BTPLANE an Oxford Instruments company

Filament Tracer (+XT)

© Oxford Instruments 2016

Purpose

Allows for measurements of neuronal or other branching structures (eg. Mycorrhiza, blood vessels, mitochondria network etc.)

- Segment properties (length, diameter, etc.)
- Branch Angles
- Number of end points and branch points
- Spine classification
- Etc.

Measurement of Dendritic Tree

Segmentation using FilamentTracer

Interaction with the modelized structure to measure individual segments or number of branch points

> OXFORD INSTRUMENTS

Image: Courtesy of Dr. Anne McKinney, McGill University, Montreal, Canada

Surface Object Versus Filament

BITPLANE an Oxford Instruments company

Non-directional

FilamentTracer: Tracing Methods

Multiple tracing methods to ensure accurate results:

- 1. Automatic detection
 - a) Fully automatic detection based on intensity threshold (may have loops)
 - b) Full automatic (creates tree without loops)

BITPLA

- c) Iterative Tracing
- d) Region of Interst (ROI) Tracing
- 2. Semi-Automatic AutoPath
- 3. Semi-Automatic AutoNetwork
- 4. Semi-manual tracing Autodepth
- 5. Manual with automatic Z placement

Unique ability to create and edit filaments using any combination of tracing modes + simultaneous visualization of tracing and raw data

→Accurate and consistent tracing results

1a. Fully Automatic: Threshold

BITPLANE an Oxford Instruments company

🤻 Create	🖉 Settings	Color
Algorithm		
🚫 Skip au	Itomatic creation	, edit manually
Favorite Creat	ion Parameters	40
Default *		→]\$
Algorithm Set	tings	
Threshold (loc	ops)	
The Threshold - Produces a fi - Is based on a - Thinning to a	based Agorithm ament with loop n absolute intens skeleton	: s sity threshold
Segment a	Region of Intere	st

1. Select algorithm settings

Create Setti	ngs 🔮	Color	
Channel 1 - (name r	not specifie	d)	-
Feature Preprocessing			
readine Preprocessing			
Enable Feature Prep	rocessing		
Enable Feature Prep Appr. Filament Diameter	rocessing		um

2. Enter filament diameter

OXFORD

1b. Fully Automatic (no loops)

1. Select algorithm settings

2. Enter Dendrite beginning/End diameter

3. Adjust QUALITY thresholds

-From Histogram -Manual Editing -Remove Seed Points AutoPath tracing algorithm connects start and end points via shortest path.

BITPLANE

an Oxford Instruments company

 For fully automatic creation we calculate start and end points via spot-detection.

Remove Disconnected Segments			
Smooth with: 0.682	um	•	AI

•		•
Øriginal	without removal	with removal

llows the user to control the behavior of FilamentTracer when it identifies a gap in the image signal

ΡΙ

an Oxford Instruments company

First mask the original data set and then set a • max gap between adjacent masked areas

M@A 59.7	
-	

If the max gap entered is smaller than the gap between adjacent masked areas FilamentTracer will stop the trace

3/8 Classify Dendrite Points

Background Subtraction

Example:

Filament with some apparent "gaps" (in this case they are not real gaps, just areas with low intensity)

Steps 1,2,3 will get us to this point (seed points and start point visible).

Removal of disconnected segments (cont)

BITPLANE an Oxford Instruments company

Mask using a small gaussian filter

- Using a smooth factor (gaus. Filter) of 0.1 micron results in a mask that very closely matches the original signal.
- It will include even the "smallest" parts of the filament
- Not ideal if user wants to stop tracing across areas that are connected with a very narrow (but positively stained) filament (see arrow above)
- Ideal if user wants to be very stringent in the use of the "max gap" tool

Mask using a bigger gaussian filter

- Using a smooth factor (gaus. Filter) of 1 micron results in a mask that loosely resembles the original data (small details are no longer included)
- Ideal when user wants to stop traces that would otherwise jump over the visible gap (see arrow above)

Removal of disconnected segments (cont)

Detail of seed points

The tool does not directly take into consideration the gap between seed points (A and B). Instead it uses the gap between the mask (between C and D)

BITPLANE

Detail of Mask

Here the mask is shown (grey). In this case if a "Max Gap Length" of 1.5 was entered, Filament Tracer would jump the gap creating a continuous filament. If the Max Gap Length was set to 1, Filament Tracer would stop before crossing the gap.

Removal of disconnected segments (cont)

- Because the mask included the area with very weak signal (the gap), the filament crossed the gap (see arrow) thus creating a long filament running from the top right to the bottom left
- In this case all the seed point are used for the filament
- Because the mask excluded the area with very weak signal (the gap), the filament did not cross the gap (see arrow) thus creating a short filament running from the top right to center of the image
- In this case only part of the seed points were used (the ones on the top right and center)

Volume Calculation Threshold Adjustment

Choose diameter approximation method

position is not we large diameter str irregular spine hea the green circle

The method of diameter calculation has no effect on the position of the filament center axis, located at the local intensity peak

> Recommended when the center axis position is not well centered in a large diameter structure e.g large irregular spine heads. The area of the green circle is equal to the cross-section area determined in the threshold step

BITPLANE

an Oxford Instruments company

This option considers the radius as the shortest distance from the seed point (yellow disk) to the edge of the filament mask (blue line), in any (x,y,z) direction

This method is typically less sensitive to diameter overestimation due to axial (z) blur. It is recommended when the center axis is overall well centered on the structure and the real structure has a roughly circular cross-section.

Detect S	nines
elect Sour	ce Channel
Channe	el 1 - (name not specified)
Geed Points	ameter: e.g. Small Spine Head
Geed Points Thinnest Di 1.455	ameter: e.g. Small Spine Head) um
Geed Points Thinnest Di 1.455 Maximum Li	ameter: e.g. Small Spine Head) um

1. Enter seedpoint size and maximum length

2. Adjust number of seedpoints with threshold

Spine Detection (cont)

3. Define diameter with threshold

Rebuild All	
Keep Data	
Rebuild	
Creation Parameters	
[Algorithm]	
Name = Autopath (no loops)	
Diameter Calculate = true	
Enable Regions of Interest = Taise	
Dendrite Points Diameter]	Ξ
Dendrite Channel Index = 1	
Dendrite Starting Point Diameter = 11.4 um	
Dendrite Seed Point Diameter = 0.682 um	
[Classify Dendrite Points]	
Dendrite Starting Point Threshold Low = Automat	ic
Dendrite Starting Point Threshold High = Automat	ic
Dendrite Seed Point Threshold = Automatic	r.
Pamera Disconnected Segments - false	1
Remove Disconnected Segments = ruise	
Remove Disconnected Segments Background Sub	tr 🔻
4 III)	

BITPLANE

an Oxford Instruments company

1c. Iterative Automatic Tracing

Excellent for tracing complex structures with both fine (small dendrite/spines) and large dendrites or axons

- 1. Build a filament using any method.
- 2. Click on the creation tab and select rebuild tab option

/ 🤻	1 1	Y	M.	0	-
Rebuild					
Rebuild All					
Rebuild Al					
Rebuild De	endrite				
Rebuild De	endrite Dia	meter			
Rebuild Sp	oine				
Rebuild Sp	ine Diame	ter			

3. Choose whether or not to keep data

1 4	1 4	Y	W	0	-
Rebuild		- (N) - (N)	100		
Rebuild Al					
📄 Keep 🛛	ata				
		Rebuild			

4. Choose "use existing dendrite" if desired and set your new end point diameter

Dendrite	r setungs	Color
Select Source	Channel	
Channel	1 - (name not s	pecified) 🔻
Starting Point	ts	
🔘 Use Existi	ng Dendrite	
Detect Ne	w Starting Poin	its
(Largest Diam	eter: e.g. Dend	rite Beginning)
11.364	U	Im
Seed Points		
(TI: 10)	n <mark>eter: e.g. D</mark> en	drite Ending)
(Ininnest Dian		

5. Adjust threshold to choose additional end point to be added to existing filament.

1d. Region of Interest (ROI) Tracing

Good for tracing portions of large complicated data or data that has regions with different parameters

1. Create a new filament and check "segment a region of interest"

Algorithm		
🔕 Skip a	utomatic creation	, edit manually
Favorite Crea	tion Parameters	
Default *		•
Algorithm Set	ttings	
Autopath (no	loops)	
The automate · Produces a t · Is based on I · Connects Iar V Calculate I	d Autopath Algori ree-like filament local intensity con ge start- and sma Diameter of Filam	thm: trast ill seed-points ents from Imag
Segment a	a Region of Intere	st
	1972	

4. On "last" step, select additional regions.

5. Select ROI to overlap with existing filament to continue to build on existing structure.

- 2. Select a ROI. (Switch to orthogonal view for easy ROI navigation)
- 3. Proceed with processing as normal

6. Choose "use existing dendrite" and set your new end point diameter. Adjust threshold.

7. Calculate diameter. Repeat process from step 4. When finished, select "All done" to complete process.

BITPLANE

an Oxford Instruments company

2. Semi-Automatic AutoPath

To start with Semi-Automatic Tracing, cancel fully automatic • creation.

OR 1/7 Algorithm Skip automatic creation, edit manually

- Select "Draw" tab and method "AutoPath"

BITPLANE

an Oxford Instruments company

- Switch Pointer to selection mode (Esc-key)
- Shift+RightClick onto cell body in 3D volume
- Wait for calculation •
- Move Mouse around and see traced paths in real-time. •
- Shift+LeftClick to add path to filament.

Algorithms described in:

E. Meijering, M. Jacob, J.-C. F. Sarria, P. Steiner, H. Hirling, and M. Unser, 2004 Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images, Cytometry, vol. 58A, no. 2, April 2004, pp. 167-176

- When you press Shift+RightClick to set a starting point, the FastMarching Algorithm propagates a front outward from this starting point. The speed of propagation depends on image intensity, faster propagation occuring at brighter voxels.
- Finally the paths are traced backward from the current mouse position by steepest descent.
- Upon Shift-Left Click paths are traced backward until they reach the filament. Here they are merged with the existing filament to create a tree without loops.

- The center segment in the left picture was taken as start point from which AutoPath calculated the highest intensity paths.
- Tracing is then carried out towards the center filament and allows to capture side branches with a single click.

1 4 1	Y 🗹 🥥 🛸	1. Highlight segment,
Method AutoPath	Filament Diameter 0.882 um	pi, or branch to use
AutoNetworkAutoDepth	Type Dendrite Spine 	2. Click
Manual	Set Selection as Starting Point(s)	

BITPLANE

an Oxford Instruments company

3. Semi-Automatic AutoNetwork

 Similar to AutoPath with the exception that intermediate «way-points» can be set after having first created a Network

- Select the source channel and the minimum (smallest) diameter to be detected
- To set the starting point press **Shift + right-click** on the preferred location of the structure.
- Place the mouse at the ends of the structure and the path is displayed.
- To draw the displayed path press Shift + left click.
- Please note: To create "way-points" press Shift+left-click at the location of the way-point, and simultaneously press Shift-right-click (at the same location) in order to move forward toward the real end-point.

4. AutoDepth Tracing

Method	Filament	
AutoPath	Diameter 0.882	um
AutoNetwork	Туре	P
AutoDepth	Oendrite Spine	
Manual	Set Selection as Starting Poin	t(s)

- 1. On the "Draw" tab switch method to "AutoDetph".
- 2. Switch the Surpass view to "Selection" mode (ESC key)
- 3. Turning the mouse wheel or entering a value will alter the cursor box size (resulting filament diameter only visible in certain modes).
- 4. Left-click+shift at the desired starting point and draw along a filament. Imaris automatically determines the 3rd dimension using maximum intensity along the viewing ray.

- The resulting filament is of constant diameter (unless the wheel is turned during drawing) and follows the structure in 3D
- Good for fast, accurate and reproducible manual tracing

5. Manual Drawing

Method	Filament		
AutoPath	Diameter 0.882		um
 AutoNetwork AutoDepth 	Type Oendrite	Spin	e
Manual	Set Selection	on as Starting	Point(s)
Slice	Automatic Placeme	nt	
XZ Plane Pos	ition 1.51		um
XY Plane	<u> ' ' ' '</u>	1 1	1 1

- In this mode users can manually trace filaments in xy, in a single z-plane.
- the z-position can be determined:
 - manually (when Automatic Placement is switched off) using the +/- keys or up/down keys.
 - Automatically via Automatic Placement in which a single z-plane moves based on cursor position
- Good for tracing in complex trees where one wants to focus on one specific portion of the structure

Before Centering

After Centering

Diameter Calculation

- Can rebuild diameter from Creation tab BEST METHOD
- Diameter Calculation is also available on the Edit tab Only to be used to change individual dendrite segments or spines

Filament Visualization Styles

BITPLANE an Oxford Instruments company

Filament Element Visualization

BITPLANE an Oxford Instruments company

Filament Editing Selection

Branch

Rel. Branch- selects short parts defined by the ratio of the branch length to trunk radius

BITPLA

an Oxford Instruments company

Loops- finds circular closed filaments limited by a maximum length.

Invert- selects unselected parts and deselects selected parts.

Abs Branch- selects branches shorter than a defined length.

Path- selects shortest path between two selected points

Clear- clears current selection.

Filament Processing

Point 🧿 Se	gment 🔘 Brai	nch 🔘 Filame
ele <mark>ct</mark> Parts fror	n Filaments	
Expand Selec	tion on Spines	
el. Branch	Loops	Invert
os. Branch.	Path	Clear
ocess Selectio	n	
Assign as Den	drite As	sign as Spine
Assign as	Dendrite Begin	ning Point
Smooth	Center	Diameter
Duplicate	Delete	Join
ocess Filamen	ts	
Clear D	endrite Beginni	ng <mark>Point</mark>
Smooth	Center	Diameter
	1000	

- 1. "Assign as ____"-marks the selection as a dendrite, spine, or dendrite beginning point
- 2. Smooth- removes roughness of the filament/selection
- 3. Center-re-centers the filament/selection
- 4. Diameter-recalculates the filament diameter
- 5. Duplicate-Copies the selected portions to a new filament object
- 6. Delete-deletes the selected portion
- 7. Join-Connects two parts of a filament
- 8. Split-Splits unconnected parts of the filament into separate filament objects. Allows individual coloring and individual statistics.
- 9. Merge-connects separate filament objects
- 10. Export-Stores filament graph in the Neuron file format (*.hoc).

Statistics displayed for:

-entire filament (overall)-particular statistic (detailed)-the selected portion

Specific categories can be selected to be shown or to be removed from the list:

🚣 spine

		Selection	Detailed	Overall
- 1	••.			All Values
*	Value		~	Variable
	171		ite Area	Dendr
Ξ	61.8		ite Length	Dendr
	0.882	ameter	ite Mean Di	Dendr
	0	es	ite No. Spin	Dendr
	91.1	ion Angle	ite Orientat	Dendr
	48.7	х	ite Position	Dendr
	31.9	γ	ite Position	Dendr
	5. 4 6	Z	ite Position	Dendr
	101	ce	ite Resistan	Dendr
	0.00	ensity	ite Spine De	Dendr
	0.362	ness	ite Straightr	Dendr
	0.00		ite Time	Dendr
	1	lex	ite Time Inc	Dendr
Ŧ	37.8		ite Volume	Dendr
	Þ			•

Available Preset Statistics

BITPLANE an Oxford Instruments company

Configure list of available visible statistic values

Show Statistic Values Filament No. Edges Filament Velocity Y Spine Branch Depth Filament Velocity Z Pt Track Speed Variation Filament No. Sholl Intersections Spine Branch Level ⊿ ▼ Filaments Filament Volume (sum) Pt Track Spine Area Max Filament No. Spine Branch Pts Spine Branchings Dendrite Area Pt Acceleration Pt Track Spine Area Mean Filament No. Spine Segments Dendrite Branch Depth Spine Length Pt Acceleration X Pt Track Spine Area Min Filament No. Spine Terminal Pts Dendrite Branch Level Spine Max Diameter Pt Acceleration Y Pt Track Spine Length Max Filament No. Unconnected Parts Dendrite Branching Angle Spine Mean Diameter Pt Acceleration Z Filament No. Vertices Pt Track Spine Length Mean Dendrite Branching Angle B Spine Min Diameter V Pt Branching Angle Filament Number of Filaments per Time Poin Pt Track Spine Length Min Dendrite Length Spine Neck Length Pt Diameter Pt Track Spine Volume Max Filament Number of Tracks Dendrite Mean Diameter Pt Displacement X Filament Position X Pt Track Spine Volume Mean Dendrite No. Spines Pt Displacement Y Pt Track Spine Volume Min Dendrite Orientation Angle Filament Position Y Dendrite Position X Filament Position Z Pt Displacement Z Pt Track Straightness Pt Displacement^2 Dendrite Position Y Pt Velocity X Filament Speed Spine Neck Volume Dendrite Position Z Pt Distance Pt Velocity Y Filament Spine Area (sum) Dendrite Resistance Pt Number of Points per Time Point Filament Spine Length (sum) Pt Velocity Z Spine Position X Dendrite Spine Density Pt Number of Tracks Spine Area Filament Spine Volume (sum) Spine Position Y Dendrite Straightness Pt Position X Filament Time Spine Attachment Pt Acceleration Spine Position Z Pt Position Y Dendrite Time Filament Time Index Spine Attachment Pt Acceleration X Spine Resistance Dendrite Time Index Pt Position Z Filament Total Number of Filaments Spine Attachment Pt Acceleration Y Spine Straightness Dendrite Volume Pt Speed Filament Track Ar1 Mean Spine Attachment Pt Acceleration Z Edge Diameter V Pt Time Spine Terminal Pt Acceleration Filament Track Ar1 X Spine Attachment Pt Branching Angle Edge Length Pt Time Index Spine Terminal Pt Acceleration X Filament Track Ar1 Y Spine Attachment Pt Diameter Filament Acceleration Spine Terminal Pt Acceleration Y Filament Track Ar1 Z Pt Total Number of Points Spine Attachment Pt Displacement X Filament Acceleration X Pt Track Ar1 Mean Filament Track Displacement Length Spine Terminal Pt Acceleration Z Spine Attachment Pt Displacement Y Filament Acceleration Y Pt Track Ar1 X Filament Track Displacement X Spine Attachment Pt Displacement Z Spine Terminal Pt Diameter Filament Acceleration Z Pt Track Ar1 Y Filament Track Displacement Y Spine Attachment Pt Displacement^2 Filament Area (sum) Pt Track Ar1 Z Filament Track Displacement Z Spine Attachment Pt Distance Spine Terminal Pt Displacement Y Filament BoundingBoxAA Length X Filament Track Duration Pt Track Displacement Length Spine Attachment Pt Position X Spine Terminal Pt Displacement Z Filament BoundingBoxAA Length Y Pt Track Displacement X Filament Track Length Spine Attachment Pt Position Y Filament BoundingBoxAA Length Z Spine Terminal Pt Displacement^2 Filament Track Number of Branches Pt Track Displacement Y Spine Attachment Pt Position Z Filament BoundingBoxOO Length A Spine Terminal Pt Distance Filament Track Number of Filaments V Pt Track Displacement Z Spine Attachment Pt Speed Filament BoundingBoxOO Length B Pt Track Duration Filament Track Number of Fusions Spine Attachment Pt Time Filament BoundingBoxOO Length C Filament Track Position X Mean Pt Track Length Spine Attachment Pt Time Index Filament Dendrite Area (sum) Filament Track Position X Start Pt Track Number of Branches Spine Attachment Pt Velocity X Filament Dendrite Length (sum) Filament Track Position Y Mean Pt Track Number of Fusions Spine Attachment Pt Velocity Y Filament Dendrite Volume (sum) Filament Track Position Y Start Pt Track Number of Points Spine Attachment Pt Velocity Z Filament Displacement X Filament Track Position Z Mean Pt Track Position X Mean Spine Branch Depth Filament Displacement Y Filament Track Position Z Start Pt Track Position X Start Spine Branch Level Filament Displacement Z Filament Track Speed Max Pt Track Position Y Mean Filament Displacement^2 Spine Branchings Pt Track Position Y Start Filament Track Speed Mean Spine Length Filament Full Branch Depth Spine Terminal Pt Velocity Y Pt Track Position Z Mean Filament Track Speed Min Spine Max Diameter Filament Full Branch Level Spine Terminal Pt Velocity Z Filament Track Speed StdDev Pt Track Position Z Start Spine Mean Diameter Filament Length (sum) Spine Terminal Pt Volume Pt Track Speed Max Filament Track Speed Variation Filament No. Dendrite Branch Pts Spine Min Diameter Spine Time Pt Track Speed Mean Filament Track Straightness Filament No. Dendrite Branches Spine Neck Length Spine Time Index Filament Velocity X Pt Track Speed Min Filament No. Dendrite Segments Spine Neck Max Diameter

Filament Velocity Y

Pt Track Speed StdDev

- Spine Neck Max Diameter
- Spine Neck Mean Diameter
- Spine Neck Min Diameter
- Spine Orientation Angle

- Spine Terminal Pt Displacement X

- Spine Terminal Pt Intensity Center
- Spine Terminal Pt Position X
- Spine Terminal Pt Position Y
- Spine Terminal Pt Position Z
- Spine Terminal Pt Speed
- Spine Terminal Pt Time
- Spine Terminal Pt Time Index
- Spine Terminal Pt Velocity X

- Spine Volume

Filament No. Dendrite Terminal Pts

- Pt Track Speed StdDev
- Spine Neck Mean Diameter

- Allows for filtering the data based on a specific statistic using any of the available statistics (ex. Dendrite length, spine volume, etc.)
- Multiple filters can be made
- Can copy the filter selection to a new filament object
- Filters list can be reduced by selecting:
 - Dendrite filters
 - Spine filters
 - Filament Filters

Filament Coloring

•#	Dendrite			,
Color	Туре			
© L	abels	St	atistics Code	d
В	ase	🔘 Tr	ack ID (🔵 Time Mappe
Statis	tics Type			
•	Dendrite A	rea		
Color	Dendrite A map: S map Rang	e vera	•	Reset
Color Color Min:	Dendrite A map: S map Rang 2.281	e Max:	171.268	Reset
Color Color Min:	Dendrite A map: S map Rang 2.281 how Color	e Max:	171.268	Reset
Color Color Min: SI	Dendrite A map: S map Rang 2.281 how Color how Rang	e Max: bar	▼ 171.268 ▼ Show	Reset Auto
Color Color Min: SI	Dendrite A map: S map Rang 2.281 how Color how Rang parency	e Max: bar e	▼ 171.268 ▼ Show	Reset Auto

Base Color Type:

Solid color filament

• Statistics Coded Color type:

Colors each portion according to statistical values

	catory caternanauty
Favorite Creation Parame	eters
Default	•])
Algorithm Settings	
Autopath (no loops)	
The automated Autopath - Produces a tree-like filar - Is based on local intensi - Connects large start- an Calculate Diameter of	Algorithm: ment ty contrast d small seed points Filaments from Image
Segment a Region of	Interest
Track (over time)	

To track filaments (dendrites) and/or spines over time, check *Track (over time)* and run through the creation steps.

ts Center of Gravity	(Autoregressive Motion)	
5.00		um
With Max Gap Size	2	
drites (Autoregressiv	e Motion)	
ch Points		•
5.00		um
With Max Gap Size	2	
es (Autoregressive M	Motion)	
ient Points		-
5.00		um
With Max Gap Size	2	
	ts Center of Gravity 5.00 With Max Gap Size drites (Autoregressiv ch Points 5.00 s With Max Gap Size es (Autoregressive Ment Points 5.00 s With Max Gap Size	ts Center of Gravity (Autoregressive Motion) 5.00 With Max Gap Size 2 drites (Autoregressive Motion) ch Points 5.00 s With Max Gap Size 2 es (Autoregressive Motion) ment Points 5.00 s With Max Gap Size 2 es (Autoregressive Motion) ment Points 5.00 S.

In the last step enable or disable objects to be tracked and set the tracking parameters.

Track Dendrites (Autoregressive Motion	1)
Dendrite Branch Points	*
Dendrite Branch Points	
Dendrite Terminal Points	2.

Spine Attachment Points	Ť
Spine Attachment Points	2
Spine Branch Points	
Spine Terminal Points	

When working with ROIs following options are available:

Once the filaments created, you can switch between the standard Filament visualization options and Filament Tracks

Filaments Filament Tracks Point Tracks Oplinder 1.00 Cone 1.000	um scale
Filament Tracks Point Tracks Organization 1.00 Organization 1.000	um scale
Oplinder 1.00 Cone 1.000	um scale
Cone 1.000	scale
Show Dendrites Show Spines	
Beginning Point Attachment Points	
Branch Points Branch Points	
Terminal Points	
Render Quality: 50%	
	Beginning Point Attachment Points Branch Points Terminal Points Render Quality: 50%

Filament Time Series (cont)

BITPLANE an **Oxford Instruments** company

The Track Editor is similar to Track Spots or Surfaces

Tracks can easily be rebuild

- 1	·		
	/ × / / / * ¥ 🖬 🍑 📚		
	Rebuild		
	Rebuild All	-	
	Rebuild Dendrite Rebuild Dendrite Diameter		
	Rebuild Spine Relative Spine Diameter		
d	Rebuild Track		D
			T
	Spine Diameter Threshold = Automatic Spine Diameter Algorithm = Distance Map [Track] Track Graph::Max Distance = 325.893 Track Graph::Close Gap = true Track Graph::Gap Size = 10 Track Dendrite = true Dendrite Branch Points = true Dendrite Branch Points = true Dendrite Branch Points::Max Distance = 5.000 Dendrite Terminal Points::Close Gap = false Dendrite Terminal Points::Close Gap = false Track Spine = true Spine Attachment Points = true Spine Attachment Points::Close Gap = false Spine Branch Points::Max Distance = 5.000 Spine Branch Points = true Spine Branch Points::Max Distance = 5.000 Spine Branch Points::Max Distance = 5.000	, iii	
	Spine Terminal Points = true Spine Terminal Points::Max Distance = 5.000 Spine Terminal Points::Close Gap = false		
		~	

Filament Options with ImarisXT

Customize Imaris for your specific research applications or use pre-existing XTensions

ø	A	1	4	V	Y	X	٩	*
			Add	Sim	ilarit	y Stat	tistics	Value
				A	ngles	Stat	istics	v.
				Br	anch	Hier	archy	
					Con	vex H	ull	
				С	reate	Cha	nnel	
			į	Filan	nents	Poin	ts Tra	ack
				Sp	lit Int	o Bra	nche	S
			Find	d Spo	ots Cl	ose t	o Fila	iments
3				C	lassi	fy Sp	ines	

Filament Spines Classifier

Class 1	Color and Remove class
Nam Stubby	Color 255, 0, 0 Remove class
Rule length(spine) < 1	
Class 2	
Nam Mushroom	Color 0, 255, 0 Remove class
Rule [length(spine) < 3 and max_width(head) > n	nean_width(neck) * 2
Class 3	11
Nam Long Thin	Color 0, 0, 255 Remove class
Rule mean_width(head) >= mean_width(neck)	
Class 4	
Nam Filopodia / Dendrite	Color 255, 0, 255 Remove class
Rule true	
Variables	Create one Filament
spine volume: Insert variable Insert variable	Add new class with custom
neckmean_width ▼ Head length ground Ground length	25 25 Plot class stat Classify spines

Find Spots Close to Filament

BITPLANE an Oxford Instruments company

Filament Convex Hull

Find a minimal convex surface which includes all points of a filament. This is a reliable and robust measurement of dendrite spread.

Excercise 1 (Classify Spines)

PyramidalCellRed.ims

- 1. Generate a Filaments object including Spines.
- 2. Use the Classify Spines XTension to get a plot of the number of spines in the different classes (option inside the XTension).
- 3. Display the shapes of the spines in Imaris
- 4. Do a second run to find stubby spines which are shorter than 0.8 μm

Exercise 2

SR-BRC-nosoma.ims

- 1. Skip Automatic Creation
- 2. Use the AutoPath drawing mode to draw the dendrites
- 3. Use Rebuild *Dendrite* Diameter to detect the dendrite diameter (but not spines)
- 4. Go back to Draw tab, set dendrite you have drawn to the AutoPath starting point
- 5. Use Rebuild *Spine* Diameter to detect the diameter of the spines you have drawn
- 6. Color-code the Spines according to some statistic (e.g. Spine Volume)

