
Trends
Advanced neuroimaging methods and
naturalistic stimuli are being used to
characterize event representations in
extended activities.

Behavioral studies are beginning to
characterize event segmentation in
interactive, first-person experiences.

Behavioral and neuroimaging studies
are characterizing the role of event
model updating in working memory
access.
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events.
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cortex in binding features into events.
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Representations Enabling the Efficient Prediction of Behavior
The past two decades have seen the emergence of a vibrant and robust body of research on
event cognition – how people perceive, remember, think about, and respond to events [1]. One
consistent conclusion from studies of event perception, memory, and action planning is that
cognition uses structured representations of events, called event models, to capture informa-
tion about the spatiotemporal framework, entities and objects, and other salient features of a
situation. In particular, humans appear to maintain event models representing the current ‘state
of play’ of their immediate environment, called working models. Working models are actively
maintained, multimodal working memory representations that are stable most of the time but
are updated at boundaries between perceptually-identified events. In a 2008 Trends in
Cognitive [549_TD$DIFF]Sciences paper, Kurby and Zacks summarized studies that had provided evidence
to that point for the existence and nature of working models, and began to characterize the
mechanisms of their construction and updating [2]. We address here a fundamental question
about these representations: why does the brain have them? As cognitive representations go,
event models are elaborate and resource-intensive. What unique capacities do they enable?
We will give a speculative answer to these questions, integrating some recent developments in
the field of event cognition.

Our hypothesis starts from the observation that adaptive behavior is predictive. Organisms
across the phylogenetic spectrum anticipate how their environments will change and how their
behaviors will affect those changes. Even the simplest predictions are of dramatic adaptive
benefit – a fish that darts under a rock in response to a bird-shaped shadow is more likely to
survive predation, and a bee that flies to plants whose color signals pollen is more likely to feed.
However, humans (and other species) demonstrate predictive processing that is qualitatively
more complex and subtle than these sorts of associations. Suppose you come across a friend
changing a bike tire. After a brief look at the scene, you can probably predict all types of things
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about the situation: that there is a bike pump or CO2 inflator around, even if none is visible; that
your friend will put the wheel back on the bike; that your friend would respond positively if you
offered assistance. We make detailed, subtle predictions about everyday events constantly,
and often do so with little awareness; predictions are a powerful feature of human cognition.
Moreover, the brain appears to spend a substantial amount of its energy budget on predictive
processing that puts it in a position to respond to predicted environmental features [3]. Thus, a
re-representation that makes such predictions more accurate, more efficient, or both may be a
worthwhile investment for the brain.

Psychologists have been interested in predictive mechanisms since Pavlov characterized
classical conditioning [4], and in recent years there has been intense interest in predictive
mechanisms in neuroscience [3,5,6]. One thing that is striking about these literatures is how
powerful simple learning mechanisms can be – prediction has been observed in diverse
domains including classical conditioning [4], visual feature detection [7], motion perception
[8], motor control [9], scene perception [10], and language comprehension [11]. A common
feature of models of prediction, across domains, is that they learn from experience, tuning their
predictions based on a history of sequences in which cues or actions are followed by
consequences [12]. We can view what these models learn as a representation of the statistical
structure of a particular domain – motions of arms or distributions of objects in a scene, for
example. It is often helpful to think about such structures as being shapes in a mathematical
space. For example, observed arm movements could be represented in terms of the positions
of joints, in terms of the angles between joints, or in terms of muscle torques [13]. A given action
is a trajectory in a space whose dimensions are positions, angles, or torques. By observing a
large number of reaching actions, a model can learn to anticipate based on the recent history of
the arm’s location in the space where it is likely to be a moment later. For reaching, the
dimensionality of the space is modest; for other problems, as in the predation example given
earlier, it may be much larger. However, whether the dimensionality is large or small, the
structures that models of these domains learn tend to be smooth. The trajectory that is
predicted does not jump wildly from one location to another. Many aspects of behavior
and other natural phenomena are characterized by smooth dynamics. If one wants to predict
how a reaching motion will unfold, smooth dynamics are a good bet. Research in motor control
and embodied cognition has shown that learning systems can learn shapes in the relevant
perceptual and motor spaces that allow prediction by extrapolation. This type of prediction by
smooth extrapolation is effective for performing perceptually guided motor behavior [14] and
can also be used offline for imagery and reasoning [15].

However, many aspects of everyday activity are not smooth. Suppose one observes Rebecca
and Zach sitting across a table, and Rebecca is passing a carton of milk to Zach (Figure 1 gives
an illustration of this scenario). If one were to represent their movements in terms of muscle
torques, it would be very difficult to predict when Zach’s arm would transition from resting to
reaching; this onset is discontinuous, and challenging to relate to the other variables. More
broadly, intentional agents in complex everyday environments produce many sequences that
are very jumpy in the space of the relevant perceptual and motor variables. These types of
functions are difficult for systems to learn and represent.

It is to address this challenge, we think, that event models evolved. An event model re-
represents a situation in a space that is nonlinearly transformed from the spaces of the sensory
and motor variables, yielding structures for typical everyday activities that afford efficient
learning and robust extrapolation. An event model is not an arbitrary fabrication of the mind
– to be useful, it needs to be closely coupled to the evolving state of affairs in the real world [16].
However, it is a re-representation of the world that alters its computational affordances. In our
milk example, if one represents the situation not in terms of muscle torques but in terms of
2 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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(A)

(D) (E)

(B) (C)

Changes in low-level features Changes in event model features
A   B B  

R hand velocity • • R giving milk to Z
Z hand velocity • • R holding milk •
R elbow angle • • Z holding milk
R knee angle Z pouring •
Z knee angle • R si�ng
Z elbow angle • • Z si�ng
R biceps torque • • Chair 1 present
Z biceps torque • • Chair 2 present
R in contact with milk • Table present
Z in contact with milk • • … 

… 

(A) (B) (C)

C A   B B  C

Figure 1. (A) Rebecca (R) Is in the Middle of Passing Milk to Zach (Z). (B) Z has acceptedmilk. (C) Z is pouringmilk.
(D) Conceptual description of changes in low-level features. Examples include a few different reference frames – body part
velocities, joint angles, muscle torques, contact relations – to illustrate that the point is general. (E) Conceptual depiction of
changes in features of the situation, as might be represented in event models; a few representative examples are again
given. When cast in terms of event model variables, change is smoother and thus more learnable. For example, the
sequence ‘get milk, then pour milk’ is easy for many systems to learn, whereas the sequence of velocities or joint angles
would be highly challenging.
agents, objects, and intentional actions, then the transition from Rebecca’s offering to Zach’s
accepting is smooth. Thecost, heredefinedas ‘computational effort’ofbuilding,maintaining, and
updatingeventmodels, is thecost of going froma representation in thespaceofmodality-specific
perceptual and motor variables to a multimodal space of distal objects and entities. We propose
that the answer to thequestion ‘whydoes thebrainhaveeventmodels?’ is this: in the transformed
space of an event model, the trajectories of everyday activities are smooth and learnable.

In the following sections we first review some historical foundations for research on event
models. We then turn to current work in event cognition and its connections to other areas of
cognitive science.

From Situation Models to Event Models
A substantial influence on current event model research has been older work in discourse
processing on situation models [17–19]. These studies showed that both relatively deliberate
andconscious inferencemechanisms,and fastandautomaticpredictivemechanisms,contribute
to text comprehension. For example, readers will sometimes draw predictive inferences from
phrases such as ‘suddenly the actress fell’, allowing faster processing of a phrase such as ‘the
actress was pronounced dead’ [20]. However, similar effects can also be produced by faster,
simpler mechanisms such as semantic spreading activation and associative retrieval [21].

Situation models help the reader to make predictions about relations between elements in a
text [17]. Bransford and colleagues asked participants to listen to sentences such as (i) ‘Three
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turtles rested beside a floating log, and a fish swam beneath them’, and (ii) ‘Three turtles rested
on a floating log, and a fish swam beneath them’. Next, they were asked whether they
recognized having read ‘Three turtles rested (on/beside) a floating log, and a fish swam
beneath it’. Those individuals who heard sentence [550_TD$DIFF]ii were more likely to falsely recognize
‘swam beneath it’, and Bransford and colleagues suggested that this was because they were
more likely to have predicted that the fish was beneath the log based on their model of the
situation described by the text. People often make similar types of predictions about spatial
relations among objects. For example, given the input ‘The book is to the right of the clock. The
glass is on top of the book’ one can easily predict that the glass is also to the right of the clock
[22] even though this spatial relation between the glass and the clock was not directly stated.

Individuals also can use knowledge of semantic relations between items to drive predictions
about plausible action plans and the objects likely to be involved in that action plan. Altmann
and Kamide [23] designed a clever paradigm to investigate this, in which individuals were
shown still images and listened to sentences that pertained to the images while their gaze
location was tracked. For example, a participant might be shown a scene of a child sitting on
the floor surrounded by a motorized train, a toy car, a ball, and a cake. Participants might hear
‘The boy will move the cake’ or ‘The boy will eat the cake’. They found that individuals fixated on
relevant objects before the object being mentioned when the spoken verb (e.g., ‘eat’) has a
strong association with only one of the objects (cake) present in the scene [23,24].

Situation models were originally described as representations constructed by readers of a
narrative text, but similar considerations have been found to apply in the context of the
comprehension of movies or interactive events. The term ‘event model’ is thus a more general
one, referring both to event representations constructed during text comprehension and to
representations formed from movies or live experiences [1]. [551_TD$DIFF]A good deal of recent research on
event models has focused on [552_TD$DIFF]perception of and memory for visual events, although important
studies of events in text comprehension continue. Quantitative research on event model
construction from real life is still exceedingly rare – in part because live events cannot be
repeated for multiple test sessions. However, two lines of evidence suggest that mediated
events are a good proxy for live ones. First, as we have just seen, many manipulations have a
similar effect on event cognition in reading and in movie viewing. This convergence across two
types of mediated events with very different surface properties leads us to suspect that the
effects might also generalize to unmediated events. Second, laboratory measures of event
comprehension predict actual action performance [25].

Recent research on scene construction, episodic memory, and episodic future thought has
highlighted the central role of event representations in memory and reasoning. Recalling
something from the past or imagining something in the future appears to trigger a common
scene construction mechanism, resulting in a structured mental representation complete with
spatiotemporal context and vivid semantic and sensory details [26,27]. Many of these same
elements are present in building, maintaining, and updating working models to re-represent the
dynamics of the physical world. This suggests that a common representational medium for
constructing event representations may be crucial for ongoing comprehension, memory
retrieval, and thinking about future or potential events. One suggestive finding consistent with
this hypothesis concerns boundary extension, the phenomenon that people often remember
pictures as having contained more of the world than they actually did [28]. People with amnesia
do not show boundary extension, even when tested immediately following study [29]. This
suggests that a common dysfunction can affect both online scene construction and episodic
memory.
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The link between remembering past events and imagining potential futures has led to the
suggestion that one primary function of memory might be to predict and plan for the future [30],
possibly by projecting one’s self into a possible future [31]. If so, to what extent do thesemodels
reuse perceptual and motor systems for online perception and action control to perform offline
computations for memory and planning? This is a central concern of the current interest in
embodied cognition; Box 1 discusses the role of embodied content in event models.

An effective working model needs to be relatively stable through the duration of an event – if the
state of the model is as dynamic as the inputs from which it is constructed, it cannot enable
smooth prediction. For example, if one observes someone else buttering a piece of bread, one
will benefit from a working model that is not disrupted by each swipe of the knife. However, to
be effective, a working model also needs to be updated when the represented situation
transitions from one configuration to another – when the bread is buttered and the diner turns
to drink water. Thus, working models need a particular type of dynamics: stability punctuated
by phasic transitions. These transitions segment ongoing experience into a succession of
events represented by successive working models.

Segmentation
The segmentation of ongoing activity into meaningful events is importantly a matter of phe-
nomenology: people spontaneously experience ongoing activity as consisting of meaningful
events punctuated by boundaries between events (an overview is given in [2]). This subjective
experience corresponds with phasic activity throughout the cortex [32], and can be easily and
reproducibly captured by asking people to mark off the boundaries as they occur [33,34].
Viewers of movies and readers of stories identify boundaries when more features of a situation
Box 1. Embodiment: What [538_TD$DIFF]Is the Representational Format of Event Models?

One important question is: to what extent [539_TD$DIFF]are event models instantiated by the same modality-laden representations
that underlie perception and motor control [540_TD$DIFF]? One view is that structured mental representations, to achieve the
computational power characteristic of human thought, need to be abstracted from the modalities of action and
perception [106]. An alternative view notes that perceptual and motor systems provide a powerful platform for
representing the world, and proposes that for the sake of efficiency cognitive representations reuse these platforms
to comprehend, remember, and predict [107,108].

In language comprehension, neurophysiological studies suggest that when people read about events they activate
neural representations of motor properties of those actions [109–111]. In action observation, experts in a motor skill
such as dance show greater motor activation compared to novices when watching activities from their domain of
expertise, suggesting that they are using knowledge to form embodied representations [112]. In our laboratory we have
used fMRI to record brain activity while people read about everyday activities or watch movies, and have been struck by
the parallels in the content-specific transient activations associated with features such as interacting with objects or
changing locations [113,114]. These results suggest that, at least some of the time, people do reuse circuits for online
action and perception in an offline mode to represent the contents of events for language or visual comprehension.

This interpretation has been challenged, however. Mahon and Caramazza [115] noted that the fact that people tend to
activate perceptual and motor representations when thinking about concepts with perceptual and motor contents does
not entail that the perceptual and motor representations are causally related to the conceptualization. Instead,
conceptual representations could be purely disembodied, but could tend to activate embodied representations through
repeated association. Relatedly, one could worry that the [541_TD$DIFF]tasks in which such effects have been observed may have
[542_TD$DIFF]demands that encourage strategic use of perceptual or motor representations in a way that is not characteristic of
normal comprehension.

We think that, going forward, it will be crucial to test embodied comprehension hypotheses using methods that directly
assay representational format, and in situations that are as naturalistic as possible. Moreover, we also think it is
important to recognize that there may be many comprehension situations in which readers or observers do not
construct rich event models [116] – they may skim an instruction manual for a key piece of information, paying little
attention to the action sequences described in the text, or search a room for a dropped wallet, paying little attention to
the activities going on around them. In these situations, there may be little evidence of event model construction,
embodied or otherwise.
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are changing [35–38]. Choosing a placement for event boundaries that tends to match those of
other observers has downstream consequences for memory: the better an individual’s seg-
mentation matches that of the group, the better memory for the event is [39,40].

Studies of the phasic response of the brain at event boundaries have provided evidence that
some resource-intensive activity takes place at the points where readers and viewers identify
event boundaries [32,41,42]. Recently, interest has turned to identifying and characterizing the
neural dynamics of event representations themselves. One approach has focused on the
cortex. Hasson, Yang, Vallines, Heeger, and Rubin [43], using a creative movie-scrambling
manipulation, characterized the duration over which representations in various parts of the
cortex were sensitive to prior context. They discovered a hierarchy of temporal receptive
windows, such that brain regions close to the sensory surfaces appeared to maintain infor-
mation only for short durations, whereas association areas in parietal and frontal cortex
maintained information for much longer durations. Baldassano and colleagues [44] used a
data-driven method to identify points in time where the activity in a brain area shifted from one
stable pattern to another. They found evidence for such regions throughout the brain, and
found that their transition points corresponded with the subjective event boundaries of the
viewer. Different regions transitioned on different timescales in a way that corresponded well
with the temporal receptive windows identified by Hasson and colleagues [43].

Another approach to the neural dynamics of event representations has focused on the HPC
and surrounding structures. Building on work on place cells in the HPC [45], and on work on
[214_TD$DIFF]HPC representations of temporal context in human verbal memory [46,47], Eichenbaum and
colleagues [553_TD$DIFF]used electrophysiology in rodents to characterize time cells which respond to
specific timepoints within a temporal sequence [46]. Hsieh, Gruber, Jenkins, and Ranganath
[48] trained humans on a picture memory task in which participants viewed a stream of pictures
that contained repeating sequences, and individual pictures appeared at predictable locations
within a sequence. Using fMRI, they found that HPC representations coded for specific objects
in specific learned temporal positions, but not for object identity or temporal position alone.
Further, they found that the pattern of activity in the left HPC changed more at boundaries
between sequences than at picture-to-picture transitions within sequences (see also [44]).

To investigate the causal link between the neural activity observed in fMRI studies and
segmentation ability, segmentation was tested in a group of patients with brain injuries from
the VietnamHead Injury Study [49]. Individuals with penetrating traumatic brain injury (pTBI) had
lower segmentation performance, and those with larger lesions were especially impaired. A
strong association between lesion size and coarse-grained segmentation was observed.
However, there was little regional specificity with respect to specific aspects of impairment.
For example, it was predicted that lesions in the ventromedial prefrontal cortex (PFC) would
result in poorer scores on videos that contained social information compared to nonsocial
videos; this hypothesis was not supported [50].

In naturalistic activity, people are not simply passive observers but are also actors. Do people
segment their own activities in the same way as they segment the actions of others?
Researchers have tended to implicitly assume [554_TD$DIFF]that the answer is ‘yes’, but little empirical
research has tested this hypothesis. There is good reason to think that actors’ and observers’
representations of an activity often differ substantially because actors and observers have
access to different features of the activity [51,52]. As an actor, one often has better access to
the state of one’s plans and goals; as an observer, one often has better access to the larger
physical context of action. Does this affect segmentation? A recent study from Swallow and
colleagues suggests not: no differences were observed in segmentation of the event based on
vantage point [53].
6 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Viewpoint becomes a particularly acute issue when one considers the immensely important
affective dimension of experience. Barrett and colleagues have proposed a theory of emotional
experience that sees affect as a component of a predictive internal model, and this [555_TD$DIFF]theory has
much in common with working models as described here [54,55]. A key feature of this account
is the role of interoception – registering internal states – in constructing this internal model.
When perceiving emotions, actors have access to interoceptive features, cognitions, and goals
that are not available to observers, but observers have access to contextual features and facial
expressions that may be less available to actors. Verbal labels can play an important role in
aligning the features available to actors and observers [56]. An important question for future
research concerns how the updating of affective aspects of internal models relates to the
updating of event representations in actors and observers. Are they temporally coupled? Are
they determined by the same mechanisms?

In short, people parse ongoing streams of activity into events, characterized by stable neural
states that transition discretely at event boundaries (Box 2 gives a discussion of structures
richer than simple segmentation). People segment the activity of others as they observe it, and
recent research suggests that they segment their own activity using similar mechanisms.

Prediction Error-Based Updating
For working models to be helpful, they must be updated at appropriate times. Failure to update
leads to perseveration on a situation that has now changed; too-frequent or too-infrequent
updating renders working models unable to retain relevant situational features; and updating in
Box 2. Hierarchies and Strands

For the most part, in this paper we describe events in terms of a single segmentation of a timeline into chunks. This
reflects the state of the science; however, it is clear that events have structure beyond a single sequence of chunks. One
important feature of naturalistic activity is that it can be segmented according to different timescales. Within a single
event, segmentation occurs simultaneously on multiple timescales, and different timescales are related hierarchically
such that fine-grained events group into larger coarse-grained events [34,117,118]. For example, a coarse-grained
event within the ‘getting ready for work’ activity might be ‘brushing teeth’. Within this coarse event, fine events might
include putting toothpaste on the toothbrush or picking up the toothbrush.

Another important feature of naturalistic activity is that it includes thematically related events that are discontinuous in
time. For example, a sculptor may work on a piece in sessions separated by hours, days, and weeks, but conceptualize
the sculpting as one unified activity. However, most extant models lack mechanisms to account for structures that
cohere despite being discontinuous in time. Kubovy [119] has recently called attention to this problem, and proposed a
framework for describing such event structures. Within Kubovy’s ‘concurrent strands’ framework, one might have
different representational strands for the many facets of one’s life, including home, work/school, errands, and personal
business.

Strands are specified according to the point of view of the individual [119]. Each strand is characterized in three ways: by
the role of the individual, by the other people typically involved in activities that take place in this strand, and by where
activities within this strand typically occur. For example, the ‘home’ strand may be characterized by the role of the
individual in the nuclear family, the other individuals that live in the home, and the dwelling that is the setting for many of
the ‘home’ activities. Importantly, Kubovy suggested that [543_TD$DIFF]one’s experience of events within a strand is that events within
the same strand are causally related to one another. Even when a time gap is introduced, such as going to work
interrupting the home thread, events that occur after the gap are experienced as being related to the events that
preceded it in that strand.

Individuals can also transiently activate different strands – being interrupted at work by a reminder to set up a play date
for the children (‘home’ strand) would not be understood by the individual as comprising a causal relation between other
events within the ‘work’ strand and the play date. Instead, the play date would be integrated into the causal chain of
events experienced within the ‘home’ strand even though this event takes place away from the typical setting of events
within this strand. In other words, although these events are experienced in a temporally interleaved fashion from the
vantage point of the outside observer, the actor tags these events with different meanings and assigns each event to a
different strand, thus separating these events experientially. An important question for future research is: how does
organization by strands interact with hierarchical organization?

Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 7



TICS 1716 No. of Pages 19
the wrong places leads to working models that are a mishmash of information that is relevant
and irrelevant, accurate and inaccurate. An event model system that perseverates, that jumps
around constantly, or that fails to carve activity at its joints cannot facilitate smooth prediction.
Thus, the mechanism by which working models are updated is crucial. One account of this
mechanism is given by event segmentation theory (EST) [57]. EST proposes that working
models are updated in response to transient increases in prediction error (Box 3). As we have
noted, a well-fitting working model improves the ability of a cognitive system to make pre-
dictions about the near future. However, when things change in the world, the contents of the
current working model will become out of date, leading to errors in prediction. At such
moments, it is adaptive to update one’s working model. EST proposes that this updating is
regulated by monitoring ongoing prediction error. When prediction error spikes, the current
working model is flushed, and information is gated into a new working model from (i) currently
activated sensory and perceptual representations, (ii) activation carried over from the previous
workingmodel, (iii) associative retrieval from episodicmemory, and (iv) associative retrieval from
semantic memory [556_TD$DIFF](see Box 1 in [2]).

One piece of evidence for the role of prediction error in event boundaries comes from a series of
experiments in our laboratory [58]. In these, participants watched movies that had previously
been segmented by other viewers. From time to time, each movie was stopped and partic-
ipants were asked to predict what would happen in 5 s by selecting one of two still pictures.
EST entails that prediction should be more difficult when participants must predict across an
event boundary, and that is what was found. fMRI indicated that these conditions were
associated with greater activity in the midbrain dopamine system which is involved in signaling
prediction errors [59].
Box 3. Mechanisms of Event Segmentation

Event segmentation theory [57] proposes a specific mechanism responsible for event segmentation. According to EST,
working models are updated in response to spikes in prediction error. However, other mechanisms are possible.

Consider an agent that makes predictions about how activity will unfold, based on some combination of learning from
previous experience and inbuilt predispositions. At any point in time, t, the agent makes a prediction about what will
happen a short time later, t + 1. We denote the agent’s prediction at time t pt (where p refers to representation of a state
of affairs). We describe the state of affairs the system subsequently experiences as st+1. The magnitude of prediction
error, then, is given by the sum of squared error between pt and st+1 (in reinforcement learning models, this quantity is
referred to as ‘surprisal’ [6]). In EST, spikes in this quantity trigger working model updating.

As stated, pt is a point estimate. Cognitive systemsmay not only produce a point prediction but also generate a range of
values based on previous experience and the dispositions of the system. If that range is large, thismeans the system has
greater uncertainty [92]. A second possibility is that this high level of uncertainty about the prediction could trigger the
updating processes. Instead of waiting for a prediction error at time t + 1, the system updates at time t in anticipation
that the upcoming situation is unpredictable.

A third possibility is that, instead of updating based on prediction error or prediction uncertainty, the system simply
monitors for change. It could constantly compare the current state of affairs, st, to the recent past, st�1, and update
when the change from t�1 to t is large [120,121].

Finally, a fourth possibility is that the system tracks the history of sequences of states that it experiences, and clumps
states based on their co-occurrence over time [104,122]. A learning system could group states that tend to co-occur
nearby in time in many sequences into communities, and to segment a sequence when it transitions from a state
associated with one community to a state associated with a different community. In a sense, this amounts to
segmenting based on change in the internal representation (rather than in the features of the world) (Figure I).

In naturalistic activity, these mechanisms might make very similar hypotheses about how a system will segment. For
most learning systems, prediction error is associated with uncertainty. In naturalistic activity, prediction errors tend to be
larger when more features of the activity are changing. All [544_TD$DIFF]of these features are associated with transitions from one
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community to another. For this reason, teasing apart these potential mechanisms is a major challenge. Nonetheless, we
think it is an important one to tackle because there are times in naturalistic activity when they do pull apart. For example,
although larger changes usually lead to larger prediction errors, sometimes the absence of change is what is
unpredicted. To make this concrete, imagine a child waiting for an icecream truck. All summer, the truck has turned
at the corner, onto the child’s street � and entropy is thus low. Today the truck continues straight. This lack of feature
change would be associated with a large prediction error (as well as, presumably, a disappointed child).

Figure I. Representation of Community Structure as Described by Schapiro, Rogers, Cordova, Turk-
Browne, and Botvinick [104]. Each node is associated with a particular state, and each edge is associated with
possible transitions between states. States within a cluster tend to connect with one another and not with nodes outside
of the cluster; however, it is possible to transition from a state in one cluster to a state in another cluster (represented by
the dark outlined nodes).
Turning to the updating process, the conditions and mechanisms of working model updating
have been a topic of intense focus in recent research. However, they have antecedents in
classical studies of discourse comprehension. These studies have been reviewed previously
[57], and we will summarize them only briefly (Box 4 gives a discussion of incremental vs global
updating). The main conclusion from this work was that in narrative text, when relevant
dimensions of the situation change, readers update their working models. EST views these
shifts as event boundaries; incoming information is less predictable than it was before, which
should lead to working model updating. The most-studied dimensions are time, space, and
characters. After a shift in a narrative dimension, information presented before the shift is often
less accessible, as measured by accuracy or response time on recognition tests or by reading
speed (e.g., [60,61]). However, it is important to mention two important qualifications to this
general pattern of results. First, features other than narrative shifts contribute substantially to
memory accessibility. Readers often retrieve information that is no longer in a current working
model [557_TD$DIFF]in order to infer information that is missing from the local text, and sometimes simply
reading a semantically related phrase is sufficient to retrieve information that is not in one’s
working model [21]. Second, shifts do not always impair memory accessibility. For example,
there is evidence that readers often do not track spatial shifts, and as a result information may
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 9
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be equally accessible after a spatial shift as before [62,63]. Which narrative dimensions a reader
tracks depends on the reading goals and previous knowledge of that reader.

The first studies to investigate event-based memory updating in dynamic audiovisual events
used clips from commercial cinema, which were pre-tested to identify points that were widely
judged to be event boundaries [64,65]. In these experiments, visual recognition of objects was
tested by waiting 5 s after a given object left the screen, then presenting the object and a
contextually appropriate foil, and asking participants to make a forced-choice recognition
judgment. Participants were less able to identify objects when an event boundary had
occurred, and, when they could identify the objects, retrieval was associated with selective
fMRI activation of the HPC and parahippocampal cortex, areas associated with long-term
episodic memory.

Recent studies from Radvansky and his colleagues have tested the hypothesis that moving
from one spatial setting to another leads to working model updating. The walking-through-
doorways effect shows that people are slower and less accurate in identifying recently
encountered objects after moving from one room to another. The effect holds after controlling
for elapsed time, distance, and visibility [66]. It occurs both for objects that are left in the
previous room and for objects that are carried along in a backpack but are not visible. It
happens both in virtual reality and in real rooms. It does not seem to be highly dependent on
task-specific strategies. Finally, it does not seem to simply be a mismatch between the
encoding and retrieval context because, after walking through one doorway, returning to
the encoding room does not rescue memory [67].
Box 4. Incremental and Global Working Model Updating

An important distinction regarding the updating of working models is between incremental and global updating
mechanisms. An incremental updating mechanism replaces information in a working model selectively, affecting only
unpredicted or changed information. By contrast, global updating affects all aspects of a working model, meaning that
information that may be ‘innocent’ of having caused an update can be affected together with information that led to the
update.

Theories of narrative comprehension propose either solely incremental updating or a mix of incremental and global
updating [123,124]. EST, however, includes only a global updatingmechanism [57]. Surprisingly little empirical research
has attempted to dissociate incremental from global updating. This is a substantial limitation because the two
mechanisms could contribute differently in different comprehension situations, and could be affected differently by
neural dysfunction and individual differences in cognition.

Two recent studies have begun to address this gap using text-comprehension paradigms. Kurby and Zacks [125] used
a think-aloud paradigm in which participants described their thoughts after reading each phrase in a narrative. They
found that when one aspect of the narrated situation changed – for example, moving from an indoor to an outdoor
location – readers were more likely to mention that dimension. However, they were also likely to mention also other
aspects that had not changed – for example, the characters or objects. This suggests that the readers were updating
those other dimensions. Bailey and Zacks [105] used a recognition memory probe design in which younger and older
participants read narratives with changes in two aspects of the situation: spatial location and characters. From time to
time they were probed to recognize a phrase describing one or the other aspect. Response times suggested that both
incremental and global updating were taking place: readers were slowest when probed for an aspect that had just
changed, but were also slowed in responding to unchanged dimensions of the situation compared to a no-change
condition. This study also illustrates the potential significance of the distinction between incremental and global
updating: older adults were equally slow in responding to probes of an unchanged dimension as to probes of a
changed dimension, suggesting that they relied more on global updating (Figure I).

Incremental and global updating may have different consequences for long-termmemory. Huff, Meitz, and Papenmeier
[126] presented readers with movies that included points with changes in 1, 2, 3, or 4 situational dimensions. They found
that subsequent recognition memory was better for points with more changes, and interpreted this as evidence that
more information had been updated, incrementally (however, an alternative possibility is that updatingwas purely global,
but occurred with higher probability when more things were changing).
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Thus, the limited empirical data indicate the importance of distinguishing between incremental and global updating,
providing evidence for both in the domain of reading comprehension. Going forward, models such as EST will need to
address the role of incremental updating.
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Figure I. Mean z Score Response [535_TD$DIFF]Time for Younger and Older Adults, Controlling for Item-Wise
Differences in the Number of Words. Data from Bailey and Zacks [105]. Probes were presented after no shift,
after a shift in the unchanged dimension, and after a shift in the changed dimension. Participants were slower to respond
after a shift compared to the no-shift condition. Older adults were slowed similarly whether the probe tapped the
dimension that had shifted or the dimension that had remained the same, suggesting that they globally updated both
dimensions when either changed. By contrast, younger adults are slower in responding to the changed dimension after
the shift compared to unchanged information after the shift, suggesting that they performed both local and global
updating.
Studies such as these show that working memory representations are updated at event
boundaries. However, there is so far no direct evidence tying this updating to prediction error.
One suggestive result comes from a study of long-term memory editing [68] in which pre-
dictions in the medial temporal lobes were estimated using a multivariate fMRI method. When
predictions were strong and wrong, indicating large prediction errors, participants had better
delayed memory for the unpredicted information. However, updating effects in working
memory have not yet been directly studied.

Thus, spikes in prediction error are thought to be related to working model updating, and when
a working model is updated the observer has the phenomenological experience of one
meaningful unit of activity coming to an end (and the next unit of activity beginning). Because
prediction error is high at event boundaries, people have more difficulty predicting short-term
future happenings across event boundaries compared to within an event. When working
models are updated, information contained in the previous working model becomes less
accessible. What are the mechanisms that bind information together within an event, and
that allow access to information from a previous event once it has ended? We now turn to
recent research on these questions.

Binding Features into Event Models
When a workingmodel is updated, somemechanism needs to bind together disparate features
into a coherent representation in a space that will afford smooth prediction. In the example in
Figure 1, simply representing ‘R holding milk’ as an isolated feature does not afford smooth
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 11
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prediction; it is the multidimensional representation of the current milk holder, the state of the
coffee cups, and so forth that makes prediction feasible.

The problemwas articulated clearly by Baddeley in his description of the ‘episodic buffer’ [69], a
construct that has much in common with the working model construct we describe here. As
Baddeley noted, such a representation probably leverages long-term memory to boost its
capacity and durability (cf [70]). Baddeley suggested that one natural place to look in the brain
for such representations is the PFC ([69]; also [57]). This possibility fits with neurological studies
identifying action disorganization impairments with lesions to the PFC [71], and also with
classical monkey and human physiology studies identifying sustained firing in the lateral PFC
with working memory maintenance [72–75].

However, a growing body of evidence suggests that the HPC and adjacent structures also play
a crucial role in rapidly binding disparate features into coherent complexes. The HPC has
classically been conceived as a structure specialized for long-term episodic memory, spatial
memory, or some combination of the two. However, a large and growing body of evidence
supports the idea that the HPC is important for binding together disparate features of a situation
[76–78], even when the retention interval is essentially zero [76–80]. For example, when people
with HPC lesions were asked to view simple arrays of objects and then reconstruct them after a
4 s delay, they were disproportionately likely to swap the positions of two objects, indicating
that they successfully retrieved the object locations but had failed to bind individual objects and
locations accurately [81]. Recognizing objects presented recently in movies selectively acti-
vates the HPC when it is necessary to reach back across an event boundary to identify the
object [64]. On this view, the HPC is specialized for binding together activated representations
instantiated by other brain systems, particularly cortical representations of features of events
that could combine in multiple different possible ways. Ranganath and Ritchey [82] have
proposed, specifically, that HPC interactions with adjacent regions in the medial temporal
lobes, and in the medial posterior cortex, are crucial for binding information about individual
entities with information about spatiotemporal context to form a coherent event representation.
In their account, the perirhinal cortex is the main hub for representing entity information, the
parahippocampal cortex and retrosplenial cortex are the main hubs for representing context,
and the HPC binds their representations together into an event model. Each of these systems is
proposed to interact with a distinct set of lateral cortical regions. Consistent with this view,
Baldassano and colleagues [44] found that shifts in cortical patterns in both sets of lateral
cortical regions were associated with phasic increases in the HPC. Other models suggest that
communication between the HPC and the PFC (specifically, the ventrolateral PFC) may also be
important for within-event binding: in a sequential picture memory paradigm, Dubrow and
Davachi [83] found that interactions betweenHPC and ventrolateral PFC predictedwithin-event
sequential memory.

Binding information into event models is, of course, crucial for episodic memory formation
because it provides a route for a retrieval cue to call up appropriate information from a related
previously experienced episode, as laid out by context models of episodic memory [84]. One
possibility is that the within-event binding function of the HPC (in collaboration with other brain
systems) and its episodic memory formation function are complementary, reflecting distinct
components of the cascade that occurs at an event boundary. Ben-Yakov and colleagues [85–
87] have proposed that phasic activity in the HPC at the ends of events implements a ‘now
print’ function, compiling accumulated bound event representations in a way that enables their
retrieval after a delay. They found that univariate activity in the HPCwas time-locked to the ends
of movie clips, and that the magnitude of this activity predicted the likelihood of remembering
the just-ended clip (see also [88]). This is consistent with the findings of Dubrow and Davachi
12 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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[83] who found that phasic responses in the HPC at event boundaries in the sequential picture
paradigm predicted subsequent sequential memory.

Together, these results suggest a model in which the HPC plays two related but distinct roles in
event model maintenance and updating. During an ongoing event, the HPCmay bind disparate
concurrently activated cortical representations into a coherent complex. At an event boundary,
the HPC may perform a ‘now print’ [85–87] or ‘sharpening’ function [82] that stabilizes the
bound pattern in a way that preserves it for subsequent recall, before abandoning the current
binding to make room for binding a new working model (Figure 2).

Action Planning and Control
Having described a role for working event models in perception and memory, we turn to their
role in action planning and control. We start from a working hypothesis that the structured
representations that humans and other animals use to control action are the same event
models that they use to understand the actions of others [89], and that the predictions we need
to make as observers seeking to understand overlap heavily with the predictions we need to
make to guide action adaptively. This is eminently plausible, especially because in naturalistic
behavior observation and comprehension are tightly coupled to action. The idea that complex
action control requires structured representation of events has a rich history in artificial
intelligence [90] and in psychology [91]. Recent work in computational and experimental
neuroscience has begun to link structured representations in perception and in action.

In the context of reinforcement learning, it is possible to give a formal analysis of the costs and
benefits of maintaining structured representations of situations. One important contrast is
between model-free and model-based learning (N.D. Daw, PhD Thesis, Carnegie Mellon
University, 2003). In model-free learning the system attempts to learn directly the optimal
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action given all the possible states it experiences. This can lead to optimal behavior if the
environment is appropriately structured, but the sequential organization of the behavior must be
determined by the structure of the environment – all the system can learn is the overall value
associated with each state. By contrast, a model-based learning system attempts to simulta-
neously learn the structure of the environment together with the optimal action to be taken in
each state. This allows the system to take into account the potential sequence of states the
learner might pass through, providing a basis for planning based on predicted future states. The
costs and benefits of model-based learning are analogous to the costs and benefits of event
models that we described at the beginning of this paper: model-based learning is more
complex and costlier, but allows the system to learn complicated structures that cannot be
tractably learned with model-free learning. Reviewing research on the neural underpinnings of
model-based learning, Daw and colleagues [92] associate it with structures in the PFC (among
others).

One important question about action representations is how the mind and brain capture the
hierarchical structure of action. Studies of complex task performance in monkeys and humans
suggest that the PFC represents the structure of one’s current task simultaneously on multiple
timescales, possibly with a temporal gradient such that shorter timescales are represented
more posteriorly and longer timescales are represented more anteriorly [93–95].

If the same event representations underlie perception and action, then one would expect to find
an association between the perception of structure in the actions of others and the ability to
perform [558_TD$DIFF]structured actions of one’s own. Suggestive evidence comes from recent work on
event perception and action control in people with high-functioning autism spectrum disorder
(ASD). People with ASD have selective impairments in event segmentation that are not
accounted for by general intellectual dysfunction [96]. This population also has a selective
impairment in the ability to use a current event context to guide action in a simple decision-
making task [97]. However, to our knowledge noone has tested whether individual differences
in event perception predict individual differences in action performance in people with ASD.

Bailey and colleagues [25] tested the hypothesis that event perception predicts action perfor-
mance directly in a population of older adults with varying degrees of cognitive impairment likely
due to Alzheimer’s disease (AD). Participants viewed movies of everyday activities and seg-
mented them into events. They also completed a standardized test of naturalistic action
performance, which involved packing a child’s lunch and backpack [98]. As expected, healthy
participants performed better on both the action perception and the action performance task.
However, after controlling for differences in clinical cognitive impairment, those who segmented
better were still substantially more successful in the action performance task. A converging
result comes from a study of intellectually disabled people in a sheltered workplace, conducted
by Sebastian and colleagues [99]. They found that a measure of event segmentation predicted
[559_TD$DIFF]workers’ abilities to perform an assembly task. Box 5 provides further discussion of the
potential utility of event cognition measures for diagnostic purposes and as a target for clinical
intervention.

The dual role we are proposing for event models becomes very clear when one considers
situations in which a person needs to coordinate with others to accomplish a task. Khemlani,
Harrison, and Trafton [100] described an architecture to enable a robot to segment and
represent events while coordinating its actions with a team of humans. In this architecture,
segmentation is organized by goals, locations, and characters and objects; changes in these
features correspond to event boundaries. The system actively maintains a structured repre-
sentation of the events taking place, which includes information about the physical situation, the
14 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Box 5. Diagnostics and Intervention

Event models might at first blush seem too ‘messy’ to be a basis for clinical diagnosis and intervention, but in fact they
are fairly easy to assess in the clinic and in the laboratory, and could be important diagnostic indicators of dysfunction in
everyday life [127]. People differ reliably in their ability to segment everyday events in a normative fashion, as well as in
their ability to subsequently remember those events when tested with recall or recognition measures (e.g., [39]). Event
segmentation measures are less influenced by education and SES than are many standard neuropsychological tests
[128]. It is also possible to measure one’s ability to perform everyday actions reliably using measures that give a detailed
picture of the types of action errors that a given individual [545_TD$DIFF]tends to make [98]. These measures are sensitive to group
differences including age, clinical dementia status, and genetic markers of dementia risk [25,129]. Moreover, event
segmentation measures reliably predict both subsequent memory [39] and action performance [25]. Thus, measures of
event cognition may be [546_TD$DIFF]an attractive basis for future diagnostic instruments.

Event cognition is also an attractive basis for cognitive interventions. Simply asking individuals to attend to the structure
of an event can improve memory for the event. A recent study by Flores and colleagues asked participants to segment
the events depicted in a video, to press a button every few secondswhile the video was playing, or simply to intentionally
encode the information in the video while passively watching. Memory for the event immediately after viewing did not
differ by condition but, for participants in the segmentation condition, memory after a 10 minute delay was significantly
better than in the other two conditions. This benefit of segmentation for memory persisted through a 1month delay [130]
[547_TD$DIFF](Figure I). Similarly, cueing of event boundaries improved memory for boundary information in both younger and older
adults [131] [548_TD$DIFF].

If event cognition interventions improve memory in healthy people, they may also prove valuable in the clinic. Deficits in
event cognition have been identified in individuals with characteristics of autism [96], schizophrenia [132], Alzheimer’s
disease [40], post-traumatic stress disorder [133], and obsessive-compulsive disorder [134]. Researchers studying
several of these disorders have suggested that event comprehension interventions have promise in remediating the
symptoms of the disorders or in compensating for their effects [128,135,136].
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goals of the robot, and the goals of its human colleagues. For the robot to collaborate
effectively, its representation needs to correspond with those of its human partners.

To build such shared event representations, people rely heavily on communication, both verbal
and nonverbal. Recent work on gesture has shown how it can shape event representations
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Outstanding Questions
What computational features trigger
the updating of working event models,
and how is the updating implemented
computationally?

Which aspects of event representa-
tions are shared across perception
and action control, and which are
unique to each domain?

How do event models from real life
differ from event models from medi-
ated life, especially movies?

How does retrieval from episodic
memory and semantic knowledge
affect the construction of working
event models?

How are different event strands repre-
sented in the mind and brain?

How can event cognition be improved
with training or cognitive aids?
adaptively and efficiently, complementing the affordances of verbal language [101]. People use
gesture to highlight information to which they want their conversational partners to attend [102]
and to communicate about abstract concepts [101]. The timing of gestures can highlight the
segmentation structure of an event description; for example, in languages that can use serial
verbs to describe a complex event with a single phrase, gestures cover only those construc-
tions that correspond with single conceptual events [103].

In short, recent studies of action perception and action performance in people with ASD,
healthy aging, early AD, or intellectual disability all suggest that individual differences in the
ability to form event representations in perception are predictive of individual differences in the
ability to perform structured action sequences. Such representations are necessary both for
coordinating one’s own solitary behavior and for coordinating behavior with others. The ability
to infer goals and mental states and the ability to predict likely actions of others facilitates social
coordination. By proactively inferring the actions of others on an ongoing basis, the brain places
one in a position to act or react appropriately at anymoment given the opportunity. In [560_TD$DIFF]one’s own
day-to-day life, such representations facilitate the ability to track [561_TD$DIFF], plan, and carry out complex,
goal-directed activities while remaining flexible enough to respond to, and accommodate,
changes in the environment that necessitate modification of the action plan.

Concluding Remarks
The Oxford English Dictionary [562_TD$DIFF](www.oed.com) gives four senses of the word ‘parsimony’. One,
rarely seen today, relates to stinginess: ‘economy of action, effort, or process in an organism or
natural system’. Another is the definition familiar to scientists: ‘the principle that no more
entities, causes, or forces than necessary should be invoked in explaining a set of facts or
observations.’ Event models are unparsimonious in both senses: they are an added burden for
an organism to construct, maintain, and update, and they add complexity to scientific accounts
of perception, memory, and action. Nonetheless, the evidence drives the conclusion that they
are an important component of human mental life and a valuable theoretical construct for
cognitive scientists (see Outstanding Questions). The research reviewed in this article provides
strong evidence for the existence of event models and provides insight into the types of
problems that these cognitive representations may have evolved to deal with. Not only do event
models afford the ability to understand and make predictions about complex systems, includ-
ing social interactions and relations between actions and objects, but they also allow the
execution of efficient action plans. Although event models are computationally costly, the cost
of creating, maintaining, and updating an eventmodel is balanced by the benefit of being able to
more easily solve difficult scenarios that are part and parcel of everyday life.
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