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Abstract: Advances in genetics and molecular biology have provided an extensive body of information on the
structure and function of the elementary building blocks of living systems. Genetic defects iIn membrane ion channels
can disrupt the delicate balance of dynamic interactions between the ion channels and the cellular environment,
leading to altered cell function. As ion-channel defects are typically studied In isolated expression systems, away
from the cellular environment where they function physiologically, a connection between molecular findings and the
physiology and pathophysiology of the cell is rarely established. Here we describe a single-channel-based

Markovian modeling approach that bridges this gap. We achieve this by determining the cellular arrhythmogenic
consequences of a mutation In the cardiac sodium channel that can lead to a clinical arrhythmogenic disorder (the
long-QT syndrome) and sudden cardiac death.

Introduction
| *The AKPQ deletion mutation in the cardiac Na* channel gives rise
Failure of to the most severe form of long-QT syndrome (LQT3).
nemery The mutation affects a highly conserved portion of the IlI-IV linker
lr known to be responsible for fast inactivation.

\ _Recovery_* *The AKPQ mutation gives rise to patient phenotypes marked by
electrophysiological disturbances, syncope and sudden cardiac
death.

*The development of arrnythmogenic episodes in LQT3 Is

~ correlated with bradycardia during sleep or relaxation.
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In the background mode, mutant channels activate and recover from

No 1nactivation

iInactivation more quickly than wild-type (WT) channels.
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Iy, replaced /W—“—“ The R A £ N R mﬁant Faster activation of mutant channels leads to increased inactivation
T cellmodel  [ERSNSGE and faster decay of current.
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incorporated \channel re-openings and a late component of |...
Into the Luo- «The likelihood of entry into the burst mode is very low but once mutant
E)l;i)::trirc])(r)\del channels are In these states, return to background mode Is unlikely.

In the burst mode, mutant channels bounce back and forth between

potential . . g
simulations. |closed avallable states and a single open state contributing to late I,.

Conclusions
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The 10t beat is shown after pacing at the indicated BCL.  (EADS). APD and may give rise to EADs.
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