School of Medicine

Bioinformatics Workshop for Helminth Genomics (2015)

Section 2: Transcriptome

Sponsors:

The Elizabeth H. and James S. McDonnell III Genome Institute, Washington University, Campus Box 8501 4444 Forest Park Blvd., Saint Louis, MO 63108 Phone: 314.286.1800 Fax: 314.286.1810 Web: genome.wustl.edu

Table of contents – Curriculum

Section 2: Transcriptome

 Module 0 – RNA isolation to sequence production	
 Module 1 – Genome based RNA-seq analyses	
 Module 2 – De novo transcript assembly	
 Module 3 – Expression and differential expression	

Section 2: Transcriptome Module 0: RNA isolation to sequence production

- 1) Experimental design
- 2) Library construction & sequencing

Experimental design

- What's the purpose?
 - Gene discovery
 - Differential expression
- More reads = more confidence
 - Depth
 - Depends on genome size, coding features, etc.
 - · More for discovery of novel features, low expression genes
 - Replicates
 - Biological, not technical
 - More is better for differential expression, 3 per condition
- Collect appropriate meta-data when you collect your RNA
 - Strain/isolate/batch
 - Sex, age, patency
 - Treatments

Quality control of RNA sample

- Nanodrop quantitation
 - Standard equipment
 - Peaks at particular absorbance range can signal contamination
 - Can't distinguish between DNA, RNA, free nucleotides
- Qubit fluorometric quantitation
 - Use separate kits to measure RNA, DNA and protein individually
- Agilent bioanalyzer to assess integrity
 - RNA integrity number (RIN)

Production of Illumina RNAseq data

ΑΑΑΑΑΑΑΑ 1) PolyA+ RNA captured TTTTTTTTTB Assess quality & concentration 2) RNA fragmented and primed **DNAse treatment** Poly(A) selection 3) First strand cDNA synthesized Fragmentation 4) Second strand cDNA synthesized cDNA synthesis oligo(dT) & random 5) 3' ends adenylated and 5' ends repaired hexamers Library preparation 6) DNA sequencing adapters ligated Sequencing Barcode 7) Ligated fragments PCR amplified Rd2 < Index

RNA-seq analysis overview

Read pre-processing and filtering: a very stringent protocol

- 1) Adapter removal
- 2) Quality trimming & filtering
- 3) Contaminant filtering

Our "test" dataset

Larval

- 10 days post inoculation (dpi), L2
- 16 dpi, L3
- 17 dpi, L3
- 21 dpi, L4
- Adult
 - 42 dpi, L5
 - Adult rep1
 - Adult rep2

Ø

Our "test" dataset								
300-500bp fragment								
	Read 1 → ← Read 2							
	L2_10d	L3_16d	L3_17d	L4_21d	L5_42d	L5_r163	L5_r179	Total
Total raw pairs	43,592,929	54,459,409	47,371,505	58,231,629	55,800,467	32,809,672	41,902,924	334,168,535
Downsampled raw pairs	4,435,622	5,511,063	4,817,349	5,891,002	5,644,329	3,337,590	4,258,806	33,895,761

Counting reads in a bam file

samtools view -b -c input.bam

- Divide by 2 to get pairs!
- Downsampling:

```
samtools view -b -s XX.XX -o output.bam input.bam
```

- -b: input is bam format
- -s: random down-sampling, integer before the decimal is seed for random number generator, after the decimal is the % reads to maintain
- -o: output file name
- Convert bam \rightarrow fastq as before

Adapter detection

· Use fastqc to identify any adapter sequences that may need to be clipped

[WARN] Overrepresented sequences

Sequence	Count	Percentage	Possible Source
CTTTGTGTTTGATTTTTTTTTTTTTTTTTTTTTTTTTTT	116516	0.13364093979553426	No Hit
Алаалалаалаалаалалалалалалалалалалалала	90699	0.10402948606642146	No Hit

Resource: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

NuGEN Ovation RNAseq System V2

- <u>Single Primer Isothermal</u>
 <u>Amplification protocol used in cDNA</u>
 synthesis
 - SPIA adapters linked to primers
- Fragmentation following cDNA synthesis, so most reads won't have SPIA

Resource: http://www.nugen.com/sites/default/files/M01114_v4.1%20-%20User%20Guide,%20Ovation%20RNA %20Amplification%20System%20V2.pdf

Adapter detection

• Checking for adapters in your file:

grep -B 1 -A 2 -colour "^CTTGTGTTTGA" L2 10d.1.raw.fastq

• To count sequences with an adapter grep -c "^CTTGTGTTTGA" L2_10d.1.raw.fastq

Resource: http://linuxcommand.org/man_pages/grep1.html

Adapter removal

- Tips:
 - Trimmomatic doesn't work well for short adapter sequences
 - clipping multiple adapters in one pass may not work well
- Other options for adapter trimming:
 - Flexbar: http://sourceforge.net/p/flexbar/wiki/Manual/
 - Adapter detection & removal
 - · Barcode detection, removal and read binning
 - · Filtering reads with uncalled bases
 - Quality trimming and filtering
 - Length trimming / filtering
 - Cutadapt: <u>https://pypi.python.org/pypi/cutadapt/</u>
 - FASTX-Toolkit: <u>http://hannonlab.cshl.edu/fastx_toolkit/seq</u>
 - Seq_crumbs toolkit: <u>https://bioinf.comav.upv.es/seq_crumbs/</u>

Removing SPIA adapters with Flexbar

```
    Command
```

flexbar --adapters Adapter.fasta -adapter-trim-end LEFT --min-read-length 60 -reads L2_10d. 1.raw.fastq --reads2 L2_10d.2.raw.fastq -target L2_10d -format=sanger -adapter-min-overlap 7

- Result:
 - · Clip adapters
 - Filter reads with uncalled bases
 - Remove any reads <60bp

Resource: http://sourceforge.net/p/flexbar/wiki/Manual/

- Command:
 - java -jar ~/bin/trimmomatic-0.33.jar PE -phred33
 L2_10d.spia_1.fastq L2_10d.spia_2.fastq L2_10d.1.fbtm.fastq L2_10d.1.junk.fastq L2_10d.2.fb-tm.fastq
 L2_10d.2.junk.fastq ILLUMINACLIP:Adapters.fasta:2:30:10
 SLIDINGWINDOW:5:20 LEADING:20 TRAILING:20 MINLEN:60
- Result
 - · Clipping any remaining Illumina sequencing adapters
 - Clipping any bases from the end of the reads with quality score <20
 - Sliding window quality trim
 - Removing any reads that are <60bp after clipping and trimming
- · Program prints basic statistics to standard output

Complexity filtering with seq-crumbs

- Seq-crumbs interleave fastq files
 - interleave_pairs -o L2_10d.int.fb-tm.fastq L2_10d.1.fb-tm.fastq L2_10d.1.fb-tm.fastq
- · Filter low complexity reads
 - filter_by_complexity -o
 L2_10d.int.fb-tm-sc.fastq
 -paired_reads fail_drag_pair
 L2_10d.int.fb-tm.fastq
- Seq-crumbs de-interleave fastq files
 - deinterleave_pairs -o L2_10d.1.fb-tm-sc.fastq L2_10d.2.fb-tm-sc.fastq L2_10d.int.fb-tm-sc.fastq

Resource: https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html

Quality control, reviewed

- Quality trimming/filtering
 - Adapter removal
 - Quality trimming
 - Length filtering
 - Complexity filtering
- <u>Result</u>: confidence in sequence presented

Before QC:

Per base sequence qualit

Contaminant filtering

- Do I need to do contaminant filtering?
- Questions to consider:
 - · Where did my worm live?
 - Is the host's genome available?
 - If not, what's the next best thing?
 - Is my worm easily isolated from its host?
 - What does my worm/host eat?
 - Is my worm easily rinsed/ cleaned?
- What do you expect to see?

Contaminant filtering with Bowtie2

- Bowtie for mapping when splicing IS NOT a consideration
 - SILVA rRNA: <u>http://www.arb-silva.de/</u>
 - "SILVA provides comprehensive, quality checked and regularly updated datasets of aligned small (16s/18s, SSU) and large subunit (23s/28s, LSU) ribosomal RNA sequences for all three domains of life"
 - Bacteria
 - GenBank bacterial database
 - · Custom database (human microbiome project)

Contaminant filtering with Tophat2

- Tophat for mapping when splicing IS a consideration
 - Bowtie aligns reads that fall neatly within exons

Exon 1

Exon 2

- Tophat splits reads across introns/gaps
- Databases
 - Human
 - Host
 - Intermediate
 - Definitive
- Sources
 - · Genbank / Refseq
 - Ensembl.org

Resource: https://ccb.jhu.edu/software/tophat/manual.shtml

Remove contaminant reads

- Index database
 - bowtie2-build Pig.fasta Pig.fasta
- Map with bowtie
 - bowtie2 -x Pig.fasta -1 L2_10d.1.fb-tm-sc.fastq -2 L2_10d.
 1.fb-tm-sc.fastq -S MapPig.sam
- Map with tophat
 - tophat2 -o L2_10d Pig.fasta L2_10d.1.fb-tm-sc.fastq L2_10d.
 - 1.fb-tm-sc.fastq
- Counting mapped reads
 - For BAM file: samtools view -c -F 4 accepted_hits.bam
 - For SAM file: samtools view -c -S -F 4 MapPig.sam
- Remove contaminant reads and their mates as before
- <u>Result</u>:
 - High quality base calls
 - · Confidence in the source of the reads

Resource: https://broadinstitute.github.io/picard/explain-flags.html (explanation of sam flags)

Results of quality control

- Count the number of reads maintained at each step!
 - find . -name "*1.clean.fastq" | xargs wc -l
 - Divide line count by 4 to get fastq entries

Downsampled read set:

	L2_10d	L3_16d	L3_17d	L4_21d	L5_42d	L5_r163	L5_r179	Total
Raw pairs	4,435,622	5,511,063	4,817,349	5,891,002	5,644,329	3,337,590	4,258,806	33,895,761
Flexbar	3,991,748	4,878,344	4,298,728	5,270,820	5,009,942	2,530,803	3,826,835	29,807,220
Trimmomatic	3,110,420	4,007,562	3,385,936	4,226,000	4,165,397	2,220,509	3,021,273	24,137,097
SeqCrumbs	3,093,078	3,917,497	3,373,150	4,183,440	4,113,913	2,219,777	3,011,416	23,912,271
Contaminants	2,696,239	3,643,862	3,350,928	3,927,395	3,926,103	2,211,368	2,993,460	22,749,355
% maintained	60.80%	66.10%	69.60%	66.70%	69.60%	66.30%	70.30%	67.10%

Full read set:

	L2_10d	L3_16d	L3_17d	L4_21d	L5_42d	L5_r163	L5_r179	Total
Raw pairs	43,592,929	54,459,409	47,371,505	58,231,629	55,800,467	32,809,672	41,902,924	334,168,535
Flexbar	39,229,484	48,195,339	42,272,646	52,090,873	49,524,734	24,877,392	37,657,504	293,847,972
Trimmomatic	30,586,411	40,437,016	33,302,203	42,655,938	41,935,364	21,862,295	29,745,662	240,524,889
SeqCrumbs	30,416,334	39,426,836	33,176,521	42,179,989	41,354,287	21,854,889	29,648,071	238,056,927
Contaminants	26,501,312	36,740,860	32,956,606	39,675,217	39,508,530	21,780,296	29,469,388	226,632,209
% maintained	60.79%	67.46%	69.57%	68.13%	70.80%	66.38%	70.33%	67.82%

RNA-seq analysis overview

Section 2: Transcriptome Module 1: Genome based RNA-seq analyses

- 1) Splice-aware alignment and verification
- 2) Genome-assisted transcript assembly
- 3) Counting reads in features for differential expression analyses

Resource: http://www.nature.com/nprot/journal/v8/n9/pdf/nprot.2013.099.pdf

Where to find a reference genome

- Sources:
 - Genbank/Refseq
 - Nematode.net
 - Wormbase.org
- Requirements:
 - Assembly fasta
 - GFF3
 - Functional annotation or protein/cds fasta

GFF3 format

3. ec2-user@ip-172-31-38-111:~/WORKSHOP_RESOURCES/Section_2/module_1 (ssh)								
[ec2-user@ip-172-31-38-111 module_1]\$ head -n 25 D918.gff3								
##gff-version 3								
T_suis-1.0_Cont72	Final_set	gene	74794	75765				ID=D918_GENE0001:gene;Name=D918_09719
T_suis-1.0_Cont72	Final_set	mRNA	74794	75765				ID=D918_GENE0001.1:mRNA;Parent=D918_GENE0001:gene;Name=D918_09719
T_suis-1.0_Cont72	Final_set	exon	74794	75765				ID=D918_GENE0001.1:exon;Parent=D918_GENE0001.1:mRNA
T_suis-1.0_Cont72	Final_set	CDS	74794	75765			0	<pre>ID=D918_GENE0001.1:CDS;Parent=D918_GENE0001.1:mRNA</pre>
T_suis-1.0_Cont40	Final_set	gene	395444	417867				ID=D918_GENE0002:gene;Name=D918_08404
T_suis-1.0_Cont40	Final_set	mRNA	395444	417867				ID=D918_GENE0002.1:mRNA;Parent=D918_GENE0002:gene;Name=D918_08404
T_suis-1.0_Cont40	Final_set	exon	395444	395926				<pre>ID=D918_GENE0002.1:exon;Parent=D918_GENE0002.1:mRNA</pre>
T_suis-1.0_Cont40	Final_set	exon	396038	396514				ID=D918_GENE0002.1:exon;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	exon	396937	397314				<pre>ID=D918_GENE0002.1:exon;Parent=D918_GENE0002.1:mRNA</pre>
T_suis-1.0_Cont40	Final_set	exon	397730	397910				ID=D918_GENE0002.1:exon;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	exon	398750	399097				ID=D918_GENE0002.1:exon;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	exon	417155	417867				<pre>ID=D918_GENE0002.1:exon;Parent=D918_GENE0002.1:mRNA</pre>
T_suis-1.0_Cont40	Final_set	CDS	395444	395926			0	ID=D918_GENE0002.1:CDS;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	CDS	396038	396514			0	ID=D918_GENE0002.1:CDS;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	CDS	396937	397314			0	ID=D918_GENE0002.1:CDS;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	CDS	397730	397910			0	ID=D918_GENE0002.1:CDS;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	CDS	398750	399097			2	ID=D918_GENE0002.1:CDS;Parent=D918_GENE0002.1:mRNA
T_suis-1.0_Cont40	Final_set	CDS	417155	417867				<pre>ID=D918_GENE0002.1:CDS;Parent=D918_GENE0002.1:mRNA</pre>
T_suis-1.0_Cont17	Final_set	gene	633392	637389				ID=D918_GENE0003:gene;Name=D918_05776
T_suis-1.0_Cont17	Final_set	mRNA	633392	637389				ID=D918_GENE0003.1:mRNA;Parent=D918_GENE0003:gene;Name=D918_05776
T_suis-1.0_Cont17	Final_set	exon	633392	633550				<pre>ID=D918_GENE0003.1:exon;Parent=D918_GENE0003.1:mRNA</pre>
T_suis-1.0_Cont17	Final_set	exon	633607	633785				<pre>ID=D918_GENE0003.1:exon;Parent=D918_GENE0003.1:mRNA</pre>
T_suis-1.0_Cont17	Final_set	exon	633840	634033				ID=D918_GENE0003.1:exon;Parent=D918_GENE0003.1:mRNA

- Column 1: contig or scaffold
 Must match the assembly fasta!
- Column 3: feature
 - CDS, coding_exon
- · Column 9: mRNAs/genes the feature belongs to

Resource: http://www.usadellab.org/cms/?page=trimmomatic

Aligning reads with Tophat2

Commands:

bowtie2-build D918.fa D918.fa

tophat2 -o L2_10d -G
D918.gff3
D918.fa ../module_0/
L2_10d.
1.clean.fastq ../
module_0/L2_10d.
2.clean.fastq

- -G option:
 - "If this option is provided, TopHat will first extract the transcript sequences and use Bowtie to align reads to this virtual transcriptome. Only the reads that do not fully map to the transcriptome will then be mapped on the genome. The reads that did map on the transcriptome will be converted to genomic mappings (spliced as needed) and merged with the novel mappings and junctions in the final tophat output"

Resource: https://ccb.jhu.edu/software/tophat/manual.shtml

Counting reads within features with htseq-count

Command:

- htseq-count -f bam -r pos -t CDS -i Parent accepted hits.bam D918.gff3 > L2 10d.htseq.txt
- Arguments
 - -f: format
 - sam or bam
 - -r: order
 - name or pos
 - -t: feature type
 - coding_exon
 - exon
 - CDS
 - -i: feature ID
 - Parent

Resource: http://www-huber.embl.de/users/anders/HTSeg/doc/count.html

htseq-count output

	L2_10d	L3_16d	L3_17d	L4_21d	L5_42d	L5_r163	L5_r179
D918_00003	34	36	28	42	112	163	297
D918_00007	0	3	0	0	97	5	25
D918_00013	273	584	251	372	417	144	232
D918_00014	24	62	39	90	337	381	517
D918_00015	345	615	488	404	638	298	415
D918_00016	1801	1672	3838	1870	2614	1923	3446
D918_00017	3091	3833	4334	4376	3333	2011	2954
D918_00018	706	1680	1252	2430	2285	737	1040
D918_00019	3912	3062	1400	3638	3894	1643	1994
D918_00020	928	2060	2012	1971	3821	6971	3676
//							
alignment_not_unique	221176	839400	567739	890856	1011380	465826	512410
ambiguous	268632	549686	367069	470060	639345	330250	336040
no_feature	2888141	5856583	3677885	4318280	5470650	2710622	3702874
not_aligned	0	0	0	0	0	0	0
too_low_aQual	0	0	0	0	0	0	0

- All values should be integers
- 60-80% mapping rate is considered good
 - · Sum counts for all genes and divide by cleaned read pairs

Cufflinks: genome-assisted transcript assembly

 Assembly transcripts for each sample separately using Cufflinks

cufflinks -o CuffOUTPUT accepted hits.bam

• Create a file that lists the assembly file for each sample

find . -name
"transcripts.gtf" >
assemblies.txt

Run cuffmerge to create a single
 merged transcriptome annotation

cuffmerge -g genome.gtf

-s genome.fasta

assemblies.txt

 Creates an output called merged.gtf

Resource: http://www.nature.com/nprot/journal/ v7/n3/pdf/nprot.2012.016.pdf CleE3.6

Use gffread to print a fasta file of our transcripts gffread merged.gtf -g genome.fasta -w Transcripts.fa

- Options:
 - U: discard single-exon transcripts
 - -M: collapse matching transcripts
 - -K: collapse shorter, fully contained transcripts

RNA-seq analysis overview

Section 2: Transcriptome Module 2: *De novo* transcript assembly

- 1) Digital read normalization
- 2) De novo transcript assembly
- 3) Post-assembly filtering
- 4) Mapping raw reads to the assembly

Problems with de novo transcript assembly

	L2_10d	L3_16d	L3_17d	L4_21d	L5_42d	L5_r163	L5_r179	Total
clean read pairs	26,501,312	36,740,860	32,956,606	39,675,217	39,508,530	21,780,296	29,469,388	226,632,209

- Lots and lots of "puzzle pieces"
- Varying transcript abundance
- Alternative splicing
- Differential gene expression

Isoform #1

Isoform #2

Resource: http://arxiv.org/pdf/1203.4802v2.pdf

Data reduction methods

Gene A	Gene B	What do you do when there's too
	Wet-lab basedRandom down	cDNA normalization techniques sampling
	 Digital read nor 	malization

Resource: http://arxiv.org/pdf/1203.4802v2.pdf

Digital read normalization

- Solution: "a computational algorithm that systematizes coverage in shotgun sequencing data sets, thereby decreasing sampling variation, discarding redundant data, and removing the majority of errors"
- Method:
 - K-mer abundance correlates well with mapping-based estimates of read coverage
 - K-mers tend to have similar abundances within a read since they originate from the same DNA/RNA molecule

Estimate k-mer abundance (i.e., read coverage) to make the following determination

Normalization software

- Khmer: <u>http://khmer.readthedocs.org/en/v1.4.1/</u>
 - Detailed protocol: <u>http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/2-diginorm.html</u>
 - Decide which reads need to be maintained
 - Trim off low abundance parts of high coverage reads (i.e., errors)
 - Re-pair reads
- Trinity implementation:
 - https://trinityrnaseq.github.io/trinity_insilico_normalization.html
- For an explanation of the difference, see this blog post:
 - http://ivory.idyll.org/blog/trinity-in-silico-normalize.html

De novo transcript assembly with Trinity

- Trinity approach
 - Inchworm: assembles reads into unique sequences of transcripts, often generating full-length transcripts for a dominant isoform, and reporting unique portions of alternatively spliced transcripts
 - Chrysalis: clusters inchworm contigs into complete de Bruijn graphs for each cluster
 - Butterfly: processes the individual graphs to report full-length transcripts for alternatively spliced isoforms
- Trinity command:

```
Trinity --seqType fq --max_memory XXG --left AllLeft.fastq
--right AllRight.fastq --normalize reads -output TRINITY
```

- Time and memory:
 - Approximately 1G of RAM per million read pairs
 - Approximately 0.5-1h per million read pairs

Trinity output

- · Trinity will create a Trinity fasta output file in the specified output directory
- Trinity groups transcripts into clusters based on shared sequence content. These clusters are loosely referred to as "genes" or "unigenes". This information is coded in the trinity accession.

http://trinityrnaseq.github.io/#trinity_output

O

Assembly statistics

Command:

perl ~/bin/
trinityrnaseq-2.0.6/util/
TrinityStats.pl
Trinity.fasta

- In a perfect assembly, "unigenes" = expressed genes
- Why are there so many genes/ transcripts?
 - Fragmentation
 - Low-confidence transcripts

Assembly filtering

Align reads and estimate abundance
perl ~/bin/trinityrnaseq-2.0.6/
util/
align_and_estimate_abundance.pl
transcripts Trinity.fastaseqType
fqleft/AllLeft.fastq
right/AllRight.fastq
est_method
aln_method bowtie2
prep_reference
Filter lowly supported transcripts

perl ~/bin/trinityrnaseq-2.0.6/ util/filter_fasta_by_rsem_values.pl --rsem_output=RSEM.isoforms.results --fasta=../Trinity.fasta -output=Trinity.filtered.fasta -tpm_cutoff=1.0 --isopct_cutoff=1.00

Paragonimus kellicotti assembly:

	Unfiltered	Filtered
# unigenes	153,461	59,050
# transcripts	251,721	91,029
Ave transcript size	460 bp	563 bp
Alternative splicing	24.8% of unigenes, ave 3.6, max 85	24.4% of unigenes, ave 3.2, max 20
% pairs mapped	68.3%	66.3%

Resource: http://trinityrnaseq.github.io/analysis/abundance_estimation.html

Feature counting for differential expression

Prepare reference

```
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts
Trinity.filtered.fasta --est_method RSEM --aln_method bowtie2
--prep_reference
```

Align reads and estimate abundance

```
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts
Trinity.filtered.fasta --seqType fq --est_method RSEM --
aln_method bowtie2 --left ../../../module_0/L2_10d.
1.clean.fastq --right ../../module_0/L2_10d.2.clean.fastq
--output_dir L2_10d
```

• Join the abundance values for each sample into matrix for DESeq2

```
perl ~/bin/trinityrnaseq-2.0.6/util/
abundance_estimates_to_matrix.pl --est_method RSEM L2_10d/
RSEM.genes.results L3_16d/RSEM.genes.results ...
```

Feature counting for differential expression

				Lintro etc.dD. e.e.e.e.
	HIGH.genes.	LOw.genes.	UntreatedA.genes.	UntreatedB.genes.
	results	results	results	results
comp197262_c2	53.02	51.97	24	107
comp196358_c0	90	125	104	91
comp194909_c0	3	2	0	79.07
comp189445_c0	15	5	7	15
comp199614_c0	19	23	24.67	18.89
comp191897_c2	16	20	26	3
comp196155_c1	223	283	119	467
comp196537_c0	74.2	98	38.67	200.96
comp194722_c1	11	6	1	33
comp200992_c1	9.24	21.98	27	11
comp189025_c0	57993.94	35917.49	21809.97	76141.69
comp195426_c0	32	74.17	52.45	100.2
comp197998_c0	27	8	12	13
comp201556_c2	22	19	22	25

Cooperia punctata count table

Resource: http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html

RNA-seq analysis overview

Section 2: Transcriptome Module 3: Expression and differential expression

Introduction - Expression and differential expression

- For this module, we will be off of the server and working directly on your laptops.

- We will use data files that you downloaded using scp yesterday, which should be saved in ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/. Please check that you have downloaded files and folders to this directory.

- Raw data was produced in the previous modules.

- You should already have both RStudio and MS Excel installed on your laptops, as requested before the class started.

Ø

Differential gene expression software

- Calling differentially expressed genes is a complicated statistical problem.

- "Dispersion" of a gene or a sample is used to estimate baseline (within-replicate) variability, and is essential for accurate statistical measurement. Genes with high interreplicate variability should not be considered "differential".

- Some measure of dispersion is calculated by all widely-accepted differential callers, but they all calculate it in slightly different ways.

- Three software packages are primarily used: **DESeq**, **EdgeR**, and **CuffDiff**. Others include SAMseq, baySeq, NOIseq, and EBSeq.

- **DESeq** and **EdgeR** are the two most commonly used differential gene expression calculation packages. These produce similar overall results in terms of final gene lists.

How to choose a differential expression caller

- The primary practical difference between **DESeq** and **EdgeR** is sensitivity (i.e. the number of genes called differential).

- If you are interested in transcript / isoform data, then use **CuffDiff**. CuffDiff tends to be very stringent (fewer differentially expressed genes than DESeq or EdgeR).

- **SAMseq** can be useful for cross-sample differential expression calling, but should not be used for two-sample comparisons.

- Having a larger set of differentially expressed genes is not necessarily better!

- More differentially expressed genes = more false positives, and a larger set of genes to summarize for biological interpretation.

http://bib.oxfordjournals.org/content/early/2013/12/02/bib.bbt086.long

CuffDiff

- CuffDiff considers read counts per exon, and can identify significant changes in exon use and isoform abundance for the same gene.
- This is useful (a) for model organisms where there is known functional significance for specific exons/isoforms or for (b) for studies of a subset of specific genes of interest.
- At a genome-wide level, quantifying differential exon usage complicates downstream analysis without providing practically useful data.
- For example, it is difficult to perform genomewide functional enrichment testing on differentially expressed isoforms, since multiple isoforms from the same gene can contribute to enrichment scores.

conditions in transcript-level counts

Replicate considerations

- At least triplicate is preferred for accurate analysis.

- Some samples may be lost due to very high variability from other replicates or low quality RNA, so duplicate is risky (single-replicate produces unreliable statistics).

- Collecting the replicates by repeating an experiment at a later time almost never works for helminth studies.

- Both DESeq and EdgeR *can* be executed with single replicates, but use different statistical models.

- Another program called **GFOLD** is designed specifically for single-replicate samples, but these comparisons with any software are not confident without additional validation (e.g. qPCR of identified genes).

- Track metadata carefully whenever possible. E.g., the number of worms collected, whether there is a possibility of having mixed samples (male and female, L3 and L4, etc), time of sampling, etc. This may help to explain within-replicate variability in some cases.

Ø

Gene clustering

- Another analysis approach is to cluster samples based on their overall expression patterns across all available RNA-Seq datasets.

While this is useful for grouping and classifying genes, the clusters only consider the pattern and do not consider whether the genes are statistically differentially expressed.
One tool called Short Time Series Expression Miner (STEM) clustering will also identify over-represented patterns, representing clusters of probable biological significance.

Differential gene expression measurement

Experimental design considerations: What are the samples you want to compare? What approach will you use to compare them?

Example 1: Treatment(s) vs Control

1A. Simple treatment / control pair:

- Which genes are high in treatment (upregulated) or lower in treatment (downregulated)?

1B. Control vs multiple treatments

(e.g. high and low doses of a drug treatment)

- Which genes are upregulated or downregulated by both treatments, and which ones are only differentially regulated by high-dose treatment but not low?

Differential gene expression measurement

Example 2: Tissue-based (unordered, multiple samples) e.g. Whole-worm, intestine, pharynx, and male and female reproductive tissue.

2A. Each compared to whole-worm:

- What are the tissue-specific overexpressed genes relative to the whole-worm sample?

2B. Each compared to all other tissues:

- What are the tissue-specific overexpressed genes relative to the other sampled tissues?

2C. Cross-sample combinatorial comparisons

- Some cross-sample differential expression callers (e.g. SAMSeq) can identify combinations of samples with upregulation (e.g. upregulated in both pharynx and intestine relative to other tissues).

Differential gene expression measurement

Example 3: Stage-based (time series) data (e.g. L2, L3, L4, L5 larvae)

Using RStudio

- RStudio is a set of integrated tools to make R much easier to use.

- "Packages" of existing software can be downloaded, installed, and loaded easily.

- Many bioinformatics tools (especially for statistics analysis) are available exclusively in R.

- You can typically work with R by modifying existing scripts, most of which can be downloaded from manuals or other internet resources.

- In this module, we will learn how to use R studio to:
 - Install libraries, set the working directory and input files
 - Run DESeq2 for differential gene expression analysis
 - Run PCA and hierarchical clustering
 - Run GOSTATS for enrichment of differentially expressed genes

Studio

An example of interacting with RStudio

É RStudio File Edit Code View Plots	Session Build Debug	Tools	Window Help	00.	
● ● ● 2 • 🚭 • 🔒 🚔 🏕 Go to file/function	Interrupt R Restart R	企業F10	RStudio		
P Helminth_Genomics_Workshop_Script.R × Dutitled1*	Terminate R				
💠 🔷 🔚 🗌 Source on Save 🛛 🔍 🚈 🗐 🗐	Set Working Directory	Þ	To Source File Location	lu	
1	Load Workspace		To Files Pane Location		
	Save Workspace As		Choose Directory 个企		

- From the menu, select "choose directory" as shown above, to set the working directory where files will be loaded from and saved to. Set to '~/Desktop/ WORKSHOP_RESOURCES/Section_2/module_3/' for this course.

- When you do this, you will see the "setwd" R command ran in the console. This can then be copied and pasted in the script window.

- If you were to save this script in the future, you could now highlight and run this command in order to set the working directory more easily.

Installing R packages

- Now open the "Helminth_Genomics_Workshop_Script.R" file. This contains all of the commands we will need for the workshop.

- Any information following a # sign is a comment to clarify what the code is for.

- First, we will install packages. Packages are either installed directly using

"install.packages()", or they are loaded through bioconductor ("biocLite").

- Highlight the code shown and click "run" to install all of the necessary packages.

- The manuals for different R packages will include the line necessary to install them.

- Installations only need to be performed one time on each computer, but the packages need to be loaded every time R is restarted.

Particular Strength Par

Loading R packages

- After you install packages, they will show up in the "Packages" list in your RStudio sidebar. To "load" the packages in the future, you can simply check them off. When you do, you will the package loading code in the console window.

- This code can also be pasted into scripts. Note that the full path is not necessary (e.g., in the screenshot below, you can just use **library("DESeq2")** instead, which will make your script compatible on other people's computers.

- Packages can also be searched and installed from this menu, but it is typically easier to paste the install code from a guide.

	File	s Plots	Packages Help V	iewer 🔚 🗖
	01	Install 🧯	Update 🕝 🔍	
		Name	Description	V
		compiler	The R Compiler Package	3.1.2 🛞
		datasets	The R Datasets Package	3.1.2 🕲 📋
		date	Functions for handling dates	1.2- ⊗ 34
		DBI	R Database Interface	0.3.1 🛞
1:1 C (Top Level) +	0	DESeq	Differential gene expression analysis based on the negative binomial distribution	1.18. 🕲
		DESea2	Differential gene	1.6.3 💿
<pre>Console ~/Desktop/Workshop/Module 3/</pre>		4-	expression analysis based on the negative binomial distribution	
library")		dichroma	Color Schemes for Dichromats	2.0- 🙁 0
		digest	Create Cryptographic	0680

Preparing and loading input files: DESeq analysis

- Almost all differential expression callers require raw reads as input.

- We generated read counts per sample from HTSeq output in the previous module.

Open "tsuis_rnaseq_htseq_countstable.txt" from the DESeq directory (in MS Excel)
This file contains unprocessed HTSeq count output (from the previous module) for *T. suis* collected from different stages. All downstream work will be performed on this dataset.

- Note that this is saved as a **tab-delimited text file**. This will be the standard output from most linux programs. If you save in Excel, you will need to specify this format in the "Save as" menu.

		B	C	D	E	F	G	H
1	Gene	TSAC-10_day	TSAC-16_day	TSAC-17_day	TSAC-21_day	TSAC-42_day	TSAC-Adult1-	TSAC-adult_w
2	D918_00003	34	36	28	42	112	163	297
3	D918_00007	0	3	0	0	97	5	25
4	D918_00013	273	584	251	372	417	144	232
5	D918_00014	24	62	39	90	337	381	517
6	D918_00015	345	615	488	404	638	298	415

- DESeq requires the genes to be listed in the first columns, the samples labeled in the first row, and read counts in the matrix. This is standard to many of the other differential callers (including EdgeR)

Loading input files

- After setting the working directory and loading DESeq, we load the input reads file.

- In R, "objects" are defined using an 'arrow' <-

- We will call the object for the HTSeq counts table "COUNTS"

- It is important to understand the input command because (a) it is often omitted when you download scripts (they assume you know how to do this) and (b) having the input formatted or loaded incorrectly is a very common reason that scripts don't work when they are launched. Pay close attention to manuals describing input data.

Loading input files

- For DESeq, you will also need to prepare a metadata file describing your samples.

- This input file is formatted as shown below. Column names can be customized, but the first column must contain sample names corresponding to the counts table.

	A	B	С	D	E
1	Sample ID	Age	Stage	Comparison1	Comparison2
2	TSAC-10_day_larvae-R182	10	L2	Early	L2
3	TSAC-16_day_larvae-R171	16	L3	Early	Early
4	TSAC-17_day_larvae-R181	17	L3	Early	Early
5	TSAC-21_day_larvae-R165	21	L4	Early	Early
6	TSAC-42_day_larvae-R166	42	L5	Late	Late
7	TSAC-Adult1-r163	Adult	L5	Late	Late
8	TSAC-adult_worms-R179	Adult	L5	Late	Late

- The samples that you want to compare should be grouped in one of the columns. Here, we will focus on "Comparison1", which is early larval stages vs late stages.

- You will need to construct this metadata file yourself prior to running R. We will look at creating tables in Excel later in this module.

- Unlike the read counts table, this input command is not loaded "as.matrix", but is just a table:

#Read META DATA table (Sample names corresponding to input reads file down first column, c
META <- read.table(file ="tsuis rnaseq metadata.txt", sep="\t", header=TRUE, row.names=1)</pre>

Managing data

- In RStudio, loaded objects show up in the environment window.

- If you click on the table icon to the right of the object, you can view the object (in the script window) to ensure that files have loaded properly.

- Checking to see if intermediate objects are empty ("NULL") is a good way to troubleshoot where problems are starting.

	Environment Histor	У								
🔙 🕞 Source 🕞	🕣 🕞 🔝 Import D	ataset 🗸 🧹 Clear 🛛 🚱	List +							
	Global Environment -									
	Data									
vd tout)	OUNTS	Large matrix (68824 elements, 884.3 Kb)								
sa text)	🕐 meta	7 obs. of 4 variables								
down other col										
)										
ctor", where 'S										

Running DESeq

- First, we will make "dds", the DESeq DataSet object

- In some cases, there are secondary factors to consider. For example, samples may have been collected in two batches, introducing potential variance independent of the comparison.

- This data can be specified in the metadata file, and considered by DESeq using the following syntax:

dds <- DESeqDataSetFromMatrix(countData=COUNTS, colData=META, design = ~SecondaryFactor + Comparison1)

- This is also useful in cases of paired samples (e.g., the same individuals before and after treatment). DESeq and EdgeR can both utilize secondary factors, but CuffDiff and other software cannot.

Running DESeq and saving results

- The following line runs the core DESeq code:

The results are also shownin the console:

out of 9816 with nonzero total read count adjusted p-value < 0.1 LFC > 0 (up) : 1988, 20% LFC < 0 (down) : 1525, 16% outliers [1] : 299, 3% low counts [2] : 0, 0% (mean count < 0.1)</pre>

- This shows that at an adjusted p-value of 0.1, ~36% of genes are differentially expressed.

- We will parse the output manually later, with a different p value cutoff.

Running DESeq and saving results

- Next, we prepare the output data:

#Output	results	from	target	comparison	(enter	header	name	from	metadata	ſ
outputta	ble <- :	result	s(dds,	contrast=c	("Compar	rison1"	, "Ear	:ly",	"Late"))	
We will save this object to a fill in the next command	e c as	Interpret Ids object s readable results		Define comparisons	Hea nar from ME fil	der ne the TA e	Fir compa group under head	st Irison name r the der	Second comparison group name under the header	

- Finally, the write.table command is used to export the results to a file in the working directory. We'll look at the results later, during the Excel tutorial.

Introduction to Microsoft Excel

- Excel is a spreadsheet program which is useful for organizing and visualizing data, calculating statistics, and performing analyses.

- Today we will learn a variety of approaches for using Excel to work with whole-genome data, with a focus on maintaining data integrity and organizing data in the most accessible way possible.

- We will go from several raw data files (generated in previous modules) to a complete database with functional annotation data, expression levels, differential expression data, and more.

- Open "Module 3 Table Completed.xlsx" in the 'Excel' folder to view a copy of the completed database, before we create it.

			_									-		-	
	InterProScan da	ata (Sept 11 2015)		HTSeq	output (ts	uis_rnas	eq_htse	q_counts	table.txt,	Sept 11	2015)		Gene		
Gono				Stage	L2	L3	L3	L4	L5	L5	L5		Jongtho		Sta
Gene	InterPro domains	Gene Ontology Terms		Age (days)	10	16	17	21	42	Adult	Adult		Lenguis		Age
				Sample Na	TSAC-10	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(pb)		Sar
* 1			-	-	•	•	•	•	•	•	•	-	•	-	
D918_00007	-	-			0	3	0	0	97	5	25		369		
D918_00013	IPR018468:Double-stra	r -			273	584	251	372	417	144	232		1230		
D918_00014	-	-			24	62	39	90	337	381	517		1059		
D918_00015	-	-			345	615	488	404	638	298	415		1341		
D918_00016	IPR018972:Something	GO:0005634:Cellular Co			1801	1672	3838	1870	2614	1923	3446		1410		
D918_00017	IPR000793:ATPase, F1	GO:0046034:Biological			3091	3833	4334	4376	3333	2011	2954		1860		
D918_00018	IPR001841:Zinc finger,	GO:0005515:Molecular			706	1680	1252	2430	2285	737	1040		660		
D918_00019	-	-			3912	3062	1400	3638	3894	1643	1994		1806		
D918_00020	IPR008974:TRAF-like:1	GO:0005515:Molecular			928	2060	2012	1971	3821	6971	3676		2682		
D918_00021	IPR011989:Armadillo-lik	GO:0005515:Molecular			772	1395	1202	1287	1159	852	883		1983		
D918_00022	IPR004947:Deoxyribon	GO:0004531:Molecular			32	422	533	4792	25899	9485	12312		1065		
D918_00023	-	-			0	16	25	45	278	1213	315		195		
D918_00024	IPR021869:Ribonucleas	GO:0004531:Molecular			72	565	679	3744	15520	3983	9318		1344		
D918_00025	IPR006990:Tweety:8.7e	-			523	872	989	1024	922	1377	673		1059		
D918_00026	-	-			960	2019	847	1410	1032	352	363		348		
D918_00027	IPR017441:Protein kina	GO:0005524:Molecular			416	383	435	220	450	427	338		741		
D918 00028	IPR000719:Protein kina	GO:0004674:Molecular			2406	3518	1893	2507	4375	1455	1547	T	1188		

Introduction to MS Excel: Formulas

- The spreadsheet is laid out in a coordinate system of "cells" with lettered columns and numbered rows. Numbers or string can be entered into any cell just by typing and pressing enter.

- Navigate the spreadsheet using either your cursor or by using the arrows on your keyboard. Multiple cells can be highlighted with the keyboard by holding shift and scrolling with the arrows.

- Formulas can be entered in any cell by entering an "=" sign.

- All formulas follow a specific format of the "=" sign, the formula name, an open bracket, variables, and a closed bracket.

- As you type a formula, a yellow box will pop up to tell you what variables can be entered. Here, I am calculating the average of a series of numbers, in cell B2. The yellow box indicates that I should enter the numbers with commas in between:

- After you close the bracket and press enter, the cell value will show the *result* of the formula, but the formula bar will show the formula itself, when cell B2 is selected:

Formulas in MS Excel

- Formulas can also be calculated on references to cells containing numbers. This is the same formula, but the numbers have been replaced with references to cells containing numbers:

- Rather than list all of the cells, *cell ranges* can be used. This follows the format of the first cell, a colon, and then the last cell:

- Ranges can span columns and rows (e.g., take the average of a large table).

- Cell references do not need to be typed in manually. You can select the range with your mouse, or you can use the keyboard to select it, after typing the formula and opening the bracket.

- A full list of Excel formulas can be found here: <u>http://www.techonthenet.com/excel/formulas/</u>

Working with large datasets

- Open ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/Excel/ tsuis_rnaseq_htseq_countstable.txt, in Excel.

- This is a large table, with 9,833 rows and 8 columns, but we are going to add more columns as we build the database.

- If you hold down the "command" key on a Mac (\mathbb{H}) or the "CTRL" key on Windows, and then scroll with your keyboard arrows, the selection will skip to the end of the table. This becomes essential for highlighting all of the cells in a column in a large table, since scrolling with the mouse can take several minutes.

- The first thing we will do is insert four empty rows above the dataset and one below the headers, in order to make room to add more detailed descriptions.

- To do this, right click on the number on the left-hand border, and choose "insert". New columns or rows will enter above (rows) to the left (columns) of the insertion point.

- 1										
2										
3										
4										
5	G	ene	TSAC-	10_day	TSAC-16_day	TSAC-17_day	TSAC-21_day	TSAC-42_day	TSAC-Adult1-	TSAC-adult_
	Cut		ωv	34	36	28	42	112	163	297
	Gui		46 A	0	3	0	0	97	5	25
-	Copy		жc	273	584	251	372	417	144	232
1			001/	24	62	39	90	337	381	517
1	Paste		жv	345	615	488	404	638	298	415
1	Paste Sner	leid	^₩V	1801	1672	3838	1870	2614	1923	3446
1	i usic oper	Jan	00 4	3091	3833	4334	4376	3333	2011	2954
1				706	1680	1252	2430	2285	737	1040
1	Insert			3912	3062	1400	3638	3894	1643	1994
1	Delete			928	2060	2012	1971	3821	6971	3676
1	Delete			772	1395	1202	1287	1159	852	883
1	Clear Cont	ents		32	422	533	4792	25899	9485	12312
1				0	16	25	45	278	1213	315
1	E	u -	0.04	72	565	679	3744	15520	3983	9318
2	Format Cel	IS	# 1	523	872	989	1024	922	1377	673
2	Row Heigh	t		960	2019	847	1410	1032	352	363
2	now noigh			416	383	435	220	450	427	338
2	Hide			2406	3518	1893	2507	4375	1455	1547
2	Unhido			32	17	57	27	482	603	754
2	onnide			692	2083	948	1666	3079	323	981
26	D	918_00031		507	574	848	463	1233	547	693

Sorting data in Excel

- The most important thing when working with these spreadsheets is to never sort the data incorrectly. Not only will all of the results be wrong, but it will be very difficult to tell that something went wrong.

- For this reason, you should never use "Data -> Sort" to sort your data. Instead, always use the "filter" feature.

- In this example, I am highlighting (selecting) the empty row below my headers and then clicking the funnel icon that says "Filter" below it (under the "Data" tab of the ribbon).

A	Home	Layout	Tables	Charts	SmartA	rt Forn	nulas D	ata Re	view [Developer
S	ort & Filter	: A	nalysis		External [Data Sources			eview Developer Tools to Columns solidate Validate D I J - TSAC-adult_worms-R179	
Z A↓↓	• 7	•	• 😰•	₽.		ì Ì		Text t	o Columns	
Sor	rt Filter	PivotTab	le What-If	Refresh	Text Dat	tabase HTM	L FileMaker	Conse	olidate	Validate D
	A6 🛟 🏵 🖉 (= fx									
	А	B	С	D	E	F	G	Н		J
1										
2										
3										
5		Gene	TSAC-10 day	TSAC-16 day	TSAC-17 day	TSAC-21 day	TSAC-42 day	TSAC-Adult1-	TSAC-adult	worms-R179
6	•		~	 		-		•	•	
7		D918_00003	34	36	28	42	112	163	297	
8		D918_00007	0	3	0	0	97	5	25	
9		D918_00013	273	584	251	372	417	144	232	
10		00014		62	20	00	227	201	£17	

- Once this has been clicked, small grey arrows will appear in the row that was highlighted.

Sorting data in Excel

- When you click on these "sorting arrows", you can choose to sort a column of your choice, either ascending or descending. All of the data that is underneath an arrow will sort with that data, every time. If you were to sort manually, it is up to you to select the entire dataset every time, so this is the safe option to ensure data integrity.

Gene	TSAC-10_day	TSAC-16_day	TSAC-17_day	TSAC-21_day	TSAC-42_d	ay TSAC-Adult1-	 TSAC-adult_v 	vorm
•	•	~				• •	•	
D918_00003	34	8			11	2 163	297	
D918_00007	0	•			Ş	7 5	25	
D918_00013	273	Sort			4	7 144	232	
D918_00014	24	A	anding		33	381	517	
D918_00015	345	Z + ASCE	enaing	A+ Descend	ing 63	8 298	415	
D918_00016	1801	_			261	4 1923	3446	
D918_00017	3091	By color	None		333	3 2011	2954	
 D918_00018	706				228	5 737	1040	
D918_00019	3912	Filter			389	4 1643	1994	
D010 00000	0.00				201	1 6071	2676	1

- Since we are going to add more data, we want the arrows to extend very far to the right of the spreadsheet, so that new data will also sort. Excel will only let you add the arrows to columns spanning any actual content, so scroll far to the right with the keyboard and add a space with the spacebar to a cell in row 6 (for example, in cell EA6). Then, hold shift and command/CTRL, and press left to scroll all the way back, highlighting all of the cells along the way. With the entire row selected, press the filter button in the "Data" tab of the ribbon.

- Now, as we add data to the table, all of it will be sortable and will stay organized.

- I do not recommend ever actually using the "Filter" functionality, since this hides rows from view.

Formatting headers

- Descriptive, organized headers are essential for keeping your data organized, communicating your data to others, and for keeping track of where results came from.

		Stage	L2	L3	L3	L4	L5	L5	L5
		Age (days)	10	16	17	21	42	Adult	Adult
	Gene	Sample Name	TSAC-10_day	TSAC-16_day	TSAC-17_day	TSAC-21_day	TSAC-42_day	TSAC-Adult1-	TSAC-adult_worr
•	v 1	•	•	•	•	•	•	•	-
	D918_00003		34	36	28	42	112	163	297
	D918_00007		0	3	0	0	97	5	25
	D918_00013		273	584	251	372	417	144	232

- Start by inserting a column before the read data, and adding row labels for the metadata. Always retain the original sample names from the raw data so that data can be compared in the future.

- Next, in cell C2, type "HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015)", because this is a complete, descriptive header for this entire set of columns. Then highlight cells C2:J2, and click "Merge" under the "Home" tab of the ribbon:

								L
		HTS	6eq output (tsເ	is_rnaseq_hts	eq_countstable	e.txt, Sept 11 2	015)	
	Stage	L2	L3	L3	L4	L5	L5	L5
	Age (days)	10	16	17	21	42	Adult	Adult
Gene	Sample Name	TSAC-10_day	TSAC-16_day	TSAC-17_day	TSAC-21_day	TSAC-42_day	TSAC-Adult1-	TSAC-adult_wor
* 1	~	•	~	~	•	•	~	~
D918_00003		34	36	28	42	112	163	297
D918_00007		0	3	0	0	97	5	25
D918_00013		273	584	251	372	417	144	232

- This groups all of the columns together, while still allowing them to have separate descriptions. Each set of data with more than one column should be formatted this way to keep it as organized as possible.

Formatting headers

Use borders to box off the headers and the different sections of data. To do this, highlight a cell range, then click the borders box in the "home" section of the ribbon.
For database tables, "Thick Box Borders" make it easier to read. For any table that is to be printed or published, the thinner "outside borders" look better.

- Reminder: Use Command/CTRL + shift and the arrow keys to highlight all of the data to the very bottom, to add borders to the entire data block.

A Home	Layout	Tables	Charts	SmartArt	Formulas	Data
Edit			Font			Alignmen
🚔 🔄 🐺 Fill	▼ Arial		v 10 v	• A• A•		abc▼
Paste 🧹 Cle	ar • B			» • <u>A</u> •		<=== ⇒
B9838	: 0 0) (= fx	🔄 Ou	tside Borders	5	
A	B	C		Develope		
1				Dorders		
2			Тор	o Border		p:
3	Gene	Stage	Bo	ttom Border		_4
4		Age (day		ttom border		TS
6		t	Lef	ft Border		13/
7	D918_00003	3	Bio	aht Border		-
8	D918_00007			gint Bordor		
9	D918_00013	3	No	Border		
10	D918_00014	L				
11	D918_00015	5	🕂 Ins	ide Borders		_
12	D918_00016	5		ida Harizanta	Dordor	
14	D918_00017	2	ins ins	side Horizonta	li Border	
15	D918_00019		🗌 🗋 Dia	agonal Down	Border	
16	D918 00020			- ide Vertieel D	a val a v	
17	D918_00021			side vertical B	order	
18	D918_00022	2	🛛 🗌 Dia	agonal Up Bo	rder	
19	D918_00023	3		• •		
20	D918_00024		Tor	and Bottom	Border	_
21	D918_00025				Doraci	-
22	D918_00027	,	Bo	ttom Double	Border	-
24	D918_00028	3	Tor	and Double	Bottom Bord	or
25	D918_00029	9			Bottom Bord	
26	D918_00030		🔄 Thi	ick Bottom B	order	
27	D918_00031		Tor	and Thick B	ottom Border	
28	D918_00032	2			ottom Dorder	-
29	D918_00033	5	🗄 Thi	ick Box Borde	ər	
31	D918_00034					
32	D918_00036		Bo	rder Options.		
33	D918_00038	3		V	U	
34	D918 00039)		2158	5604	2429

Formatting headers

- Finally, highlight your data, and use the font settings in the ribbon to make it more readable.

- Choose Arial size 10 font, and center the data whenever it's not in a long string format.

- Major headings can be bolded.

- Adjust the column widths by dragging from the edges of the column letters on the outside of the sheet, so that they only use as much space as needed.

Edit		Font		Alignmer
🗎 🗸 💽 Fill 🔹	Arial	v 10 v	A A .	abc ▼
Paste 🥥 Clear 🔻	BIU		• <u>A</u> •	¢====
E15 ‡	😣 🛇 (= f>	× 3062		

		HTSeq o	utput	(tsı	uis_rna	ase	q_htse	ed_	_coun	tsta	able.t	ct, S	Sept 1	1 2	015)	
	Gono	Stage	L2	2	L3		L3		L4		L5	i	L5		L5	
	Gene	Age (days)	10)	16		17		21		42	2	Adu	lt	Adu	lt
		Sample Nam	e TSA	C-1	TSAC	2-1	TSAC	-1	TSAC	C-2	TSA	C-4	TSAC	C-A	TSAC	C-a
Ī	* 1	•		•		Ŧ		•		-		-		-		•
	D918_00003	03		1	36		28		42		112	2	163	3	297	7
	D918_00007		0		3		0		0		97	,	5		25	
	D918_00013		27	3	584	ŀ	251		372	2	417	7	144	1	232	2
	D918_00014		24	1	62		39		90		337	7	381		517	7
	D918_00015	918_00015		5	615	5	488		404	1	638	3	298	3	415	5
	D918_00016		180)1	167	2	3838	3	187	0	261	4	192	3	344	6
	D918 00017		309	91	383	3	4334	1	437	6	333	3	201	1	295	4

Freezing panes

- Under "Layout", and then "Freeze Panes", you can choose to 'freeze' all of the rows above and all of the columns to the left of the currently selected cell.

- Doing this will lock the headers and gene names in place, so that when you scroll through the table, you will always be able to see this critical data.

A	Home	I	Layout	T	ables Ch	narts	Smart/	Art	Formula	is E	Data	Review	/	>>	^	-\$‡.⊽
	P	age	Setup				View			Print		W	indo	w :		
ſ	<u>}</u> - <u>I</u>	9	•	D	-			o	•		6	•				
Orien	ntation Si	ze	Margins	E	Breaks No	ormal Pa	ge Layout	Option	s Prev	view S	etup	New	***			
	C7		: 🛞	0	(<i>fx</i>									Freez	e Pa	nes
	Α		В		C	D	E	F	G	H		J	K	Freez	e Toj	p Ro
1														Freez	e Fir	st Co
2					HTSeq o	utput (tsi	uis_rnase	q_htseq	_countsta	able.txt, S	Sept 11 2	015)				
3			Gene		Stage	L2	L3	L3	L4	L5	L5	L5		Unfre	eze	
4			Gene		Age (days)	10	16	17	21	42	Adult	Adult		(hp)		
5					Sample Name	e TSAC-1	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(up)		
6		▼		¥		•	* +	•	•	•	•	•	•	•		
7			D918_0114	1		66638	4E+05	80241	4E+05	74722	5370	35162		969		
8			D918_0600)7		77208	3E+05	73788	8E+05	1E+05	19749	45750		975		
9			D918_0194	19		2E+05	3E+05	4E+05	7E+05	94375	49435	1E+05		900		
10			D040_005			0007	05.05	0400F	45.05	00040		4050				

Adding additional data: Gene Lengths

- We will use the gene lengths to calculate FPKM values from the raw counts table.
- First, open up "gene lengths.txt" from the Excel folder, select the entire table, and copy it to the clipboard.

- Now, go back to your main file and make a new "sheet" in Excel by clicking the + sign on beside the tabs at the bottom. Paste the data into this second sheet, so that it doesn't paste mis-aligned into the main table. **Sheet2 +**

- Add a header to your main table for where the new data will go.

- The "wrap text" font feature is helpful when the header name is long but the data will not be wide.

•												
		HTSeq ou	itput (tsu	uis_rnase	q_htseq	_countsta	able.txt, S	Sept 11 2	015)		Cono	
	Gene	Stage	L2	L3	L3	L4	L5	L5	L5		Longths	
	Gene	Age (days)	10	16	17	21	42	Adult	Adult		(hp)	
		Sample Name	TSAC-1	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(dd)	
•	-	•	•	*1	•	•	•	•	-	-	-	
	D918_01141		66638	4E+05	80241	4E+05	74722	5370	35162			
	D918_06007		77208	3E+05	73788	8E+05	1E+05	19749	45750			

Why don't we just sort the two tables by gene name and then copy and paste the data?

- Because even if the same *number* of genes is present, we can't necessarily trust that every gene is present or entered in the same way.

- For example, in an updated genome draft, one gene can be removed and one new gene can be added. The genes at the start and ends of the table will match, but there will be mismatches for every gene in between these two. Any mistakes in a gene name will cause you reach false conclusions about your entire dataset.

Looking up data in Excel with =VLOOKUP

=VLOOKUP is one of the most useful formulas in Excel, and allows for looking up matching values in a <u>V</u>ertical reference list.

The syntax is:

= VLOOKUP ([Value to lookup], [Table containing the value in the first column], [column number to return], FALSE)

- In this case, we want to look up the gene length corresponding to each gene name in the main table. We will start with the first gene, which is in cell B7 in this example:

	🗧 🚷 📀	(<i>fx</i> =v	lookup(B7,											
	В	С	D	E	F	G	Н	1	J	Κ	L	М	N	0	Р
		HTSeq ou	utput (tsu	uis_rnase	q_htseq_	_countsta	able.txt, S	ept 11 2	015)		Gono				
	Gene	Stage	L2	L3	L3	L4	L5	L5	L5		Longthe				
	Gene	Age (days)	10	16	17	21	42	Adult	Adult		(bp)				
		Sample Name	TSAC-1	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(ub)				
•	•	•	•	* †	•	•	•	•	•	▼	•	•	-	•	
	D918_01141		66638	4E+05	80241	4E+05	74722	5370	35162		=vlookup(B7,				
	D918_06007		77208	3E+05	73788	8E+05	1E+05	19749	45750		VLOOKUP(lo	r okup value, tak	le array, col i	ndex num. [ran	ae lookuni)
	D918_01949		2E+05	3E+05	4E+05	7E+05	94375	49435	1E+05		10001101 (10	onup_raide, an			Jo-lookap1

- Type "=VLOOKUP(B7," and then click to the second tab in your file containing the gene lengths. Highlight this entire table using Command/CTRL+Shift and the arrow keys, and then type a second comma. If you make a mistake doing this, just press escape and start over. Then, click back to your main table, and finish the formula with "2" and "FALSE" as the last two entries.

Looking up data in Excel with =VLOOKUP

- This formula now identifies the gene length of the first gene (in cell B7) by referencing the table in Sheet 2, cells B2:C9834, by matching the gene name in the first column and returning the value in the second column. The last value of "FALSE" is necessary because "TRUE" will allow approximate matches. This should always be false in all cases for any scientific work.

	: 00	(<i>fx</i> =V	LOOKUI	P(B7,She	et2!B2:	C9834,2	,FALSE)				
4	В	С	D	E	F	G	Н		J	Κ	L
		HTSeq ou	itput (tsu	is_rnase	q_htseq_	_countsta	able.txt, S	Sept 11 20	015)		Cono
	Gene	Stage	L2	L3	L3	L4	L5	L5	Ĺ5		Lengths
		Age (days)	10	16	17	21	42	Adult	Adult		(hp)
		Sample Name	TSAC-1	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(66)
-	•	•	•	* †	•	•	•	•	-	-	-
	D918_01141		66638	4E+05	80241	4E+05	74722	5370	35162		969
	D918_06007		77208	3E+05	73788	8E+05	1E+05	19749	45750		
	D918 01949		2E+05	3E+05	4E+05	7E+05	94375	49435	1E+05		

Copying and pasting formulas in Excel

- Copy and paste the VLOOKUP formula to the cell below it, to look up the value of the second gene. You can right click or use the menus to do this, but I recommend getting used to Command/CTRL+C and Command/CTRL+V to do this.

- Note that in Excel, if you copy and paste a formula down one row, all of the cell references in the formula also move by one row (also with columns). Here, we are now looking up cell B8, to get the value for the second gene instead of the first.

- While this is useful, we have to be careful, because the cell references for the **lookup table** of gene lengths (in sheet 2) has also moved down (from B2:C9834 to B3:C9835).

_	: 😣 🛇	(<i>fx</i> =V	LOOKUI	P(B8,She	et2!B3:	C9835,2	,FALSE)							
	В	С	D	E	F	G	Н	- 1	J	Κ	L			
		HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015)												
	Gono	Stage	L2	L3	L3	L4	L5	L5	L5		Gene			
	Gene	Age (days)	10	16	17	21	42	Adult	Adult		Lenguis (ha)			
_		Sample Name	TSAC-1	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(dd)			
•	•	•	•	* +	•	•	•	•	•	•	•			
	D918_01141		66638	4E+05	80241	4E+05	74722	5370	35162		969			
_	D918_06007		77208	3E+05	73788	8E+05	1E+05	19749	45750		975			
	D918 01949		2E+05	3E+05	4E+05	7E+05	94375	49435	1E+05					

- In order to fix this, we can use \$ signs to "lock" the row references in place for the lookup table.

- Any column letter or row number with a \$ in front of it will not change when the formula is copied and pasted.

- Return to the first formula cell and change the reference to B\$2:C\$9834, and paste that down.

=VL0	ООК	UP(I	B7,SI	heet	t2!B	\$2:0	:\$98	34,	2,FA	LSE))	
	D		-		-		6					-

Filling and 'clearing' formulas

- We need to paste the formula down the entire column.

- Copy the formula, then scroll to the bottom of the table by command/CTRL+down on one of the gene count columns.

- Starting at the bottom of the 'gene lengths' column, hold shift and command/CTRL and press up, to highlight the entire column. Then, paste with command/CTRL+V.

Now we have aligned all of the gene lengths.
The formulas are still "active" and will re-calculate every time the table is sorted or the file is saved.
Enough of these active formulas will cause the spreadsheet to slow down or crash eventually.

- We will therefore "clear" the formulas, leaving their values behind.

To do this, highlight the entire column and copy (command/CTRL+C), and then within the copied cells, right click and choose "paste special".
In the "Paste special" dialog, choose "values" and

- In the "Paste special dialog, choose "values" and then click "ok".

Checking for formula errors

- Formulas in Excel can return errors. In the case of =VLOOKUP, if there is no lookup value in the reference table, it will return '#N/A', indicating that there is no match in the lookup table.

- All errors start with a # sign, so they can be searched easily.

- After clearing the formulas (previous slide), highlight the column and press command/ CTRL+F to search.

- If there is no match in this search, then all of the genes were matched up and there is no problem.

-	~	•			-			
0 7 2	0 0 1	0 4 1		381 189 180		Microsoft Ex searching fo	xcel cannot find the	e data you're
3	1	2		252		If you are certa	ain the data exists in the	e current sheet.
0	1	0		276		check what you	u typed and try again.	
0	0	0	11	411				
0	10	2	1 1	348				ОК
7	7	11		261				
3	27	9		198				
4								
1	1							
3	Find	what:					Find Next	
4								
1	#						Close	
2	-						01030	
1	-						Benjace	
)							11001400	
0	14/241-2		Shoot		^	Match case		
33	With	n:	Sneet		~	Water case		
0	Sear	-h·	By Bo	WS	^	Find entire cells only		
1	- Jean	511.	5,110		~			
0	Look	in:	Formu	las	0			
10	-				~			
õ	0	0		768				

Calculating FPKM values

- We can now calculate FPKM expression values from the raw read counts. Start by copying and pasting the read count headers to the right of the gene lengths, and change the title of the new header set:

HTSeq o	utput (tsu	is_rnase	q_htseq_	countsta	ble.txt, S	ept 11 20	15)		Cono	1			FP	(M expres	sion valu	es		
Stage	L2	L3	L3	L4	L5	L5	L5		Gene		Stage	L2	L3	L3	L4	L5	L5	L5
Age (days)	10	16	17	21	42	Adult	Adult		Lenguis (hp)		Age (days	10	16	17	21	42	Adult	Adult
Sample Name	e TSAC-10	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(pb)		Sample Na	TSAC-10	TSAC-16	TSAC-17	TSAC-21	TSAC-42	TSAC-Ad	TSAC-ad
	· · · · · · · · · · · · · · · · · · ·	•	•	•	-	•	•	•	-	-	•	•	•	•	•	•	•	•

- FPKM = <u>Fragments</u> (counts from HTSeq) <u>Per Kilobase</u> (gene length / 1000) per <u>Million</u> of reads mapped (the total read count in the sample's column in the HTSeq data).

- This gene expression measure is used because it is normalized both for the gene length and the library size, making the values directly comparable across the entire dataset, and between different experiments.

- We can calculate all of this in a single formula. Start by dividing by the count by the gene length as shown below:

UTSog or	tout (tou		a hteoa	counteta	blo tyt. S	opt 11 20	115)			1			ED	M ovpro	color
пізецій	ilpul (isu	is_mase	q_niseq_	countsta	Die.txt, 3	eptinzt	515)		Gene				ГГ	via expre	33101
Stage	L2	L3	L3	L4	L5	L5	L5		Longtho		Stage	L2	L3	L3	L
Age (days)	10	16	17	21	42	Adult	Adult		Lenguis		Age (days	10	16	17	2
Sample Name	TSAC-10	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(dd)		Sample N	TSAC-10	TSAC-16	TSAC-17	' TSA
•	•	•	•	•	•	•	•	-	-	-	•	•	•	-	1
	34	36	28	42	112	163	297		891			=D7/(L7/	1000)		
	0	3	0	0	97	5	25		369						
	273	584	251	372	417	144	232		1230						
	24	60	20	00	227	201	E17		1050						

- Using parentheses organizes the formula to ensure that the order of operations is correct (i.e., we are not dividing D7 by L7 first, and then dividing by 1000).

Calculating FPKM values

- Now all of this needs to be divided by (the library size / 1,000,000). So put the entire existing formula in parentheses, and then divide by (the sum of the sample's column / a million):

fx = f(1))//(L//]	1000))/(SOM(D7	:D9838)/10000	00)										
С	D	E	F	G	Н	1	J	K	L	Μ	N	0	Р	Q	R	S
HTSeq ou	utput (tsu	is rnase	q htseq	countsta	ble.txt, S	ept 11 20	015)		Corre				FPI	KM expres	sion valu	es
Stage	L2	L3	L3	L4	L5	L5	L5		Gene		Stage	L2	L3	L3	L4	L5
Age (days)	10	16	17	21	42	Adult	Adult		Lengths		Age (days	10	16	17	21	42
Sample Name	TSAC-10	TSAC-1	TSAC-1	TSAC-2	TSAC-4	TSAC-A	TSAC-a		(op)		Sample Na	TSAC-10	TSAC-16	TSAC-17	TSAC-21	TSAC-
•	•	•	•	•	•	•	•	-	-	•	•	•	•	•	•	
	34	36	28	42	112	163	297		891			2.6339				
	0	3	0	0	97	5	25		369			,				
	070	604	051	272	417	1 4 4	000		1000							

- Verify this value to ensure that the formula is typed correctly (D918_00003 in L2 = 2.6339).

- We need to lock several things in place in order to copy and paste for the entire table. First, the reference to L7 (the gene length) needs to move down, but not left-to-right, so put a \$ sign in front of the L but not the **7**.

- Second, the "sum" range needs to be locked to the rows but not the columns. So change that to **D\$7:D\$9838**, so that the columns move with the formula.

- The final formula should look like this:

Aligning additional data

- Copy and paste this formula for the entire FPKM table, and then clear the formulas and check for errors as shown previously.

- This normalized data will later be used as input for hierarchical clustering (in R), but for now we will continue building the database.

- Open "secretion data.txt" in the "Excel" directory, and paste into the second sheet of your database file as before.

- This data is output from two different programs (Phobius and SecretomeP)
- Create headers for the data in your main table:

	FP	KM expres	sion valu	les				Secreti	on Data (Sept	11 2015)
L2	L3	L3	L4	L5	L5	L5		# TM	Contractord	Correted
10	16	17	21	42	Adult	Adult		domains	Secreted (phobius)	Secreted (Secretered)
rsac-10	TSAC-16	TSAC-17	TSAC-21	TSAC-42	TSAC-Ad	TSAC-ad		(Phobius)	(phobius)	(Secretomer)
•	•	•	•	•	•	•	•	•	•	•

- Set up the =VLOOKUP formula for the first row and column:

- This data needs to be pasted both down and to the right. Using \$ signs, lock the column of the gene name, and the entire table: =VLOOKUP(\$B7,Sheet2!\$F\$2:\$I\$9834,2,FALSE)

Aligning additional data

When pasting to the right, we also need to change the "2" to a "3" in the formula, to return the value of the third column in the lookup table instead of the second.
Also change this value to a "4" in the last column. Then, copy all three values and paste down for the entire table, clear formulas, and check for errors.

- Now we will add an additional column, to indicate if each gene is secreted **either** by classical or nonclassical secretion. This should be a "Y" if either of the other two columns are a "Y". We will use an =IF statement to perform this.

		Secretion Dat	a (Sept 11 2015)		
-	# TM domains (Phobius)	Classically secreted (phobius)	Nonclassically Secreted (SecretomeP)	Secreted (either)	
	•	•	•	•	
	1	-	-		
	0	Y	-		
	0	-	-		

=IF formula

=IF is a very useful Excel formula for parsing data. The syntax is:

=IF([A logical test returning true or false, usually =, <, >, or =>, <=], [value if true], [value if false])

- So for example, try entering =IF(1=2,"Yes","No").

- This will return "No" in the cell, because the 'logical test' is false. If you change this to 1=1, then it will return "Yes".

- Here, we need to check whether either of the cells beside the new column are "Y". In order to accomplish this we will use OR() in the logical test:

c	=	if(or(<mark>X7</mark> ="Y",	Y7="Y"),"Y","	-")		
	V	W	X	Y	Z	AA
			Secretion Data	a (Sept 11 2015)		
id		# TM domains (Phobius)	Classically secreted (phobius)	Nonclassically Secreted (SecretomeP)	Secreted (either)	
•	•	•	•	•	•	
7		1		-	=if(or(X7="Y",	Y7="Y"),"Y","-")
2		0	Ý			

- Copy and paste this formula, clear values, and check for errors before moving on.

=COUNTIF formula

In the empty 'sorting' row below your secretion header, use the =COUNTIF formula to count how many genes are secreted according to each criteria.
 =COUNTIF([range of cells to count], [criteria for counting])

_		Secretion Dat	a (Sept 11 2015)		
	# TM domains	Classically secreted	Nonclassically Secreted	Secreted	
_	(Phobius)			(enner)	
۲	-	=countif(X7:X	9838,"Y")	-	
	0	-	-	-	
	6	-	-	-	
	0	-	-	-	
	0	-	Y	Y	
	0	-	Y	Y	

- Here, we are counting how many "Y" values there are in the column. Paste this to the right to count for each criteria:

		Secretion Data	a (Sept 11 2015)		
-	# TM domains (Phobius)	Classically secreted (phobius)	Nonclassically Secreted (SecretomeP)	Secreted (either)	
r	•	863 💌	2676 💌	3539 💌	
1	1	-	-	-	
	0	Y	-	Y	
	0	-	-	-	
	1	-	-	-	

This is an easy way to summarize your data. You can also check if values are greater than zero (">0"), if values are larger than the value in another cell, etc.
 =COUNTIFS (with an S) can check multiple criteria in multiple columns.

Annotation data (lookup with missing values)

- Open "interproscan_annotations_per_gene.txt" from the "Excel" file, and copy and paste into the second sheet as before.

- Prepare the headers and use =VLOOKUP as before:

_								
	=VLOOKUP(\$	37,Sheet2!\$K	\$4:\$M\$6707,3	FALSE)				
\	VLOOKUP(look	up_value, table	_array, col_index	_ num , [r ange_l	ookup]) A	AB	AC	
_								
	Secretion Data (Sept 11 2015)					InterProScan data (Sept 11 2015		
	# TM domains	Classically secreted	Nonclassically Secreted	Secreted (either)		InterPro domains	Gene Ontology Terms	
2	(Phobius)	(phobius)	(SecretomeP)	()				
	· ·	863 💌	2676 💌	3539 🔻	•		·	
7	1	-	-	-		#N/A	\$4:\$M\$6707,3,FA	
2	0	Y	-	Y				

- This time there is an #N/A value because the lookup table does not contain unannotated genes. Paste the formulas through, and then clear the formulas.

- Now, replace the #N/A values with "-", to clean up the table.

- When long strings "hang" over into the next cell, add an empty space in the column to the right, to cover it up:

_	InterProScan da	ta (Sept 11 2015)	
_	InterPro domains	Gene Ontology Terms	
٣			· 🗸
	-	-	
	-	-	
	IPR018468:Doub	I -	
	-	-	
	-	-	
	IPR018972:Some	GO:0005634:Cel	li i
	IPR000793:ATPa	sGO:0046034:Bio	logical Process: AT
	IPR001841:Zinc	i GO:0005515:Mo	lecular Function: pr
	-	-	
	IPR008974:TRA	GO:0005515:Mo	lecular Function: pr
	IPR011989:Arma	GO:0005515:Mo	lecular Function: pr
	IPR004947:Deox	GO:0004531:Mo	lecular Function: de

Parsing DESeq results

- Now we will add the DESeq results we calculated in RStudio.

- Open the "Comparison1_Early_vs_Late_tsuis_deseq2_output.txt" file in the DESeq folder, and paste it into the second sheet of the dataset as before.

- First, note that the headers are all shifted to the left by 1 column. Cut and paste those to the right to fix this. This problem commonly occurs with R output (row.names has no header entry), so always be sure to check for an empty final column.

	baseMean	log2FoldChan	lfcSE	stat	pvalue	padj		
	D918_00003	102.244975	-2.2852271	0.54219132	-4.2147983	2.50E-05	0.00019566	
	D918_00007	13.3896063	-4.7819266	1.08457881	-4.4090172	1.04E-05	8.68E-05	
	D918 00013	310.784483	0.74493719	0.37667336	1.9776742	0.04796547	0.12076386	
_			,					
		baseMean	log2FoldChan	IfcSE	stat	pvalue	padj	
	D918_00003	102.244975	-2.2852271	0.54219132	-4.2147983	2.50E-05	0.00019566	
	D918_00007	13.3896063	-4.7819266	1.08457881	-4.4090172	1.04E-05	8.68E-05	

From the DESeq manual:

The interpretation o	f the columns of <i>data.frame</i> is as follows.
id	feature identifier
baseMean	mean normalised counts, averaged over all samples from both conditions
baseMeanA	mean normalised counts from condition A
baseMeanB	mean normalised counts from condition B
foldChange	fold change from condition A to B
log2FoldChange	the logarithm (to basis 2) of the fold change
pval	p value for the statistical significance of this change
padj	p value adjusted for multiple testing with the Benjamini-Hochberg procedure (see the R function $\overline{\gamma}$
	p.adjust), which controls false discovery rate (FDR)

Parsing DESeq results

- We are only interested in the Log2 Fold Change and Adjusted P value, so delete the other columns by right-clicking the column letters on the border and deleting them:

	log2FoldChan	padj	
D918_00003	-2.2852271	0.00019566	
D918_00007	-4.7819266	8.68E-05	
D918 00013	0.74493719	0.12076386	

- Set up these headers in the main sheet, and perform the VLOOKUP for these values, then add two headers, for the average FPKM values from the two sample groups:

DESeq resu	ilts (Early vs L	ate Larval; L2,I	_3,L4 vs L5)
Log2 Fold Change	Adjusted P value	Average FPKM Early	Average FPKM Late
-	-	•	-
-2.2852271	0.00019566		
-4.7819266	8.6841E-05		
0 74402710	0 12076386		

- Use =AVERAGE to calculate the average value of the sample groups, then paste the formulas down and clear the formulas.

(<i>fx</i>	=AVERA	AGE(<mark>R7:U</mark>	7)													
R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH
FPKM expression values									Secretion Da	ta (Sept 11 2015))		DESeq resu	ults (Early vs L	ate Larval; L2,	L3,L4 vs L5)
L2	L3	L3	L4	L5	L5	L5		# TM	Classically	Nonclassically	Secreted		Log2 Fold	Adjusted P	Average	Average
10	16	17	21	42	Adult	Adult		domains	secreted	Secreted	(oithor)		Change	Aujusteu F	EDKM Early	EDKMLato
TSAC-10	TSAC-16	TSAC-17	TSAC-21	TSAC-42	TSAC-Ad	TSAC-ad	1	(Phobius)	(phobius)	(SecretomeP)	(enner)		Change	value		FFRW Late
•	•	•	•	•	•	•	•	•	863 💌	2676 💌	3539 💌	-	-	•	•	
2.6339	1.6538	1.6941	2.0672	4.6176	11.678	18.17		1	-	-	-		-2.2852271	0.00019566	=AVERAGE(F	R7:U7)
	U 3338	Λ	Λ	0 6564	0 865	3 6033		n	v		v		1 7810266	9 69/15 05		

Parsing DESeq results

- We want to know whether each gene is significantly differentially expressed in either early larval or late larval stages. Start by setting up additional headers:

_						
_		DESeq resu	Ilts (Early vs L	ate Larval; L2,	L3,L4 vs L5)	
	Log2 Fold Change	Adjusted P value	Average FPKM Early	Average FPKM Late	Sig. Higher in Early	Sig. Higher in Early
•	•	•	•	•	•	•
	-2.2852271	0.00019566	2.01222465	11.4886605		
	-4.7819266	8.6841E-05	0.08319206	4.73819485	, ,	
	0.74493719	0.12076386	14.7543182	10.0696598		
	-2.7988517	7.828E-07	2.41819608	20.4226954		

- We can see that a negative fold change corresponds to a gene that is higher in the late stages than the early stages (and vice versa for a positive value).

- Therefore, in order to call a gene significantly higher in the early stages: (a) the fold change value needs to be greater than zero, and (b) the P value needs to be less than a threshold value of your choice.

- DESeq recommends a maximum threshold P value of 0.1, but we will parse more conservatively, at 0.01 instead.

- For a very high-confidence small gene set, a threshold of 10⁻⁵ could be used.

- Generally, 0.05, 0.01, or 10^{-5} are used for publications.

- Fold change thresholds should **not** be used for RNA-Seq data. There is justification for it with microarrays, but the high sensitivity of RNA-Seq data (and high abundance of zero values) invalidates its use for statistical cutoffs.

Parsing DESeq results

- For the first column, use an =IF statement with an "AND" function to check whether both (a) the Fold change value is greater than zero and (b) the P value is less than or equal to 0.01:

fx =IF(AND(AE7>0,AF7<=0.01),"Y","-")													
D	AllF(logic	al_test, [value_	if_true], [value_	if_false])	AI	AJ	AK						
	DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)												
	Log2 Fold	Adjusted P	Average	Average	Sig. Higher in	Sig. Higher in							
	Change	value		FFRIVI Late	Lany	Late							
•	•	-	-	-	-								
	-2.2852271	0.00019566	2.01222465	11.4886605	=IF(AND(AE7	>0,AF7<=0.01),"Y","-")						
	-4.7819266	8.6841E-05	0.08319206	4.73819485									

- Repeat for the second column, but check if the fold change is *less than* zero for it. Then paste the two columns down, clear the formulas, and check for errors.

- Paste the =COUNTIF formula from the secretion columns to count the differentially expressed genes. Note that this doesn't match the RStudio summary because we are using a different threshold; At a 0.1 threshold, the counts do match.

_		DESeq resu	ilts (Early vs La	ate Larval; L2,	L3,L4 vs L5)		
-	Log2 Fold Change	Adjusted P value	Average FPKM Early	Average FPKM Late	Sig. Higher in Early (0.01)	Sig. Higher in Late (0.01)	
r	•	•	•	-	746 💌	1229 💌	
Ī	-2.2852271	0.00019566	2.01222465	11.4886605	-	Y	Γ
	-4.7819266	8.6841E-05	0.08319206	4.73819485	-	Y	
	0.74493719	0.12076386	14.7543182	10.0696598	-	-	

Analyzing data

- Look at the most significantly differentially expressed genes by sorting by P value (A->Z), and then by one of the two categories (Z -> A):

		DESeq resu	ilts (Early vs L	ate Larval; L2,	L3,L4 vs L5)				
	Log2 Fold Change	Adjusted P value	Average FPKM Early	Average FPKM Late	Sig. Higher in Early (0.01)	Sig. Higher in Late (0.01)			
•	•	v 1	-	•	746 💌	1229 🔻		•	•
	-10.644221	6.351E-130	2.53810914	5274.44293	-	8	746		
	-9.9884623	5.857E-110	0.92325578	1167.77682	-	Sort			
	-11.101479	3.3948E-90	0.52283999	1582.81916	-	3011		_	
	-10.139221	4.3186E-86	3.75579835	5438.42184	-	🚽 🧍 🔒	iding	άŧ.	Descending
	-7.6516894	8.9743E-86	1.71464222	411.035881	-				
	-8.516144	2.6986E-84	4.88351934	2208.58388	-	By color:	None		×
	-9.424408	1.6026E-80	2.74299774	2359.01521	-				
	-7.9488889	2.5898E-79	22.8418144	6760.78978	-	Filter			

- Scroll to the left to see the InterProScan annotation data, which gives information on the functions of these most significant genes:

	InterProScan data (Sept 11 2015)				DESeq resu	i lts (Early vs L	ate Larval; L2,I	_3,L4 vs L5)
	InterPro domains	Gene Ontology Terms		Log2 Fold Change	Adjusted P value	Average FPKM Early	Average FPKM Late	Sig. Higher in Early (0.01)
۳	· · · · · · · · · · · · · · · · · · ·	▼	•	•	•	•	•	746 🚽
Ξ	IPR003587:Hedgehog/intein hint, N-terminal:3.9e-10 IPF	GO:0008233:Molecular Function: peptidase activity :7.		9.26599862	3.3309E-68	592.959089	0.92994857	Y
	IPR008160:Collagen triple helix repeat:4.4e-09	-		7.23516711	2.9315E-65	130.369762	0.89935279	Y
	IPR002486:Nematode cuticle collagen, N-terminal:8.8e-2	GO:0042302:Molecular Function: structural constituen		9.88458232	8.5452E-59	463.195311	0.44698347	Y
	-	-		7.14546039	1.6124E-54	133.441247	0.94641915	Y
	IPR002486:Nematode cuticle collagen, N-terminal:5.1e-0	GO:0042302:Molecular Function: structural constituen		8.68270241	3.2897E-47	1121.30758	2.70186837	Y
	IPR003582:Metridin-like ShK toxin:6e-06	-		6.45614714	1.7596E-46	740.679087	8.8752889	Y
	IPR002486:Nematode cuticle collagen, N-terminal:6.2e-	GO:0042302:Molecular Function: structural constituen		10.2443388	6.7341E-46	1289.26298	0.83838701	Y
	IPR014044:CAP domain:6.7e-05	-		11.0441962	2.0826E-45	957.416983	0.30801891	Y
	IPR002181:Fibrinogen, alpha/beta/gamma chain, C-term	GO:0007165:Biological Process: signal transduction :7		3.99722095	1.5752E-39	371.605534	26.0147455	Y
				0.00400440	7 40005 00	00 7504040	0.050004	<u> </u>

Saving data for clustering and functional enrichment testing

- For clustering, copy and paste the gene names and the FPKM values for each sample into a new spreadsheet, then save as a tab-delimited text file. Renaming the long sample names to shorter IDs will make the final cluster look nicer:

	ћ Н	ome	Layout	Tables								
		Edit			F	Sa	ve A	s:	FP	KM matrix txt		^
		🐺 Fi	🛛 🔻 Arial									
							Tag	s:				
Р	aste	🥥 C	ear • B	ΙU	-							
		<u>م</u> 1	· 0	🔿 (= fx	Π.							
-	1	Δ	R	6	-		000	~		Module 3	\$	Q Search
1	Gene	A .	L2	L3-A L	.3-1							
2	D918	_00269	772.466891	820.503585	39	Favorites		Na	me	^	Date Modified	
3	D918	_01117	143.603394	161.456635	12			h.	-	DESag	Today 4:22 F	140
4	D918	07748	938.796857	3/2.315888	19	Devices		P .		DESeq	100ay, 4:32 F	'IVI
6	D918	04072	1113.34902	1193.80603	3	Masintesh UD		▶.		Excel	Today, 10:00	PM
7	D918	_00632	1289.71495	638.429058	50	Macintosh HD		►		GOSTATS	Today, 4:47 F	M
8	D918	_03675	3334.22413	912.531386	59	Remote Disc			-	Helminth Script V3 B	Today 4:53 F	M
9	D918	013042	2179.60549	355 549064	9					Old	Teday, 4.40 F	214
11	D918	02067	122.392947	57.4329723	41	RStudio-0.98.1091	▲	Ρ.		Old	100ay, 4:46 F	'IVI
12	D918	_03041	1109.89206	1101.72786	23			►		original	Yesterday, 11	:29 AM
13	D918	_04763	189.35972	112.289266	43	Tags		►		Parsing GO	Todav. 4:46 F	M
14	D918	_09311	1640.22775	400.973018	21					5		
16	D918	00378	1278.4193	1644.61632	22							
17	D918	08709	259.44495	145.495724	16							
18	D918	_07707	90.2441824	118.155338	11							
19	D918	_08313	452.146439	449.210991	43							
20	D918	_06276	222.937638	188.81346	1/							
21	D910	05560	36 6405013	53 8003102	10							
23	D918	00149	60 6002807	61 6429036	26							
24	D918	00194	848.757704	938.809064	18							
25	D918	09752	27.1300296	34.7340707	35							
26	D918	06723	2077.81106	652.281819	39							
27	D918	_09330	814.585645	603.968399	17							
28	D918	_06452	1595.7369	219.967213	32							
29	D918	_00945	65.1384027	23.6265445	16							
30	D918	02425	195.302425	289.553012	11							
37	D918	02425	1197 16884	560 741282	41							
33	D918	09672	189.48799	186,703039	24							
34	D918	09619	462.880587	757.273952	27							
35	D918	_08206	545.126581	240.168869	26							
36	D918	_08515	220.696169	327.907554	18	Format:	Tab	D	elim	ited Text (.txt)	\Diamond	
37	D918	_07120	205.265658	250.48748	1			_		. /		
33 34 35 36 37 38	D918 D918 D918 D918 D918 D918 D918	_09672 _09619 _08206 _08515 _07120 _06825	189.48799 462.880587 545.126581 220.696169 205.265658 4455.11599	186.703039 757.273952 240.168869 327.907554 250.48748 921.931958	24 27 26 18 1 13	Format: Description	Tab	D	elim	ited Text (.txt)	\$	

Saving data for clustering and functional enrichment testing

- For functional enrichment, we will need a "target" gene list of differentially expressed genes. In the interest of time, we will just save the "higher in early" gene list. Sort the spreadsheet by that column, then copy and paste all of the genes with "Y" values into a new file, then save as a tab delimited text with no headers:

Arial 10 B I U	ਿੇ Workbook3 ਵਿੁ≣ ਤਿੁ≣ ⋈ ∲ • ∿ * * * % % ਵਿੁ≣ ⊞ • <u>^</u> • <u>A</u> • Q Q ∳									
▲ Home Layout Tables Edit F ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥	Sa	ve As: 1 Tags:	suis_targetgenelist_higher_c	early,txt		Sell:				
A1 🛟 🐼 🖉 (* fx)		000	Module 3	\$	Q Search					
1 D918_00269 2 D918_01117	Favorites	Nam	ie ^	Date Modified	Size	Kir				
0 0018 07746 0 0018 0052 0 0018 0052 0 0018 0052 0 0018 0055 0 0018 0019 10 0018 0019 11 0018 0019 12 0018 0019 13 0018 0019 14 0018 0019 15 0018 0019 16 0018 0019 17 0018 0019 18 0018 0019 19 0018 0019 10 0018 0019 10 0018 0019 22 0018 0019 24 0018 0019 24 0018 0019 24 0018 0019 20 0018 0019 20 0019 0019 20 0019	Devices Macintosh HD Permote Disc RStudio-0.98.1091 Tags		DESeq Excel GOSTATS HelminthSoript V3.R Old Original Parsing GO	Today, 4:32 PM Today, 4:47 PM Today, 4:47 PM Today, 4:47 PM Today, 4:46 PM Yesterday, 11:29 AM Today, 4:46 PM		Fo Fo Re Fo Fo				
35 D918_0815 36 D918_07120 37 D918_05825 38 D918_0585 39 D918_07830	Format: Description	Tab De	limited Text (.txt)	0						

PCA from DESeq results

- Principal component analysis (PCA) is one approach for visualizing how expression patterns vary across samples.

- Go back to R and find the PCA code section.

- DESeq has a built-in tool for running PCA that utilizes the dds object created earlier.

```
########
# PCA #
#Log transform deseq object data
rld <- rlogTransformation(dds, blind=TRUE)
#Perform and plot PCA based on data from top X expressed genes (default 500)
plotPCA (rld, intgroup=c("Stage"), ntop=500)</pre>
```

- These commands log transform the data, and then plot the PCA.

- Note that "intgroup" can be any column of the metadata file. Here we use "stage" to give more detail on each sample, as opposed to just the two categories in "Comparison1".

- "ntop" defines the number of genes to use to calculate the PCA. Using too many lowinformation genes may add noise to the clustering. The default is 500, but the results are generally not sensitive to changing the number.

PCA from DESeq results

- After running these commands, the PCA plot will show up in the bottom-right panel. - Clicking "Export" will allow you save this file. If you save as a PDF, you can edit the plot directly in a vector-based image editing program (Adobe Illustrator, or "Inkscape", which is free).

- We will also export the plot co-ordinates so that the data can be replotted in Excel later.

PCA from DESeq results

- The following code will save the PCA coordinates into a file so that the data can be graphed in other programs, and outputs the variance of each component, including those not shown on the plot.

```
#Output PCA coordinates
PCAcoordinates<-plotPCA (rld, intgroup=c("Stage"), ntop=500,returnData = TRUE)
write.table(PCAcoordinates, file="tsuis_PCA_coordinates", sep="\t")
#Output variance per component
rlogMat <- assay(rld)
rv = apply(rlogMat, 1, var)
select = order(rv, decreasing=TRUE)[seq_len(min(500, length(rv)))]
pca = prcomp(t(rlogMat[select,]))
sink(file="tsuis_PCA_variances_per_component.txt") #Define output file
summary(pca)
sink(NULL)</pre>
```


Hierarchical clustering in RStudio

- PCA was calculated directly from the DEseq dataset, but we will use FPKM values for hierarchical clustering.

- Run this code to load libraries and prepare the input files:

- If there is an error, check that the file names match.

- Next, we create a distance matrix. The statistic specified here determines the clustering algorithm. Pearson or Spearman correlation is typically used for RNA-Seq data, and "average" linkage is typically best for drawing the clusters:

```
#Create distance matrix, can use different clustering methods here instead (pearson, sp
dist.mat<-Dist(x,method="pearson", diag = FALSE, upper = FALSE)
#Cluster distance matrix, can use different clustering methods (average, complete, sing
cluster=hclust(dist.mat, method = "average", members=NULL)
```

Hierarchical clustering in RStudio

- The script includes two approaches for viewing the clustering:

- You can export one or both of these as PDF for future reference.

- Finally, the script exports a newick-format file for input into other clustering programs (e.g. FigTree or ITOL):

#Optional: Convert cluster plot to newick cluster file format for input to other s
my_tree <- as.phylo(cluster)
write.tree(phy=my_tree, file="tsuis_rnaseq clustering pearson_average.newick")</pre>

- 81 -

Functional enrichment using GOSTATS in RStudio

- Run the following to prepare the GO database:

```
# Functional Enrichment (GOstats) #
setwd("~/Desktop/Workshop/Module 3/GOSTATS/")
#Load necessary libraries
library("GOstats")
library("GSEABase")
library("org.Hs.eg.db")
#Input gene to GO file (tab delimited, three columns: go_ID, evidence [always "IEA"], gene_ID)
genetogo=read.table("GO_to_geneID.txt", sep="\t",header=TRUE)
#Process input GO file
goframeData = data.frame(genetogo)
goFrame=GOFrame(goframeData,organism="Trichuris suis")
goAllFrame=GOAllFrame(goFrame)
gsc <- GeneSetCollection(goAllFrame, setType = GOCollection())</pre>
frame = toTable(org.Hs.egGO)
```

- "Go_to_geneID.txt" is a pairwise GO and Gene list, generated from InterProScan output in a different module.

- Producing this file is the difficult part about running enrichment on a custom genome. Most tools (including GOSTATS) are designed to be easy to use primarily for model organisms.

Functional enrichment using GOSTATS in RStudio

- Here we will input the complete (background) *T. suis* gene set, and our shorter target gene set that we saved from Excel, based on the DESeq output:

```
#Input full gene list and test gene list (no header, just single-column gene name lists)
universe=read.table("tsuis_full_gene_list.txt", sep="\t",header=FALSE)
testgenes=read.table("../tsuis_targetgenelist_higher_early.txt", sep="\t",header=FALSE)
```

- The remaining code runs the enrichment test and produces output. It is ran three times, one for Biological Process (BP), one for Molecular Function (MF) and one for Cellular Component (CC) Gene Ontology terms. Run all of this code to produce the three output files:

```
#BP
params <- GSEAGOHyperGParams(name="My Custom GSEA based annot Params",
geneSetCollection=gsc,
geneIds = testgenes,
universeGeneIds = universe,
ontology = "BP",
pvalueCutoff = 1,
conditional = FALSE,
testDirection = "over")
Over <- hyperGTest(params)
write.table(summary(Over), file="GOstats_output_BP.txt", sep="\t")</pre>
```

Ø

Manual False Discovery Rate (FDR) correction

- Open the "GOSTATS_output_MF.txt" file in the GOSTATS folder (Using Excel).

- As with DESeq output	, shift the headers to	the right by 1 column:
------------------------	------------------------	------------------------

							-		
	GOMFID	Pvalue	OddsRatio	ExpCount	Count	Size	Term		
1	GO:0042302	1.29E-18	63	1.69414405	19	23	structural cons	stituent of cution	le
2	GO:0017171	6.09E-14	6.51922057	7.51316058	33	102	serine hydrola	se activity	
3	GO:0008236	6.09E-14	6.51922057	7.51316058	33	102	serine-type pe	ptidase activit	у
4	GO:0004252	1.46E-13	6.78484848	6.85023465	31	93	serine-type en	dopeptidase a	activity
5	GO:0008233	4.85E-13	3.62266637	20.2560702	56	275	peptidase acti	vity	
6	GO:0070011	1.66E-11	3.41863045	19.5194858	52	265	peptidase acti	vity, acting on	L-ami
7	GO:0005198	2.16E-11	3.90359153	14.3633952	43	195	structural mole	ecule activity	
8	GO:0004175	2.39E-11	3.75228763	15.5419302	45	211	endopeptidase	e activity	
9	GO:0003735	5.37E-06	3.36456279	8.32340339	23	113	structural cons	stituent of ribos	some

The list is sorted by P value, with the most significant terms at the top. However, these P values are not population-corrected, and this must be done manually for GOSTATS.
We need to do correction because there are multiple tests being performed. A 5% chance of being false is not acceptable when performing hundreds of tests.
Generally, FDR correction is preferred for multiple-testing because it is a reasonable balance of stringency. The most stringent approach is Bonferroni correction (multiplying P values by the number of tests).

- For FDR, the most significant P value is multiplied by the number of tests. The secondmost significant P value is multiplied by the number of tests divided by two. The thirdmost significant P value is multiple by the number of tests divided by three, etc.

 \bigcirc

Manual False Discovery Rate (FDR) correction

- This output file contains 314 tests. So the P values need to recalculated according to: P value * (314 / [rank of P value])
- We can accomplish this using the =RANK formula in Excel:

=RANK([value], [range of all values], [0 = Largest first, 1 = Smallest First])

	В	С	D	E	F	G	Н					
	GOMFID	Pvalue	OddsRatio	ExpCount	Count	Size	Term	FDR				
1	GO:0042302	1.29E-18	63	1.69414405	19	23	structural cons	4.05E-16				
2	GO:0017171	6.09E-14	6.51922057	7.51316058	33	102	serine hydrola	9.57E-12				
3	GO:0008236	6.09E-14	6.51922057	7.51316058	33	102	serine-type pe	9.57E-12				

- The formula shown will calculate FDR-corrected P values in column I. The threshold value (0.01) will be applied on these FDR values.

- Some additional formatting will clean up the table and make it ready for publication:

Table 1: Molecular Fu	unction Gene Ontology ter	ms significantly enriched among genes upregulated	in early larval stages compared to late stages
		Gene Counts	FDR-

	Term Description		FDR-		
GOID		Expected	Observed	Total	corrected P
GO:0042302	structural constituent of cuticle	1.7	19	23	4.05E-16
GO:0017171	serine hydrolase activity	7.5	33	102	9.57E-12
GO:0008236	serine-type peptidase activity	7.5	33	102	9.57E-12
GO:0004252	serine-type endopeptidase activity	6.9	31	93	1.15E-11
GO:0008233	peptidase activity	20.3	56	275	3.04E-11
GO:0070011	peptidase activity, acting on L-amino acid peptides	19.5	52	265	8.71E-10
GO:0005198	structural molecule activity	14.4	43	195	9.70E-10
GO:0004175	endopeptidase activity	15.5	45	211	9.37E-10
GO:0003735	structural constituent of ribosome	8.3	23	113	1.88E-04
GO:0061134	peptidase regulator activity	6.7	17	91	8.71E-03
GO:0030414	peptidase inhibitor activity	6.7	17	91	8.71E-03

Excel is a very useful program for graphing data, since graphs are easily customizable and interactive.
We will go through the steps required to create a publication-quality scatterplot image of the previously-generated differential gene expression data.
Note that within excel, graphs are called "charts". Also note that Excel, particularly on Macs, can sometimes be prone to crashing when working with graphs. Be sure to save frequently.

- The points in a graph on it will stay linked to the data you enter. So, if data in the sheet is re-sorted or changed, then the graph will automatically update. For this reason, we will start by moving the data to be graphed onto a new separate sheet, where it won't be changed later:

Graphing in Excel

- Copy and paste gene names, and all of the DESeq data from the main data sheet into the new graph data sheet.

- Delete the fold change and P value columns by selecting the entire columns (by clicking the letters on the border of the spreadsheet) and then right clicking and "delete". This data is not required to construct the graph.

- Add the sorting arrows, then sort the sheet by 'higher in early' and then 'higher in late', so that the three categories of differential expression are in blocks in the table:

Gene	Average FPKM Early	Average FPKM Late	Sig. Highe in Early (0.01)	ər	Sig. High in Late (0.0	er 01)					
-	•	•	746	۰Ļ	1229	•		-		•	-
D918_00026	184.191624	76.7885724	Y		-	11	8		100	a	
D918_00052	826.869376	50.5122168	Y		-		¥		122	5	
D918 00061	43.0357892	23.259435	Y		-		Sort				
D918 00063	113.368905	57.237922	Y		-		Δ.			7	
D918 00092	65.2295686	31.4537095	Y		-		2+	ASC	ending	Descen	aing
D918 00093	79,7689055	26.3241948	Y		-						
D040_00400	101 000101	10 5010100	- v			-	By c	alor	None		

- Cut and paste this table into three sections: Higher in early, higher in late, and not differentially expressed. This isn't strictly necessary to construct the graph, but it is helpful for organization. Copy and paste the headers to organize the data:

		Highe	r Late		1			Highe	r Early			Not. Diff Expressed			
Gene	Average FPKM Early	Average FPKM Late	Sig. Higher in Early (0.01)	Sig. Higher in Late (0.01)		Gene	Average FPKM Early	Average FPKM Late	Sig. Higher in Early (0.01)	Sig. Higher in Late (0.01)	Gene	Average FPKM Early	Average FPKM Late	Sig. Higher in Early (0.01)	Sig. Higher in Late (0.01)
D918_00003	2.01222465	11.4886605	-	Y	1	D918_00026	184.191624	76.7885724	Y	-	D918_00013	14.7543182	10.0696598	-	-
D918_00007	0.08319206	4.73819485	-	Y		D918_00052	826.869376	50.5122168	Y	-	D918_00015	17.3395579	16.177347	-	-
D918_00014	2.41819608	20.4226954	-	Y		D918_00061	43.0357892	23.259435	Y	-	D918_00016	85.3995195	96.128585	-	-
D918 00023	5.09743301	179.170881	-	Y		D918 00063	113.368905	57.237922	Y	-	D918 00017	106.959572	73.8053354	-	-
D918 00029	1.34108405	24.2946085	-	Y		D918 00092	65.2295686	31.4537095	Y	-	D918 00018	110.435852	94.7858156	-	-
D918 00034	1.56275633	15.8094969	-	Y		D918 00093	79.7689055	26.3241948	Y	-	D918_00019	87.258974	65.8212612	-	-
D918 00038	0.14974576	7.33730798	-	Y		D918 00102	101.262191	49.5918198	Y	-	D918_00020	31.9975026	97.6557965	-	-
D018_00040	0.08383638	196 467057		V		D018_00113	27 17/9317	4 12073106	V		D018_00021	20 2008658	24 3800501	-	

We will start by graphing the "not differentially expressed" genes as an X-Y scatterplot.
Use Shift + command/CTRL to highlight the FPKM data down this entire column. Then,

under "charts", choose "scatter" and then "Marked scatter" (with no lines):

		NOT DIFF	ERENTIAL	
Gene	Average FPKM Early	Average FPKM Late	Sig. Higher in Early (0.01)	Sig. Higher in Late (0.01)
D918_00013	14.7543182	10.0696598	-	-
D918_00015	17.3395579	16.177347	-	-
D918_00016	85.3995195	96.128585	-	-
D918_00017	106.959572	73.8053354	-	-
D918_00018	110.435852	94.7858156	-	-
D918_00019	87.258974	65.8212612	-	-
D918_00020	31.9975026	97.6557965	-	-
D918_00021	29.2008658	24.3899591	-	-

- When you do this, Excel will generate a simple plot of the data, as an object on the sheet. Right click the empty white space on the plot, select "Move Chart", and then specify a "new sheet" instead, so that it puts the chart on its own sheet:

	0 5000 10000 15000 25000 25000	16000 14000 12000 10000 8000 6000 4000 2000			*	•		D918_10148 D918_10148 D918_10149 11 33 44 56 66 77 88 99 99 90 90 90 90 90 90 90 90 90 90 90	0.39593947 145.996592 72.876449 10.0462212 1.35454041 16.0583342 0.36061911 0.36450269 Choose v	4.9041985 224.349157 61.3455485 13.7844201 13.08418208 18.219121 1.63453746 4.03940300	ant the	Move chart to FPKM	- - - - - - - - - - - - - - - - - - -	nd:		
--	--------------------------------	--	--	--	---	---	--	--	---	---	---------	--------------------------	---	-----	--	--

Graphing in Excel

- The default chart is not formatted nicely, and may vary by version of Excel.

- Note that the order of the following formatting steps doesn't matter.

- First, we will add axes labels. Under "chart layout", select "axis titles", and then click to add a title below the X axis and a rotated title on the Y axis:

- Click on the axes titles to change the labels to something descriptive, usually with units in parentheses:

0 10000 15000 2 Average gene expression level, early larval stages (L2, L3, L4) (FPKM)

- Next, click on empty white space in the corner of the sheet, to select the entire graph. This will allow you to set a global font without adjusting each component manually. Arial font is always acceptable for publication, so choose it, and choose size 16 font. This large font size is necessary because graphs are rarely printed as a full page, but instead are often shrunk into a single panel.

- Remove horizontal gridlines by clicking on one of them and pressing the "delete" key (backspace on windows). Double-click on the plot area and under "line", choose black for the color instead of "automatic". This will put a border around the plot.

Graphing in Excel

- First, rename the existing series to "Not differentially expressed" (this is the data we started the graph with).

- Click "add" to add a second series. Title the series ("Upregulated in late larval"), and then click the red arrow beside the "X values" to select the x axis values for this series.

Series	Name:	Upregulated in late larval
Not diffxpressed Series2	X values:	
	Y values:	={1}

- Click back to the 'FPKM GraphData' tab, and highlight the X values (early larval) from the "Upregulated in late larval" columns you previously set up:

1.20000	-		0010_00000	101.00010	01.010-100						
740549	-	Y	D918_00346	141.984195	35.5892882	Y					
239337	9337 Octobert Data October										
460214	4 Select Data Source										
3.28665				-							
181699	='FPKI	M GraphDa	ta!!\$C\$7:\$C\$123	5							
899067		Y	D918_00407	192.431222	11.42//0/0	Y					
921122	-	Y	D918_00420	667.846387	141.436454	Y					
422876	-	Y	D918_00433	84.8841885	18.1606232	Y					
540214	-	Y	D918_00443	73.5188456	32.5094046	Y					
hment FPKM GraphData FPKM scatter Sheet3 +											

- On windows, you can click on the first cell, and shift + CTRL down to select the entire column. This doesn't always work in the Mac version (a bug), so you may need to either select with the mouse, or type in the range manually.

- Once the data is selected, press enter or press the red arrow to return to the main data selection menu. Repeat this process to select the Y values, and then add another series for the "Upregulated in early larval" data, and add those x and y values.

- When all of this is finished, click "ok" to return to the graph.

- Note that if an error pops up when entering data, it is probably because you clicked in multiple places, and it is expecting a single range of values. If this happens, delete everything in the white box, and then click the red arrow again.

Series	Name:	Upregulated in early larval
Not diffxpressed	X values:	='FPKM GraphData'!\$I\$7:\$I 陆
Upregulrly larval	Y values:	='FPKM GraphData'!\$J\$7:\$
Add Remove		
	Category (X) axis labels:	
Hidden and Empty Cells		
Show empty cells as: G	iaps	٥
Show data in hidden ro	ows and columns	
		Cancel OK

- Click OK to finish the data entry.

Graphing in Excel

- Resize and reposition the legend and the graph to reduce empty white space.

- We will format the axes so that they display log values instead of natural values. Start by doubleclicking on any of the numbers on the x axis.

- In the "scale" menu, check "Logarithmic scale". You will get a warning that zero values cannot be displayed, which we will address shortly.

- Set the "vertical axis crosses at" value to 0.001, so that the axes intersect on the corner.

- Repeat both of these steps for the y-axis, except for the y axis, also set the "major unit" to 100, so that it matches the X axis.

- Although we do not need it for this graph, note that this menu is where you can manually set the minimum and maximum values for the plot.

1	Scale								
0, 00	Number	Horizontal axis	scale						
C	Ticks	Auto							
<u>A</u> a	Font	🔽 Minimu	m:	0.001					
T	Text Box	Maximi	im:	100000.0					
♦	Fill			100000.0					
	Line	Major u	nit:	100.0					
-	Shadow	🗹 Minor u	nit:	100.0					
U	Glow & Soft Edges	- Vertical		0.001					
		axis cro	sses at:	0.001					
		Display units:	None		Show display ur				
				Pagai	10.0				
		Logarithmic	scale	base:	10.0				
		Values in re	verse orde	r					
		Vertical axis	Vertical axis crosses at maximum value						

- Next, we will format the data series points. Start by double clicking on one of the "not differentially expressed" points. Note that if you single-click, and then double-click, you will be formatting a single point and not the entire series. Ensure that the popup window says "format data series" and not "format data point".

- Go to "Marker style" and choose a circle, then set it to size 4. We make these points small because we want the differentially expressed genes to stand out.

- Now choose "Marker line" and choose "no line". This is for the border around each point which we don't want for this series.

- Go to "marker fill", and set to black with 70% transparency. This will make the points translucent, making it easier to tell where they overlap. Click ok to finish formatting.

- Repeat for the two upregulated gene sets, except choose a size 5 circle, a black marker line, and a solid fill with no transparency (orange and blue).

Graphing in Excel

- Now, we will fix the zero values. Rather than not including points with zero expression, we want them to show up along the axis. We will do this by changing all zero values in the graph data to 0.001.

- Go back to the FPKM GraphData tab, and press "command/CTRL + F" to bring up the "Find" dialog. From here, click "replace", and check off "find entire cells only". Use this to replace all zero-value cells with 0.001. The graph will auto-update since the cell references are still linked.

- Now, the points plotted along the axes are zero-value, and not 0.001 as indicated. This can either be mentioned in the figure caption, or the 0.001 values can later be covered up in imaging software and replaced with 0 on the plot.

Finally, we will add a diagonal line to define where the x and y values are equal. To do this, go back to the "select data" menu (right click the empty space on the graph).
Now add another series called "Equal". Manually type in the values 0.001,100000 to both the x and y axis values, then click OK.

- Two points will show up in the corner. Double click one of them, then set the Marker style to "no marker", the "line" color to dark grey, and then click to the "weights & arrows" dialog under the "line" menu. In that menu, set the weight to 2pt, and choose a dashed line:

Graphing in Excel

- If "equal" shows up in the legend, click it and delete it.

- At this point, the graph is complete. This can be saved as a PDF file in the "save as" menu, and imported as a vector-format image into other software.

Helpful resources for Section 2

- List of RNA-seq bioinformatics tools:
 - https://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools
- khmer website and blog
 - http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/index.html
 - http://ivory.idyll.org/blog/category/science.html
- DESeq2
 - <u>https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf</u>
 - <u>http://www.bioconductor.org/help/workflows/rnaseqGene/</u>
- GOstats
 - <u>https://bioconductor.org/packages/release/bioc/vignettes/GOstats/inst/doc/</u> <u>GOstatsHyperG.pdf</u>

Ø