cut -f 1-4 | tr "\t" "\n" > 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq) | 
cut -f 5-8 | tr "\t" "\n" > 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq 
 
Finally, we will map the cleaned reads against a host database, pig in this case, and remove all 
reads and read pairs that have either end detected as a contaminant. We’ll use Bowtie2 for this 
mapping, and we’ll prepare the final, cleaned & contaminant free data for assembly 
!
1.3.13: bowtie2-build Sus_scrofa.Sscrofa10.2.dna_rm.toplevel.fa 
Sus_scrofa.Sscrofa10.2.dna_rm.toplevel 
1.3.14: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel 
-1 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq -
2 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq -S 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam 
1.3.15: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel 
-U 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq 
-S 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam 
 
1.3.16: samtools view -bSh -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam 
1.3.17: samtools sort 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted 
1.3.18: bamtools filter -in 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted.bam -out 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.ORPHANS.
bam -isMapped false 
1.3.19: java -jar ~/bin/picard.jar SamToFastq 
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.bam 
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.fastq 
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1.3.20: samtools view -bSh -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam 
1.3.21: samtools sort 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted 
1.3.22: bamtools filter -in 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted.bam -out 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE.bam -
isMapped false -isMateMapped false 
1.3.23: java -jar ~/bin/picard.jar SamToFastq 
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
.bam 
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
_end1.fastq 
SECOND_END_FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.h
ost_free.PE_end2.fastq 
 
Evaluating our analysis-ready data 
Now that we’ve processed our data to an analysis-ready state, lets run FastQC again on the 
final output and compare it back to the FastQC results from the original, raw data 
!
1.3.24: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_
cleaned_state 
1.3.25: mkdir FASTQC_OUTPUT 
1.3.26: fastqc –o FASTQC_OUTPUT –extract –f 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end1.
fastq 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end2.
fastq  
!
We’ll then use the chrome browser (as before) to compare the final paired fastq files to the 
original, raw paired fastq files. 
!
Useful information: 
(Trimmomatic) http://www.usadellab.org/cms/?page=trimmomatic 
(Bowtie2) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml 
(seq_crumbs) https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html 
(bamtools) https://github.com/pezmaster31/bamtools!
!
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Section 1: Genome 
Module 4: Genome assembly 
 
 
There are a lot of choices when deciding on a genome assembler. Considerations include the 
predicted genome size, the technology type, and the cost (computational, and paying for the 
assembler). Today’s demonstration will be using ALLPATHS-LG, which is a de Bruijn Graph 
assembler for large genomes.  ALLPATHS-LG requires paired end reads from at least one 
fragment and one jumping library sequenced on the Illumina platform. The use of multiple 
libraries enables ALLPATHS-LG to build a higher quality assembly. When using ALLPATHS_LG, 
our recommended sequence coverage requirements are: 45x fragments, 45x 3-8kb and 10x-
20x lrg insert ie. 5kb+. In our assembly, we will be using 11,898,407 fragment read pairs, 
4,960,173 3kb read pairs and 2,975,142 7kb read pairs 
 
ALLPATHS-LG requires a specific format for input sequence data files in order to run the 
assembler. PrepareAllPathsInputs.pl, an ALLPaths script, will be run after we begin by setting 
up two dependency files: 
 
Dependency File #1: in_groups.csv  
 
100,Illumina_011,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/13p_fra
gment.*.trimPaired.fastq.gz  
200,Illumina_012,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/33p_3-
5kb_.*.trimPaired.fastq.gz  
300,Illumina_013,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/6p_7kb.
*.trimPaired.fastq.gz 
 
Notes: This file does not require a header with each field type.   
Group name: unique name for data set (free form) 
Library name: library name for data set (free form but good practice to use some identifying 
nomenclature) 
File name: absolute path to data file. Wildcard characters * and ? are accepted in the name of 
the file but NOT the file extension. 
Supported extensions are .bam, .fasta, .fa, .fq, .fastq.gz, and fq.gz (all case specific). Also, if 
you use .fasta or .fa, the script expects a corresponding .quala or .qa file to exist for each 
respective file. 
 
Dependency File #2: in_libs.csv  
 
library_name,project_name,organism_name,type,paired,frag_size,frag_std
dev,insert_size,insert_stddev,read_orientation,genomic_start,genomic_e
nd  
Illumina_011,Awesome,T.suis,fragment,1,205,10,,,inward,,  
Illumina_012,Awesome,T.suis,jumping,1,,,7475,500,outward,,  
Illumina_013,Awesome,T.suis,jumping,1,,,2833,500,outward,, 
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Notes: Every field is required in this file. A header is used, and each field must be represented 
in the data entered (a comma separated field can be left blank; see example above). 
Library_name: must match same field in in_group.csv 
Project_name: free form name 
Organism_name: organism 
Type: informative field only ie fragment, jumping EcoP15, etc. 
Paired: 0 = unpaired reads; 1: paired reads 
Frag_size: average # of bases in the fragment library 
Frag_stddev: estimated standard deviation of the fragment sizes 
Insert_size: average # of bases in the jumping library inserts (if larger than 20kb the library is 
considered Long Jumping) 
Insert_stddev: estimated standard deviation of the insert sizes 
Read_orientation: inward or outward 
Genomic_start: index of the FIRST genomic base in the reads.  If not zero, then all bases before 
the genomic start will be trimmed off 
Genomic_end: index of the LAST genomic base in the reads.  If not zero, then all bases after 
the genomic end will be trimmed off 
 
With these two files prepared, you can now run: 
 
1.4.1: PrepareAllPathsInputs.pl DATA_DIR=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data 
PLOIDY=2 
 
Other optional settings include: 
 
PICARD_TOOLS_DIR (use version 1.101) if you are using .bam files in the .csv files made 
above. 
INCLUDE_NON_PF_READS=1 allows you to use the orphan reads kept in the previous module.   
GENOME_SIZE, FRAG_COVEAGE, JUMP_COVERAGE, and LONG_JUMP_COVERAGE 
used together you can set the desired coverage percentage based on the estimated size set for 
GENOME_SIZE 
 
Now we can start the assembly: 
 
1.4.2: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis 
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1 
 
Notes: All of the ALLPATHS arguments are to set the pipeline directory names.  If your 
ALLPATHS run fails at any point, you can troubleshoot the issue and then restart ALLPATHS 
and it will restart on the stage that failed (as long as you don’t delete any of the directories/data 
that was produced up to that point).  
Use the following command which adds “OVERWRITE=True”: 
 
1.4.3: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis 
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1 OVERWRITE=True 
 
This assembly took 5.3 hours. When the assembly finishes it will be found at the following 
location: 
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/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/myrun/ASSEMBLY/
attempt1/final.assembly.fasta 
 
Useful information: 
ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/AllPaths-LG_Manual.pdf 
 
Quality Assessment 
Assembly improvement and QC of de novo assemblies go hand in hand since high-quality draft 
genomes lead to more successful and accurate annotation. We use a combination of CEGMA, 
N50, and RNA mapping to assess the quality of an assembly. 
 
CEGMA (Core Eukaryotic Genes Mapping Approach) uses a defined set of 458 single-copy, 
conserved eukaryotic genes, and searches for orthologs of these proteins in the de novo 
genome assembly. Since these proteins are conserved across eukaryotes ranging from yeast to 
plants to humans, the completeness of this protein set in a draft genome is a useful indicator of 
the genome quality. CEGMA produces a completeness report, but we prefer to parse the 
cegma.gff file against the core proteins to get a count of the CEGs (Core Eukaryotic Genes) and 
lcCEGs found in the assembly.  
!
1.4.4: cegma --genome final.assembly.fasta -threads 8 & 
 

N50 is a basic statistic for 
describing how contiguous an 
assembly is.  The longer the 
N50 is, the better the assembly. 
 
RNA mapping looks at the 
percent of gene contained within 
the assembly 
 
Assembly Improvement 
After assessing an assembly, 
we can take advantage of 
numerous assembly 
improvement tools. Two open 
source options that we use are 
GapFiller and PBJelly. PBJelly 
(part of PBSuites) is able to fill 
gaps and merge scaffolds 
utilizing long reads (which is 
particularly useful for PacBio 
data). For this project, we do not 
have any available PacBio data, 
so we will be utilizing GapFiller 
instead. The image below 
illustrates how GapFiller fills the 
contig gaps: 
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We will start by creating the libraries.txt file: 
 
Libraries File: libraries.txt 
lib100 bowtie 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.1.raw.fastq 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.2.raw.fastq 205 0.3 FR 
lib200 bowtie /gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-
5kb_TSAC-Adult1-g846_g847.1.raw.fastq 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-5kb_TSAC-Adult1-
g846_g847.2.raw.fastq 7475 0.5 RF  
lib300 bowtie 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq 2833 0.5 RF 
 
Notes:   
Library Name: free form 
Mapper: bowtie or bwa 
Path to both mate pairs files 
Insert size  
Error 
Read orientation 
 
We then run GapFiller using: 
 
1.4.5: GapFiller.pl -l libraries.txt -s final.assembly.fasta -T 8 -b 
Tsuis -i 5  
 
Notes: –l is the file made above; –s assembly file; –T threads; –b directory and root file name; –i 
iterations. Runtime varies based on number of gaps and amount of data used 
 
Useful links: 
http://korflab.ucdavis.edu/datasets/cegma/README 
 
 
 
Section 1: Genome 
Module 5: Genome annotation 
 
 
“A beginner’s guide to eukaryotic genome annotation” 
http://www.nature.com/nrg/journal/v13/n5/full/nrg3174.html is a great resource. The first step 
when annotating a genome is to identify repeat sequences, because they can interfere with 
gene predictors and evidence alignment. 
 
Masking repeats 
Tandem Repeat Finder (TRF): Start by using TRF to mask short interspersed tandem repeats: 
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1.5.1: trf Tsuis.gapfilled.final.fa2 7 7 80 10 50 500 -d -m -h  >> 
TRF.stdout 
 
Now we need to create a blast database for RepeatModeler: 
 
1.5.2: makeblastdb -in final.assembly.fasta.2.7.7.80.10.50.500.mask -
dbtype nucl 
 
Running RepeatModeler (run time is 24-36 hours): 
 
RepeatModeler -database Tsuis.gapfilled.final.fa.masked.fasta >> 
RM_stdout 
 
Repeatmodeler will create an RM_[PID].[DATE]/ directory,  
(e.g. RM_10825.ThuAug271528572015/) 
 
Once RepeatModeler has completed, you will need to QC the output to check for repeats that 
are really genes (gene families) or RNA features. 
 
The following are the screening steps for QC: 
 
Blastx vs nr for protein coding genes: 
 
1.5.3: blastx nr consensi.fa.classified E=10e-5 -o 
consensi.fa.classified.nrcheck.blast.out 
 
Blastn vs RNA database for ribosomal or other RNA genes (Rfam.fasta comes with the Rfam 
download): 
 
1.5.4: blastn Rfam.fasta consensi.fa.classified 10e-5 -o 
$1.rnacheck.blast.out 
 
Retrotransposon check: 
 
1.5.5: blastx transposonDb consensi.fa.classified E=10e-5 -o 
$1.retrocheck.blast.out 
 
The final file output from RM is consensi.fa.classified file in the RM directory 
(e.g. .M_10825.ThuAug271528572015/consensi.fa.classified). We then screen the blast.out 
files with tools that look at P >=0.01 identity/coverage (50% PID/20% Identity) and naming that 
is known to be acceptable and database types that lead us to believe the protein has been 
checked: 
  
"unknown", "hypothetical", "oxidase", "histone", "kinase", "protease", "reductase", "RNA", 
"synthase", "ATPase", "phosphatase", "cytochrome", "ribosomal", "titin", "extensin", "abductin", 
"tRNA", "drosophila", "nucleosome", "transferase", "unnamed", "polyprotein", "putative", 
"peptide", "resolvase", "alpha", "beta", "fusion", "lactamase", "galact", "integrase", "ref", "emb", 
"dbj", "gb", "pir", "prf", "sp", "pdb", "intron","synthetase" 
 
1.5.6: mkdir RepeatMasker  
1.5.7: cd RepeatMasker  
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1.5.8: RepeatMasker -lib repeats.lib 
trf.masked.fasta  >>RepeatMasker.stdout  
 
Note: The input sequence can be split into chunks to expedite.  
 
 
RepeatMasker outputs the following files: 
D918.newname.fsa.masked - Masked fasta  
D918.newname.fsa.tbl - Summary table gives total %masked and breakdown of types 
D918.newname.fsa.log  - run output 
Other output files with details of repeats/positions etc. 
D918.newname.fsa.cat D918.newname.fsa.out D918.newname.fsa.ref 
 
Useful links: 
https://tandem.bu.edu/trf/trf.html 
http://www.repeatmasker.org/RepeatModeler.html 
http://www.repeatmasker.org/webrepeatmaskerhelp.html 
 
We also annotate non-coding RNAs using the Rfam and tRNA scan. We mask these predictions 
before running the predictor programs, in order to further simplify the regions the predictors 
have to look at. 
 
Rfam - http://nar.oxfordjournals.org/content/43/D1/D130 
 
1.5.9: rfam_scan -f tab -o Rfam.out File.fasta  
 
-f specifies format  
-o specifies output location  
The last argument is just the sequence file to use  
 
Notes: For rfam scan, we modified the script so that it skips the rare group II introns, because if 
greatly reduces the run time. 
 
We can scan a sequence file for tRNAs using tRNAscan, EufindtRNA & tRNA covariance.  
 
tRNAscan - http://lowelab.ucsc.edu/tRNAscan-SE/Manual 
 
1.5.10: tRNAscan-SE -o tRNAscan.output File.fsa  
 
Annotation 
Producing gene predictions to produce a high quality final set of gene annotations. 
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A beginner's guide to eukaryotic genome annotation. M Yandell & D Ence  Nature Reviews Genetics 13, 329-342 (May 2012). 
 
 
We will perform annotation using Maker (M. Yandell et. al., 2007)  
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134774/pdf/188.pdf 
 
First, we generate config files for Maker:  
 
1.5.11: maker -CTL  
 
This creates 3 default config files: 
 
maker_bopts.ctl : blast type and cut-off  
maker_exe.ctl : program paths  
maker_opts.ctl : all other parameters  
 
The -CTL option will give you default parameters. You will need to set up paths in each file to 
match the system you are on (paths to blast databases, etc). For our maker runs, we only need 
to do the -CTL once, and then we copy the ctl files to the new directories so we don't have to 
update paths for blast exe's etc. We only need to change the maker_opts.ctl file for blast db's. 
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Change any parameters and/or paths which are different from the working copy, including: 
 
path to sequence file  
protein database path  
EST database path  
alt-est database path if needed  
ab initio predictors being run  
ab initio corresponding model files  
model_gff and/or pred_gff or other _gff files  
evidence predictors 
 
Open maker_opts.ctl and add path to these lines 
 
Find this line: 
#-----EST Evidence (for best results provide a file for at least one): 
 
1.5.12: est= #set of ESTs or assembled mRNA-seq in fasta format 
 
Beneath this EST Evidence section, also change: 
#-----Protein Homology Evidence (for best results provide a file for at least one) 
 
1.5.13: protein=  #protein sequence file in fasta format (i.e. from 
mutiple oransisms) 
 
To run any of the predictors: Snap, Fgenesh, Augustus you need to train them.  Fgenesh is a 
commercial predictor that you would need to purchased, but snap is free and maker also works 
with GeneMark and others, but those are the most common. We are not going to go perform 
overpredictor training today. 
 
 
To run maker:  
 
1.5.14: maker --RM_off -g File.fasta maker_bopts.ctl maker_exe.ctl 
maker_opts.ctl  
 
 
Here is some information on the directory structure and the files that maker outputs: 
 
Path/Maker  
 
maker_bopt.ctl  
maker_ext.ctl  
maker_opts.ctl  
 
GENOME.maker.output/ - contains all output for a given run of MAKER  
 
maker_bopts.log  : These are logs of the control files used for this run of MAKER  
maker_opts.log  
maker_exe.log  
 
seen.dbm  
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sequnce_maker_length_99.db  
sequnce_maker_length_99_master_datastore_index.log  - log of MAKER run progress as well 
as an index for traversing through the output  
 
mpi_blastdb/ - Contains fasta indexes and error corrected fasta files built from the EST and 
protein database provided by the user.  
 
*.mpi.10/   - contains indexed database files  
nematode_protein_new.mpi.10/   - contains indexed database  files  
 
<Sequence_name>._datastore/  - contains subdirectories that hold the output for each 
individual contig of the input fasta file. See DATASTORE DIRECTORY STRUCTURE section in 
README for more information  
 
08/ 25/Contig#/ - first two directories; numbers/letters vary  
 
run.log  
<Sequence_name>.gff - a gff file that can be loaded into GMOD, GBROWSE, or Apollo  
<Sequence_name>.maker.snap.proteins.fasta - a fasta file of ab-inito predicted protein 
sequences from program  
 
<Sequence_name>.maker.snap.transcripts.fasta - a fasta file of ab-inito  
predicted transcript sequences from program  
 
<Sequence_name>.maker.transcripts.fasta - a fasta file of the MAKER annotated transcript 
sequences  
 
<Sequence_name>.maker.proteins.fasta - a fasta file of the MAKER  
annotated protein sequences  
 
<Sequence_name>.maker.non_overlapping_ab_initio.proteins.fasta - a  
fasta file of filtered ab-inito protein sequences that don't overlap maker annotations  
 
<Sequence_name>.maker.non_overlapping_ab_initio.transcripts.fasta  - a fasta file of filtered 
ab-inito transcript sequences that don't overlap maker annotations  
 
theVoid.Contig#/  - a directory containing all of the raw output files produced by MAKER, 
including BLAST reports, SNAP output, exonnerate output and the masked genomic sequence.  
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Explaining GFF3 files 
 
http://www.broadinstitute.org/annotation/argo/help/gff3.html 

Field Descriptions (Note: Except for the last field [9], all gff flavors are the same): 

1. seqname - The name of the sequence. Typically a chromosome or a contig. Argo does 
not care what you put here. It will superimpose gff features on any sequence you like. 

2. source - The program that generated this feature. Argo displays the value of this field in 
the inspector but does not do anything special with it. 

3. feature - The name of this type of feature. The official GFF3 spec states that this should 
be a term from the SOFA ontology, but Argo does not do anything with this value except 
display it. 

4. start - The starting position of the feature in the sequence. The first base is numbered 1. 
5. end - The ending position of the feature (inclusive). 
6. score - A score between 0 and 1000. If there is no score value, enter ".". 
7. strand - Valid entries include '+', '-', or '.' (for don't know/don't care). 
8. frame - If the feature is a coding exon, frame should be a number between 0-2 that 

represents the reading frame of the first base. If the feature is not a coding exon, the 
value should be '.'. Argo does not do anything with this field except display its value. 

9. GFF3: grouping attributes Attribute keys and values are separated by '=' signs. Values 
must be URI encoded.quoted. Attribute pairs are separated by semicolons. Certain, 
special attributes are used for grouping and identification (See below). This field is the 
one important difference between GFF flavors. 

Special Field 9 Attributes: 

The first special thing about field 9 attributes is that they can be associated with transcripts. 
Previous flavors of GFF restricted attributes to the lowest level subfeature (exons). 

Any key=value attribute pair will be displayed by argo, but the following have special meaning: 

1. ID - unique identifier for this feature. 
2. Parent - identifier of parent feature. 
3. Name - used as the feature label in the feature map. 

 
 
Section 1: Genome 
Module 6: Functional annotation 
 
 
                        
This module will review two standard methods for assigning functional annotations to a de novo 
geneset.  We’ll run a protein vs. protein alignment using the NCBI’s BLASTP+, and we’ll discuss 
the interproscan program and take a look at typical interproscan output and how to make use of 
it. 
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Using NCBI’s BLASTP+ to assign functional annotation 
 
One common method of assigning a function to a set of de novo gene calls is simply by 
mapping them to an already annotated set of genes from closely related organisms.  We’ll go 
over the details of actually running a blastp in a bit, but first we’ll review how to locate and 
prepare a database for this mapping. 
 
If you happen to have a highly conserved organism’s gene set handy that happens to already 
be well annotated, you may not need to do anymore digging.  For example, if you are working 
with a non-parasitic nematode, you can’t do much better than to simply use the highly curated 
and well annotated C.elegans gene set for this mapping.  Bu t if you are working with an 
organism not in that happy circumstance (as most of us are, all the time), the next best thing is 
to walk the lineage of your species using GenBank’s Entrez Records which are avaible when 
using a taxonomy search.  Lets do this now: 
 
1. Open a browser on your laptop 
2. Go to the NCBI website at http://www.ncbi.nlm.nih.gov 
3. Enter “Trichuris suis” in the search box at the top of the screen, and set the search menu 

to “Taxonomy”, then click “Search” 
4. Click through the “Trichuris suis” link 
5. Notice the “Entrez records” table on the right side of the screen.  What we want is to find 

a level of taxonomy above our species for which GenBank has a good number of 
“Protein” available 

6. Click on the genus level link in the lineage (Trichuris) 
7. Click the “Trichuris” link at the top of the list of species to get back to the “Entrez records” 

table at that level in the taxonomy 
8. Notice that GenBank has 48,510 proteins available for this taxa, click on the “48.510” 

number which is a link that will prepare an output set of those proteins 
9. Now we will download this protein set.  Open the “Send to:” menu in the upper right 

corner of the page 
10. Choose Destination “File” 
11. Set the Format to “Fasta” 
12. Click on “Create File” to download the file 
 
For the purposes of  this workshop I’ve already prepared a somewhat smaller db for use in our 
demonstration, which is already available in the EC2 instance (i.e. you don’t really need to 
download the above).  But the above process is very useful for when you don’t have a specific 
protein db in mind, yet you want to assign blastp annotations to your gene set basic on 
homology to related organisms. 
 
Running NCBI’s BLASTP+ 
 
Now we’re going to actually map our gene set to our protein database and filter based on 
alignment strength.  First we need to prepare the blast database for use. 
 
1.6.1: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+/database 
1.6.2: makeblastdb -in Ttrichuira_geneset.fna -dbtype prot 
 
Next we can start the blastp alignment 
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1.6.3: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+ 
1.6.4: blastp -db database/Ttrichuira_geneset.fna -query 
Tsuis.protein.faa -num_threads 8 -outfmt 6 -max_target_seqs 1  -out 
Tsuis_vs_Ttrichiura.raw_blastp.tsv 
 
Then we would typically parse the results using some alignment scoring threshold to filter out 
only the solid hits 
 
1.6.5: awk '{if ($11<1e-05) print $0;}' < 
Tsuis_vs_Ttrichiura.raw_blastp.tsv > 
Tsuis_vs_Ttrichiura.raw_blastp.tsv.hits_at_1e-05 
The output format we selected using the –outfmt 6 argument produces results in this tab-
delimited format: 
 
Query id 
Subject id 
Percent identity 
Alignment length 
Mismatch count 
Gap open count 
Start of alignment in query 
End of alignment in query 
Start of alignment in subject 
End of alignment in subject 
E-value 
Bitscore 
 
The results at this point will provide associations between our de novo gene set and the genes 
from our database.  We would then use a lookup script to go back and extract the full line 
annotations from our database and add them to our new genes.  While we won’t cover that in 
this workshop, we’d be happy to provide scripts for this on request after the class. 
 
Interproscan 
 
Interproscan is a program that searches a collection of databases and reports associations to all 
these databases for each gene searched.  For our purposes we are mainly interested in the IPR 
and GO annotations provided by this software.   But here is a full listing of what is searched: 
 
PANTHER, PFAM, PIRSF, PRINTS, PRODOM, PROSITE, PROFILE, SMART, TIGRFAMs, 
GENE3D, SSF, SWISSPROT, TREMBL, INTERPRO, GO, MEROPS, UniProt, HAMAP, PFAMB 
 
Due to its resource intensive nature, and the size of the databases needed in its execution we 
are not able to demonstrate this software live in our workshop.  So we’ve short-cut this section 
and deposited pre-built interproscan output for the T.suis gene set in the EC2 instance.  First 
lets take a look at the raw output 
 
1.6.6: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/Interproscan 
1.6.7: more trichuris_suis_interpro_results 
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That command will scroll through that file one page at a time.  The length of each line will cause 
the output to wrap on your screen, making it look messy.  But the output of interproscan is 
actually organized into tab-delimited columns: 
 
1. Protein Accession 
2. Sequence MD5 digest 
3. Sequence Length 
4. Analysis (i.e. the db that was searched on this line) 
5. Signature Accession 
6. Signature Description 
7. Start location 
8. Stop location 
9. Score (i.e. usually the e-value of the match reported by member database method, 

although sometimes a specific search engine will report a non- e-value based score) 
10. Status 
11. Date 
12. InterPro annotations – accession (optional column) 
13. InterPro annotations – description (optional column) 
14. GO annotations (optional column) 
15. Pathways annotation (optional column) 
 
 
 
Parsing Interproscan results for downstream use 
 
In order to prepare these annotations for downstream analysis (primarily the building of the 
gene summary table, and the expression analysis that will be shown in Section 2) we need to 
parse our raw interproscan output into a pre-arranged format that we typically use for that later 
work.  This requires the use of a locally generated perl script (that we’re happy to share on 
request), and would normally build files for both GO and IPR annotations.  As a demonstration 
we’ll show how we use this script to generate the GO index 
 
1.6.8: scripts/prepare_files_for_FUNC.no_parents.pl -iprscan_file trichuris_suis_interpro_results 
-GO_description GO.terms_and_ids.obo.120531 -gene_fof tsuis_full_gene_list.txt -output 
Tsuis.GO_annotatioN_index 
 
If you ‘more’ the output file, you’ll see that this is a much simpler format than trying to work with 
the native interproscan result file.  This parsed annotation file will be used in Section 2 to help 
populate the gene summary table in Excel.  This format (3 simple columns) should be easy to 
work with within the spreadsheet. 
 
Useful information: 
(NCBI BLAST+ UNIX tutorial) https://molevol.mbl.edu/wiki/index.php/BLAST_UNIX_Tutorial 
(NCBI BLAST+ command line arguments) http://www.ncbi.nlm.nih.gov/books/NBK279675/ 
(Interproscan) https://github.com/ebi-pf-team/interproscan/wiki 
(Interpro Db) https://www.ebi.ac.uk/interpro/about.html 
(Gene Ontology) http://geneontology.org 
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