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All the data and R codes for this paper are posted at http://www.image.ucar.edu/Data/.

1 Synthetic proxies generation

Here we show the details in generating synthetic tree-rings, pollen and borehole.

Synthetic tree-ring observations

We first selected 15 local temperature series with length of 1500 years from the CCSM

output, and then for each time series we apply a rectangular sliding-average smooth

over 11 adjacent points to obtain the approximate 10 year smoothing average. Specif-

ically, let Ti be the temperature at year i, i = 1, . . . , 1500, and let Si be the smoothed

temperature also at year i,

Si =
Ti−5 + Ti−4 + Ti−3 + Ti−2 + Ti−1 + Ti + Ti+1 + Ti+2 + Ti+3 + Ti+4 + Ti+5

11
.

Then (T1, . . . , T1500)
′ − (S1, . . . , S1500)

′ gives one synthetic tree-ring series. We repeat

this procedure for all 15 local temperature series to generate 15 synthetic tree-rings.

Figure 1 compares a random sample of our synthetic tree-rings with nine tree-ring
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width or density from Mann et al. (1999). All the series are scaled for a easy

comparison. It can be seen that our synthetic tree-rings look similar to the real

tree-ring series, in particular the real tree-ring series numbered with 3, 4, 5 and 9.
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Figure 1: Comparison between synthetic tree-rings and observed tree-ring width or

density. 0 - a random sample of our synthetic tree-rings. 1, . . . , 9 - tree-ring observa-

tions from Mann et al. (1999).

Synthetic borehole observations

We generate borehole data based on five regional composite temperature series which

are the local average of model temperature output over five 200 × 200 squares. We

follow the pre-observation mean-surface air temperature (POM-SAT) model to gen-

erate the borehole temperature profiles. Let Zi, i = 1, . . . , k be the depth, and τi,
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i = 1, . . . , n be the difference between the reference year and the i-th year. Define

two matrices

Z =


Z1 . . . Z1

...
...

...

Zk . . . Zk

 and τ =


τ1 . . . τn
...

...
...

τ1 . . . τn

 .

Let α be the thermal diffusivity and POM be the pre-observation mean, then the

depth profile TZi is
TZ1

TZ2

...

TZn

 =

(
erfc(

Z√
4ατ

)

)

−1 1 0 . . . 0

0 −1 1 . . . 0
...

...
. . . . . .

...

0 0 0 −1 1




POM

T1

...

Tn

 ,

where erfc(x) = 2√
π

∫∞
x
e−t

2
dt is the complementary error function. In our data gen-

eration procedures, we choose α = 10e−6m2/s, POM = 0 without loss of generality,

Zi={0, 5m, 10m, ... ,500m}. We choose the reference year as 2000, so τi for the i-th

year is τi = 2000− i.

Synthetic pollen observations

We select 10 regional composite temperature series as the local average of 7.50× 7.50

squares to generate pollen data. For each composite temperature series T =

(T1, . . . , T1500)
′, we again apply the rectangular sliding-average smooth over 11 adja-

cent points to obtain the approximate 10 year smoothing average S = (S1, . . . , S1500)
′.

Then we extract points from S at every 30 years and consider those points as the

synthetic pollen observations.

2 Justification for the linear model between tem-

perature and forcings and AR(2) errors

Linear process model with AR(2) error structure

We assess the linear model between temperatures and forcings as well as the AR(2)
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error structure using the HadCRUT3v temperature series that has been used in Li et

al. (2007) and is available at http://www.image.ucar.edu/∼boli/research.html. This

is because our models are developed eventually for real data. The overlap period

for the HadCRUT3v temperature series and three forcings is 1850-1999. Except for

the zero-inflated volcanism, both the scatter plots between temperatures and solar

irradiance and between temperatures and CO2 concentrations in Figure 2 display a

clearly linear relationship. This suggests that the choice of a linear model relating

temperatures and forcings is reasonable. Furthermore, we examine residuals from the

simple linear model of

T = β0 + β1S + β2V + β3C + ε,

where T is temperature, S, V and C are solar irradiance, volcanism and greenhouse

gases, respectively. The residuals and their normal probability plot in Figure 3 show

that residuals are well behaved and follow a perfect normal distribution. Figure 4

checks the autocorrelation function (acf) and partial autocorrelation function (pacf)

of the residuals. The acf and pacf suggest an AR(1) model for the error structure. In

summary, the diagnostics indicate that a linear model with an AR(1) error structure

seems sufficient to link the real temperatures and forcings between 1850-1999. Never-

theless, we choose a more conservative AR(2) error structure in our model to account

for any extra correlations potentially for the much longer period of 850-1999.

AR(2) for proxies given temperatures

We still use the HadCRUT3v temperature series and the nine tree-rings in Mann et al.

(1999) to explore the model for errors. The overlap period for the temperatures and

those nine tree-rings is 1850-1980. After we filter the temperature series by removing

the 10 year smoothing average, we fit a simple linear model between each tree-ring

series and the filtered temperatures with tree-rings as the response variable. The

pattern of acf and pacf from all the nine sets of residuals is hardly differentiable, thus

we only show one such example in Figure 5. This plot may indicate that iid errors

are probably ok despite a significant correlation at lag 3. Again, we made a more
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Figure 2: The scatter plots between temperatures and solar irradiance and between

temperatures and CO2.
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Figure 3: The residual plot and the normal probability plot of residuals

conservative choice because the setting of this experiment is not exactly the same as

our models. For instance, the time period for our model to hold is 850-1999 which is
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Figure 4: The autocorrelations and partial autocorrelations of residuals obtained from

temperatures given forcings

much longer than 1850-1980, and those nine tree-rings are only samples of tree-ring

observations. In case that AR(2) structure is unnecessary, the estimates of the two

time lag coefficients in the error model will be simply close to zero.

3 MCMC sampling

Let Di, Pj and Bk be vectors of synthetic tree-ring (Dendrochronology), Pollen and

Borehole data indexed by their various locations with i = 1, .., 15, j = 1, ..., 10 and

k = 1, ..., 5. Note that these groups of proxy vectors will have different lengths due to

their sampling. Moreover, each tree-ring and pollen vectors are indexed with respect

to time, and the borehole vectors are indexed by depth. Also let S, V0, and C

be the time series vectors of solar irradiance, volcanism and greenhouse gases, and

let V denote the volcanic series with error. Let MD, MP and MB be the three

transformation matrices to link temperature series to tree-ring, pollen and borehole,
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Figure 5: The autocorrelations and partial autocorrelations of residuals obtained from

tree-rings given the filtered temperatures

respectively. More specifically, they represent the linear filters used to generate the

corresponding pseudo proxies from the model temperature series. Finally it is useful

to partition the full length temperature process T into the unknown temperatures T1

requiring reconstruction over the time span of available proxy data, and the observed

instrumental temperatures T2 (1850-present), i.e., T = (T′1,T
′
2)
′. Then we have the

three hierarchies below:

(i) Data stage:

Di|(T′1,T′2)′ = µiD + βiDMD(T′1,T
′
2)
′ + εiD, εiD ∼ AR(2)(σ2

D, φ1D, φ2D), (3.1)

Pj|(T′1,T′2)′ = µjP + βjPMP (T′1,T
′
2)
′ + εjP , εjP ∼ AR(2)(σ2

P , φ1P , φ2P ), (3.2)

Bk|(T′1,T′2)′ = MB{µkB + βkB(T′1,T
′
2)
′ + εkB}, εkB ∼ iid N(0, σ2

B), (3.3)

V|V0 = (1 + εV )V0, εV ∼ iid N(0, 1/64); (3.4)
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(ii) Process stage:

(T′1,T
′
2)
′|(S,V0,C) = β0 + β1S + β2V0 + β3C + εT , εT ∼ AR(2)(σ2

T , φ1T , φ2T );

(3.5)

(iii) Priors:

µiL ∼ N(µ̃iL, σ̃
2
iL), βiL ∼ N(µ̃′iL, σ̃

′2
iL), L ∈ {D,P,B};

βi ∼ N(µ̃i, σ̃
2
i ), i = 0, 1, 2, 3;

φ2L ∼ unif(−1, 1), φ1L|φ2L ∼ (1− φ2L)× unif(−1, 1), L ∈ {D,P, T};

σ2
L ∼ IG(q̃L, r̃L), L ∈ {D,P,B, T}.

An AR(2)(σ2, φ1, φ2) process is defined as et = φ1et−1 + φ2et−2 + εt, εt ∼

iid Normal(0, σ2). The specific choice of priors for time lag coefficients (φ1L, φ2L) guar-

antees their corresponding AR(2) process to be stationary and causal (Shumway and

Stoffer, 2006, ch. 3), and the conjugate priors for all the other parameters allow for

an explicit full conditional posterior distribution for those parameters and T1. There

is no closed form for the posterior distribution of time lag coefficients. Thus the pos-

terior is sampled by alternating the Gibbs sampler, which is used for updating T1 and

parameters with explicit full conditional distribution, and the Metropolis-Hasting (M-

H) algorithm, which is used for updating autoregressive parameters. More specifically,

we generate posteriors in the following order with the indicated sampling method: T1

(Gibbs), V0 (Gibbs), (µiL, βiL) with L ∈ {D,P,B} and βi with i = 0, 1, 2, 3 (Gibbs),

(φ1L, φ2L) , L ∈ {D,P, T} (M-H Algorithm), σ2
L, L ∈ {D,P,B, T} (Gibbs).

Sample T1

Let [X|·] be the conditional distribution of X. Let ΣL, L ∈ {D,P,B, T} be the

covariance matrix of εiD, εjP , εkB and εT , respectively. Let HD = M′
DΣ−1

D MD,

HP = M′
PΣ−1

P MP and HT = Σ−1
T . Let E be the matrix consisting of three

rows as the first three eigenvectors of MBM′
B and let MBR = EMB, we de-

fine HB = M′
BR(MBRΣBM′

BR)−1MBR. Let GD = M′
LΣ−1

L , GP = M′
PΣ−1

P ,

GB = M′
BR(MBRΣBM′

BR)−1. The size of HL, L ∈ {D,P,B, T} is 1150 × 1150.
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Now we partition HL into

HL =

 HL11 HL12

HL21 HL22

 ,

where the size of HL11 is 1000× 1000. We also partition GL into

GL =

 GL1

GL2

 ,

where GL1 has 1000 rows. By completing square, we can get:

[T1|·] = N(Ab,A),

where

A−1 =
15∑
i=1

β2
iDHD11 +

10∑
j=1

β2
jPHP11 +

5∑
k=1

β2
kDHB11 + HT11

b = GD1

∑15
i=1 βiD(Di − µiD)−

∑15
i=1 β

2
iDHD12T2

+GP1

∑10
j=1 βjP (Pj − µjP )−

∑10
j=1 β

2
jPHP12T2

+GB1

∑5
k=1 βkB(BkR − µkBMBR1)−

∑5
k=1 β

2
kBHB12T2,

where BkR = EBk, and 1 is a vector consisting of 1.

Sample V0 and linear model coefficients

Given T = (T′1,T
′
2)
′, [V0|·], (µiL, βiL) with L ∈ {D,P,B} and βi with i = 0, 1, 2, 3

are straightforward, so we skip them.

Sample (φ1L, φ2L) using Metroplis Hasting algorithm

(1) Example of (φ1D, φ2D)

let φ∗2D|φt2D ∼ N(φt2D, ξ2)I(|φ∗2D|<1), φ
∗
1D|(φt1D, φ∗2D) ∼ N(φt1D, ξ1)I(|φ∗1D|<1−φ∗2D)

(φ1D, φ2D)|· ∝ [
15∏
i=1

Di|(T′1,T′2)′, µiD, βiD, φ1D, φ2D, σ
2
P ][φ2D][φ1D|φ2D]

r =

∏15
i=1[Di|(T′1,T′2)′, µiD, βiD, φ∗1D, φ∗2D, σ2

P ][φ∗2D][φ∗1D|φ∗2D][(φ∗1D, φ
∗
2D)|(φt1D, φt2D)]∏15

i=1[Di|(T′1,T′2)′, µiD, βiD, φ∗1D, φt1D, φt2D, σ2
P ][φt2D][φt1D|φt2D][(φt1D, φ

t
2D)|(φ∗1D, φ∗2D)]

9



since φ2D ∼ unif(−1, 1), [φ∗2D] = [φt2D];

[(φ∗1D, φ
∗
2D)|(φt1D, φt2D)] = [φ∗2D|(φt1D, φt2D)][φ∗1D|(φ∗2D, φt1D, φt2D)]

[(φt1D, φ
t
2D)|(φ∗1D, φ∗2D)] = [φt2D|(φ∗1D, φ∗2D)][φt1D|(φt2D, φ∗1D, φ∗2D)]

Let Φ∗1 be the pdf for N(φt1D, ξ1) and Φt
1 be the pdf for N(φ∗1D, ξ1); and Φ∗2 be the pdf

for N(φt2D, ξ2) and Φt
2 be the pdf for N(φ∗2D, ξ2).

[(φ∗1D, φ
∗
2D)|(φt1D, φt2D)]

[(φt1D, φ
t
2D)|(φ∗1D, φ∗2D)]

=
(Φt

2(1)− Φt
2(−1))|Φt

1(1− φt2)− Φt
1(φ

t
2 − 1)|

(Φ∗2(1)− Φ∗2(−1))|Φ∗1(1− φ∗2)− Φ∗1(φ
∗
2 − 1)|

r =

∏15
i=1[Di|(T′1,T′2)′, µiD, βiD, φ∗1D, φ∗2D, σ2

P ](1− φt2D)(Φt
2(1)− Φt

2(−1))|Φt
1(1− φt2D)− Φt

1(φ
t
2D − 1)|∏15

i=1[Di|(T′1,T′2)′, µiD, βiD, φt1D, φt2D, σ2
P ](1− φ∗2D)(Φ∗2(1)− Φ∗2(−1))|Φ∗1(1− φ∗2D)− Φ∗1(φ

∗
2D − 1)|

log(r) = −0.5 ∗ {15 log(|Σ∗D|) +
∑15

i=1(Di − µiD − βiDMDT)′Σ∗D
−1(Di − µiD − βiDMDT)}

+ log{(1− φt2D)(Φt
2(1)− Φt

2(−1))|Φt
1(1− φt2D)− Φt

1(φ
t
2D − 1)|}

+0.5 ∗ {15 log(|Σt
D|) +

∑15
i=1(Di − µiD − βiDMDT)′Σt

D
−1

(Di − µiD − βiDMDT)}

− log{(1− φ∗2D)(Φ∗2(1)− Φ∗2(−1))|Φ∗1(1− φ∗2D)− Φ∗1(φ
∗
2D − 1)|}

(2) Example of (φ1T , φ2T )

Let µ = β0+β1S+β2V0+β3C. Let φ∗2T |φt2T ∼ N(φt2T , ξ2)I(|φ∗2T |<1), φ
∗
1T |(φt1T , φ∗2T ) ∼

N(φt1T , ξ1)I(|φ∗1T |<1−φ∗2T )

(φ1T , φ2T )|· ∝ [(TT
1 , T

T
2 )|µ, φ1T , φ2T , σ

2
T ][φ2T ][φ1T |φ2T ]

r =
[T′|µ, φ∗1T , φ∗2T , σ2

T ][φ∗2T ][φ∗1T |φ∗2T ][(φ∗1T , φ
∗
2T )|(φt1T , φt2T )]

[TT|µ, φt1T , φt2T , σ2
T ][φt2T ][φt1T |φt2T ][(φt1T , φ

t
2T )|(φ∗1T , φ∗2T )]

Let Φ∗1T be the pdf for N(φt1T , ξ1) and Φt
1T be the pdf for N(φ∗1T , ξ1); and Φ∗2T be the

pdf for N(φt2T , ξ2) and Φt
2T be the pdf for N(φ∗2T , ξ2).

r =
[T′|µ, φ∗1T , φ∗2T , σ2

T ](1− φt2T )(Φt
2T (1)− Φt

2T (−1))|Φt
1T (1− φt2T )− Φt

1T (φt2T − 1)|
[TT|µ, φt1T , φt2T , σ2

T ](1− φ∗2T )(Φ∗2T (1)− Φ∗2T (−1))|Φ∗1T (1− φ∗2T )− Φ∗1T (φ∗2T − 1)|

log(r) = −0.5 ∗ {log(|Σ∗T |) + (T− µ)TΣ∗T
−1(T− µ)}

+ log{(1− φt2T )(Φt
2T (1)− Φt

2T (−1))|Φt
1T (1− φt2T )− Φt

1T (φt2T − 1)|}

+0.5 ∗ {log(|Σt
T |) + (T− µ)TΣt

T
−1

(T− µ)}

− log{(1− φ∗2T )(Φ∗2T (1)− Φ∗2T (−1))|Φ∗1T (1− φ∗2T )− Φ∗1T (φ∗2T − 1)|}
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Sample σ2
L

(1) Example of σ2
D

Let ND be the number of tree-rings and NT be the length of T. Here ND = 15

and NT = 1150. Let Σ̃−1
D = σ2

DΣ−1
D .

σ2
D|· ∝

15∏
i=1

{[Di|T, µiD, βiD, φ1D, φ2D, σ
2
D]}[σ2

D]

[σ2
D|·] ∼ IG(q, r), where q = q̃P +ND ∗NT/2, and

r = { 1

r̃D
+ 0.5

15∑
i=1

(Di − µiD − βiDT)′Σ̃−1
D (Di − µiD − βiDT)}

−1

(2) Example of σ2
T

σ2
T |· ∝ [T′|µ, φ1T , φ2T , σ

2
T ][σ2

T ]

[σ2
T |·] ∼ IG(q, r), where q = q̃T +NT/2, t1 = 854, t2 = 127 and

r = {1/r̃T + 0.5(T− µ)′Σ̃−1
T (T− µ)}

−1
,

where Σ̃−1
T = σ2

TΣ−1
T

Normal and Inverse Gamma

This is to verify the posterior distribution of the variance parameter given the conju-

gate prior.

Inverse Gamma:

f(x;α, β) =
1

βαΓ(α)
x−(α+1)e−

1
xβ

E(x) =
1

(α− 1)β

var(x) =
1

(α− 1)2(α− 2)β2

Multivariate Normal:

f(y; µ,Σ) =
1√

(2π)n|Σ|
e−

1
2
(y−µ)TΣ−1(y−µ) (3.6)

11



If Σ can be written as σ2Σ̃, i.e., a product of constant variance σ2 and correlation

matrix Σ̃, (3.6) becomes into:

f(y; µ, σ2, Σ̃) =
1√

(2π)nσ2n|Σ̃|
e−

1
2σ2 (y−µ)TΣ̃−1(y−µ).

Suppose σ2 ∼ IG(q, r),

[y|µ, σ2, Σ̃][σ2] ∝ (σ2)
−n/2

e−
1

2σ2 (y−µ)TΣ̃−1(y−µ)(σ2)
−(q+1)

e−
1
rσ2

= (σ2)
−(q+n/2+1)

e−
1
σ2 {

1
r
+

(y−µ)TΣ̃−1(y−µ)
2

}

So the posterior [σ2|·] is IG(q + n/2, {1/r + 0.5(y − µ)TΣ̃−1(y − µ)}
−1

AR(2) process

Below is to show a small trick for obtaining the inverse of an AR(2) covariance matrix

without physically inverting the large covariance matrix. For an AR(2) process

et = φ1et−1 + φ2et−2 + εt, ε ∼ N(0, σ2),

we can get:

e3 − φ1e2 − φ2e1 = ε3,

e4 − φ1e3 − φ2e2 = ε4,

...

Or equivalently,

−φ2 −φ1 1

−φ2 −φ1 1

−φ2 −φ1 1
. . . . . . . . .

−φ2 −φ1 1

−φ2 −φ1

−φ2





e1

e2

e3
...

en−2

en−1

en


=



ε3

ε4

ε5
...

εn

−φ1en − φ2en−1

−φ2en


12



Denote the left matrix as A. Let Σ = var(e), var(Ae) = AΣAT ≈ σ2I. Then

Σ = σ2A−1(AT)−1 and Σ−1 = 1
σ2 ATA. To avoid the edge problem at the end, we

usually take a longer vector of e than needed.

4 Model comparison

In order to more formally compare different reconstructions, we employ the poste-

rior predictive loss criterion proposed in Gelfand and Ghosh (1998) that considers

predictive biases penalized by predictive variances. Specifically, we consider the loss

function Dk(m) for k = 1, 3, 9 and ∞ as defined in the paper and then compute

Dk(m) for each model (reconstruction) m, m = 1, 2, . . . , 40. The results are reported

in Figure 6. Those plots show that the ordering of models under Dk(m) is insensitive

to the choice of k, and moreover, the pattern of D(m) highly matches the pattern of

rmse in Figure 5(c) in the paper. Therefore, for convenience we simply examine rmse

for model comparison.

5 Posterior predictive check

We select one reconstruction as shown in Figure 7b from the 40 in total to perform

the posterior predictive check. This selected one is reconstructed by modeling only T1

in the process stage and uses information from both error-free tree-rings and pollen

together with forcings.

Model Check

Since the NH global temperature is simply the weighted average of all local tempera-

tures and our “oracle” proxies are either the original or the average of some selected

local temperatures, the NH temperature and those “oracle” proxies certainly follow

a linear relationship. Then the discrepancy between our reconstruction based on “or-

acle” proxies and the NH temperature is mainly due to the sampling errors of those

selected locations. In another word, the reconstruction using “oracle proxies” reaches

13
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Figure 6: D1(m), D3(m), D9(m) and D(m) of the reconstructions for five data models

and 23 scenarios that are combinations of with/without forcings, with/without noise

and modeling T1/T in the process stage. “C” and “F” are the reconstructions without

forcings (with constant mean function) and with forcings incorporated, respectively.
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the capacity of those selected proxy data in recovering the NH temperature, thus it

provides a reference to evaluate the performance of other reconstructions based on

synthetic proxies generated from the “oracle” proxies. We assess the models using

two criterion as in Gel, Raftery and Geneiting (2004), the verification rank histogram

(Hamill, 2001) and the coverage probability of posterior distributions.

Figure 7 compares the rank histogram of the reconstruction based on “oracle”

proxies and the histogram based on tree-rings and pollen. Both have T1 modeled in

the process stage. The two histograms share a very similar pattern that a high peak

occurs at the lowest rank despite the near uniform pattern over the rest ranks. This

is not extremely surprising as both reconstructions exhibit positive bias in Figure 5.

We show the reconstruction based on “oracle” proxies in Figure 8. From this plot

it seems that those selected local temperatures cannot recover some of the global

temperatures very well. However, the similarity between the two histograms implies

that our models for synthetic proxies should be appropriate, because the non-uniform

distribution of the histogram for reconstructions using synthetic proxies is very likely

caused by the sampling errors of the proxy data.
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Figure 7: Verification rank histograms for (a) reconstructions using “oracle” proxy

and (b) reconstructions using synthetic tree-ring and pollen

To examine the coverage probability of posterior distributions, we first choose
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Figure 8: The reconstruction using “oracle” proxy (red) and the target temperature

(black).

a sequence of probabilities as confidence levels. Then for each confidence level, we

find the upper and lower bounds for each predicted temperature by identifying the

corresponding quantiles from the posterior samples. After that, we calculate the

proportion of the target temperatures that are covered by those confidence intervals.

The results for both the reference and selected reconstructions are reported in Table

1. We see that the coverage probabilities for the two reconstructions follow the same

trend and they are all lower than their corresponding nominal levels. Again, because

the low coverage appears in the reference reconstruction, it is a sign that this is due to

the limited capacity of the proxy data. Thus there is no evidence towards inadequacy

of our models for synthetic proxies.

Table 1: Posterior predictive coverage probability for reconstructions based on syn-

thetic proxies and “oracle” proxies

Probability

Confidence level 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1.00

“Oracle” proxy 0.290 0.357 0.440 0.542 0.648 0.738 0.817 0.937

Synthetic proxy 0.313 0.400 0.477 0.569 0.716 0.809 0.878 0.965

Posterior density plot

Figure 9 shows the box plots of intercepts and slopes for 15 tree-ring series and Figure

16



10 shows for 10 pollen series and three components of forcings. Figure 11 shows the

histograms for the time lag coefficients in AR(2) model and the variance parameters.
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Figure 9: Box plots of µiD and βiD for 15 tree-ring series

Convergence diagnostic

To check the convergence of MCMC chains, we run the MCMC starting from seven

different sets of initial values and then compare the traces of parameter estimates

from those different initial values. We choose µ5D, β5D, µ5P and β5P as examples for

regression coefficients for tree-rings and pollen respectively to show their convergence.

The other regression coefficients behave similarly. Figure 12 shows that the traces

mixed very well, albeit the pollen is worse than tree-rings. This is not surprising since

the pollen only has around 30 data points while the tree-ring data is annual. Figure 13

shows the regression coefficients for forcings. β0 and β2 that corresponds to volcanism

do not seem to converge as well as the other parameters. The zero-inflated volcanism

data should possibly be blamed for that. Figure 14 shows the traces plots for the

time lag coefficients and variance parameters. σ2
T converges less impressively as the

others. Again this might be caused by the zero-inflated volcanism data. Although
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Figure 10: Box plots of µjP and βjP for 10 pollen series and β’s for forcings

some parameters such as β0, β2 and σ2T do not seem to converge as well as the other

parameters, our main interest, the temperature reconstructions nevertheless appear

to be very insensitive to different initial values. This can be seen in Figure 15 which

shows the high agreement between the seven series of posterior mean of temperature

reconstructions.
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Figure 12: Trace plots of regression coefficients for tree-ring and pollen for different

initial values
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Figure 13: Trace plots of regression coefficients for forcings for different initial values
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Figure 14: Trace plots of time lag coefficients and variance parameters for different

initial values
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Figure 15: Posterior mean of reconstructed temperatures for seven different sets of

initial values
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