
	

	

Bioinformatics Workshop for
Helminth Genomics

Section 3: Variome

Sponsors:
__

	

	

Table of contents – Curriculum

Section 3: Variome

Module 0 – Re-sequencing genomes….………………………………………………91

! Re-sequencing genomes

Module 1 – Processing and alignment………………………………………………..95

! Analytical processing and alignment of reads
! Refining alignments for variant calling

Module 2 – Variant calling……………………………………………………………….99

! Basics of variant calling & how to filter for high quality loci
! Visualization of variants

Module 3 – Variant annotation………………………………………………………...108

! Variant annotation
! Annotation interpretation

Section 3: Variome
Module 0: Re-sequencing genomes
!

Analysis of genetic variation is central to understanding population biology and
molecular epidemiology of helminth parasites. Studying genome variations within and
between populations can provide insights into geographical differentiation and gene flow,
transmission patterns and evolution of parasites. In addition, genome-wide association
studies (GWAS) and forward genetic screens (mapping-by-sequencing) can greatly
facilitate identification of genetic variants correlated with phenotypes of biomedical
interests (e.g., infection behavior, drug resistance, etc.)

NGS provides an unprecedented opportunity to characterize genetic variation in large
number of samples at a reasonable cost. Sequencing individuals at a high coverage is
the 'gold standard' for obtaining high-quality data, but budget constraints may require
alternatives for studying large populations. Reduced representation and pooled
sequencing approaches can be cost-efficient, but it is important to understand the
strengths and weaknesses of each method to strategically design your experiment.

The following modules in this section will help you understand how we can turn raw
sequencing data into reliable information about genetic variation.

Recommended reading:

DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M.
Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler and M. J. Daly
(2011). "A framework for variation discovery and genotyping using next-generation DNA
sequencing data." Nat Genet 43(5): 491-498.

Nielsen, R., J. S. Paul, A. Albrechtsen and Y. S. Song (2011). "Genotype and SNP
calling from next-generation sequencing data." Nat Rev Genet 12(6): 443-451.

Schlotterer, C., R. Tobler, R. Kofler and V. Nolte (2014). "Sequencing pools of
individuals - mining genome-wide polymorphism data without big funding." Nat Rev
Genet 15(11): 749-763.

- 91 -

Variome – introduction (cont’d)

•  Not all mismatches are SNPs!

 Errors in library preparation/basecalling/mapping etc.

•  The basic idea behind finding probability of bases at a locus (genotype

likelihoods) using Bayes theorem

 P(A|B) = k X P(B|A) X P(A)

genotype

data

Error model

Prior on genotype
(e.g. P(G)=0.3 if GC content is 60%)

(or P(non-ref)=1e-4, if SNP rate is known to be 0.01%)
(or… any other “prior” constraint you know about)

Some SNP calling programs

 published citations

 CRISP 2010 92

 SNVer 2011 86

 Samtools 2011 176

 GATK 2011 >2000
(Genome Analysis Tool Kit)

 SomaticSniper 2012 128

 Varscan-2 2012 404

- 92 -

Genome Analysis Tool Kit

 Developed at The Broad Institute, Cambridge, MA

Installation: download directly from GATK website

Java Usage: a single jar file (except some preprocessing steps, which use bwa and
picard tools)

Help for anything related to GATK, available at GATK website (with Guide, tools
documentation and best practices)

Specifically, it is highly recommended to read the best practices before (or while)
using GATK:
https://www.broadinstitute.org/gatk/guide/best-practices

The use forums (http://gatkforums.broadinstitute.org/) are also great, with usually
very prompt responses by the GATK team

Before we start…

 All figures in Module 1 and 2 are courtesy GATK online material (used here with
permission)

Our dataset : 4 samples from male D. viviparus worms

We selected just 2 contigs for illustration (You will usually do this on the whole
genomes of your worm of interest, so your SNP calling will take more than the 2
hours we have here!)

Starting data :

 paired end reads in fastq format
 (“Section_3/module_1/bwa/reads/S1_1.fastq” etc)

 reference sequence and annotation
 (fasta, bed and gff3 files in “Section_3/reference” directory)

- 93 -

About GATK: Overall flow

Module 1

Module 2

Useful, but mostly feasible only
with well studied model organisms
So, we won’t be doing this here

GATK Process map

- 94 -

Section 3: Variome
Module 1: Processing and alignment

Preparing reference file
(You are here -> “Section_3/reference”)

bwa index reference.fasta

samtools faidx reference.fasta

java -jar ~/bin/picard-tools-1.101/
CreateSequenceDictionary.jar R=reference.fasta
O=reference.dict

Mapping using bwamem
(Section_3/module_1/bwa)

Important information about reads is also encoded simultaneously (library name,
sample name, read group etc). These are useful for analysis later.

cd ../module_1/bwa

for i in S1 S2 S3 S4;do bwa mem -t 8 -M -R "@RG
\tID:"$i"_RG1\tPL:illumina\tPU:"$i"_RG1_UNIT1\tLB:"$i"-
lib1\tSM:"$i ../../reference/reference.fasta
reads/"$i"_1.fastq reads/"$i"_2.fastq >"$i".bwa.1.sam;done

Preparing reference file and mapping

- 95 -

Duplicate reads

Marking Duplicates

For correct estimation of variant likelihoods, we need our reads to represent the
correct proportions of molecules in the library. (actually we also want our library to
represent the proportions of original biological sample, and should be wary of
biases introduced by PCR etc, but right now let’s worry only about making sure
we don’t sequence a molecule more than once). One way of doing this is finding
out which sequences are highly likely to originate from the same DNA fragment,
and then removing all but one of that set.

Recognizing duplicates

Marking Duplicates

Finding reads that start at the same location. And, if paired end, that have
their partners also mapping at the same starting location.

We can’t simply compare the read sequences because sequencing is error
prone and will likely lead to high underestimation of duplicates.

- 96 -

Removing Duplicates

(Section_3/module_1/bwa)

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/picard.jar
MarkDuplicates MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000
REMOVE_DUPLICATES=true INPUT="$i".bwa.sorted.bam
OUTPUT="$i".dedup.bam METRICS_FILE="$i".dedup_metrics
ASSUME_SORTED=true;done

Sort and convert to bam

for i in S1 S2 S3 S4;do samtools view -bS "$i".bwa.sam |
samtools sort - "$i".bwa.sorted;done

Removing duplicates with Picard tools

Then you can look at some examples of before-and-after deduplication reads/
alignment using “samtools faidx” and “samtools tview” (or IGV)

Refining Alignments

Read aligners like bwa etc look at every read independently and try to find the best
alignment for every read. This may lead to spurious SNPs because of slightly “off
target” mappings, especially in presence of small indels (e.g. left figure below).
Realigning all such reads in this region simultaneously by making use of multiple
sequence alignment algorithms leads to more concordant alignments. This gets rid of
many false positive SNPs which are merely mapping artifacts (right figure below)

- 97 -

Realignment around indels

(Section_3/module_1/bwa)

Realign in these loci

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T IndelRealigner -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I "$i".dedup.bam -
targetIntervals "$i".realignment.intervals -o
"$i".dedup.realigned.bam;done

Index our de-duplicated bam files

for i in S1 S2 S3 S4;do samtools index "$i".dedup.bam;done

Find intervals to analyze

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T RealignerTargetCreator -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I
"$i".dedup.bam -o "$i".realignment.intervals;done

Base Recalibration (in presence of a truth set)

Paired end Hiseq data

To improve base quality values, mismatches with reference are analyzed.
Assuming that any mismatch which isn’t a known SNP is an “error”, base qualities
can be readjusted to more closely model the reality (removing systematic errors in
original base quality reports).

However, this can only be done in the presence of a substantial set of known True
Positives (i.e. a large set of known SNPs). Since we don’t have that (yet), we’ll
skip this and come back to it later…

The figure below shows the result of recalibrating errors from original reported
qualities to those obtained using mapping data (after filtering out known SNPs).

- 98 -

Section 3: Variome
Module 2: Variant calling

Introduction

HaplotypeCaller is the workhorse of GATK’s variant calling process. It calls variants
by assembling reads in “active regions” into haplotypes (completely independent of
reference sequence mapping) and then estimating likelihoods of genotypes at
variant loci based on how well each read represents those assembled haplotypes.

- 99 -

Running HaplotypeCaller
(Section_3/module_2/haplo)

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I
"$i".dedup.realigned.bam -ERC GVCF -ploidy 2 -o
"$i".dedup.g.vcf;done

Prepare files

cd ../../module_2
mkdir haplo
cd haplo

for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bam;done

for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bai;done

Run HaplotypeCaller with GVCF

Some default settings for HaplotypeCaller

--maxReadsInRegionPerSample 10000

--min_base_quality_score 10

--minReadsPerAlignmentStart 10

--sample_ploidy 2

--standard_min_confidence_threshold_for_calling 30.0

--standard_min_confidence_threshold_for_emitting 30.0

--max_alternate_alleles 6

--maxNumHaplotypesInPopulation 128

 See Details at

https://www.broadinstitute.org/gatk/gatkdocs/
org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php

- 100 -

The VCF file format

Full details: https://samtools.github.io/hts-specs/
VCFv4.2.pdf

##fileformat=VCFv4.1
##ALT=<ID=NON_REF,Description="Represents any possible alternative allele at this location">
##FILTER=<ID=LowQual,Description="Low quality">
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are
filtered)”>
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as
listed">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">
##contig=<ID=D_viviparus-1.0_Cont486,length=89705>
##contig=<ID=D_viviparus-1.0_Cont375,length=119898>
##reference=file:///home/ec2-user/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT S1 S2 S3 S4
D_viviparus-1.0_Cont486 255 . T C 2156.88 .

 AC=2;AF=0.250;AN=8;DP=168;FS=0.000;MLEAC=2;MLEAF=0.250;MQ=60.00;QD=29.09;SOR=0.818
 GT:AD:DP:GQ:PGT:PID:PL 1/1:0,49:49:99:1|1:255_T_C:2197,147,0 0/0:35,0:35:99:.:.:0,99,1485
 0/0:39,0:39:99:.:.:0,102,1497 0/0:44,0:44:99:.:.:0,100,1742

An example

Using GVCFs to combine sample-wise variants

##fileformat=VCFv4.1
.
.
.
##GVCFBlock0-1=minGQ=0(inclusive),maxGQ=1(exclusive)
##GVCFBlock1-2=minGQ=1(inclusive),maxGQ=2(exclusive)
.
.
.
#CHROM POS ID REF ALT QUAL FILTER

 INFO FORMAT S1 S2 S3 S4
D_viviparus-1.0_Cont486 1 . A <NON_REF> . .

 END=4 GT:DP:GQ:MIN_DP:PL 0/0:17:48:17:0,48,720
D_viviparus-1.0_Cont486 5 . T <NON_REF> . .

 END=5 GT:DP:GQ:MIN_DP:PL 0/0:18:31:18:0,31,669
D_viviparus-1.0_Cont486 6 . G <NON_REF> . .

 END=9 GT:DP:GQ:MIN_DP:PL 0/0:18:51:18:0,51,765
.
.
.

(Section_3/module_2/haplo)
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R
~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta $(for
i in S1 S2 S3 S4;do echo -n "--variant "$i".dedup.g.vcf ";done)
-o all_raw.vcf

- 101 -

Variant Quality recalibration for refinement

To get a higher confidence set of real SNPs, we can look at a truth set (if we
have one) of real SNPs and analyze what values various relevant metrics take
for them. e.g. you may just pick up very rare (and potentially spurious) SNPs
just because of very high depth of coverage. Looking at various metrics
(Variant quality score/Depth, strand bias etc) may separate real SNPs with
False Positives (figures below).

So, first we calibrate using known SNPs, then use those calibrations to filter
out potential False Positives and obtain a final analysis-ready variant set.

Using hard filters

However, last page is useless for us since we don’t actually have a truth set.

We still want to set up a filter to refine our raw variant set. So, we’ll use some hard
filters (i.e. thresholds pre-decided rather than dynamically calibrated based on data).
We will use values recommended by GATK best practices, though these numbers
can be changed based on any insight you may have into your specific case.

QD : Quality by Depth < 2.0
FS : FisherStrand > 60.0
MQ : RMS Mapping Quality < 40.0
MQRankSum : Mapping Quality Rank Sum < -12.5
ReadPosRankSum : Read Position Rank Sum < -8.0

In addition, we will also apply a depth of coverage filter (even though GATK team
advises that it isn’t as critical with HaplotypeCaller as with its older and almost
obsolete cousin “UnifiedGenotyper”). We just want high confidence SNPs to
generate a raw “truth set”. So, we’ll apply a relatively strict Depth filter. GATK used to
suggest Depth of Coverage (DP) > (mean+5*sd).

We will use DP > (median + 2*MAD)

- 102 -

Setting stage for filtering SNPs

Collecting SNPs and getting coverage

(Section_3/module_2/var_filt)

Prepare Files

cd ..
mkdir var_filt
cd var_filt/
ln -s ../haplo/all_raw.vcf

Extract SNPs from the “raw” vcf file

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
SelectVariants -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta -V all_raw.vcf -selectType SNP -
o raw_snps.vcf

Getting DP filter threshold

Collecting SNPs and getting coverage

(Section_3/module_2/var_filt)

Finding base-wise coverages over the reference contigs (in order to find the
DP filter threshold)
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bam;done

for i in S1 S2 S3 S4;do coverageBed -abam
"$i".dedup.realigned.bam -b ../../reference/
reference.fasta.bed -d >"$i".coverage.bed;done

We will find the median and MAD (median absolute deviation) in R. This is done after
adding the depths over all the samples:

S1<-read.table("S1.coverage.bed",header=F,stringsAsFactors=F)
S2<-read.table("S2.coverage.bed",header=F,stringsAsFactors=F)
S3<-read.table("S3.coverage.bed",header=F,stringsAsFactors=F)
S4<-read.table("S4.coverage.bed",header=F,stringsAsFactors=F)
sum<-S1$V6+S2$V6+S3$V6+S4$V6
summary(sum[sum<=(median(sum)+(2*mad(sum)))])

- 103 -

Applying SNP filters

Since we are only using DP to get a strict set for the purpose of base recalibration,
we are sloppy here and using bedtools coveragebed utility to get coverage (also,
partly because we want to introduce you to the convenient and useful coveragebed
utility). If you really want to get proper depth numbers to set your DP filter, you
should use the DepthofCoverage tool of GATK itself (as it takes care of any base
filters that are applied in GATK before counting depths).

Also, remember that DP doesn’t need to be used with HaplotypeCaller, and we
won’t use it to get our final SNP set anyway.

Now, we can apply our SNP filter!
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta -V raw_snps.vcf -o
raw_snps_filtered.vcf --filterExpression " QD < 2.0 " --
filterName "QD" --filterExpression " FS > 60.0 " --
filterName "FS" --filterExpression " MQ < 40.0 " --filterName
"MQ" --filterExpression " MQRankSum < -12.5 " --filterName
"MQRankSum" --filterExpression " ReadPosRankSum < -8.0 " --
filterName "ReadPosRankSum" --filterExpression " DP > 268 "
--filterName "DP"

Applying indel filters

(Section_3/module_2/var_filt)

Now, we’ll repeat filtering with indels too (using separate thresholds recommended by
GATK best practices)

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
all_raw.vcf -selectType INDEL -o raw_indels.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta -V raw_indels.vcf -o raw_indels_filtered.vcf
--filterExpression " QD < 2.0 " --filterName "QD" --
filterExpression " FS > 200.0 " --filterName "FS" --
filterExpression " ReadPosRankSum < -20.0 " --filterName
"ReadPosRankSum"

- 104 -

Combining variants

(Section_3/module_2/var_filt)

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
CombineVariants -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta --variant raw_snps_filtered.vcf
--variant raw_indels_filtered.vcf -o
raw_combined_filtered.vcf -genotypeMergeOptions UNSORTED --
printComplexMerges

We can now combine the SNPs and indels into a single variants file that
can be used as a “truth set” to recalibrate bases (that we talked about in
Module 1)

Using Variant set for base quality recalibration

Prepare Files, get recalibration data and apply it to update base quality
values

cd ../../module_1/bwa
ln -s ../../module_2/var_filt/raw_combined_filtered.vcf

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T BaseRecalibrator -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I
"$i".dedup.realigned.bam -knownSites raw_combined_filtered.vcf
-o "$i".recal_data.table;done

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T PrintReads -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I
"$i".dedup.realigned.bam -BQSR "$i".recal_data.table -o
"$i".recal_reads.bam;done

(Section_3/module_1/bwa)

- 105 -

Variant Calling again

cd ../../module_2/haplo

for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".recal_reads.bam;done
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".recal_reads.bai;done

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I "$i".recal_reads.bam -ERC
GVCF -ploidy 2 -o "$i".recal.g.vcf -bamout
"$i".recal.haplo.bam ;done

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta $(for i in
S1 S2 S3 S4;do echo -n "--variant "$i".recal.g.vcf ";done) -o
all_recal.vcf

With this presumably better set of base qualities, we’ll repeat our earlier steps for
variant calling (i.e. haplotypecaller followed by combining the sample GVCFs)

(Section_3/module_2/haplo)

“-bamout” option is just to get a bam file which can then be visualized using IGV
or “samtools tview” if you want to look at something closely.

Final SNPs hard filtering

cd ../var_filt/
ln -s ../haplo/all_recal.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants -R
~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
all_recal.vcf -selectType SNP -o recal_snps.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T VariantFiltration
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
recal_snps.vcf -o recal_snps_filtered.vcf --filterExpression " QD
< 2.0 " --filterName "QD" --filterExpression " FS > 60.0 " --
filterName "FS" --filterExpression " MQ < 40.0 " --filterName "MQ"
--filterExpression " MQRankSum < -12.5 " --filterName "MQRankSum"
--filterExpression " ReadPosRankSum < -8.0 " --filterName
"ReadPosRankSum”

We will again filter the variants with the hard filters introduced before. While we
will stop here for the demonstration, usually one wants to see some sort of
convergence of results before stopping. So, if you see a significant change in the
number of variants detected as compared to the last round, you can do the same
cycle all over again (i.e. using SNPs to recalibrate bases followed by calling and
filtering variants again)

(Section_3/module_2/var_filt)

- 106 -

Final indel hard filtering

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
all_recal.vcf -selectType INDEL -o recal_indels.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta -V recal_indels.vcf -o
recal_indels_filtered.vcf --filterExpression " QD < 2.0 " --
filterName "QD" --filterExpression " FS > 200.0 " --filterName
"FS" --filterExpression " ReadPosRankSum < -20.0 " --filterName
"ReadPosRankSum”

We do apply hard filters for indels again.

(Section_3/module_2/var_filt)

Combining variants for further analysis

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
CombineVariants -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta --variant recal_snps_filtered.vcf --variant
recal_indels_filtered.vcf -o recal_combined_filtered.vcf -
genotypeMergeOptions UNSORTED --printComplexMerges

As said before, you should compare the change in variants after this round of
recalibration and calling (but we will move on to Module 4 regardless of the
change!)

Combining SNPs and indels gives a common variant file which can be used for
further analysis. In our case, we have a pre-generated file which will be used in
Module 4

- 107 -

Section 3: Variome
Module 2: Variant calling (cont’ ed)
!

Visualization of variants
Variants in VCF format can be visualized using the Integrative Genomics Viewer (IGV), a
high-performance visualization tool for interactive exploration of large, integrated
genomic datasets (http://www.broadinstitute.org/igv/). IGV supports a wide variety of
data types, including next-generation sequence data and genomic annotations.

Options for installing and running IGV
(http://www.broadinstitute.org/software/igv/download)

1. (Mac only) Download and run the Mac application; or
2. (All systems) Use the Java Web Start buttons; or
2. (All systems) Download the binary distribution and run IGV from the command line.

Creating a .genome File
1. Click Genomes>Create .genome File. IGV displays a window where you enter the
information.
2. Enter an ID and a descriptive name for the genome (e.g., D_viviparus).
3. Enter the path to the FASTA file for the genome (reference.fasta). If the FASTA
file has not already been indexed, an index will be created during the import process.
This will generate a file with a ".fai" extension which must be in the same directory as the
FASTA file.
4. Specify the gene file (reference.gff3).
5. Click Save. IGV displays the Genome Archive window.
6. Select the directory in which to save the genome archive (*.genome) file and click
Save. IGV saves the genome and loads it into IGV.

Loading data
1. Select File>Load from File. IGV displays the Select Files window.
2. Select one or more data files or sample information files, then click OK.

Please load the following files:

recal_combined_filtered.vcf
S1.recal.haplo.bam
S1.dedup.realigned.bam

!
Section 3: Variome
Module 3: Variant annotation
!

Using SnpEff (http://snpeff.sourceforge.net), we will annotate and predict the effects of
variants on genes (such as amino acid changes). SnpEff is written in Java and runs on
Unix/Linux, OSX and Windows. It accepts input files in VCF/BED format, and can
provide consequence terms defined by the Sequence Ontology

- 108 -

(http://www.sequenceontology.org) and in HGVS notation
(http://www.hgvs.org/mutnomen/).

Building databases
SnpEff needs a database to perform genomic annotations. In order to build a database
for a new genome, you need to:

1. Configure a new genome in SnpEff's config file.
1a. Add genome entry to snpEff's configuration by editing the snpEff.config file.

gedit ~/bin/snpEff/snpEff.config

Add the following lines, save the file and exit gedit.

Dictyocaulus_viviparus
D_viviparus.genome : Dictyocaulus_viviparus

1b (optional). If the genome uses a non-standard codon table, add codon table
parameter. Please see SnpEff documentation for detail
(http://snpeff.sourceforge.net/SnpEff_manual.html).

2. Create a directory for this new genome.

mkdir ~/bin/snpEff/data/D_viviparus/

3. Get the reference genome sequence in FASTA format.

ln -s ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta
~/bin/snpEff/data/D_viviparus/sequences.fa

4. Get genome annotations from GFF file.

ln -s ~/WORKSHOP_RESOURCES/Section_3/reference/reference.gff3
~/bin/snpEff/data/D_viviparus/genes.gff

5. Build a SnpEff database.

java -Xmx8g -jar ~/bin/snpEff.jar build -gff3 -v D_viviparus

You can check the database to see if the features (genes, exons, UTRs, etc.) have been
correctly incorporated, by taking a look at the database.

java -Xmx8g -jar ~/bin/snpEff.jar dump D_viviparus | less

Running SnpEff

1. Change directory to where the SnpEff output files will be saved.

cd ~/WORKSHOP_RESOURCES/Section_3/module_3

- 109 -

2. You can annotate the vcf file by running the following command. Command line option
–v switches on the "verbose" mode, which can be useful for debugging.

java -Xmx8g -jar ~/bin/snpEff.jar -v D_viviparus
~/WORKSHOP_RESOURCES/Section_3/module_2/var_filt/recal_combined_f
iltered.vcf > recal_combined_filtered.eff.vcf

SnpEff adds annotation information (‘ANN’ tag) to the INFO field of a VCF file. The INFO
field is the eighth column of a VCF file. SnpEff updates the header of the VCF file to add
the command line options used to annotate the file as well as SnpEff's version, so you
can keep track of what exactly was done.

less recal_combined_filtered.eff.vcf

3. SnpEff creates an additional output file showing overall statistics. This "stats" file is an
HTML file, which can be opened using a web browser.

chrome snpEff_summary.html

4. SnpEff also generates a (tab separated) TXT file having counts of number of variants
affecting each transcript and gene.

head snpEff_genes.txt

Filter and manipulate annotated VCF files using SnpSift

1. Once your genomic variants have been annotated, you need to filter them out in order
to find the "interesting/relevant variants". SnpSift helps to perform this VCF file
manipulation and filtering. It can be used to extract fields from a VCF file to a tab
separated TXT format that you can easily load in R, Excel, etc.

cat recal_combined_filtered.eff.vcf |
~/bin/snpEff/scripts/vcfEffOnePerLine.pl | java -Xmx8g -jar
~/bin/SnpSift.jar extractFields - CHROM POS REF ALT AF
"ANN[*].ALLELE" "ANN[*].EFFECT" "ANN[*].IMPACT" "ANN[*].GENE"
"ANN[*].HGVS_C" "ANN[*].HGVS_P" > recal_combined_filtered.eff.txt

head recal_combined_filtered.eff.txt

2. You can now easily list, for instance, the coding variants identified in your genes of
interest (e.g., DICVIV_10165 and DICVIV_11294)

cat recal_combined_filtered.eff.txt | grep -v "MODIFIER" | grep -
E "DICVIV_10165|DICVIV_11294"

- 110 -

	07_Section3_Module0
	08_ Section3_Modules1_2
	09_Section3_Module2-3

