
	

	

Bioinformatics Workshop for
Helminth Genomics (2015)

Section 1: Genome

Sponsors:
__

	

	

Table of contents – Curriculum

Section 1: Genome

Module 1 – Sequencing platforms…………………………………………………… ...8

! Common sequencing platforms
! Choosing appropriate sequencing platform
! Sequencer output(s)
! QC sequence output

Module 2 – Sequence data files………………………………………………………...11

! Common sequencing file formats
! Convert between formats

Module 3 – Analytical processing of sequences…………………………..………..14

! Learn how to process genomic data to a cleaned state, ready for analysis

Module 4 – Genome assembly………….………………………………………………20

! De novo genome assembly
! Assembly improvement
! QC de novo assemblies

Module 5 – Genome annotation………………………………………………….……..23

! Identify & mask repeats in an assembly
! De novo gene calling
! Assess gene annotations
! Improve gene annotations
! Common genome annotation formats

Module 6 – Functional annotation…………………………………………….………..29

! Assign basic functional annotation to predicted genes
! Similarity search on custom databases
! Common resources used for functional annotation

	
	
	
	
	
	
	

Section 1: Genome
Module 1: Sequencing platforms
!

In this module, we’ll introduce you to several of the sequencing platforms in use at our center
and we’ll look into what makes these systems unique, and what traits may be important to you
when you are deciding which platform(s) to use for your project. We’ll also talk about the
specific case of the data we’ll be using during the genomic section of this workshop. We’ll
describe the format in which it comes off the sequencing machine, and we’ll look at one method
we use for assessing the quality of raw data.

Illumina sequence-by-synthesis
The Illumina sequencers primarily use a sequence-by-synthesis approach, using fluorescently
labeled reversible-terminator nucleotides on clonally amplified DNA templates that are
immobilized on an acrylamide coating on the surface of a glass flowcell. As nucleotides are
incorporated onto the growing molecule attached to the flowcell, they release pulses of light that
are captured by the sequencer and processed to derive base sequence.

!
!

Pacific Biosciences (PacBio) sequencing
PacBio’s sequencing method is dubbed Single Molecule Real Time (SMRT) sequencing. DNA
polymerase molecules, bound to a dna template, are attached to the bottom of 50nm wells
termed Zero-Mode Waveguides (ZMWs). Each ZMW is small enough to see a single nucleotide
being incorporated by the bound polymerase. Each of the four bases is attached to a unique

- 8 -

fluorescent dye, and when a nucleotide is incorporated the fluorescent tag is released and
diffuses away from the observable area in the ZMW. A detector watches these fluorescent
signals are records the fluorescence to determine the base incorporated. These fluorescences
and their intensity are recorded over time, and these kinetics are used to calculate the base
sequence.
!

!
!
!
Comparing capabilities
Each of these systems brings unique strengths to the table, and careful thought should go into
your choice of sequencing platform for any given project.

For example, the Illumina platform (HiSeq2500 1T) is good for de novo genome sequencing if
large insert size libraries used to facilitate scaffolding. However, in case of highly repetitive
genomes, polymorphic genomes, or sequencing a population of individuals, the short Illumina
reads would not provide optimal results. In such cases, one would need to use long read
sequencing platforms such as the PacBio sequencers, and generate de novo PacBio assembly
or hybrid Illumina/PacBio assembly. Illumina platforms are suitable for cost-effective re-
sequencing of isolates if a reference genome is already available and the rapid run of
HiSeq2500 (27hrs vs 6 days) or MiSeq (21 days) could be used (depending on the amount of
sequence data needed to be generated) as a time-efficient platform.

Data used in ‘Section 1: Genome’
The data we’ll be using for the genomic section of the workshop is from the pig whipworm
Trichuris suis which was chosen for its relatively small size compared to other worm genomes
(~80Mb). For expediency’s sake, some of the demonstrations will only use a subset of the full
dataset that would normally be involved in the genomic analysis of a standard helminth. We’ll
also fast-forward through some of the lengthier steps and simply move to finished data after
showing you how to start the programs involved in each step.
!

- 9 -

Getting data off the sequencing machine
Our T. suis data was sequenced on a HiSeq 2000 machine. That machine (as with all Illumina
platforms) first generates sequence data in a format called ‘Bcl’. Bcl is a binary format that
contains base calls and quality scores, but is only machine readable and not anything a typical
user will interact with directly. Illumina’s Real-Time Analysis (RTA) software calls and records
the series of cycle-specific cluster images per spot on the flowcell and converts that image data
into bases and quality values in the Bcl file. It then converts that Bcl file into paired end fastq
format using another Illumina program called ‘bcl2fastq’. These paired-end fastq files are the
starting point for our analysis.
!
An introduction to the Fastq format
While we plan to cover the common sequencing data formats in module 2 of this section, its
useful at this point to introduce the fastq data format.

Fastq is a plain-text-based file format that contains exactly four lines per sequence record. It
starts with a header line, followed by the nucleotide sequence. Then is typically a line containing
a plus sign (+), and finally a line containing encoded quality values:

@K5HV3:00029:00029
AAAAAGGGTAAAAACGATCGTCACAGG
+
AB>>(44*44;;:/:447444C765?@-

The sequence and quality lines must be of the same length (i.e. one quality value per base),
and the third line (beginning with a ‘+’) is allowed to contain test (sometimes you may see this
third line repeat the sequence header line after the starting plus sign). The quality values in line
4 are encoded such that each numeric value can be represented by a single character. This
coding involves converting these quality scores to ascii characters.

Fastq files only support nucleotide sequence data, the format is not meant to house amino acid
sequence. ‘Paired end’ fastq usually refers to a set of two fastq files with each file containing the
sequencing data for each end of each read fragment. Very importantly, these ends must be
ordered identically. There is an alternate form of paired end fastq in which the sequence of each
end of the read fragment are kept one after the other within a single fastq file. This format is
called ‘interleaved’ fastq.

Assessing the quality of newly generated fastq
We’ll use the program FastQC to check out the quality of the paired end fastq we’ll be using for
the next few modules of this section. The FastQC program works on fastq files (as well as sam
and bam files, which we’ll discuss in the next module) and runs a number of quality control
metrics we can use to assess sequencing data. Its important to remember that while FastQC
uses hard, fast rules to determine when to flag a quality metric with a warning or fail notice,
those warning and fail notices do NOT always mean your data is bad. A simple example of this
is if you have sequence data from a polyA primed sequencing library, FastQC will likely throw
up a fail flag for Kmer Content and possibly for Overrepresented Sequences because many
reads will have strings of the base ‘A’. You need to review FastQC results thoughtfully and with
awareness of the data you are checking.

Here is how to run FastQC:
!
1.1.1: cd ~/WORKSHOP_RESOURCES/Section_1/module_1/QC_sequence_output

- 10 -

1.1.2: mkdir FASTQC_OUTPUT
1.1.3: fastqc –o FASTQC_OUTPUT –extract –f fastq raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz
!
Here is how to view the results
!
1.1.4: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz/fastqc_report.html
1.1.5: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz/fastqc_report.html
!
Useful information:
(IUPAC code) http://www.bioinformatics.org/sms/iupac.html
(Illumina HiSeq 2000 information)
http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf
(Illumina MiSeq information)
http://www.illumina.com/documents/products/datasheets/datasheet_miseq.pdf
(PacBio RS II information) http://www.pacificbiosciences.com/products/
(FastQC) http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
!

Section 1: Genome
Module 2: Sequence data files
!

This module will be a review of the common formats used to store sequencing data. We’ll look
at: fasta, fastq, sam & bam. You will also be introduced to the Picard & Fastx toolkits and shown
how to convert between these formats.

Fastq
We’ve already discussed the fastq data format above. Just as a reminder, this is a four-line-per-
sequence-record, nucleotide-only data format that provides both base sequence as well as
quality in a single file. Commonly this format will house paired-end data, with the read from each
end of the DNA fragments housed in separate, paired fastq files.

Fasta
One of the most common sequence formats out there, fasta files, are simple text files with each
sequence record represented by a header line, and then a variable number of lines containing
the sequence data itself. The header lines must begin with the greater-than symbol (>), and
after that the line is relatively free-form. Be aware that many programs will only recognize the
first white-space delimited word on the header and use that as the identifier for that sequence.
For this reason, you will often find the sequence IDs as the first string on these header lines.
The sequence section of the fasta format is free-form. Sequence data is often listed using a
fixed number of bases per line, but its completely valid to put an entire genome’s worth of
sequence on a single line. Some older fasta files used to split the sequence lines with a blank
every 10 characters to help make longer sequences more human-readable. You can’t make
many assumptions about the specific format you will see inside a fasta file. The only safe
assumption is that every sequence record will be separated by a header line:

- 11 -

>gi|5524378|gb|AAD44166.1| Cytochrome b [Elephas maximus maximus]
ATGATGATGATGATGATGAAGACAAGGTGAGCCTAAGTAAAACTATCAAA
CGACGTCAATCAATACTTCTGTGAGGTGCGTTACGTAATCAATCAAGCAA
TAATATGATAGAGGTGGATCAAAACGATTTCAAATTGCGCTAACAAAGAG
TTAATGCTTCTTCTTATCCT

The fasta format is valid for both nucleotide and protein data.

Sam (and Bam)
The sam format (Sequence Alignment/Map) is an information rich data format for hosting
nucleotide (-only) base and quality values. This format also supports the storage of alignment
information, but can be used as a simple sequence data format as well. The sam format
consists of 11 tab-delimited columns per sequence record (or several lines worth of 11 columns
for sequence alignment data in which the same sequence maps to multiple things), as well as a
number of header lines. For sequence only sam files (no alignments), there will usually be very
few header lines, but for sam files hosting alignment information, there will be at least one
header line per reference used in the mapping. These alignment sam files tend to have many of
these header lines, so it may be useful view the sam file without the headers (I’ll show you how
to do this in a bit).

The columns in a sam file are setup to contain a lot of information:
!

!
Much of this complexity is in place to support the storage of alignment information. If you are
dealing with sam as a format solely for hosting sequence data, the important columns are the
QNAME, SEQ and QUAL columns (columns 1, 10 and 11 respectively). !

The bam file format is often mentioned interchangeably with the sam file format. A bam file is
simply the binary (compressed) version of a sam file. It is convenient to keep sam files in their
compressed bam format to save space. In fact, many programs prefer bam as input over sam
files. The samtools package provides a number of convenient tools for manipulating sam and
bam files.

Converting between formats
Here is how to view the contents of a bam file (with headers):
!
samtools view –h <bam>
!

- 12 -

Here is how to view it without headers:
!
samtools view <bam>
!
Here is how to convert a sam file into a bam file:
!
samtools view –bSh –o <bam output> <sam input>
!
Here is how to convert a bam file back into sam:
!
samtools view –h <input bam> > <output sam>
!
Next, we’ll practice some ways to convert between fastq, fasta and sam/bam using the Picard
and Fastx bioinformatics toolsets. First, we’ll create a sorted bam file from a set of paired end
fastq files using the Picard toolset
!
1.2.1: cd
~/WORKSHOP_RESOURCES/Section_1/module_2/Convert_between_formats
1.2.2: java -jar ~/bin/picard.jar FastqToSam F1=raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz F2=raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz SAMPLE_NAME=6p_7kb_TSAC-Adult1-g846_g847
SORT_ORDER=queryname OUTPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam

Here we introduce the idea of the ‘sorted’ bam file. A sorted bam file is simply a bam file that
has been sorted either by ‘name order’ or by ‘coordinate order’. Coordinate order sorting is
meant for alignment bam files. It re-orders the sequence records within the bam file based on
their alignment positions to each reference piece, with the references themselves being ordered
alphabetically. Note that if you coordinate sort a bam file that is not aligned, it will work but the
ordering will not be correct. Name ordering is the only valid ordering for alignment-free bam
files, and it simply orders the sequences based on their names.
Here is how to extract paired end fastq from a bam file:

1.2.3: java -jar ~/bin/picard.jar SamToFastq INPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam F=6p_7kb_TSAC-Adult1-
g846_g847.end1.new_fastq F2=6p_7kb_TSAC-Adult1-
g846_g847.end2.new_fastq
!
Here is how to extract fasta from fastq using the Fastx toolset:
!
1.2.4: fastq_to_fasta –i 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fastq –
o 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fasta
!
Useful information:
(Bam/Sam specification) https://samtools.github.io/hts-specs/SAMv1.pdf
(Picard Tools) http://broadinstitute.github.io/picard/command-line-overview.html#Overview
(Fastx toolkit) http://hannonlab.cshl.edu/fastx_toolkit/
!

- 13 -

Section 1: Genome
Module 3: Analytical processing of sequences
!

In this module, we’ll demonstrate typical steps involved in processing raw sequence data from
the HiSeq 2000 platform to an analysis-ready state for assembly. This tutorial will be done on a
subset of the T. suis data that will be used in the full assembly. In a real world usage case you’d
most likely be running this process on multiple pairs of fastq files.
!
Why data is not analysis-ready directly off the sequencing machine
Raw sequence-data from a sequencing machine is technically capable of being used directly in
most downstream analyses, but there are a number if factors that make that very ill advised.

Sequencing adapters
To prepare DNA material for sequencing, a sequencing library must be made. In our example
case, we used the TruSeq genomic library preparation kit for the HiSeq 2000. The DNA sample
is first fragmented into pieces roughly 200bp in length. Then TruSeq universal adapters and a
specific version of the TruSeq index adapter are ligated onto each end of the fragments via a
single base (A) overhang.
!

The adapter–DNA fragment
complex is then denatured and
amplified to produce a final
product containing the DNA
insert, end-specific sequencing
primers on either end, as well as
a specific index for use in
identifying this library out of a
pool of libraries.!

These TruSeq sequence
adapters are normally not visible
in the final, sequenced product,
because the sequencing primers
are immediately adjacent to the
DNA insert. However, if some
fraction of the DNA inserts are
shorter than the expected length,
it is possible that sequencing
can go all the way across the
insert and read into the adapter
sequence on the far end. Many
of the analyses we typically want
can be negatively affected by
having adapter sequence left
within the reads. It decreases
mapping efficiency, confuses

assemblies, etc. It is a good practice to identify and trim off any adapter sequence that may be
present in your reads.

- 14 -

Low sequence quality
During sequencing, each called base is typically assigned a quality score that refers to the
likelihood that the base was correctly called by the sequencer. The common value used to
represent these per-base confidences is the Phred score.

Q = -10 * log10 P
Q ! Phred score
P ! probability of an error occurring
Eg. Phred 20 implies that you are likely to see 1 error per 100 bases, Phred 30 implies 1 error
per 1000 bases, Phred 40 implies 1 error per 10000 bases
!
Poor quality sequence can interfere with downstream analysis as seriously as untrimmed
adapters. It makes mapping less reliable, confuses assemblers, and is a major impediment to
variant calling. As with adapter sequence, it is a good practice to trim off low quality sequence
that may be present in your reads.

Length filtering
After trimming reads for adapter and low quality, its possible that some of the reads have been
cut down to a very short size. We typically apply a length filter requiring that after the above
trimming there be at least 60 bases of read left, otherwise we discard the sequence as a ‘short
read’. Note that the 60bp threshold is the value we will use for the T. suis dataset. If your reads
are shorter or longer, you may need to adjust that cutoff.

Low sequence complexity
These are regions that have an unusual composition that can create problems in sequence
similarity searching (as well as other kinds of analyses). These regions contain low information
content and can be ‘sticky’ during alignments. It is a good practice to filter your sequence data
for low complexity regions before running downstream analysis.

Contaminant filtering
Finally, we filter our reads to remove contaminant. By contaminant, we mean any read whose
source is not what we expect (in our case, our reads should originate from T. suis). Typical
sources of contamination are:

Host, bacteria, other (environmental contaminants). Also, for RNA-Seq work, it is often common
to filter for 18/16s ribosomal data. This is because the amount of ribosomal sequence present
can sometimes dwarf the amount of actual expressed transcript amongst your reads. So it is
helpful for downstream analysis to get rid of it.

For this demonstration, we’ll be screening for host contaminant only, in this case from pig. In
general, you will want to pick and choose the contaminant db’s you’ll use based on the situation
of each project. To save compute resources, we only want to screen for contaminants we
expect might be a problem.

Finally, be aware that contamination screening should be done after filtering out adapters, low
quality and low complexity sequence. Those earlier issues, if left unfixed, can impede the
identification of a read as contaminant.
!
Discard both ends or only one?

- 15 -

One thing that must be considered when filtering and screening your data is whether to discard
both ends of a paired end set, or only one. Because most sequence data generated is actually
sequence from both ends of a single DNA insert, you need to think about whether a problem
seen on one end should be considered to apply to both ends or not. In general, issues with
adapter, sequencing error, and low complexity are not issues that necessarily affect both ends
of a sequence insert. In those cases, we usually will just discard the problem end and retain the
other. In the case of one end being identified as a contaminant, we normally will consider both
ends contaminants and discard them both.
!
Processing raw reads into an analysis-ready
state
Now we’re going to walk through typical steps
we’d use to prepare our T. suis reads for
assembly. To do this we need to accomplish
these things:

a) remove any adapters that may have
been introduced during sequencing
library preparation

b) remove low quality, terminal regions
c) apply a length filter to remove short

reads after trimming
d) remove reads of low sequence

complexity
e) remove reads that originate from host

organism

We’ll use the program Trimmomatic for
adapter removal, quality trimming and length
filtering. The filter_by_complexity script from
the seq_crumbs package will remove reads of low sequence complexity, and we’ll use the
Bowtie2 aligner to map the trimmed reads against a host database. Between these steps some
file manipulation is required to get the sequences into the format needed for the next step. This
data shuffling will be done using parts of the samtools & KHMER packages, as well as some old
fashioned command line unix.

The analysis-ready output
This processing will result in a set of paired end fastq, and an extra fastq of orphaned reads
whose mates were discarded (due to filtering steps that removed only a single end from a pair).
This process can be messy on a technical level due to the need to convert data between the
bam & fastq formats, and the need to keep the paired-end data synchronized and free of
orphans. In practice, we would normally assemble all these steps into a single pipeline script.
For the purposes of this demonstration, we’ll walk through each step manually.

Be aware that there are alternatives to the software we’re showing for most of these steps. The
programs we’re using are generally robust, but you may want to experiment with other options
for your data. No tool does a perfect job, and you may be able to find tools that perform better or
more efficiently for your specific dataset.

Finally, it’s often reasonable to simply work only with paired end data, and discard the small
fraction of orphaned reads generated at each step. This simplifies the process at the expense of

- 16 -

a small fraction of your reads. This is actually a fairly common practice, especially if you find
yourself doing an extra hour of coding work to preserve a few thousand reads out of 200 million
reads.
!
Processing the data
Here are the steps involved in running Trimmomatic and preparing the output for the next step.
This step trims off adapter, quality trims and filters the trimmed reads based on length.
!
1.3.1: cd
~/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_cle
aned_state
1.3.2: java -jar ~/bin/trimmomatic-0.33.jar PE -threads 8 -phred33 -
trimlog TRIMLOG.txt raw_data/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz 6p_7kb_TSAC-Adult1-g846_g847.PE_end1.fastq
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq 6p_7kb_TSAC-Adult1-
g846_g847.PE_end2.fastq 6p_7kb_TSAC-Adult1-
g846_g847.ORPHANS_end2.fastq
ILLUMINACLIP:databases/TruSeq_adapters.fna:2:30:10 SLIDINGWINDOW:5:20
LEADING:20 TRAILING:20 MINLEN:60
1.3.3: cat 6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end2.fastq >
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq
1.3.4: java -jar ~/bin/picard.jar FastqToSam F1=6p_7kb_TSAC-Adult1-
g846_g847.PE_end1.fastq F2=6p_7kb_TSAC-Adult1-g846_g847.PE_end2.fastq
SAMPLE_NAME=Tsuis_genomic_7kb_insert SORT_ORDER=coordinate
OUTPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam
1.3.5: java -jar ~/bin/picard.jar SamToFastq
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam
INTERLEAVE=true
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq

Next we filter out low complexity data using filter_by_complexity from the seq_crumbs package,
and then prepare the output for the final Bowtie2 mapping step
!
1.3.6: filter_by_complexity -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq --paired_reads --fail_drags_pair False
Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq
1.3.7: filter_by_complexity -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq
1.3.8: source /home/ec2-user/bin/KHMER/khmerEnv/bin/activate
1.3.9: extract-paired-reads.py -f
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq
1.3.10: deactivate

- 17 -

1.3.11: cat
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.se >
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq
1.3.12: paste - - - - - - - - <
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.pe | tee >(cut -f 1-4 | tr "\t" "\n" >
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq) |
cut -f 5-8 | tr "\t" "\n" >
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq

Finally, we will map the cleaned reads against a host database, pig in this case, and remove all
reads and read pairs that have either end detected as a contaminant. We’ll use Bowtie2 for this
mapping, and we’ll prepare the final, cleaned & contaminant free data for assembly
!
1.3.13: bowtie2-build Sus_scrofa.Sscrofa10.2.dna_rm.toplevel.fa
Sus_scrofa.Sscrofa10.2.dna_rm.toplevel
1.3.14: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel
-1 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq -
2 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq -S
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam
1.3.15: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel
-U
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq
-S
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam

1.3.16: samtools view -bSh -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam
1.3.17: samtools sort
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted
1.3.18: bamtools filter -in
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted.bam -out
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.ORPHANS.
bam -isMapped false
1.3.19: java -jar ~/bin/picard.jar SamToFastq
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.bam
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.fastq

- 18 -

1.3.20: samtools view -bSh -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam
1.3.21: samtools sort
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted
1.3.22: bamtools filter -in
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted.bam -out
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE.bam -
isMapped false -isMateMapped false
1.3.23: java -jar ~/bin/picard.jar SamToFastq
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
.bam
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
_end1.fastq
SECOND_END_FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.h
ost_free.PE_end2.fastq

Evaluating our analysis-ready data
Now that we’ve processed our data to an analysis-ready state, lets run FastQC again on the
final output and compare it back to the FastQC results from the original, raw data
!
1.3.24: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_
cleaned_state
1.3.25: mkdir FASTQC_OUTPUT
1.3.26: fastqc –o FASTQC_OUTPUT –extract –f
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end1.
fastq
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end2.
fastq
!
We’ll then use the chrome browser (as before) to compare the final paired fastq files to the
original, raw paired fastq files.
!
Useful information:
(Trimmomatic) http://www.usadellab.org/cms/?page=trimmomatic
(Bowtie2) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
(seq_crumbs) https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html
(bamtools) https://github.com/pezmaster31/bamtools!
!

- 19 -

Section 1: Genome
Module 4: Genome assembly

There are a lot of choices when deciding on a genome assembler. Considerations include the
predicted genome size, the technology type, and the cost (computational, and paying for the
assembler). Today’s demonstration will be using ALLPATHS-LG, which is a de Bruijn Graph
assembler for large genomes. ALLPATHS-LG requires paired end reads from at least one
fragment and one jumping library sequenced on the Illumina platform. The use of multiple
libraries enables ALLPATHS-LG to build a higher quality assembly. When using ALLPATHS_LG,
our recommended sequence coverage requirements are: 45x fragments, 45x 3-8kb and 10x-
20x lrg insert ie. 5kb+. In our assembly, we will be using 11,898,407 fragment read pairs,
4,960,173 3kb read pairs and 2,975,142 7kb read pairs

ALLPATHS-LG requires a specific format for input sequence data files in order to run the
assembler. PrepareAllPathsInputs.pl, an ALLPaths script, will be run after we begin by setting
up two dependency files:

Dependency File #1: in_groups.csv

100,Illumina_011,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/13p_fra
gment.*.trimPaired.fastq.gz
200,Illumina_012,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/33p_3-
5kb_.*.trimPaired.fastq.gz
300,Illumina_013,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/6p_7kb.
*.trimPaired.fastq.gz

Notes: This file does not require a header with each field type.
Group name: unique name for data set (free form)
Library name: library name for data set (free form but good practice to use some identifying
nomenclature)
File name: absolute path to data file. Wildcard characters * and ? are accepted in the name of
the file but NOT the file extension.
Supported extensions are .bam, .fasta, .fa, .fq, .fastq.gz, and fq.gz (all case specific). Also, if
you use .fasta or .fa, the script expects a corresponding .quala or .qa file to exist for each
respective file.

Dependency File #2: in_libs.csv

library_name,project_name,organism_name,type,paired,frag_size,frag_std
dev,insert_size,insert_stddev,read_orientation,genomic_start,genomic_e
nd
Illumina_011,Awesome,T.suis,fragment,1,205,10,,,inward,,
Illumina_012,Awesome,T.suis,jumping,1,,,7475,500,outward,,
Illumina_013,Awesome,T.suis,jumping,1,,,2833,500,outward,,

- 20 -

Notes: Every field is required in this file. A header is used, and each field must be represented
in the data entered (a comma separated field can be left blank; see example above).
Library_name: must match same field in in_group.csv
Project_name: free form name
Organism_name: organism
Type: informative field only ie fragment, jumping EcoP15, etc.
Paired: 0 = unpaired reads; 1: paired reads
Frag_size: average # of bases in the fragment library
Frag_stddev: estimated standard deviation of the fragment sizes
Insert_size: average # of bases in the jumping library inserts (if larger than 20kb the library is
considered Long Jumping)
Insert_stddev: estimated standard deviation of the insert sizes
Read_orientation: inward or outward
Genomic_start: index of the FIRST genomic base in the reads. If not zero, then all bases before
the genomic start will be trimmed off
Genomic_end: index of the LAST genomic base in the reads. If not zero, then all bases after
the genomic end will be trimmed off

With these two files prepared, you can now run:

1.4.1: PrepareAllPathsInputs.pl DATA_DIR=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data
PLOIDY=2

Other optional settings include:

PICARD_TOOLS_DIR (use version 1.101) if you are using .bam files in the .csv files made
above.
INCLUDE_NON_PF_READS=1 allows you to use the orphan reads kept in the previous module.
GENOME_SIZE, FRAG_COVEAGE, JUMP_COVERAGE, and LONG_JUMP_COVERAGE
used together you can set the desired coverage percentage based on the estimated size set for
GENOME_SIZE

Now we can start the assembly:

1.4.2: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1

Notes: All of the ALLPATHS arguments are to set the pipeline directory names. If your
ALLPATHS run fails at any point, you can troubleshoot the issue and then restart ALLPATHS
and it will restart on the stage that failed (as long as you don’t delete any of the directories/data
that was produced up to that point).
Use the following command which adds “OVERWRITE=True”:

1.4.3: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1 OVERWRITE=True

This assembly took 5.3 hours. When the assembly finishes it will be found at the following
location:

- 21 -

/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/myrun/ASSEMBLY/
attempt1/final.assembly.fasta

Useful information:
ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/AllPaths-LG_Manual.pdf

Quality Assessment
Assembly improvement and QC of de novo assemblies go hand in hand since high-quality draft
genomes lead to more successful and accurate annotation. We use a combination of CEGMA,
N50, and RNA mapping to assess the quality of an assembly.

CEGMA (Core Eukaryotic Genes Mapping Approach) uses a defined set of 458 single-copy,
conserved eukaryotic genes, and searches for orthologs of these proteins in the de novo
genome assembly. Since these proteins are conserved across eukaryotes ranging from yeast to
plants to humans, the completeness of this protein set in a draft genome is a useful indicator of
the genome quality. CEGMA produces a completeness report, but we prefer to parse the
cegma.gff file against the core proteins to get a count of the CEGs (Core Eukaryotic Genes) and
lcCEGs found in the assembly.
!
1.4.4: cegma --genome final.assembly.fasta -threads 8 &

N50 is a basic statistic for
describing how contiguous an
assembly is. The longer the
N50 is, the better the assembly.

RNA mapping looks at the
percent of gene contained within
the assembly

Assembly Improvement
After assessing an assembly,
we can take advantage of
numerous assembly
improvement tools. Two open
source options that we use are
GapFiller and PBJelly. PBJelly
(part of PBSuites) is able to fill
gaps and merge scaffolds
utilizing long reads (which is
particularly useful for PacBio
data). For this project, we do not
have any available PacBio data,
so we will be utilizing GapFiller
instead. The image below
illustrates how GapFiller fills the
contig gaps:

- 22 -

We will start by creating the libraries.txt file:

Libraries File: libraries.txt
lib100 bowtie
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.1.raw.fastq
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.2.raw.fastq 205 0.3 FR
lib200 bowtie /gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-
5kb_TSAC-Adult1-g846_g847.1.raw.fastq
/gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-5kb_TSAC-Adult1-
g846_g847.2.raw.fastq 7475 0.5 RF
lib300 bowtie
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq 2833 0.5 RF

Notes:
Library Name: free form
Mapper: bowtie or bwa
Path to both mate pairs files
Insert size
Error
Read orientation

We then run GapFiller using:

1.4.5: GapFiller.pl -l libraries.txt -s final.assembly.fasta -T 8 -b
Tsuis -i 5

Notes: –l is the file made above; –s assembly file; –T threads; –b directory and root file name; –i
iterations. Runtime varies based on number of gaps and amount of data used

Useful links:
http://korflab.ucdavis.edu/datasets/cegma/README

Section 1: Genome
Module 5: Genome annotation

“A beginner’s guide to eukaryotic genome annotation”
http://www.nature.com/nrg/journal/v13/n5/full/nrg3174.html is a great resource. The first step
when annotating a genome is to identify repeat sequences, because they can interfere with
gene predictors and evidence alignment.

Masking repeats
Tandem Repeat Finder (TRF): Start by using TRF to mask short interspersed tandem repeats:

- 23 -

1.5.1: trf Tsuis.gapfilled.final.fa2 7 7 80 10 50 500 -d -m -h >>
TRF.stdout

Now we need to create a blast database for RepeatModeler:

1.5.2: makeblastdb -in final.assembly.fasta.2.7.7.80.10.50.500.mask -
dbtype nucl

Running RepeatModeler (run time is 24-36 hours):

RepeatModeler -database Tsuis.gapfilled.final.fa.masked.fasta >>
RM_stdout

Repeatmodeler will create an RM_[PID].[DATE]/ directory,
(e.g. RM_10825.ThuAug271528572015/)

Once RepeatModeler has completed, you will need to QC the output to check for repeats that
are really genes (gene families) or RNA features.

The following are the screening steps for QC:

Blastx vs nr for protein coding genes:

1.5.3: blastx nr consensi.fa.classified E=10e-5 -o
consensi.fa.classified.nrcheck.blast.out

Blastn vs RNA database for ribosomal or other RNA genes (Rfam.fasta comes with the Rfam
download):

1.5.4: blastn Rfam.fasta consensi.fa.classified 10e-5 -o
$1.rnacheck.blast.out

Retrotransposon check:

1.5.5: blastx transposonDb consensi.fa.classified E=10e-5 -o
$1.retrocheck.blast.out

The final file output from RM is consensi.fa.classified file in the RM directory
(e.g. .M_10825.ThuAug271528572015/consensi.fa.classified). We then screen the blast.out
files with tools that look at P >=0.01 identity/coverage (50% PID/20% Identity) and naming that
is known to be acceptable and database types that lead us to believe the protein has been
checked:

"unknown", "hypothetical", "oxidase", "histone", "kinase", "protease", "reductase", "RNA",
"synthase", "ATPase", "phosphatase", "cytochrome", "ribosomal", "titin", "extensin", "abductin",
"tRNA", "drosophila", "nucleosome", "transferase", "unnamed", "polyprotein", "putative",
"peptide", "resolvase", "alpha", "beta", "fusion", "lactamase", "galact", "integrase", "ref", "emb",
"dbj", "gb", "pir", "prf", "sp", "pdb", "intron","synthetase"

1.5.6: mkdir RepeatMasker
1.5.7: cd RepeatMasker

- 24 -

1.5.8: RepeatMasker -lib repeats.lib
trf.masked.fasta >>RepeatMasker.stdout

Note: The input sequence can be split into chunks to expedite.

RepeatMasker outputs the following files:
D918.newname.fsa.masked - Masked fasta
D918.newname.fsa.tbl - Summary table gives total %masked and breakdown of types
D918.newname.fsa.log - run output
Other output files with details of repeats/positions etc.
D918.newname.fsa.cat D918.newname.fsa.out D918.newname.fsa.ref

Useful links:
https://tandem.bu.edu/trf/trf.html
http://www.repeatmasker.org/RepeatModeler.html
http://www.repeatmasker.org/webrepeatmaskerhelp.html

We also annotate non-coding RNAs using the Rfam and tRNA scan. We mask these predictions
before running the predictor programs, in order to further simplify the regions the predictors
have to look at.

Rfam - http://nar.oxfordjournals.org/content/43/D1/D130

1.5.9: rfam_scan -f tab -o Rfam.out File.fasta

-f specifies format
-o specifies output location
The last argument is just the sequence file to use

Notes: For rfam scan, we modified the script so that it skips the rare group II introns, because if
greatly reduces the run time.

We can scan a sequence file for tRNAs using tRNAscan, EufindtRNA & tRNA covariance.

tRNAscan - http://lowelab.ucsc.edu/tRNAscan-SE/Manual

1.5.10: tRNAscan-SE -o tRNAscan.output File.fsa

Annotation
Producing gene predictions to produce a high quality final set of gene annotations.

- 25 -

A beginner's guide to eukaryotic genome annotation. M Yandell & D Ence Nature Reviews Genetics 13, 329-342 (May 2012).

We will perform annotation using Maker (M. Yandell et. al., 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134774/pdf/188.pdf

First, we generate config files for Maker:

1.5.11: maker -CTL

This creates 3 default config files:

maker_bopts.ctl : blast type and cut-off
maker_exe.ctl : program paths
maker_opts.ctl : all other parameters

The -CTL option will give you default parameters. You will need to set up paths in each file to
match the system you are on (paths to blast databases, etc). For our maker runs, we only need
to do the -CTL once, and then we copy the ctl files to the new directories so we don't have to
update paths for blast exe's etc. We only need to change the maker_opts.ctl file for blast db's.

- 26 -

Change any parameters and/or paths which are different from the working copy, including:

path to sequence file
protein database path
EST database path
alt-est database path if needed
ab initio predictors being run
ab initio corresponding model files
model_gff and/or pred_gff or other _gff files
evidence predictors

Open maker_opts.ctl and add path to these lines

Find this line:
#-----EST Evidence (for best results provide a file for at least one):

1.5.12: est= #set of ESTs or assembled mRNA-seq in fasta format

Beneath this EST Evidence section, also change:
#-----Protein Homology Evidence (for best results provide a file for at least one)

1.5.13: protein= #protein sequence file in fasta format (i.e. from
mutiple oransisms)

To run any of the predictors: Snap, Fgenesh, Augustus you need to train them. Fgenesh is a
commercial predictor that you would need to purchased, but snap is free and maker also works
with GeneMark and others, but those are the most common. We are not going to go perform
overpredictor training today.

To run maker:

1.5.14: maker --RM_off -g File.fasta maker_bopts.ctl maker_exe.ctl
maker_opts.ctl

Here is some information on the directory structure and the files that maker outputs:

Path/Maker

maker_bopt.ctl
maker_ext.ctl
maker_opts.ctl

GENOME.maker.output/ - contains all output for a given run of MAKER

maker_bopts.log : These are logs of the control files used for this run of MAKER
maker_opts.log
maker_exe.log

seen.dbm

- 27 -

sequnce_maker_length_99.db
sequnce_maker_length_99_master_datastore_index.log - log of MAKER run progress as well
as an index for traversing through the output

mpi_blastdb/ - Contains fasta indexes and error corrected fasta files built from the EST and
protein database provided by the user.

*.mpi.10/ - contains indexed database files
nematode_protein_new.mpi.10/ - contains indexed database files

<Sequence_name>._datastore/ - contains subdirectories that hold the output for each
individual contig of the input fasta file. See DATASTORE DIRECTORY STRUCTURE section in
README for more information

08/ 25/Contig#/ - first two directories; numbers/letters vary

run.log
<Sequence_name>.gff - a gff file that can be loaded into GMOD, GBROWSE, or Apollo
<Sequence_name>.maker.snap.proteins.fasta - a fasta file of ab-inito predicted protein
sequences from program

<Sequence_name>.maker.snap.transcripts.fasta - a fasta file of ab-inito
predicted transcript sequences from program

<Sequence_name>.maker.transcripts.fasta - a fasta file of the MAKER annotated transcript
sequences

<Sequence_name>.maker.proteins.fasta - a fasta file of the MAKER
annotated protein sequences

<Sequence_name>.maker.non_overlapping_ab_initio.proteins.fasta - a
fasta file of filtered ab-inito protein sequences that don't overlap maker annotations

<Sequence_name>.maker.non_overlapping_ab_initio.transcripts.fasta - a fasta file of filtered
ab-inito transcript sequences that don't overlap maker annotations

theVoid.Contig#/ - a directory containing all of the raw output files produced by MAKER,
including BLAST reports, SNAP output, exonnerate output and the masked genomic sequence.

- 28 -

Explaining GFF3 files

http://www.broadinstitute.org/annotation/argo/help/gff3.html

Field Descriptions (Note: Except for the last field [9], all gff flavors are the same):

1. seqname - The name of the sequence. Typically a chromosome or a contig. Argo does
not care what you put here. It will superimpose gff features on any sequence you like.

2. source - The program that generated this feature. Argo displays the value of this field in
the inspector but does not do anything special with it.

3. feature - The name of this type of feature. The official GFF3 spec states that this should
be a term from the SOFA ontology, but Argo does not do anything with this value except
display it.

4. start - The starting position of the feature in the sequence. The first base is numbered 1.
5. end - The ending position of the feature (inclusive).
6. score - A score between 0 and 1000. If there is no score value, enter ".".
7. strand - Valid entries include '+', '-', or '.' (for don't know/don't care).
8. frame - If the feature is a coding exon, frame should be a number between 0-2 that

represents the reading frame of the first base. If the feature is not a coding exon, the
value should be '.'. Argo does not do anything with this field except display its value.

9. GFF3: grouping attributes Attribute keys and values are separated by '=' signs. Values
must be URI encoded.quoted. Attribute pairs are separated by semicolons. Certain,
special attributes are used for grouping and identification (See below). This field is the
one important difference between GFF flavors.

Special Field 9 Attributes:

The first special thing about field 9 attributes is that they can be associated with transcripts.
Previous flavors of GFF restricted attributes to the lowest level subfeature (exons).

Any key=value attribute pair will be displayed by argo, but the following have special meaning:

1. ID - unique identifier for this feature.
2. Parent - identifier of parent feature.
3. Name - used as the feature label in the feature map.

Section 1: Genome
Module 6: Functional annotation

This module will review two standard methods for assigning functional annotations to a de novo
geneset. We’ll run a protein vs. protein alignment using the NCBI’s BLASTP+, and we’ll discuss
the interproscan program and take a look at typical interproscan output and how to make use of
it.

- 29 -

Using NCBI’s BLASTP+ to assign functional annotation

One common method of assigning a function to a set of de novo gene calls is simply by
mapping them to an already annotated set of genes from closely related organisms. We’ll go
over the details of actually running a blastp in a bit, but first we’ll review how to locate and
prepare a database for this mapping.

If you happen to have a highly conserved organism’s gene set handy that happens to already
be well annotated, you may not need to do anymore digging. For example, if you are working
with a non-parasitic nematode, you can’t do much better than to simply use the highly curated
and well annotated C.elegans gene set for this mapping. Bu t if you are working with an
organism not in that happy circumstance (as most of us are, all the time), the next best thing is
to walk the lineage of your species using GenBank’s Entrez Records which are avaible when
using a taxonomy search. Lets do this now:

1. Open a browser on your laptop
2. Go to the NCBI website at http://www.ncbi.nlm.nih.gov
3. Enter “Trichuris suis” in the search box at the top of the screen, and set the search menu

to “Taxonomy”, then click “Search”
4. Click through the “Trichuris suis” link
5. Notice the “Entrez records” table on the right side of the screen. What we want is to find

a level of taxonomy above our species for which GenBank has a good number of
“Protein” available

6. Click on the genus level link in the lineage (Trichuris)
7. Click the “Trichuris” link at the top of the list of species to get back to the “Entrez records”

table at that level in the taxonomy
8. Notice that GenBank has 48,510 proteins available for this taxa, click on the “48.510”

number which is a link that will prepare an output set of those proteins
9. Now we will download this protein set. Open the “Send to:” menu in the upper right

corner of the page
10. Choose Destination “File”
11. Set the Format to “Fasta”
12. Click on “Create File” to download the file

For the purposes of this workshop I’ve already prepared a somewhat smaller db for use in our
demonstration, which is already available in the EC2 instance (i.e. you don’t really need to
download the above). But the above process is very useful for when you don’t have a specific
protein db in mind, yet you want to assign blastp annotations to your gene set basic on
homology to related organisms.

Running NCBI’s BLASTP+

Now we’re going to actually map our gene set to our protein database and filter based on
alignment strength. First we need to prepare the blast database for use.

1.6.1: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+/database
1.6.2: makeblastdb -in Ttrichuira_geneset.fna -dbtype prot

Next we can start the blastp alignment

- 30 -

1.6.3: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+
1.6.4: blastp -db database/Ttrichuira_geneset.fna -query
Tsuis.protein.faa -num_threads 8 -outfmt 6 -max_target_seqs 1 -out
Tsuis_vs_Ttrichiura.raw_blastp.tsv

Then we would typically parse the results using some alignment scoring threshold to filter out
only the solid hits

1.6.5: awk '{if ($11<1e-05) print $0;}' <
Tsuis_vs_Ttrichiura.raw_blastp.tsv >
Tsuis_vs_Ttrichiura.raw_blastp.tsv.hits_at_1e-05
The output format we selected using the –outfmt 6 argument produces results in this tab-
delimited format:

Query id
Subject id
Percent identity
Alignment length
Mismatch count
Gap open count
Start of alignment in query
End of alignment in query
Start of alignment in subject
End of alignment in subject
E-value
Bitscore

The results at this point will provide associations between our de novo gene set and the genes
from our database. We would then use a lookup script to go back and extract the full line
annotations from our database and add them to our new genes. While we won’t cover that in
this workshop, we’d be happy to provide scripts for this on request after the class.

Interproscan

Interproscan is a program that searches a collection of databases and reports associations to all
these databases for each gene searched. For our purposes we are mainly interested in the IPR
and GO annotations provided by this software. But here is a full listing of what is searched:

PANTHER, PFAM, PIRSF, PRINTS, PRODOM, PROSITE, PROFILE, SMART, TIGRFAMs,
GENE3D, SSF, SWISSPROT, TREMBL, INTERPRO, GO, MEROPS, UniProt, HAMAP, PFAMB

Due to its resource intensive nature, and the size of the databases needed in its execution we
are not able to demonstrate this software live in our workshop. So we’ve short-cut this section
and deposited pre-built interproscan output for the T.suis gene set in the EC2 instance. First
lets take a look at the raw output

1.6.6: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/Interproscan
1.6.7: more trichuris_suis_interpro_results

- 31 -

That command will scroll through that file one page at a time. The length of each line will cause
the output to wrap on your screen, making it look messy. But the output of interproscan is
actually organized into tab-delimited columns:

1. Protein Accession
2. Sequence MD5 digest
3. Sequence Length
4. Analysis (i.e. the db that was searched on this line)
5. Signature Accession
6. Signature Description
7. Start location
8. Stop location
9. Score (i.e. usually the e-value of the match reported by member database method,

although sometimes a specific search engine will report a non- e-value based score)
10. Status
11. Date
12. InterPro annotations – accession (optional column)
13. InterPro annotations – description (optional column)
14. GO annotations (optional column)
15. Pathways annotation (optional column)

Parsing Interproscan results for downstream use

In order to prepare these annotations for downstream analysis (primarily the building of the
gene summary table, and the expression analysis that will be shown in Section 2) we need to
parse our raw interproscan output into a pre-arranged format that we typically use for that later
work. This requires the use of a locally generated perl script (that we’re happy to share on
request), and would normally build files for both GO and IPR annotations. As a demonstration
we’ll show how we use this script to generate the GO index

1.6.8: scripts/prepare_files_for_FUNC.no_parents.pl -iprscan_file trichuris_suis_interpro_results
-GO_description GO.terms_and_ids.obo.120531 -gene_fof tsuis_full_gene_list.txt -output
Tsuis.GO_annotatioN_index

If you ‘more’ the output file, you’ll see that this is a much simpler format than trying to work with
the native interproscan result file. This parsed annotation file will be used in Section 2 to help
populate the gene summary table in Excel. This format (3 simple columns) should be easy to
work with within the spreadsheet.

Useful information:
(NCBI BLAST+ UNIX tutorial) https://molevol.mbl.edu/wiki/index.php/BLAST_UNIX_Tutorial
(NCBI BLAST+ command line arguments) http://www.ncbi.nlm.nih.gov/books/NBK279675/
(Interproscan) https://github.com/ebi-pf-team/interproscan/wiki
(Interpro Db) https://www.ebi.ac.uk/interpro/about.html
(Gene Ontology) http://geneontology.org

- 32 -

	03-Section1_Module1-3
	04-Section1_Module4_6_V2

