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Section 2: Transcriptome 
Module 0: RNA isolation to sequence production 

1)  Experimental design 
2)  Library construction & sequencing 

Experimental design 

Resource:  https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf, 
http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for  

•  What’s the purpose? 
•  Gene discovery 
•  Differential expression 

•  More reads = more confidence 
•  Depth  

•  Depends on genome size, coding features, etc. 
•  More for discovery of novel features, low expression genes 

•  Replicates 
•  Biological, not technical 
•  More is better for differential expression, 3 per condition 

•  Collect appropriate meta-data when you collect your RNA 
•  Strain/isolate/batch 
•  Sex, age, patency 
•  Treatments  
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Quality control of RNA sample 
•  Nanodrop quantitation 

•  Standard equipment 
•  Peaks at particular 

absorbance range can 
signal contamination  

•  Can’t distinguish between 
DNA, RNA, free 
nucleotides 

•  Qubit fluorometric quantitation 
•  Use separate kits to 

measure RNA, DNA and 
protein individually 

•  Agilent bioanalyzer to assess 
integrity 
•  RNA integrity number 

(RIN) 
 

Production of Illumina RNAseq data 

•  Assess quality & concentration 
•  DNAse treatment 
•  Poly(A) selection 
•  Fragmentation 
•  cDNA synthesis 

•  oligo(dT) & random 
hexamers 

•  Library preparation 
•  Sequencing 

AAAAAA 

AAAAAA 
TTTTTT 

TTTTTT 
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RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 

Read pre-processing and filtering: a very stringent protocol 

1)  Adapter removal 
2)  Quality trimming & filtering 
3)  Contaminant filtering 
 
Resource:  http://www.nature.com/nprot/journal/v8/n8/pdf/nprot.2013.084.pdf, specifically Box 1 
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Our “test” dataset 

•  Larval  
•  10 days post 

inoculation (dpi), 
L2 

•  16 dpi, L3 
•  17 dpi, L3 
•  21 dpi, L4 

•  Adult 
•  42 dpi, L5 
•  Adult rep1 
•  Adult rep2 

Life cycle of Trichuris suis 

Our “test” dataset 

Resource:  http://www.htslib.org/doc/samtools.html 

•  Counting reads in a bam file 
samtools view –b –c input.bam 
•  Divide by 2 to get pairs! 

•  Downsampling: 
samtools view –b –s XX.XX –o output.bam input.bam 

•  -b: input is bam format 
•  -s:  random down-sampling, integer before the decimal is seed for 

random number generator, after the decimal is the % reads to maintain 
•  -o:  output file name 

•  Convert bam ! fastq as before  

L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 

Total raw pairs 43,592,929 54,459,409 47,371,505 58,231,629 55,800,467 32,809,672 41,902,924 334,168,535 

Downsampled 
raw pairs 4,435,622 5,511,063 4,817,349 5,891,002 5,644,329 3,337,590 4,258,806 33,895,761 

300-500bp fragment 

Read 1  ! "  Read 2 
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Adapter detection 

Resource:  http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

•  Use fastqc to identify any adapter sequences that may need to be clipped 
 

NuGEN Ovation RNAseq System V2 

Resource:  http://www.nugen.com/sites/default/files/M01114_v4.1%20-%20User%20Guide,%20Ovation%20RNA
%20Amplification%20System%20V2.pdf 

•  Single Primer Isothermal 
Amplification protocol used in cDNA 
synthesis 
•  SPIA adapters linked to primers 

•  Fragmentation following cDNA 
synthesis, so most reads won’t have 
SPIA 

CTTTGTGTTTGA 5’ 3’ 

CTTTGTGTTTGA 5’ 3’ 
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Adapter detection 

•  Checking for adapters in your file: 
grep –B 1 –A 2 –colour “^CTTGTGTTTGA” L2_10d.1.raw.fastq 

 
 
 
 

•  To count sequences with an adapter  
grep –c  “^CTTGTGTTTGA” L2_10d.1.raw.fastq 
 

Resource:  http://linuxcommand.org/man_pages/grep1.html 

Adapter removal 

•  Tips:  
•  Trimmomatic doesn’t work well for short adapter sequences 
•  clipping multiple adapters in one pass may not work well 

•  Other options for adapter trimming: 
•  Flexbar: http://sourceforge.net/p/flexbar/wiki/Manual/ 

•  Adapter detection & removal 
•  Barcode detection, removal and read binning 
•  Filtering reads with uncalled bases 
•  Quality trimming and filtering 
•  Length trimming / filtering 

•  Cutadapt: https://pypi.python.org/pypi/cutadapt/   
•  FASTX-Toolkit: http://hannonlab.cshl.edu/fastx_toolkit/seq 
•  Seq_crumbs toolkit: https://bioinf.comav.upv.es/seq_crumbs/  
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Removing SPIA adapters with Flexbar 

Resource:  http://sourceforge.net/p/flexbar/wiki/Manual/     

•  Command 
flexbar --adapters 
Adapter.fasta --
adapter-trim-end LEFT 
--min-read-length 60 –-
reads L2_10d.
1.raw.fastq --reads2 
L2_10d.2.raw.fastq --
target L2_10d --
format=sanger --
adapter-min-overlap 7 

•  Result: 
•  Clip adapters 
•  Filter reads with uncalled 

bases 
•  Remove any reads <60bp 

Quality trimming & filtering with Trimmomatic 

Resource:  http://www.usadellab.org/cms/?page=trimmomatic 

•   Command: 
•  java -jar ~/bin/trimmomatic-0.33.jar PE -phred33 

L2_10d.spia_1.fastq L2_10d.spia_2.fastq L2_10d.1.fb-
tm.fastq L2_10d.1.junk.fastq L2_10d.2.fb-tm.fastq 
L2_10d.2.junk.fastq ILLUMINACLIP:Adapters.fasta:2:30:10 
SLIDINGWINDOW:5:20 LEADING:20 TRAILING:20 MINLEN:60 

•  Result 
•  Clipping any remaining Illumina sequencing adapters 
•  Clipping any bases from the end of the reads with quality score <20 
•  Sliding window quality trim 
•  Removing any reads that are <60bp after clipping and trimming 

•  Program prints basic statistics to standard output 
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Complexity filtering with seq-crumbs 

Resource:  https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html 

•  Seq-crumbs interleave fastq files   
•  interleave_pairs –o 

L2_10d.int.fb-tm.fastq 
L2_10d.1.fb-tm.fastq 
L2_10d.1.fb-tm.fastq  

•  Filter low complexity reads 
•  filter_by_complexity –o 

L2_10d.int.fb-tm-sc.fastq 
--paired_reads --
fail_drag_pair 
L2_10d.int.fb-tm.fastq 

  
•  Seq-crumbs de-interleave fastq files 

•  deinterleave_pairs –o 
L2_10d.1.fb-tm-sc.fastq 
L2_10d.2.fb-tm-sc.fastq 
L2_10d.int.fb-tm-sc.fastq  

 

Quality control, reviewed 

•  Quality trimming/filtering 
•  Adapter removal 
•  Quality trimming 
•  Length filtering 
•  Complexity filtering 

•  Result: confidence in 
sequence presented 

Before QC: 

After QC: 
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Contaminant filtering 

       

•  Do I need to do contaminant 
filtering? 

•  Questions to consider: 
•  Where did my worm live? 

•  Is the host’s genome 
available?  

•  If not, what’s the next best 
thing? 

•  Is my worm easily isolated from 
its host? 

•  What does my worm/host eat? 
•  Is my worm easily rinsed/

cleaned? 

•  What do you expect to see? 

Contaminant filtering with Bowtie2 

Resource:  http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml 

•  Bowtie for mapping when splicing IS NOT a consideration 

•  SILVA rRNA: http://www.arb-silva.de/ 
•  “SILVA provides comprehensive, quality checked and regularly updated 

datasets of aligned small (16s/18s, SSU) and large subunit (23s/28s, 
LSU) ribosomal RNA sequences for all three domains of life” 

•  Bacteria 
•  GenBank bacterial database 
•  Custom database (human microbiome project) 

Gene 1 Gene 2 Gene 3 
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Contaminant filtering with Tophat2 

Resource:  https://ccb.jhu.edu/software/tophat/manual.shtml 

•  Tophat for mapping when splicing IS a consideration 
•  Bowtie aligns reads that fall neatly within exons 
•  Tophat splits reads across introns/gaps 

•  Databases 
•  Human 
•  Host 

•  Intermediate  
•  Definitive 

•  Sources 
•  Genbank / Refseq 
•  Ensembl.org 

Exon 1 Exon 2 

Remove contaminant reads 

Resource:  https://broadinstitute.github.io/picard/explain-flags.html (explanation of sam flags) 

•  Index database 
•  bowtie2-build Pig.fasta Pig.fasta 

•  Map with bowtie 
•  bowtie2 –x Pig.fasta -1 L2_10d.1.fb-tm-sc.fastq -2 L2_10d.

1.fb-tm-sc.fastq –S MapPig.sam 
•  Map with tophat 

•  tophat2 –o L2_10d Pig.fasta L2_10d.1.fb-tm-sc.fastq L2_10d.
1.fb-tm-sc.fastq 

•  Counting mapped reads 
•  For BAM file:  samtools view –c –F 4 accepted_hits.bam 
•  For SAM file:  samtools view –c –S –F 4 MapPig.sam 

•  Remove contaminant reads and their mates as before 

•  Result: 
•  High quality base calls 
•  Confidence in the source of the reads 
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Results of quality control 

•  Count the number of reads maintained at each step! 
•  find . –name “*1.clean.fastq” | xargs wc –l 
•  Divide line count by 4 to get fastq entries 

Downsampled read set: 

  L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 
Raw pairs 43,592,929 54,459,409 47,371,505 58,231,629 55,800,467 32,809,672 41,902,924 334,168,535 
Flexbar 39,229,484 48,195,339 42,272,646 52,090,873 49,524,734 24,877,392 37,657,504 293,847,972 
Trimmomatic 30,586,411 40,437,016 33,302,203 42,655,938 41,935,364 21,862,295 29,745,662 240,524,889 
SeqCrumbs 30,416,334 39,426,836 33,176,521 42,179,989 41,354,287 21,854,889 29,648,071 238,056,927 
Contaminants 26,501,312 36,740,860 32,956,606 39,675,217 39,508,530 21,780,296 29,469,388 226,632,209 
% maintained 60.79% 67.46% 69.57% 68.13% 70.80% 66.38% 70.33% 67.82% 

Full read set: 

  L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 
Raw pairs 4,435,622 5,511,063 4,817,349 5,891,002 5,644,329 3,337,590 4,258,806 33,895,761 
Flexbar 3,991,748 4,878,344 4,298,728 5,270,820 5,009,942 2,530,803 3,826,835 29,807,220 
Trimmomatic 3,110,420 4,007,562 3,385,936 4,226,000 4,165,397 2,220,509 3,021,273 24,137,097 
SeqCrumbs 3,093,078 3,917,497 3,373,150 4,183,440 4,113,913 2,219,777 3,011,416 23,912,271 
Contaminants 2,696,239 3,643,862 3,350,928 3,927,395 3,926,103 2,211,368 2,993,460 22,749,355 
% maintained 60.80% 66.10% 69.60% 66.70% 69.60% 66.30% 70.30% 67.10% 

RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 
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Section 2: Transcriptome 
Module 1: Genome based RNA-seq analyses 

1)  Splice-aware alignment and verification 
2)  Genome-assisted transcript assembly 
3)  Counting reads in features for differential expression analyses 
 
Resource:    http://www.nature.com/nprot/journal/v8/n9/pdf/nprot.2013.099.pdf  

Where to find a reference genome 

•  Sources: 
•  Genbank/Refseq 
•  Nematode.net 
•  Wormbase.org 

•  Requirements: 
•  Assembly fasta 
•  GFF3 
•  Functional annotation 

or protein/cds fasta 
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GFF3 format 

Resource:  http://www.usadellab.org/cms/?page=trimmomatic 

•  Column 1: contig or scaffold 
•  Must match the assembly fasta! 

•  Column 3: feature 
•  CDS, coding_exon 

•  Column 9: mRNAs/genes the feature belongs to 

Aligning reads with Tophat2 

Resource:  https://ccb.jhu.edu/software/tophat/manual.shtml 

•  Commands: 
bowtie2-build 
D918.fa D918.fa  
 
tophat2 -o L2_10d -G 
D918.gff3 
D918.fa ../module_0/
L2_10d.
1.clean.fastq ../
module_0/L2_10d.
2.clean.fastq 

 
•  -G option: 

•  “If this option is provided, TopHat will first extract the transcript sequences 
and use Bowtie to align reads to this virtual transcriptome. Only the reads 
that do not fully map to the transcriptome will then be mapped on the 
genome. The reads that did map on the transcriptome will be converted to 
genomic mappings (spliced as needed) and merged with the novel 
mappings and junctions in the final tophat output” 
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Counting reads within features with htseq-count 

Resource:  http://www-huber.embl.de/users/anders/HTSeq/doc/count.html 

•  Command: 
•  htseq-count –f bam 

–r pos –t CDS –i 
Parent 
accepted_hits.bam 
D918.gff3 > 
L2_10d.htseq.txt 

•  Arguments 
•  -f: format 

•  sam or bam 
•  -r:  order 

•  name or pos 
•  -t: feature type 

•  coding_exon 
•  exon 
•  CDS 

•  -i: feature ID 
•  Parent 

htseq-count output 

Resource:  http://www-huber.embl.de/users/anders/HTSeq/doc/count.html 

•  All values should be integers 
•  60-80% mapping rate is considered good 

•  Sum counts for all genes and divide by cleaned read pairs 
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Cufflinks: genome-assisted transcript assembly 

Resource:  http://www.nature.com/nprot/journal/ 
v7/n3/pdf/nprot.2012.016.pdf 

•  Assembly transcripts for each 
sample separately using Cufflinks
cufflinks –o CuffOUTPUT 
accepted_hits.bam 

•  Create a file that lists the 
assembly file for each sample
find . -name 
"transcripts.gtf" > 
assemblies.txt 

•  Run cuffmerge to create a single 
merged transcriptome annotation 
cuffmerge –g genome.gtf 
–s genome.fasta 
assemblies.txt 
•  Creates an output called 

merged.gtf 
 

 
•  Use gffread to print a fasta file of our transcripts 

gffread merged.gtf –g genome.fasta 
–w Transcripts.fa 
•  Options: 

•  -U:  discard single-exon transcripts 
•  -M:  collapse matching transcripts 
•  -K:  collapse shorter, fully contained 

transcripts 

RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 
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Section 2: Transcriptome 
Module 2: De novo transcript assembly 

1)  Digital read normalization 
2)  De novo transcript assembly 
3)  Post-assembly filtering 
4)  Mapping raw reads to the assembly 

Problems with de novo transcript assembly 

•  Lots and lots of “puzzle 
pieces” 

•  Varying transcript abundance 
•  Alternative splicing 
•  Differential gene expression 
 

Resource:  http://arxiv.org/pdf/1203.4802v2.pdf 

  L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 

clean read 
pairs 26,501,312 36,740,860 32,956,606 39,675,217 39,508,530 21,780,296 29,469,388 226,632,209 

Isoform #1 

Isoform #2 
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Data reduction methods 

Gene A Gene B What do you do when there’s too 
much information? 

•  Wet-lab based cDNA normalization techniques 
•  Random down sampling 
•  Digital read normalization 

Resource:  http://arxiv.org/pdf/1203.4802v2.pdf 

Digital read normalization 
•  Solution: “a computational algorithm that systematizes coverage in shotgun 

sequencing data sets, thereby decreasing sampling variation, discarding redundant 
data, and removing the majority of errors” 

•  Method: 
•  K-mer abundance correlates well with mapping-based estimates of read 

coverage 
•  K-mers tend to have similar abundances within a read since they originate from 

the same DNA/RNA molecule 

•  Estimate k-mer abundance (i.e., read coverage) to make the following 
determination 

for$read$in$dataset:$
$if$estimated_coverage(read)$<$C:$
$ $accept(read)$
$else:$
$ $discard(read)$Resource:  http://arxiv.org/pdf/ 

1203.4802v2.pdf 
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Normalization software 

•  Khmer: http://khmer.readthedocs.org/en/v1.4.1/ 
•  Detailed protocol: 

http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/2-diginorm.html 
•  Decide which reads need to be maintained 
•  Trim off low abundance parts of high coverage reads (i.e., errors) 
•  Re-pair reads 

•  Trinity implementation: 
•  https://trinityrnaseq.github.io/trinity_insilico_normalization.html 

 

•  For an explanation of the difference, see this blog post: 
•  http://ivory.idyll.org/blog/trinity-in-silico-normalize.html 

 

De novo transcript assembly with Trinity 

Resource:  http://trinityrnaseq.github.io/ 

•  Trinity approach 
•  Inchworm: assembles reads into unique sequences of transcripts, often 

generating full-length transcripts for a dominant isoform, and reporting 
unique portions of alternatively spliced transcripts 

•  Chrysalis: clusters inchworm contigs into complete de Bruijn graphs for 
each cluster 

•  Butterfly: processes the individual graphs to report full-length transcripts for 
alternatively spliced isoforms 

•  Trinity command: 
Trinity --seqType fq --max_memory XXG --left AllLeft.fastq 
--right AllRight.fastq --normalize_reads –output TRINITY 

•  Time and memory: 
•  Approximately 1G of RAM per million read pairs 
•  Approximately 0.5-1h per million read pairs 
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Trinity output 

http://trinityrnaseq.github.io/#trinity_output 

•  Trinity will create a Trinity.fasta output file in the specified output directory 
•  Trinity groups transcripts into clusters based on shared sequence content. 

These clusters are loosely referred to as “genes” or “unigenes”. This information 
is coded in the trinity accession. 

Assembly statistics 

Resource:  http://trinityrnaseq.github.io/#trinity_output 

•  Command:  
perl ~/bin/
trinityrnaseq-2.0.6/util/
TrinityStats.pl 
Trinity.fasta 

•  In a perfect assembly, “unigenes” = 
expressed genes 

 
•  Why are there so many genes/

transcripts? 
•  Fragmentation 
•  Low-confidence transcripts 

“Test” assembly: 
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Assembly filtering 

Resource:  http://trinityrnaseq.github.io/analysis/abundance_estimation.html 

•  Align reads and estimate abundance 
perl ~/bin/trinityrnaseq-2.0.6/
util/
align_and_estimate_abundance.pl --
transcripts Trinity.fasta --seqType 
fq --left ../AllLeft.fastq --
right ../AllRight.fastq --
est_method RSEM --output_dir RSEM 
--aln_method bowtie2 --
prep_reference 
 

•  Filter lowly supported transcripts 
perl ~/bin/trinityrnaseq-2.0.6/
util/filter_fasta_by_rsem_values.pl 
--rsem_output=RSEM.isoforms.results 
--fasta=../Trinity.fasta --
output=Trinity.filtered.fasta --
tpm_cutoff=1.0 --isopct_cutoff=1.00 

Unfiltered Filtered 
# unigenes 153,461 59,050 

# transcripts 251,721 91,029 

Ave 
transcript 
size 

460 bp 563 bp 

Alternative 
splicing 

24.8% of 
unigenes, 
ave 3.6, 
max 85 

24.4% of 
unigenes, 
ave 3.2, 
max 20 

% pairs 
mapped 

68.3% 66.3% 

Paragonimus kellicotti assembly: 

Feature counting for differential expression 

Resource:  http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html 

•  Prepare reference 
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts 
Trinity.filtered.fasta --est_method RSEM --aln_method bowtie2 
--prep_reference 
 

•  Align reads and estimate abundance 
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts 
Trinity.filtered.fasta --seqType fq --est_method RSEM --
aln_method bowtie2 --left ../../../module_0/L2_10d.
1.clean.fastq --right ../../../module_0/L2_10d.2.clean.fastq 
--output_dir L2_10d 
 

•  Join the abundance values for each sample into matrix for DESeq2 
perl ~/bin/trinityrnaseq-2.0.6/util/
abundance_estimates_to_matrix.pl --est_method RSEM L2_10d/
RSEM.genes.results L3_16d/RSEM.genes.results … 

- 52 -



Feature counting for differential expression 

Resource:  http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html 

Cooperia punctata count table 

  
HIGH.genes. 

results 
LOW.genes. 

results 
UntreatedA.genes. 

results 
UntreatedB.genes. 

results 
comp197262_c2 53.02 51.97 24 107 
comp196358_c0 90 125 104 91 
comp194909_c0 3 2 0 79.07 
comp189445_c0 15 5 7 15 
comp199614_c0 19 23 24.67 18.89 
comp191897_c2 16 20 26 3 
comp196155_c1 223 283 119 467 
comp196537_c0 74.2 98 38.67 200.96 
comp194722_c1 11 6 1 33 
comp200992_c1 9.24 21.98 27 11 
comp189025_c0 57993.94 35917.49 21809.97 76141.69 
comp195426_c0 32 74.17 52.45 100.2 
comp197998_c0 27 8 12 13 
comp201556_c2 22 19 22 25 

RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 
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Section 2: Transcriptome 
Module 3: Expression and differential expression 

- For this module, we will be off of the server and working directly on your laptops.  
 
- We will use data files that you downloaded using scp yesterday, which should be 
saved in ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/. Please check 
that you have downloaded files and folders to this directory. 
 
- Raw data was produced in the previous modules. 
 
- You should already have both RStudio and MS Excel installed on your laptops, as 
requested before the class started.  

Introduction - Expression and differential expression  
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Differential gene expression software 

- Calling differentially expressed genes is a complicated statistical problem. 
- “Dispersion” of a gene or a sample is used to estimate baseline (within-replicate) 
variability, and is essential for accurate statistical measurement. Genes with high inter-
replicate variability should not be considered “differential”.  
- Some measure of dispersion is calculated by all widely-accepted differential callers, 
but they all calculate it in slightly different ways.  
- Three software packages are primarily used: DESeq, EdgeR, and CuffDiff. Others 
include SAMseq, baySeq, NOIseq, and EBSeq.  
- DESeq and EdgeR are the two most commonly used differential gene expression 
calculation packages. These produce similar overall results in terms of final gene lists.  
 
How to choose a differential expression caller 
- The primary practical difference between DESeq and EdgeR is sensitivity (i.e. the 
number of genes called differential).  
- If you are interested in transcript / isoform data, then use CuffDiff. CuffDiff tends to 
be very stringent (fewer differentially expressed genes than DESeq or EdgeR). 
- SAMseq can be useful for cross-sample differential expression calling, but should not 
be used for two-sample comparisons.  
- Having a larger set of differentially expressed genes is not necessarily better!  
- More differentially expressed genes = more false positives, and a larger set of genes 
to summarize for biological interpretation.  
 
 

http://bib.oxfordjournals.org/content/early/2013/12/02/bib.bbt086.long 

CuffDiff 

-  CuffDiff considers read counts per exon, and can 
identify significant changes in exon use and 
isoform abundance for the same gene.  

 

-  This is useful (a) for model organisms where 
there is known functional significance for specific 
exons/isoforms or for (b) for studies of a subset 
of specific genes of interest. 

-  At a genome-wide level, quantifying differential 
exon usage complicates downstream analysis 
without providing practically useful data. 

-  For example, it is difficult to perform genome-
wide functional enrichment testing on 
differentially expressed isoforms, since multiple 
isoforms from the same gene can contribute to 
enrichment scores. 

http://www.nature.com/nbt/journal/v31/n1/fig_tab/nbt.2450_F2.html 
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Replicate considerations 

- At least triplicate is preferred for accurate analysis. 
 
- Some samples may be lost due to very high variability from other replicates or low 
quality RNA, so duplicate is risky (single-replicate produces unreliable statistics). 
 
- Collecting the replicates by repeating an experiment at a later time almost never 
works for helminth studies. 
 
- Both DESeq and EdgeR can be executed with single replicates, but use different 
statistical models.  
 
- Another program called GFOLD is designed specifically for single-replicate samples, 
but these comparisons with any software are not confident without additional 
validation (e.g. qPCR of identified genes). 
 
- Track metadata carefully whenever possible. E.g., the number of worms collected, 
whether there is a possibility of having mixed samples (male and female, L3 and L4, 
etc), time of sampling, etc. This may help to explain within-replicate variability in some 
cases.  

Gene clustering 
- Another analysis approach is to cluster samples based on their overall expression 
patterns across all available RNA-Seq datasets.  
- While this is useful for grouping and classifying genes, the clusters only consider the 
pattern and do not consider whether the genes are statistically differentially expressed.  
- One tool called Short Time Series Expression Miner (STEM) clustering will also identify 
over-represented patterns, representing clusters of probable biological significance.  

Mfuzz Clustering 

STEM Clustering 

http://www.biomedcentral.com/1471-2105/7/191 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139991/ 
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Differential gene expression measurement 

Experimental design considerations: What are the samples you want to compare? What 
approach will you use to compare them?  
 
Example 1: Treatment(s) vs Control 
 
1A. Simple treatment / control pair: 
 
 
 
- Which genes are high in treatment (upregulated) or lower in treatment (downregulated)? 

  
 
1B. Control vs multiple treatments 
(e.g. high and low doses of a drug treatment) 
 
 
 
 
 
 
 
 
- Which genes are upregulated or downregulated by both treatments, and which ones are  
only differentially regulated by high-dose treatment but not low? 

Control 

Low 
Dose 

High 
Dose 

Control  Treatment 

Differential gene expression measurement 

Example 2: Tissue-based (unordered, multiple samples)  
e.g. Whole-worm, intestine, pharynx, and male and female reproductive tissue.  
2A. Each compared to whole-worm:   

- What are the tissue-specific overexpressed genes relative to the whole-worm sample? 

Whole worm 

Intestine 

Pharynx Male Reproductive 

Female Reproductive 

2B. Each compared to all other tissues: 

- What are the tissue-specific overexpressed genes relative to the other sampled tissues? 

Intestine, Male Reproductive, Female Reproductive Pharynx 

Pharynx, Male Reproductive, Female Reproductive Intestine 

2C. Cross-sample combinatorial comparisons 

- Some cross-sample differential expression callers (e.g. SAMSeq) can identify combinations 
of samples with upregulation (e.g. upregulated in both pharynx and intestine relative to other 
tissues). 

http://statweb.stanford.edu/~tibs/SAM/ 
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3B Grouped :   L2   L3    L4   L5 

Differential gene expression measurement 

Example 3: Stage-based (time series) data  
(e.g. L2, L3, L4, L5 larvae) 

  

3A Pairwise :  L2       L3         L4            L5 
- Which genes are upregulated in one stage vs its 
surrounding stage(s)? 

- Which genes are upregulated in early stages relative 
to late stages? 
- Stages are treated as pseudo-replicates for each 
other. 

3C Individual :   L2                    L3  L4         L5 

Individual :  L5    L2       L3         L4 

Etc. 

- Which genes are upregulated in one stage relative to 
all others? 

- R is a free software environment for statistical computing and graphics.  
- RStudio is a set of integrated tools to make R much easier to use. 
 
- “Packages” of existing software can be downloaded, installed, and 
loaded easily.  
- Many bioinformatics tools (especially for statistics analysis) are 
available exclusively in R. 
- You can typically work with R by modifying existing scripts, most of 
which can be downloaded from manuals or other internet resources. 
 
- In this module, we will learn how to use R studio to: 

 - Install libraries, set the working directory and input files 
 - Run DESeq2 for differential gene expression analysis 
 - Run PCA and hierarchical clustering  
 - Run GOSTATS for enrichment of differentially expressed genes 

 

Using RStudio 
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Using  
RStudio 

1. Script Window 
- Load, modify, and run commands 

2. Console 
- Output from running commands 

3. Environment 
- Interactive list of 
objects loaded 

4. Packages / 
Plots / Files 
- Load and view 
packages, view and 
save plots, view files 
in current directory 

- The RStudio 
interface is 
split into four 
windows. 
 
- If you only 
download R, 
then you will 
only have the 
console to 
work with. 

An example of interacting with RStudio 

- From the menu, select “choose directory” as shown above, to set the working 
directory where files will be loaded from and saved to. Set to ‘~/Desktop/
WORKSHOP_RESOURCES/Section_2/module_3/’ for this course. 
 
 
 
 
- When you do this, you will see the “setwd” R command ran in the console. This can 
then be copied and pasted in the script window. 
 
 
 
- If you were to save this script in the future, you could now highlight and run this 
command in order to set the working directory more easily.  
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Installing R packages 

- Now open the “Helminth_Genomics_Workshop_Script.R” file. This contains all of the 
commands we will need for the workshop.  
- Any information following a # sign is a comment to clarify what the code is for.  
- First, we will install packages. Packages are either installed directly using 
“install.packages()”, or they are loaded through bioconductor (“biocLite”). 
- Highlight the code shown and click “run” to install all of the necessary packages. 
- The manuals for different R packages will include the line necessary to install them.  
- Installations only need to be performed one time on each computer, but the packages 
need to be loaded every time R is restarted.  

Loading R packages 

- After you install packages, they will show up in the “Packages” list in your RStudio 
sidebar. To “load” the packages in the future, you can simply check them off. When you 
do, you will the package loading code in the console window.  
- This code can also be pasted into scripts. Note that the full path is not necessary (e.g., 
in the screenshot below, you can just use library(“DESeq2”) instead, which will make 
your script compatible on other people’s computers.  
- Packages can also be searched and installed from this menu, but it is typically easier 
to paste the install code from a guide. 
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- Almost all differential expression callers require raw reads as input.  
- We generated read counts per sample from HTSeq output in the previous module.  
 
- Open “tsuis_rnaseq_htseq_countstable.txt” from the DESeq directory (in MS Excel) 
- This file contains unprocessed HTSeq count output (from the previous module) for T. 
suis collected from different stages. All downstream work will be performed on this 
dataset. 
- Note that this is saved as a tab-delimited text file. This will be the standard output 
from most linux programs. If you save in Excel, you will need to specify this format in 
the “Save as” menu.  
 
 
 
 
 
 
- DESeq requires the genes to be listed in the first columns, the samples labeled in 
the first row, and read counts in the matrix. This is standard to many of the other 
differential callers (including EdgeR) 

Preparing and loading input files: DESeq analysis  

- After setting the working directory and loading DESeq, we load the input reads file. 
- In R, “objects” are defined using an ‘arrow’ <- 
- We will call the object for the HTSeq counts table “COUNTS” 
- It is important to understand the input command because (a) it is often omitted when 
you download scripts (they assume you know how to do this) and (b) having the input 
formatted or loaded incorrectly is a very common reason that scripts don’t work when 
they are launched. Pay close attention to manuals describing input data.  
 

Loading input files 

Object 
name 

Load as a  
matrix object  
(not always 
necessary) 

Most typical 
command for 
loading data 

Filename in 
working 
directory 

Separator for 
the text file; Can 
also be comma 
or space, but \t 
(tab) is the most 

common. 

Set to 
“FALSE” if 
there are 

no headers 

Omit if 
there are 
no row 
names 
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- For DESeq, you will also need to prepare a metadata file describing your samples. 
- This input file is formatted as shown below. Column names can be customized, but the 
first column must contain sample names corresponding to the counts table.  
 
 
 
 
 
 
 
- The samples that you want to compare should be grouped in one of the columns. Here, 
we will focus on “Comparison1”, which is early larval stages vs late stages. 
- You will need to construct this metadata file yourself prior to running R. We will look at 
creating tables in Excel later in this module. 
 - Unlike the read counts table, this input command is not loaded “as.matrix”, but is just a 
table: 
 

Loading input files 

- In RStudio, loaded objects show up in the environment window.  
- If you click on the table icon to the right of the object, you can view the object (in the 
script window) to ensure that files have loaded properly.  
- Checking to see if intermediate objects are empty (“NULL”) is a good way to 
troubleshoot where problems are starting.  

Managing data 
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- In some cases, there are secondary factors to consider. For example, samples may 
have been collected in two batches, introducing potential variance independent of the 
comparison.  
- This data can be specified in the metadata file, and considered by DESeq using the 
following syntax: 
 
 
- This is also useful in cases of paired samples (e.g., the same individuals before and 
after treatment). DESeq and EdgeR can both utilize secondary factors, but CuffDiff and 
other software cannot.  

- First, we will make “dds”, the DESeq DataSet object 

Running DESeq 

Dataset  
name 

DESeq command 
(loaded with package) 

COUNTS dataset 
we previously defined 

META dataset 
we previously defined 

Header name META 
that we want to use  
for the comparison 

- The following line runs the core DESeq code: 
 
 
- Then, this summarizes the results, and writes the summary to a file: 
 
 
 
 
 
 
The results are also shownin the console: 
 
 
 
 
 
 
 
- This shows that at an adjusted p-value of 0.1, ~36% of genes are differentially 
expressed.  
- We will parse the output manually later, with a different p value cutoff.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Running DESeq and saving results 
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- Next, we prepare the output data: 
 
 
 
 
 
 
 
 
 
- Finally, the write.table command is used to export the results to a file in the working 
directory. We’ll look at the results later, during the Excel tutorial.  
 
 
 
 
 
 
 
 

Running DESeq and saving results 

We will 
save this 

object to a file  
in the next 
 command 

Interpret 
dds object 

as readable 
results 

Define 
comparisons 

Header 
name 

from the 
META 

file 

First 
comparison 
group name 
under the 
header 

Second 
comparison 
group name 
under the 
header 

Object 
name 

Output 
filename 
(try to be 

descriptive) 

Tab 
delimited 

- Excel is a spreadsheet program which is useful for organizing and visualizing data, 
calculating statistics, and performing analyses. 
- Today we will learn a variety of approaches for using Excel to work with whole-genome 
data, with a focus on maintaining data integrity and organizing data in the most 
accessible way possible. 
- We will go from several raw data files (generated in previous modules) to a complete 
database with functional annotation data, expression levels, differential expression data, 
and more.  
- Open “Module 3 Table Completed.xlsx” in the ‘Excel’ folder to view a copy of the 
completed database, before we create it.  

Introduction to Microsoft Excel 
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- The spreadsheet is laid out in a coordinate system of “cells” with lettered columns and 
numbered rows. Numbers or string can be entered into any cell just by typing and 
pressing enter.  
- Navigate the spreadsheet using either your cursor or by using the arrows on your 
keyboard. Multiple cells can be highlighted with the keyboard by holding shift and 
scrolling with the arrows.  
- Formulas can be entered in any cell by entering an “=“ sign.  
- All formulas follow a specific format of the “=“ sign, the formula name, an open bracket, 
variables, and a closed bracket. 
- As you type a formula, a yellow box will pop up to tell you what variables can be 
entered. Here, I am calculating the average of a series of numbers, in cell B2. The 
yellow  box indicates that I should enter the numbers with commas in between: 
 
 
 
 
 
- After you close the bracket and press enter, the cell value will show the result of the 
formula, but the formula bar will show the formula itself, when cell B2 is selected: 
 

Introduction to MS Excel: Formulas 

- Formulas can also be calculated on references to cells containing numbers. This is the 
same formula, but the numbers have been replaced with references to cells containing 
numbers: 
 
 
 
 
 
- Rather than list all of the cells, cell ranges can be used. This follows the format of the 
first cell, a colon, and then the last cell: 
 
 
 
 
 
 
- Ranges can span columns and rows (e.g., take the average of a large table). 
- Cell references do not need to be typed in manually. You can select the range with your 
mouse, or you can use the keyboard to select it, after typing the formula and opening  
the bracket.  
- A full list of Excel formulas can be found here: 
http://www.techonthenet.com/excel/formulas/ 

Formulas in MS Excel 
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- Open ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/Excel/
tsuis_rnaseq_htseq_countstable.txt, in Excel. 
- This is a large table, with 9,833 rows and 8 columns, but we are going to add more 
columns as we build the database. 
- If you hold down the “command” key on a Mac (�) or the “CTRL” key on Windows, 
and then scroll with your keyboard arrows, the selection will skip to the end of the table. 
This becomes essential for highlighting all of the cells in a column in a large table, since 
scrolling with the mouse can take several minutes. 
 - The first thing we will do is insert four empty rows above the dataset and one below 
the headers, in order to make room to add more detailed descriptions.  
- To do this, right click on the number on the left-hand border, and choose “insert”. New 
columns or rows will enter above (rows) to the left (columns) of the insertion point.  
 
 
 
 
 
 
 
 
 
 
 
 

Working with large datasets 

- The most important thing when working with these spreadsheets is to never sort the 
data incorrectly. Not only will all of the results be wrong, but it will be very difficult to tell 
that something went wrong. 
- For this reason, you should never use “Data -> Sort” to sort your data. Instead, always 
use the “filter” feature.  
- In this example, I am highlighting (selecting) the empty row below my headers and then 
clicking the funnel icon that says “Filter” below it (under the “Data” tab of the ribbon).  
 
 
 
 
 
 
 
 
 
 
 
 
- Once this has been clicked, small grey arrows will appear in the row that was 
highlighted. 
 

Sorting data in Excel 
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- When you click on these “sorting arrows”, you can choose to sort a column of your 
choice, either ascending or descending. All of the data that is underneath an arrow will 
sort with that data, every time. If you were to sort manually, it is up to you to select the 
entire dataset every time, so this is the safe option to ensure data integrity.  
 
 
 
 
 
 
 
 
- Since we are going to add more data, we want the arrows to extend very far to the right 
of the spreadsheet, so that new data will also sort. Excel will only let you add the arrows 
to columns spanning any actual content, so scroll far to the right with the keyboard and 
add a space with the spacebar to a cell in row 6 (for example, in cell EA6). Then, hold 
shift and command/CTRL, and press left to scroll all the way back, highlighting all of the 
cells along the way. With the entire row selected, press the filter button in the “Data” tab 
of the ribbon.  
- Now, as we add data to the table, all of it will be sortable and will stay organized.   
- I do not recommend ever actually using the “Filter” functionality, since this hides  
rows from view.  
 

Sorting data in Excel 

- Descriptive, organized headers are essential for keeping your data organized, 
communicating your data to others, and for keeping track of where results came from. 
 
 
 
 
 
- Start by inserting a column before the read data, and adding row labels for the 
metadata. Always retain the original sample names from the raw data so that data can 
be compared in the future.  
- Next, in cell C2, type "HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 
2015)”, because this is a complete, descriptive header for this entire set of columns. 
Then highlight cells C2:J2, and click “Merge” under the “Home” tab of the ribbon: 
 
 
 
 
 
 
- This groups all of the columns together, while still allowing them to have separate 
descriptions. Each set of data with more than one column should be formatted this  
way to keep it as organized as possible.  

Formatting headers 
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- Use borders to box off the 
headers and the different 
sections of data. To do this, 
highlight a cell range, then 
click the borders box in the 
“home” section of the ribbon.  
- For database tables, “Thick 
Box Borders” make it easier to 
read. For any table that is to 
be printed or published, the 
thinner “outside borders” look 
better.  
- Reminder:  Use  
Command/CTRL + shift and  
the arrow keys to highlight all 
of the data to the very bottom, 
to add borders to the entire 
data block.  
 

Formatting headers 

- Finally, highlight your data, and use the font settings in the ribbon to make it more 
readable. 
- Choose Arial size 10 font, and center the data whenever it’s not in a long string 
format. 
- Major headings can be bolded.   
- Adjust the column widths by dragging from the edges of the column letters on the 
outside of the sheet, so that they only use as much space as needed.  

Formatting headers 
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- Under “Layout”, and then “Freeze Panes”, you can choose to ‘freeze’ all of the rows 
above and all of the columns to the left of the currently selected cell. 
- Doing this will lock the headers and gene names in place, so that when you scroll 
through the table, you will always be able to see this critical data.  

Freezing panes 

Adding additional data: Gene Lengths 
- We will use the gene lengths to calculate FPKM values from the raw counts table. 
- First, open up “gene lengths.txt” from the Excel folder, select the entire table, and copy 
it to the clipboard. 
- Now, go back to your main file and make a new “sheet” in Excel by clicking the + sign 
on beside the tabs at the bottom. Paste the data into this second sheet, so that it doesn’t 
paste mis-aligned into the main table.  
- Add a header to your main table for where the new data will go.  
- The “wrap text” font feature is helpful when the header name is long but the data will 
not be wide. 
 
 
 
 
 
Why don’t we just sort the two tables by gene name and then copy and paste the 
data? 
- Because even if the same number of genes is present, we can’t necessarily trust that 
every gene is present or entered in the same way.  
- For example, in an updated genome draft, one gene can be removed and one new 
gene can be added. The genes at the start and ends of the table will match, but there 
will be mismatches for every gene in between these two. Any mistakes in a gene  
name will cause you reach false conclusions about your entire dataset.  
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Looking up data in Excel with =VLOOKUP 
=VLOOKUP is one of the most useful formulas in Excel, and allows for looking up 
matching values in a Vertical reference list.  
The syntax is: 
= VLOOKUP ( [Value to lookup], [Table containing the value in the first column],  

     [column number to return], FALSE) 
 
- In this case, we want to look up the gene length corresponding to each gene name in 
the main table. We will start with the first gene, which is in cell B7 in this example: 
 
 
 
 
 
 
 
 
- Type “=VLOOKUP(B7,” and then click to the second tab in your file containing the gene 
lengths. Highlight this entire table using Command/CTRL+Shift and the arrow keys, and 
then type a second comma. If you make a mistake doing this, just press escape and 
start over. Then, click back to your main table, and finish the formula with “2” and 
“FALSE” as the last two entries. 
 

Looking up data in Excel with =VLOOKUP 
- This formula now identifies the gene length of the first gene (in cell B7) by referencing 
the table in Sheet 2, cells B2:C9834, by matching the gene name in the first column and 
returning the value in the second column. The last value of “FALSE” is necessary 
because “TRUE” will allow approximate matches. This should always be false in all 
cases for any scientific work. 
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Copying and pasting formulas in Excel 
- Copy and paste the VLOOKUP formula to the cell below it, to look up the value of the 
second gene. You can right click or use the menus to do this, but I recommend getting 
used to Command/CTRL+C and Command/CTRL+V to do this.  
- Note that in Excel, if you copy and paste a formula down one row, all of the cell 
references in the formula also move by one row (also with columns). Here, we are now 
looking up cell B8, to get the value for the second gene instead of the first.  
- While this is useful, we have to be careful, because the cell references for the lookup 
table of gene lengths (in sheet 2) has also moved down (from B2:C9834 to B3:C9835). 
 
 
 
 
 
 
 
 
- In order to fix this, we can use $ signs to “lock” the row references in place for the 
lookup table.  
- Any column letter or row number with a $ in front of it will not change when the formula 
is copied and pasted. 
- Return to the first formula cell and change the  
reference to B$2:C$9834, and paste that down. 
 
 
 
 
 
 
 
 

Filling and ‘clearing’ formulas 
- We need to paste the formula down the entire column.  
- Copy the formula, then scroll to the bottom of the table by command/CTRL+down on 
one of the gene count columns. 
- Starting at the bottom of the ‘gene lengths’ column, hold shift and command/CTRL and 
press up, to highlight the entire column. Then, paste with command/CTRL+V. 
- Now we have aligned all of the gene lengths. 
- The formulas are still “active” and will re-calculate 
every time the table is sorted or the file is saved. 
Enough of these active formulas will cause the 
spreadsheet to slow down or crash eventually. 
- We will therefore “clear” the formulas, leaving their 
values behind. 
- To do this, highlight the entire column and copy 
(command/CTRL+C), and then within the copied 
cells, right click and choose “paste special”. 
- In the “Paste special” dialog, choose “values” and 
then click “ok”. 
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Checking for formula errors 
- Formulas in Excel can return errors. In the case of =VLOOKUP, if there is no lookup 
value in the reference table, it will return ‘#N/A’, indicating that there is no match in the 
lookup table. 
- All errors start with a # sign, so they can be searched easily. 
- After clearing the formulas (previous slide), highlight the column and press command/
CTRL+F to search. 
- If there is no match in this search, then all of the genes were matched up and there is 
no problem.  
 

Calculating FPKM values 
- We can now calculate FPKM expression values from the raw read counts. Start by 
copying and pasting the read count headers to the right of the gene lengths, and change 
the title of the new header set: 
 
 
 
 
- FPKM = Fragments (counts from HTSeq) Per Kilobase (gene length / 1000) per Million 
of reads mapped (the total read count in the sample’s column in the HTSeq data). 
- This gene expression measure is used because it is normalized both for the gene 
length and the library size, making the values directly comparable across the entire 
dataset, and between different experiments.  
- We can calculate all of this in a single formula. Start by dividing by the count by the 
gene length as shown below: 
 
 
 
 
 
 
- Using parentheses organizes the formula to ensure that the order of operations is 
correct (i.e., we are not dividing D7 by L7 first, and then dividing by 1000).  
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Calculating FPKM values 
- Now all of this needs to be divided by (the library size / 1,000,000). So put the entire 
existing formula in parentheses, and then divide by (the sum of the sample’s column / a 
million): 
 
 
 
 
 
 
 
- Verify this value to ensure that the formula is typed correctly (D918_00003 in L2 = 
2.6339).  
- We need to lock several things in place in order to copy and paste for the entire table. 
First, the reference to L7 (the gene length) needs to move down, but not left-to-right, so 
put a $ sign in front of the L but not the 7. 
- Second, the “sum” range needs to be locked to the rows but not the columns. So 
change that to D$7:D$9838, so that the columns move with the formula.  
- The final formula should look like this: 
 
 
 
 

Aligning additional data 
- Copy and paste this formula for the entire FPKM table, and then clear the formulas and 
check for errors as shown previously.  
- This normalized data will later be used as input for hierarchical clustering (in R), but for 
now we will continue building the database.  
- Open “secretion data.txt” in the “Excel” directory, and paste into the second sheet of 
your database file as before.  
- This data is output from two different programs (Phobius and SecretomeP)  
- Create headers for the data in your main table: 
 
 
 
 
- Set up the =VLOOKUP formula for the first row and column: 
 
 
 
 
 
 
 
- This data needs to be pasted both down and to the right. Using $ signs, lock the 
column of the gene name, and the entire table:  
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Aligning additional data 
- When pasting to the right, we also need to change the “2” to a “3” in the formula, to 
return the value of the third column in the lookup table instead of the second.  
- Also change this value to a “4” in the last column. Then, copy all three values and 
paste down for the entire table, clear formulas, and check for errors.  
 
 
 
 
 
 
 
 
- Now we will add an additional column, to indicate if each gene is secreted either by 
classical or nonclassical secretion. This should be a “Y” if either of the other two columns 
are a “Y”. We will use an =IF statement to perform this.  

=IF is a very useful Excel formula for parsing data. The syntax is: 
=IF( [A logical test returning true or false, usually =, <, >, or =>, <=], [value if true], [value 
if false] ) 
- So for example, try entering =IF(1=2,”Yes”,”No”). 
- This will return “No” in the cell, because the ‘logical test’ is false. If you change this to 
1=1, then it will return “Yes”. 
- Here, we need to check whether either of the cells beside the new column are “Y”. In 
order to accomplish this we will use OR() in the logical test: 
 
 
 
 
 
 
 
 
- Copy and paste this formula, clear values, and check for errors before moving on.  
 
 

=IF formula 
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- In the empty ‘sorting’ row below your secretion header, use the =COUNTIF formula to 
count how many genes are secreted according to each criteria. 
=COUNTIF( [range of cells to count], [criteria for counting] ) 
 
 
 
 
 
 
 
- Here, we are counting how many “Y” values there are in the column. Paste this to the 
right to count for each criteria: 
 
 
 
 
 
 
 
- This is an easy way to summarize your data. You can also check if values are greater 
than zero ( “>0”), if values are larger than the value in another cell, etc.  
- =COUNTIFS (with an S) can check multiple criteria in multiple columns. 
 
 
 

=COUNTIF formula 

- Open “interproscan_annotations_per_gene.txt” from the “Excel” file, and copy and 
paste into the second sheet as before. 
- Prepare the headers and use =VLOOKUP as before: 
 
 
 
 
 
 
 
- This time there is an #N/A value because the lookup table does not contain 
unannotated genes. Paste the formulas through, and then clear the formulas. 
- Now, replace the #N/A values with “-”, to clean up the table. 
- When long strings “hang” over into the next cell, add an 
empty space in the column to the right, to cover it up: 
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- Now we will add the DESeq results we calculated in RStudio. 
- Open the “Comparison1_Early_vs_Late_tsuis_deseq2_output.txt” file in the DESeq 
folder, and paste it into the second sheet of the dataset as before. 
- First, note that the headers are all shifted to the left by 1 column. Cut and paste those 
to the right to fix this. This problem commonly occurs with R output (row.names has no 
header entry), so always be sure to check for an empty final column. 
 
 
 
 
 
 
 
From the DESeq manual: 
 
 
 

Parsing DESeq results 

- We are only interested in the Log2 Fold Change and Adjusted P value, so delete the 
other columns by right-clicking the column letters on the border and deleting them: 
 
 
 
- Set up these headers in the main sheet, and perform the VLOOKUP for these values, 
then add two headers, for the average FPKM values from the two sample groups: 
 
 
 
 
 
 
- Use =AVERAGE to calculate the average value of the sample groups, then paste the 
formulas down and clear the formulas.  
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- We want to know whether each gene is significantly differentially expressed in either 
early larval or late larval stages. Start by setting up additional headers: 
 
 
 
 
 
 
- We can see that a negative fold change corresponds to a gene that is higher in the late 
stages than the early stages (and vice versa for a positive value).  
- Therefore, in order to call a gene significantly higher in the early stages: (a) the fold 
change value needs to be greater than zero, and (b) the P value needs to be less than a 
threshold value of your choice. 
- DESeq recommends a maximum threshold P value of 0.1, but we will parse more 
conservatively, at 0.01 instead.  
- For a very high-confidence small gene set, a threshold of 10-5 could be used.  
- Generally, 0.05, 0.01, or 10-5 are used for publications. 
- Fold change thresholds should not be used for RNA-Seq data. There is justification for 
it with microarrays, but the high sensitivity of RNA-Seq data (and high abundance of 
zero values) invalidates its use for statistical cutoffs.  

Parsing DESeq results 

- For the first column, use an =IF statement with an “AND” function to check whether 
both (a) the Fold change value is greater than zero and (b) the P value is less than or 
equal to 0.01: 
 
 
 
 
 
 
 
- Repeat for the second column, but check if the fold change is less than zero for it. 
Then paste the two columns down, clear the formulas, and check for errors. 
- Paste the =COUNTIF formula from the secretion columns to count the differentially 
expressed genes. Note that this doesn’t match the RStudio summary because we are 
using a different threshold; At a 0.1 threshold, the counts do match.  
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- Look at the most significantly differentially expressed genes by sorting by P value  
(A->Z), and then by one of the two categories (Z -> A): 
 
 
 
 
 
 
 
 
 
- Scroll to the left to see the the InterProScan annotation data, which gives information 
on the functions of these most significant genes: 
 
 
 

Analyzing data 

- For clustering, copy and paste the gene names and the FPKM values for each sample 
into a new spreadsheet, then save as a tab-delimited text file. Renaming the long 
sample names to shorter IDs will make the final cluster look nicer: 
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- For functional enrichment, we will need a “target” gene list of differentially expressed 
genes. In the interest of time, we will just save the “higher in early” gene list. Sort the 
spreadsheet by that column, then copy and paste all of the genes with “Y” values into a 
new file, then save as a tab delimited text with no headers: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Saving data for clustering and functional enrichment testing 

- Principal component analysis (PCA) is one approach for visualizing how expression 
patterns vary across samples.  
- Go back to R and find the PCA code section.  
- DESeq has a built-in tool for running PCA that utilizes the dds object created earlier. 
 
 
 
 
 
 
 
 
 
- These commands log transform the data, and then plot the PCA.    
- Note that “intgroup” can be any column of the metadata file. Here we use “stage” to 
give more detail on each sample, as opposed to just the two categories in 
“Comparison1”. 
- “ntop” defines the number of genes to use to calculate the PCA. Using too many low-
information genes may add noise to the clustering. The default is 500, but the results are 
generally not sensitive to changing the number. 
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- After running these commands, the PCA plot will show up in the bottom-right panel. 
- Clicking “Export” will allow you save this file. If you save as a PDF, you can edit the plot 
directly in a vector-based image editing program (Adobe Illustrator, or “Inkscape”, which 
is free).  
- We will also export the plot  
co-ordinates so that the data  
can be replotted in Excel later.  

PCA from DESeq results 

- The following code will save the PCA coordinates into a file so that the data can be 
graphed in other programs, and outputs the variance of each component, including 
those not shown on the plot.  
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- PCA was calculated directly from the DEseq dataset, but we will use FPKM values for 
hierarchical clustering.  
- Run this code to load libraries and prepare the input files: 
 
 
 
 
 
 
 
 
 
 
 
- If there is an error, check that the file names match.  
- Next, we create a distance matrix. The statistic specified here determines the clustering 
algorithm. Pearson or Spearman correlation is typically used for RNA-Seq data, and 
“average” linkage is typically best for drawing the clusters:  

Hierarchical clustering in RStudio 

- The script includes two approaches for viewing the clustering: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- You can export one or both of these as PDF for future reference.  
- Finally, the script exports a newick-format file for input into other clustering programs 
(e.g. FigTree or ITOL): 

Hierarchical clustering in RStudio 
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- Run the following to prepare the GO database: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- “Go_to_geneID.txt” is a pairwise GO and Gene list, generated from InterProScan 
output in a different module.  
- Producing this file is the difficult part about running enrichment on a custom genome. 
Most tools (including GOSTATS) are designed to be easy to use primarily for model 
organisms.  

Functional enrichment using GOSTATS in RStudio 

- Here we will input the complete (background) T. suis gene set, and our shorter target 
gene set that we saved from Excel, based on the DESeq output:  
 
 
 
- The remaining code runs the enrichment test and produces output. It is ran three times, 
one for Biological Process (BP), one for Molecular Function (MF) and one for Cellular 
Component (CC) Gene Ontology terms. Run all of this code to produce the three output 
files: 
 
 
 
 
 

Functional enrichment using GOSTATS in RStudio 
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- Open the “GOSTATS_output_MF.txt” file in the GOSTATS folder (Using Excel). 
- As with DESeq output, shift the headers to the right by 1 column: 
 
 
 
 
 
 
 
- The list is sorted by P value, with the most significant terms at the top. However, these 
P values are not population-corrected, and this must be done manually for GOSTATS. 
- We need to do correction because there are multiple tests being performed. A 5% 
chance of being false is not acceptable when performing hundreds of tests.  
- Generally, FDR correction is preferred for multiple-testing because it is a reasonable 
balance of stringency. The most stringent approach is Bonferroni correction (multiplying 
P values by the number of tests). 
 
- For FDR, the most significant P value is multiplied by the number of tests. The second-
most significant P value is multiplied by the number of tests divided by two. The third-
most significant P value is multiple by the number of tests divided by three, etc.  
 
 

Manual False Discovery Rate (FDR) correction 

- This output file contains 314 tests. So the P values need to recalculated according to: 
 P value * ( 314 / [rank of P value] )  

- We can accomplish this using the =RANK formula in Excel:  
=RANK( [value], [range of all values], [0 = Largest first, 1 = Smallest First] ) 
 
 
 
 
 
- The formula shown will calculate FDR-corrected P values in column I. The threshold 
value (0.01) will be applied on these FDR values. 
- Some additional formatting will clean up the table and make it ready for publication: 
 
 
 

Manual False Discovery Rate (FDR) correction 
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- Excel is a very useful program for 
graphing data, since graphs are 
easily customizable and interactive.  
- We will go through the steps 
required to create a publication-
quality scatterplot image of the 
previously-generated differential 
gene expression data.  
- Note that within excel, graphs are 
called “charts”. Also note that Excel, 
particularly on Macs, can 
sometimes be prone to crashing 
when working with graphs. Be sure 
to save frequently.  
 
 
 
 
 
 
 
 
 

Graphing in Excel 

 
- The points in a graph on it will stay linked to the data you enter. So, if data in the sheet 
is re-sorted or changed, then the graph will automatically update. For this reason, we will 
start by moving the data to be graphed onto a new separate sheet, where it won’t be 
changed later: 

- Copy and paste gene names, and all of the DESeq data from the main data sheet into 
the new graph data sheet. 
- Delete the fold change and P value columns by selecting the entire columns (by 
clicking the letters on the border of the spreadsheet) and then right clicking and “delete”. 
This data is not required to construct the graph. 
- Add the sorting arrows, then sort the sheet by ‘higher in early’ and then ‘higher in late’, 
so that the three categories of differential expression are in blocks in the table: 
 
 
 
 
 
 
- Cut and paste this table into three sections: Higher in early, higher in late, and not 
differentially expressed. This isn’t strictly necessary to construct the graph, but it is 
helpful for organization. Copy and paste the headers to organize the data: 

Graphing in Excel 
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- We will start by graphing the “not differentially expressed” genes as an X-Y scatterplot. 
- Use Shift + command/CTRL to highlight the FPKM data down this entire column. Then, 
under “charts”, choose “scatter” and then “Marked scatter” (with no lines):  
 
 
 
 
 
 
 
- When you do this, Excel will generate a simple plot of the data, as an object on the 
sheet. Right click the empty white space on the plot, select “Move Chart”, and then 
specify a “new sheet” instead, so that it puts the chart on its own sheet: 
 
 
 
 
  

Graphing in Excel 

- The default chart is not formatted nicely, and may vary by version of Excel. 
- Note that the order of the following formatting steps doesn’t matter.  
- First, we will add axes labels. Under “chart layout”, select “axis titles”, and then click to 
add a title below the X axis and a rotated title on the Y axis: 
 
 
 
 
 
 
 
 
- Click on the axes titles to change the labels to something descriptive, usually with units 
in parentheses: 
 
 
- Next, click on empty white space in the corner of the sheet, to select the entire graph. 
This will allow you to set a global font without adjusting each component manually. Arial 
font is always acceptable for publication, so choose it, and choose size 16 font. This 
large font size is necessary because graphs are rarely printed as a full page, but instead 
are often shrunk into a single panel.  
 
  

Graphing in Excel 
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- Remove horizontal gridlines by clicking on one of them and pressing the “delete” key 
(backspace on windows). Double-click on the plot area and under “line”, choose black 
for the color instead of “automatic”. This will put a border around the plot.  
 
 
 
 
- We will now start to add the other two data series to  
the graph. 
- Right click on the plot area and then click “Select data”. 
 
 

Graphing in Excel 

Ignore this. 

A list of the different series of data on 
the graph. Each series can be 
formatted independently. 

The name of the selected series. If 
blank, it will default to numbering. 

Range of X values and range of Y 
values for the selected series. 

This only matters for graphs with 
categories (not numbers) on the x axis. 

- First, rename the existing series to “Not differentially expressed” (this is the data we 
started the graph with).  
- Click “add” to add a second series. Title the series (“Upregulated in late larval”), and 
then click the red arrow beside the “X values” to select the x axis values for this series. 
 
 
 
 
 
 
- Click back to the ‘FPKM GraphData’ tab, and highlight the X values (early larval) from 
the “Upregulated in late larval” columns you previously set up: 
 
 
 
 
 
 
 
- On windows, you can click on the first cell, and shift + CTRL down to select the entire 
column. This doesn’t always work in the Mac version (a bug), so you may need to  
either select with the mouse, or type in the range manually.  
 
 
 
 
 
 
 
 
 

Graphing in Excel 
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- Once the data is selected, press enter or press the red arrow to return to the main data 
selection menu. Repeat this process to select the Y values, and then add another series 
for the “Upregulated in early larval” data, and add those x and y values. 
- When all of this is finished, click “ok” to return to the graph.  
- Note that if an error pops up when entering data, it is probably because you clicked in 
multiple places, and it is expecting a single range of values. If this happens, delete 
everything in the white box, and then click the red arrow again.  
 
 
 
 
 
 
 
 
 
 
 
 
- Click OK to finish the data entry.  
 

Graphing in Excel 

- Resize and reposition the legend and the graph 
to reduce empty white space. 
- We will format the axes so that they display log 
values instead of natural values. Start by double-
clicking on any of the numbers on the x axis. 
- In the “scale” menu, check “Logarithmic scale”. 
You will get a warning that zero values cannot be 
displayed, which we will address shortly.  
- Set the “vertical axis crosses at” value to 0.001, 
so that the axes intersect on the corner.  
- Repeat both of these steps for the y-axis, 
except for the y axis, also set the “major unit” to 
100, so that it matches the X axis.  
 
- Although we do not need it for this graph, note 
that this menu is where you can manually set the 
minimum and maximum values for the plot. 
 
 
 
 
 
 
 
 
 
 
 
 
- No 

Graphing in Excel 
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- Next, we will format the data series points. Start by double clicking on one of the “not 
differentially expressed” points. Note that if you single-click, and then double-click, you 
will be formatting a single point and not the entire series. Ensure that the popup 
window says “format data series” and not “format data point”. 
- Go to “Marker style” and choose a circle, then set it to size 4. We make these points 
small because we want the differentially expressed genes to stand out. 
- Now choose “Marker line” and choose “no line”. This is for the border around each 
point which we don’t want for this series. 
- Go to “marker fill”, and set to black with 70% transparency. This will make the points 
translucent, making it easier to tell where they overlap. Click ok to finish formatting.  
- Repeat for the two upregulated gene sets, except choose a size 5 circle, a black 
marker line, and a solid fill with no transparency (orange and blue).  

Graphing in Excel 

- Now, we will fix the zero values. Rather than not including points with zero 
expression, we want them to show up along the axis. We will do this by changing all 
zero values in the graph data to 0.001.  
- Go back to the FPKM GraphData tab, and press “command/CTRL + F” to bring up 
the “Find” dialog. From here, click “replace”, and check off “find entire cells only”. Use 
this to replace all zero-value cells with 0.001. The graph will auto-update since the cell 
references are still linked. 
- Now, the points plotted along the axes  
are zero-value, and not 0.001 as  
indicated. This can either be mentioned 
in the figure caption, or the 0.001 values 
can later be covered up in imaging 
software and replaced with 0 on the plot.  
 
 
 
 
 
 
 
 
  

Graphing in Excel 
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- Finally, we will add a diagonal line to define where the x and y values are equal. To 
do this, go back to the “select data” menu (right click the empty space on the graph). 
- Now add another series called “Equal”. Manually type in the values 0.001,100000 to 
both the x and y axis values, then click OK. 
 
 
 
 
 
- Two points will show up in the corner. Double click one of them, then set the Marker 
style to “no marker”, the “line” color to dark grey, and then click to the “weights & 
arrows” dialog under the “line” menu. In that menu, set the weight to 2pt, and choose a 
dashed line: 
 
 

Graphing in Excel 

- If “equal” shows up in the legend, click it and delete it.  
- At this point, the graph is complete. This can be saved as a PDF file in the “save as” 
menu, and imported as a vector-format image into other software.   

Graphing in Excel 

- You can make a copy of the graph 
by right clicking the sheet tab at the 
bottom, and choosing “Move or 
Copy...”, and then specifying to 
create a copy. This way, if you make 
a second scatterplot, you can just 
change the series data, and keep 
all of the formatting.  
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Helpful resources for Section 2 

•  List of RNA-seq bioinformatics tools: 
•  https://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools 

•  khmer website and blog 
•  http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/index.html 
•  http://ivory.idyll.org/blog/category/science.html 

•  DESeq2 
•  https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/

doc/DESeq2.pdf  
•  http://www.bioconductor.org/help/workflows/rnaseqGene/  

•  GOstats 
•  https://bioconductor.org/packages/release/bioc/vignettes/GOstats/inst/doc/

GOstatsHyperG.pdf 
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