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Neuronal Encoding of Subjective Value in Dorsal and Ventral
Anterior Cingulate Cortex
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We examined the activity of individual cells in the primate anterior cingulate cortex during an economic choice task. In the experiments,
monkeys chose between different juices offered in variables amounts and subjective values were inferred from the animals’ choices. We
analyzed neuronal firing rates in relation to a large number of behaviorally relevant variables. We report three main results. First, there
were robust differences between the dorsal bank (ACCd) and the ventral bank (ACCv) of the cingulate sulcus. Specifically, neurons in
ACCd but not in ACCv were modulated by the movement direction. Furthermore, neurons in ACCd were most active before movement
initiation, whereas neurons in ACCv were most active after juice delivery. Second, neurons in both areas encoded the identity and the
subjective value of the juice chosen by the animal. In contrast, neither region encoded the value of individual offers. Third, the population
of value-encoding neurons in both ACCd and ACCv underwent range adaptation. With respect to economic choice, it is interesting to
compare these areas with the orbitofrontal cortex (OFC), previously examined. While neurons in OFC encoded both pre-decision and
post-decision variables, neurons in ACCd and ACCv only encoded post-decision variables. Moreover, the encoding of the choice outcome
(chosen value and chosen juice) in ACCd and ACCv trailed that found in OFC. These observations indicate that economic decisions (i.e.,
value comparisons) take place upstream of ACCd and ACCv. The coexistence of choice outcome and movement signals in ACCd suggests

that this area constitutes a gateway through which the choice system informs motor systems.

Introduction

During economic choice, subjects assign values to the available
options; a decision is then made by comparing values. Substantial
work in recent years examined these mental processes at the neu-
ral level. In particular, it was found that neurons in the primate
orbitofrontal cortex (OFC) encode the subjective values of of-
fered and chosen goods, that subjective values correlate with the
blood oxygenation signal in the human OFC and ventromedial
prefrontal cortex, and that lesions to these brain areas selectively
disrupt choice behavior. This collective evidence led us and oth-
ers to propose that economic choices might be based on values
computed in these regions (Kable and Glimcher, 2009; Padoa-
Schioppa, 2011). However, important questions remain open.
For example, the mechanisms through which values are com-
pared to make a decision are poorly understood. Furthermore, it
remains unclear whether and how other prefrontal regions con-
tribute to valuation and decision making. Most prominent in this
respect is the anterior cingulate cortex (ACC)—a region often
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proposed to have a key role in various types of decision making
(Lee et al., 2007; Rushworth et al., 2007; Rushworth and Behrens,
2008; Rangel and Hare, 2010; Wallis and Kennerley, 2010).

While the encoding of subjective value in the ACC has not yet
been examined thoroughly, several lines of evidence suggest that
neurons in this region might represent value. In early work, Niki
and Watanabe (1979) found cells in the dorsal bank of the ACC
that responded to the delivery of juice reward, an observation
confirmed in subsequent studies (Ito et al., 2003; Matsumoto et
al., 2003; Williams et al., 2004; Seo and Lee, 2007). More recently,
Amiez et al. (2006) varied the probability and the quantity of
juice. They found that ACC responses covary with the expected
juice quantity. Other studies found that the neuronal activity in
this region is modulated by the effort exerted to obtain a reward
(Kennerley and Wallis, 2009a; Kennerley et al., 2009). Similarly,
Hillman and Bilkey (2010) found that neurons in the rodent ACC
are modulated both by food quantity and physical effort. Argu-
ably, these studies did not provide an accurate measure of sub-
jective value because they did not include a trade-off between
qualitatively different goods. However, all the results are consis-
tent with the hypothesis that a representation of value exists in the
ACC.

In the OFC, the encoding of value presents three key traits.
First, different neurons encode different choice-related vari-
ables—Offer Value cells encode the value of one of the two
offers, Chosen Value cells encode the value of the chosen offer,
and Chosen Juice cells (or Taste cells) encode the binary result of
the choice process. Second, all these variables are encoded inde-
pendently of the visuomotor contingencies of choice (in goods
space). Third, the encoding of value is range-adapting—the same
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range of neuronal firing rates describes different ranges of values
in different behavioral conditions. In this perspective, the current
understanding of how values might be encoded in the ACC is
rather superficial. Atleast three issues remain open. First, it is not
clear whether ACC neurons encode pre-decision variables (e.g.,
Offer Value) or post-decision variables (e.g., Chosen Value, Cho-
sen Juice). Second, it is not clear whether and how this represen-
tation of value depends on the visuomotor contingencies of
choice. Indeed, some studies found that roughly one-half of ACC
neurons are spatially selective (Amiez et al., 2006; Kennerley et
al., 2009; Hayden and Platt, 2010), while other studies found that
spatial selectivity in this area is modest at best (Ito et al., 2003;
Nakamura etal., 2005; Seo and Lee, 2007). Third, the adaptability
of this representation remains to be examined (but see Sallet et
al., 2007; Kennerley et al., 2011). The current study was con-
ducted to address these important questions.

Materials and Methods

The discrepancy in the literature as for whether neurons in ACC are
spatially selective may be partly due to the fact that experiments in which
monkeys respond with arm movements (as opposed to eye movements)
generally confound spatial selectivity with exerted effort. Indeed, in a
study that used both response modalities, “spatial selectivity” was more
prevalent when monkeys responded with arm movements compared
with eye movements (Kennerley et al., 2009). Another possible explana-
tion is that different studies might have recorded from different regions
of the cingulate sulcus. Indeed, different papers equally label as “ACC”
brain regions located as far as 15 mm from one another, and on either
bank of the cingulate sulcus (Koyama et al., 2001; Shidara and Rich-
mond, 2002; Matsumoto et al., 2007). For these reasons, we used an
economic choice task in which the actions associated with the offers bear
the same cost (isometric saccade to the left and to the right). Further-
more, we explored extensively both banks of the cingulate sulcus.

Economic choice task, surgery, and recordings. All the procedures for
behavioral control, neuronal recording, and data analysis were similar to
those used in previous studies of OFC (Padoa-Schioppa and Assad, 2006,
2008; Padoa-Schioppa, 2009). Two rhesus monkeys (L, female, 6.5 kg; V,
male, 8.5 kg) participated in the experiments. The animals sat in an
electrically insulated enclosure, their head was restrained, and the eye
position was monitored with an eye-coil system (Riverbend Instruments;
monkey L) or with an infrared video camera (Eyelink; SR Research;
monkey V). In each session, the monkey chose between two juices labeled
A and B, with A preferred. In each trial, the monkey initially fixated a
small point at the center of a computer monitor (see Fig. 1a). After 1.5s,
two sets of squares (offers) appeared at the two sides of the fixation point.
For each offer, the color of the squares indicated the juice type and the
number of squares represented the juice quantity. Thus, in the trial de-
picted in Figure 1a, the monkey chose between 1 drop of grape juice and
4 drops of apple juice. The monkey had to maintain center fixation for a
randomly variable delay (1-2 s), after which the fixation point was extin-
guished and two saccade targets appeared by the offers (radial distance
from center fixation: 7° of visual angle). The animal indicated its choice
with a saccade and had to maintain peripheral fixation for 0.75 s before
receiving the chosen juice.

The quantities of the two offers and their spatial configuration varied
pseudorandomly across trials. Across sessions, we used a variety of dif-
ferent juices, resulting in many possible juice pairs. Typically, the behav-
ior of the animal presented a trade-off: if the less preferred juice was
offered in sufficiently high quantity, the monkey would choose it. The
relative value of the two juices was thus inferred from the indifference
point by fitting a normal sigmoid. This measure, which reflects the sub-
jective nature of valuation, was used to define several value-related vari-
ables tested in the analysis of neuronal activity (see Table 3). Thus, each
cell was analyzed in relation to the choice pattern recorded in the same
session.

Under general anesthesia, we implanted a head-restraining device and
an oval recording chamber on the skull. The chamber (main axes, 50 X
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30 mm) was centered on stereotaxic coordinates (A30, L0O), with the
longer axis parallel to a coronal plane. Recordings were performed on the
two banks of the cingulate sulcus and extended 12 mm in the anterior—
posterior direction, from A23 to A35 (with the corpus callosum extend-
ing anteriorly to A31 and A30 in monkeys L and V, respectively).
Tungsten electrodes (125 wm diameter; Frederick Haer) were advanced
with a custom-made system driven remotely. We typically used four
electrodes each day. Usually, we advanced the electrodes by pairs (one
motor for two electrodes), with the two electrodes placed at 1 mm from
each other. Electric signals were amplified, filtered (high-pass cutoff, 400
Hz; low-pass cutoff, 6 kHz) and recorded (Power 1401; Cambridge Elec-
tronic Design). Action potentials were detected on-line, and waveforms
(25 kHz) were saved to disk for off-line clustering (Spike 2; Cambridge
Electronic Design). Only cells that appeared well isolated and stable
throughout the session were included in the analysis. Thus, data sets
included 1044 cells from the right hemisphere of monkey L (760 from
ACCd; 284 from ACCv) and 860 cells from the left hemisphere of mon-
key V (365 from ACCd; 495 from ACCv).

All experimental procedures conformed to the NIH Guide for the Care
and Use of Laboratory Animals and with the regulations at Washington
University School of Medicine and at Harvard Medical School.

Neuronal activity: preliminary analysis. All the analyses were per-
formed in MATLAB (version R2010b; MathWorks). Behavioral choice
patterns were analyzed as previously described (Padoa-Schioppa and
Assad, 2006, 2008). Briefly, for every session, the percentage of B choices
was plotted as a function of log(gy/q,), where g, and gy, are the offered
quantities of juices A and B, respectively. The percentage of B choices was
then fitted with a normal cumulative distribution function (normal sig-
moid). The relative value of the two juices was inferred from the flex
point of the sigmoid. Neuronal data were analyzed in relation to the
relative value measured in the same session.

Neuronal activity was analyzed in eight time windows: Preoffer (from
0.5 s before the offer to the offer), Postoffer (0—0.5 s after the offer), Late
Delay (0.5-1.0 s after the offer), Pre-go (0—0.5 s before the “go”), Reac-
tion Time (from “go” to saccade), Prejuice (0—0.5 s before the juice),
Postjuice (0—0.5 s after the juice), and Postjuice2 (0.5-1.0 s after the
juice). These are the same time windows defined in previous studies with
the addition of the Postjuice2 time window, which was particularly rele-
vant for ACCv. An “offer type” was defined by two quantities of juice
offered to the monkey (e.g., [1A:3B]), independently of both the spatial
configuration and the choice of the animal. A “trial type” was defined by
an offer type and a choice (e.g., [1A:3B, 1A]), independently of the spatial
configuration. A “trial type, ;” was defined by a trial type and the spatial
configuration (e.g., [1A:3B, 1A, R], where the last “R” indicates that the
chosen offer was presented on the right). A neuronal response was de-
fined as the activity of a neuron in one time window as a function of either
the trial type or the trial type, y, as specified in the text.

Our analysis proceeded in steps. First, we submitted our data sets to a
series of ANOVAs, in which we always imposed the significance thresh-
old p < 0.001. We used this relatively conservative criterion to conform
with the methods used in our previous papers and because of the large
number of responses analyzed (1904 cells X 8 time windows). In essence,
these analyses indicated that neurons in ACCd can be modulated by the
trial type and/or by the movement direction, independently. In contrast,
neurons in ACCv can be modulated by the trial type, but they are inde-
pendent of the visuomotor contingencies of choice. Moreover, neurons
in the two areas tend to respond in different time windows (see Results)
(Tables 1, 2). Thus, in all subsequent analyses, we examined separately
the data sets from ACCd and ACCyv. For both data sets, “task-related”
responses were identified with a one-way ANOVA (factor: trial type; ).
Only responses that passed this criterion were included in subsequent
analyses.

Second, we defined a large number of variables that neurons in ACCd
and ACCv might potentially encode (Table 3). Each neuronal response
was fitted against each variable. Since responses can generally depend on
the movement direction, the fit was done using an analysis of covariance
(ANCOVA) using the variable as a predictor and grouping data by the
movement direction. In a preliminary analysis, we examined the full
ANCOVA model, including the interaction term. However, we observed
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Table 1. ACCd, results of ANOVAs
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Table 3. Defined variables

Three-way Two-way

Offer ~ Offer Mov Trial  Mov One-way

type  position  direction type direction  (Both)  Trial type L/R
Preoffer 0 0 2 1 1 0 0
Postoffer 929 5 70 95 69 20 114
LateDelay 170 5 88 m 88 28 168
Pre-go 134 4 72 139 73 19 137
ReactTime 77 1 66 78 68 14 97
Prejuice 41 3 85 142 83 14 149
Postjuice 106 1 48 114 49 7 99
Postjuice2 110 1 12 112 13 2 81
Atleast 1 27 15 224 440 219 66 406

Atotal of 1125 cells were recorded from ACCd and included in these analyses. The table reports the results of several
ANOVAs. Each column represents one factor, each row represents one time window, and numbers represent the
number of cells significantly modulated by the corresponding factor. The last row indicates, for given factor, the
number of cells that pass the riterion in at least one of the eight time windows. The three leftmost columns report
the results of a three-way ANOVA with factors offer type, offer position, and movement direction. Pooling time
windows, it can be noted that neuronal activity generally did not depend on the spatial configuration of the offers
(factor offer position). In contrast, ACCd cells were often modulated by the offer type [427 of 1125 cells (38%)]
and/or by the movement direction [ 224 0f 1125 cells (20%) ]. We next ran a two-way ANOVA with factors trial type
and movement direction, including the interaction (not shown here). This analysis indicated that the interaction
term was significant in a small minority of cases: pooling time windows, the interaction was significant for 31 of
1125 cells (3%). We thus ran a two-way ANOVA excluding the interaction term, the results of which are shown here
(columns 4—-6). The column labeled “Both” reports the number of cells for which both factors (trial type and
movement direction) were significant. Pooling time windows, only 66 of 1125 cells (6%) were modulated by both
factors. This measure is very similar to that expected if the two modulations were completely independent (chance
level, 7%). The same s true if we only consider "central” time windows from Postoffer to Prejuice. In this case, the 61
cells modulated by both factors are 5% of the population and chance level is also 5%. Finally, we ran a one-way
ANOVA with factor trial type,  (rightmost column). Only neuronal responses that passed this test (N = 845, pooling
time windows) were included in subsequent analyses. For all the ANOVAs, we always imposed the significance
threshold p < 0.001.

Table 2. ACCv, results of ANOVAs

Three-way Two-way

Offer  Offer Mov Trial ~ Mov One-way

type  position  direction type direction  (Both)  Trial type L/R
Preoffer 11 0 3 0 0 0
Postoffer 42 3 37 4 2 28
Late Delay 63 0 1 65 3 0 48
Pre-go 5 0 14 51 15 2 45
ReactTime 33 2 13 32 12 2 19
Prejuice 72 0 20 no2n 3 62
Postjuice 102 0 8 106 9 1 75
Postjuice2 110 1 0 12 0 0 82
Atleast 1 231 6 41 1 44 8 194

A total of 779 cells were recorded from ACCv and included in these analyses. The three leftmost columns report
the results of a three-way ANOVA with factors (offer type by offer position by movement direction). Pooling time
windows, it can be noted that neuronal activity rarely depended on the visuomotor contingencies of the choice
(factor offer position and movement direction). (In particular, only 41 of 779 = 5% cells were modulated by the
movement direction. Curiously, 14 of these cells came from the same penetration. If data from this penetration were
excluded, cells modulated by the movement direction would be 27 of 747 = 4%.) In contrast ACCv cells were often
modulated by the offer type (231 of 779 = 30% cells). Next, we ran a two-way ANOVA with factors (trial type by
movement direction) (columns 4 —6). The column labeled “Both” reports the number of cells for which both factors
(trial type and movement direction) were significant. Again, very few neurons were modulated by either the
movement direction or the interaction. Finally, we ran a one-way ANOVA with factor trial type,  (rightmost column).
Only neuronal responses that passed this test (N = 359, pooling time windows) were included in subsequent
analyses.

that the interaction term was rarely significant (which confirmed the
results of the two-way ANOVAs) (see Results). We thus report here only
the results obtained using the “parallel” model. This model assumes that
the encoding of the factor (variable) and the group (movement direc-
tion) are statistically independent. A variable was said to “explain” the
response if the factor in the ANCOVA was significant (p < 0.05). For
each variable, the ANCOVA also provided an R?2. This was the total R?,
computed including both the factor and the group. For variables that did
not explain the response, we arbitrarily set R? = 0. These criteria were
used for all variables except the Mov Dir Only, for which we proceeded as
follows. We computed the “horizontal lines” model of the ANCOVA,
which assumes that firing rates only depend on the group (movement
direction). The variable Mov Dir Only was thus said to explain the re-

Variable name Definition
1 Offer Value A Value of juice A offered
2 Offer Value B Value of juice B offered
3 Chosen Value Value of the chosen offer
4 Other Value Value of the nonchosen offer
5 Total Value Sum of the two offer values
6 Ch—0th Value (Value Difference) Chosen value —other value
7 0th/Ch Value (Value Ratio) Other value/chosen value
8 Chosen Value A Value of juice A chosen (0 if B choice)
9 Chosen Value B Value of juice B chosen (0 if A choice)
10 Chosen Juice (Taste) 0if A choice, 1if B choice
N Max # Max offered quantity
12 Min # Min offered quantity
13 Chosen # Quantity of the chosen juice
14 Other # Quantity of the nonchosen juice
15 Total # Sum of the two quantities
16 Oth/Ch # Other number/chosen number
17 Ch—O0th# Chosen number— other number
18 Min/Max # Min number/max number
19 Max—Min # Max number—min number
20 Offer Value L Value of offer on the left
21 Offer Value R Value of offer on the right
22 Chosen Value L Value chosen on the left (0 if right choice)
23 Chosen Value R Value chosen on the right (0 if left choice)

24 Mov Dir Only

All value variables that depend on both juices and thus reflect the subjective nature of valuation (Chosen Value,
Other Value, Total Value, Value Difference, etc.) were defined based on the measure obtained on a session-by-
session basis from the behavioral indifference point.

1if left saccade, 0 if right saccade

sponse if the group was significant in this analysis (p < 0.05). From this
model, we also obtained the R, which was set equal to 0 if the group was
not significant. Importantly, the R* thus obtained for the variable Mov
Dir Only was always lower than that obtained for any other variable that
explained the response. Hence, for any given response, Mov Dir Only
provided the best explanation (highest R?) only if it provided the sole
explanation.

The overall rationale of this approach (already used in previous studies
of OFC) was as follows. On the one hand, we imposed a rather conser-
vative criterion when we admitted individual responses in the analysis
(ANOVA, p < 0.001), to weed out noise from the data set. On the other
hand, we set a more liberal criterion when we identified the encoding of
any given variable (linear fit, p < 0.05), to maintain high sensitivity.
Responses from ACCd presented one additional issue. Consider a direc-
tionally selective response. In principle, the response could pass the one-
way ANOVA criterion largely because of its spatial selectivity (as opposed
to a dependence on the trial type). Yet, following the ANOVA, the en-
coding of any particular variable would be established with a relatively
liberal threshold. As a consequence, this procedure might occasionally
assess that a variable explains a response even though the dependence of
the response on the trial type is weak. To obviate this issue, we imposed
an additional criterion: any variable (except Mov Dir Only) could explain
a response only if the factor offer type in the three-way ANOVA was
significant at the liberal threshold of p < 0.05.

Based on this analysis, we identified for each area and for each neuro-
nal response the variable that provided the best fit (highest R?). We then
computed the number of responses best explained by each variable, sep-
arately for each time window. Finally, for each area, we identified the
variables that best accounted for the neuronal population, as follows.

Variable selection analysis. In general, although one can define many
variables potentially relevant to a particular experiment, a small subset of
them might suffice to describe a given data set. To identify the variables
that provided the best account for our data, we used two methods of
variable selection—stepwise and best subset— originally designed for
multilinear regressions in presence of multicollinearity (Dunn and Clark,
1987; Glantz and Slinker, 2001) and previously adapted to analyze large
neuronal data sets (Padoa-Schioppa and Assad, 2006). The procedures
used here are essentially identical to those described previously.
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Table 4. ACCd, results of post hoc variable selection analysis
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Table 5. ACCv, results of post hoc variable selection analysis

Selected variable (X) Challenging variable (V) nX nY pvalue Selected variable (X) Challenging variable (Y) nX nY pvalue
Chosen Value Total Value 20 1 <0.05 Chosen Value Total Value 7 7 0.40
Chosen Value Ch—0th Value 75 7 <107 (Chosen Value Ch—0th Value 37 5 <1078
Chosen Value Chosen # 59 12 <10~° Chosen Value Chosen # 34 6 <10~°
Chosen Juice Chosen Value A 27 4 <10°¢ Chosen Juice Chosen Value A 13 9 0.14
Chosen Juice Chosen Value B 20 9 <0.02 Chosen Juice Chosen Value B 10 8 0.24
Mov Dir Only Chosen Value L 132 n <107 Ceelegendto Tabled,

Mov Dir Only Chosen Value R 133 7 <107

Each row represents one statistical comparison. For a selected variable (¥, first column), we considered a discarded
but highly correlated variables (¥, second column) that would thus represent a challenging alternative. We defined
the marginal explanatory power nX (third column) as the number of responses explained by X, not explained by ¥,
and not explained by any other variable in the best subset. We also defined the marginal explanatory power nY
(fourth column) as the number of responses explained by Y, not explained by X, and not explained by any other
variable in the best subset. The best subset method ensures that nX = nY. The statistical significance of this
inequality was established with a binomial test, the results of which are shown in the last column. The analysis was
repeated for each selected variable and for all discarded variables with a correlation of p = 0.8.

The stepwise method—an iterative procedure—was applied as fol-
lows. At the first step, we selected the variable that provided the highest
number of best fits within any time window. We then removed from the
data set all the responses explained by this variable (across time win-
dows). At the second step, we repeated the procedure with the residual
data set. We defined the “marginal explanatory power” of a variable X as
the percentage of responses explained by X and not explained by any
other selected variable. At each step, we imposed that all selected vari-
ables have a marginal explanatory power of at least 5% (if necessary, we
dropped previously selected variables that failed to meet the criterion
once new variables were added; in practice, this situation never occurred
for the present data sets). We thus continued the procedure until when
any additional variable failed to meet the 5% criterion.

The stepwise method had the advantage of analyzing different time
windows separately but in parallel (see Results). However, this method
did not guarantee optimality because its results were path dependent. In
contrast, the best subset method—an exhaustive procedure—identified
the subset of variables that provided the highest explanatory power. For
this method, we pooled responses from different time windows. For each
possible subset of d variables, we computed the number of responses
explained in the data set, and we identified the subset that explained the
highest number of responses. We repeated this procedure for d = 1, 2, 3,
etc. In general, if n(d) is the number of responses explained by d variables,
the number of variables necessary to account for the data set (d*) can be
identified either by an elbow in the function n(d) or by a threshold
criterion (e.g., 90% of responses explained). In practice, for both of cur-
rent data sets, there appeared to be a natural breaking point (see Results).

One question left open by both these methods is whether the explan-
atory power of the selected variables is significantly higher than that of
other possible variables—an issue referred to as possible “overfitting.” To
address it, we performed a post hoc analysis in which we compared the
marginal explanatory power of each selected variable with that of dis-
carded but highly correlated variables. The procedure has been described
previously (Padoa-Schioppa and Assad, 2006). In a nutshell, we labeled X
a selected variable (e.g., Chosen Value) and Y a discarded variable that
was highly correlated with the selected variable and that would thus
represent a “challenging” alternative (e.g., Total Value). First, we quan-
tified the marginal explanatory power of the selected variable (nX) as the
number of responses explained by that variable, not explained by the
challenging variable, and not explained by any other variable in the best
subset. Second, we quantified the marginal explanatory power of the
challenging variable (1Y) as the number of responses explained by that
variable, not explained by the selected variable, and not explained by any
other variable in the best subset. The best subset method ensures that
nX = nY. To establish the statistical significance of this inequality, we ran
a binomial test. This analysis was repeated for each selected variable and
for each challenging variable with a correlation of p = 0.8 (Tables 4, 5).

Notably, the variable selection analysis described above was defined on
spatially dependent responses, where each data point represents one trial
type,r. This procedure is most appropriate for ACCd, where neurons
were indeed spatially selective. However, for data from ACCy, it is actu-

ally preferable to perform the analysis on nonspatial responses, where
each data point represents one trial type. Indeed, because more trials
contribute to each data point, the results obtained with the nonspatial
procedure (previously used for OFC) are generally more robust. For
clarity of exposure, we detail in the following the results of the variable
selection analysis obtained for both brain areas using the same spatial
procedure. However, we also report the main results obtained for ACCv
using nonspatial responses. In all subsequent analyses of neurons from
ACCyv, we pooled trials for different movement directions.

Subjective value versus physical property: analysis of U-shaped responses.
The variable selection analysis indicated that many neurons in ACCd and
ACCv encoded the Chosen Value. In a further analysis, we examined
more specifically whether these “U-shaped” responses indeed reflected
the subjective nature of value, as opposed to encoding any physical
property of the juice. For this analysis, we separated trials in which the
animal chose juice A or juice B. For each group of trials, we fitted the
neuronal firing rate against the amount of juice chosen (and received)
by the animal. For ACCd cells, this fit was performed with an
ANCOVA (parallel lines); for ACCyv, this fit was performed with a
linear regression. In either case, the fit provided two slopes @ and 3 for
juices A and B, respectively. If both slopes differed significantly from
zero (95% confidence interval) and had the same sign, the response
was said to be “U-shaped.”

If U-shaped responses indeed encode the Chosen Value, the slope ratio
o/ should provide a neuronal measure for the relative value of the two
juices. This measure should thus reflect the subjective nature of value and
should be indistinguishable from the behavioral measure of relative value
obtained from the choice pattern (indifference point). To test this pre-
diction, we performed an ANCOVA using the neuronal measure as a
dependent variable, the behavioral measure as a predictor, and grouping
data by the juice pair. (Data recorded with different juice pairs were
grouped separately because relative values generally depend on the juice
pair.) We used the full ANCOVA model and we included only juice pairs
for which we had at least 20 U-shaped responses (6 pairs for ACCd; 7
pairs for ACCyv; see Fig. 8).

Analysis of range adaptation. The analysis of range adaptation closely
followed the methods previously used for OFC (Padoa-Schioppa, 2009).
In the following, we will indicate with ¢ the neuronal firing rate and with
V the Chosen Value. The linear fit performed for the variable selection
analysis provided for each response the intercept c,and the slope ¢, such
that as follows:

b =cy+ V.

(For responses from ACCd, the intercept ¢, depends on the movement
direction.) For each response, we defined the value range AVas the range
of values chosen by the animal within the session and the minimum value
V, as the lowest value chosen within the session. In general, Equation 1
can be rewritten as follows:

V-V,
AV

b=yt Adx

where ¢, = ¢, + ¢,V is the baseline activity and Ap = ¢; * AV is the
activity range. If the encoding of value is linear, the hypothesis that neu-
rons adapt to the value range amounts to the hypothesis that neuronal
parameters ¢, and A¢ do not depend on the value range AV.
Conventionally, we always expressed the variable Chosen Value in
units of juice B (uB). Each neuron in our data set was recorded in one
session, which typically included 200—400 trials. Within each session, the
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Chosen Value (V) varied from trial to trial,
within a range (AV). This range varied from
session to session depending both on the offers
and the animal’s choices. Across sessions, the
range of chosen values varied roughly twofold
between 4 and 8 uB. To examine how the en-
coding of Chosen Value depended on the value
range, we pooled responses from different time
windows and we rectified responses with neg-
ative slopes. For each area, we then divided the
neuronal population of responses in two groups,
depending on whether the neuron was recorded
in a session such that AV= 6 uB or AV> 6 uB.
Finally, we compared the two groups of responses
in several measures, including the distribution of
regression slopes (c;), the activity range (Ad¢),
and the average normalized response.

To compute the average normalized response
(see Figs. 9e, 10e), we subtracted the baseline ac-
tivity ¢, corresponding to V = V,,. We then di-
vided the range of chosen values (x-axis) in 2 uB
bins. For each bin and for each group of re-
sponses, we computed the average normalized
firing rate ( y-axis) and Chosen Value (x-axis) av-
eraging across all relevant trial types and all re-
sponses. A similar procedure was used to
compute averages when we examined the regres-
sion slope in relation to the value range (see Figs.
9¢, 10, color symbols).

Finally, we examined neuronal adaptation
on the timescale of individual trials. In this
analysis, we pooled trials for different move-
ment directions, for both areas.

Results

We recorded the activity of 1904 neurons
from two animals performing economic
choices (Fig. 1a). Our recordings extended
12 mm in the anterior—posterior direction

<«

saccade. Different offer types and different left/right configu-
rations were pseudorandomly interleaved. b, Time windows.
All time windows lasted 0.5 s except the Reaction Time, which
lasted from the go signal to the initiation of the saccade. ¢, Re-
cording locations. Our recordings extended for 12—15 mm an-
terior—posterior. Data from the dorsal bank and fundus (ACCd)
and data from the ventral bank (ACCv) were analyzed sepa-
rately. d, Reconstruction of recording sites. Anterior—posterior
(AP) and mediolateral (ML) coordinates are represented by the
y-axis and x-axis, respectively. The recording system provided
a spatial resolution of 1 mm. The gray scale indicates for each
location the number of cells recorded from that location (scale
indicated in the legend). For each location, we computed the
proportion of cells modulated by the trial type and/or by the
movement direction in at least one time window (two-way
ANOVA). These proportions are represented by green and pur-
ple circles, respectively, for trial type and movement direction
(scale indicated in the legend). For this analysis, we pooled
data from the two monkeys and we displayed the results as
though all the cells were recorded from the right hemisphere.
Interestingly, the distribution of neurons modulated by the
movement direction within ACCd was not even. In particular,
we found more spatially selective cellsin the anterior part than
in the posterior part (limit set at AP = A30, p < 10—, Pear-
son’s x2), and more spatially selective cells in the medial part
than in the lateral part (limit set at ML < L4, p < 10,
Pearson’s x ).
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responses. a, Response encoding the Chosen Value. In the left panel, the x-axis represents
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and covered both banks of the cingulate sulcus (Fig. 1¢,d). A prelim-
inary inspection of individuals cells revealed clear differences be-
tween the two banks. Neurons in the dorsal bank and fundus
(ACCd, 1125 cells) were often spatially selective and typically mod-
ulated during the delay. In contrast, neurons in the ventral bank
(ACCyv, 779 cells) were not spatially selective and most frequently
modulated at the time of juice delivery. For all the population anal-
yses, we thus examined separately neurons recorded in ACCd and
neurons recorded in ACCyv.

Identification of task-related responses

A first set of analyses were conducted to identify task-related
neuronal responses, which would be subject to further examina-
tion. First, we submitted each neuron in each time window to a
three-way ANOVA with factors (offer type by offer position by
movement direction). In this analysis, the factor “offer position”
captured the spatial left/right configuration of the offers on the
monitor, whereas “movement direction” captured the left/right
direction of the eye movement. Our results for ACCd and ACCv
are summarized in Tables 1 and 2, respectively. In essence, neu-
rons modulated by the offer type were present in both regions. In
contrast, neurons modulated by the spatial configuration of the
offers were very infrequent in either region (<2% of cells, pool-
ing time windows). Finally, neurons modulated by the direction
of the eye movement were fairly frequent in ACCd (20% cells,
pooling time windows) but rather infrequent in ACCv (5% of
cells, pooling time windows).

Starting with data from ACCd, we submitted each neurontoa
two-way ANOVA with factors (trial type by movement direction)
including the interaction term (results not included in Table 1).
This analysis confirmed that both main factors modulated the
activity of neurons in this area: pooling time windows, cells mod-
ulated by factors trial type and movement direction were 38 and
20%, respectively. In contrast, cells presenting a significant inter-
action term were very infrequent (<3% of cells, pooling time
windows). In other words, the good-related modulation (cap-
tured by the factor trial type) and the action-related modulation
(captured by the factor movement direction) were essentially in-

<«

different offer types, ranked from left to right by the ratio #B:#A. The black dots represent the
behavioral choice pattern and the relative value inferred from the sigmoid fit is indicated in the
top left (1A = 3.2B). The color symbols indicate the neuronal firing rate recorded in the Prejuice
time window. Each symbol represents one trial type, . The red and green symbols represent,
respectively, trials in which the animal executed a leftward and rightward saccade. The dia-
monds and circles represent, respectively, trials in which the animal chose juice A and juice B. In
the right panel, the same data points ( y-axis) are plotted against the variable Chosen Value
(expressed in units of juice B). The two lines represent the results of the ANCOVA (parallel
model). It can be observed that the activity of this cell encodes the variable Chosen Value (as
confirmed by the variable selection analysis) and is not directionally selective. b, Another re-
sponse encoding the Chosen Value. This response was recorded in the Pre-go time window.
¢, Response encoding the Chosen Value and in a directionally selective way. This response,
recorded in the Postoffer time window, encoded the Chosen Value. In addition, the firing rate
was higher when the animal executed a leftward saccade compared with a rightward saccade.
Cells such as this one, modulated both by the Chosen Value and the saccade direction, were
present in the population. However, their incidence was not higher than would be expected by
chance (Table 1). d, Response encoding the Mov Dir Only. This neuronal response, recorded in
the Late Delay time window, was spatially selective (higher for rightward saccades) but did not
depend on the offer type. In the right panel, the firing rate is plotted against the Chosen Value,
even though this variable did not explain the response. The two lines represent the results of the
ANCOVA (horizontal lines model). e, Response encoding the Chosen Juice. This neuronal re-
sponse, recorded in the Postjuice time window, was binary depending on the chosen juice and
was not spatially selective. All conventions in b— e are as in a. Regression lines in a— cand e are
all from the ANCOVA (parallel model).
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dependent from each other for any given cell. We thus repeated
the two-way ANOVA including only the main factors, and we
quantified how many neurons in ACCd were modulated by both
factors (Table 1, sixth column). We found that the size of this
subpopulation was very close from that expected by chance if the
two modulations were completely independent (6% of cells mod-
ulated by both factors vs 7% expected by chance). In other words,
the good-related modulation and the action-related modulation
were independent across the neuronal population. For data from
ACCy, the two-way ANOVAs confirmed that the neuronal activ-
ity could be modulated by the trial type, but was independent of
the visuomotor contingencies of choice.

Finally, we identified for each area task-related responses
using a one-way ANOVA (factor “trial type;z”). Across time
windows, task-related responses were 845 for ACCd and 359
for ACCv. Pooling time windows, neurons that passed the
ANOVA criterion in at least one time windows were 406 of
1125 (36%) in ACCd and 194 of 779 (25%) in ACCyv. These
preliminary analyses also revealed that the two brain regions
differed for the activation timing. Indeed, neurons in ACCd were
modulated most prominently during the delay (time windows
Late Delay and Pre-go). In contrast, in ACCv the modulation was
most prominent immediately after juice delivery (time windows
Postjuice and Postjuice2). This difference provided further evi-
dence that ACCd and ACCyv are physiologically distinct areas.

Choice-related variables encoded in ACCd

What choice-related variables are encoded in ACCd? A qualita-
tive inspection revealed that neurons in ACCd often presented
U-shaped responses, suggesting that they encoded the variable
Chosen Value. As revealed by the ANOVAs (Table 1), many neu-
rons were also modulated by the movement direction. However,
these two factors appeared to be largely independent, in the sense
that some neurons encoded only the Chosen Value (Fig. 2a,b),
other neurons encoded both the Chosen Value and the move-
ment direction (Fig. 2¢), and yet other neurons encoded only the
movement direction (variable Mov Dir Only; Fig. 2d). In addi-
tion, some neurons presented a binary response seemingly en-
coding the Chosen Juice (Fig. 2e). Of course, Chosen Value and
Chosen Juice are only two of the many variables potentially en-
coded by this population. To identify the variables that best ex-
plained our data set, we adopted the same basic approach used in
a previous study (Padoa-Schioppa and Assad, 2006).

Casting a wide net, we defined 24 variables that neurons in
ACCd might potentially encode (Table 3). Specifically, we de-
fined several good-based value-related variables (Offer Value,
Chosen Value, Other Value, etc.), several quantity-related vari-
ables (Max #, Chosen #, Total #, etc.), a binary variable capturing
the outcome of the choice process (Chosen Juice), and four spa-
tial value-related variables (Offer Value L, Offer Value R, Chosen
Value L, Chosen Value R). We also defined the variable Mov Dir
Only, a purely spatial variable that captured responses modulated
only by the movement direction (see Materials and Methods).

For each response and for each variable, we ran an ANCOVA,
using the variable as a predictor and grouping data by the move-
ment direction. A given variable was said to “explain” the neuro-
nal response if the corresponding factor in the ANCOVA was
significant (p < 0.05). As previously noted (Padoa-Schioppa and
Assad, 2006), different variables included in this analysis could be
highly correlated with one another (e.g., Chosen Value and Total
Value were highly correlated in our experiments). Hence, any
given response might be explained by more than one variable. In
the light of this consideration, we generated two qualitative de-
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scriptions of our neuronal data set. Figure 3a illustrates for each
time window the number of responses explained by each variable.
Notably, any given response may appear in more than one bin in
this plot. Conversely, Figure 30 illustrates for each time window
and for each variable the number of responses best explained by
that variable (highest R?). In this plot, each response appears in at
most one bin. A qualitative inspection of Figure 3b revealed that
the best explanation was often provided by Chosen Value. How-
ever, a sizable number of responses are best explained by Chosen
Juice and/or by Mov Dir Only.

Overall, 804 of 845 (85%) task-related responses were ex-
plained by at least 1 of the 24 variables defined here. For a
quantitative assessment of the variables that best explained the
population, we used the stepwise selection method. As illus-
trated in Figure 4, a and b, the first three iterations of this
procedure selected variables Chosen Value, Mov Dir Only, and
Chosen Juice. Collectively, these three variables explained 763
responses. All variables selected in subsequent iterations pro-
vided a marginal explanatory power of <5%. The best subset
method confirmed this result (Fig. 4¢,d). As a single variable,
Chosen Value explained more responses than any other vari-
able. As a pair of variables, Chosen Value and Mov Dir Only
explained more responses that any other pair of variables.
Finally, the three variables Chosen Value, Mov Dir Only, and
Chosen Juice explained more responses than any other subset
of three variables. Again, these three variables collectively ex-
plained 763 responses, corresponding to 95% of the responses
explained by the whole 24 variables, and to 90% of responses
that passed the ANOVA criterion.

In summary, the explanatory power of variables Chosen
Value, Chosen Juice, and Mov Dir Only was higher than that
of any other subset of three variables. To examine whether this
statement was true in a statistical sense, we ran a post hoc
analysis in which the marginal explanatory power of each se-
lected variable was tested against that of a discarded and “chal-
lenging” variable. As illustrated in Table 4, we found that the
explanatory power of each selected variable was significantly
higher than that of all challenging alternatives (all p < 0.05).

In conclusion, neurons in the ACCd appear to encode variables
Chosen Value, Chosen Juice, and Mov Dir Only. On the basis of this
result, we classified task-related responses from this area as encoding
one of these three variables. Responses explained by more than one
variable were assigned to the variable with highest R*. Responses not
explained by any of these variables were labeled “unexplained.” In
general, the encoded variable provided a good account of the re-
sponses [across variables, mean(R?) > 0.5; Fig. 4e].

Choice-related variables encoded in ACCv

A qualitative inspection revealed that neurons in ACCv often
presented U-shaped responses, suggesting that they encoded the
variable Chosen Value (Fig. 5a—c). Other cells presented a binary
response suggesting that they encoded the Chosen Juice (Fig. 5d).
These latter responses were most frequent in late time windows,
after juice delivery. For a population analysis, we examined the
same variables examined in the analysis of ACCd. For each re-
sponse, we performed an ANCOVA on each variable (group:
movement direction). We generated two descriptions of this data
set. Figure 6a illustrates for each time window the number of
responses explained by each variable. Figure 6b illustrates for
each time window and for each variable the number of responses
best explained by that variable (highest R*). A qualitative inspec-
tion reveals that the best explanation was often provided by the
variable Chosen Value. However, especially in late time windows,
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window. For example, in the Postoffer time window, the variable Total Value explains 83 responses. Notably, because total value is highly correlated with Chosen Value, many of these
83 responses are also explained by Chosen Value and thus appear in both bins. The same results indicated numerically are also represented as images by different shades of gray. b, Best
fit. The number indicated in each bin represents the number of responses for which the corresponding variable provides the best explanation (highest R2). Thus, in this panel, each
response appears in at most one bin. The best fitting variable was identified separately for each response (i.e., for each time window). It can be noted that the redundancy between Total
Value and Chosen Value appears clearly resolved in favor of the latter variable. In later time windows, many responses are best explained by the Chosen Juice. Analogous plots for the OFC

can be found in the study by Padoa-Schioppa and Assad (2006), their Figure S6.

a sizable number of responses were best explained by the variable
Chosen Juice.

Overall, the 24 variables explained 337 of 359 (94%) responses
that passed the ANOVA criterion. For a quantitative assessment
of the variables that best explain the population, we first used the
stepwise selection method. As illustrated in Figure 7, a and b, the
first two iterations selected variables Chosen Value and Chosen
Juice. All variables selected in subsequent iterations provided a
marginal explanatory power of <<5%. This result was confirmed
by the best-subset procedure (Fig. 7¢,d). As a single variable, Cho-
sen Value explained more responses than any other variable. As a
pair of variables, Chosen Value and Chosen Juice explained more
responses than any other pair of variables. Collectively, Chosen
Value and Chosen Juice explained 304 responses, corresponding
to 90% of responses explained by the whole 24 variables and to
85% of responses that passed the ANOVA criterion.

We thus proceeded with a post hoc analysis, in which we com-
pared the marginal explanatory power of each of these two vari-
ables pairwise against that of other, highly correlated variables
(Table 5). In this analysis, the explanatory power of Chosen Value
was significantly higher than that of both Value Difference and
Chosen #. However, the explanatory power of Chosen Value was
not statistically higher than that of Total Value, and the explana-
tory power of Chosen Juice was not statistically higher than that

of either Chosen Value A or Chosen Value B. This analysis would
thus leave us with some degree of ambiguity.

To gain further insight, we repeated the variable selection
analysis on this data set based on spatially invariant responses. In
this case, each data point represented a trial type (not a trial
type,r) and linear fits were performed using linear regressions,
from which we obtained a slope and the R?. Notably, this proce-
dure is in principle preferable for ACCv, where responses are not
spatially selective, because the statistical power is entirely “spent”
to identify encoded variables. We obtained results similar to
those described above. Across time windows, the one-way
ANOVA (factor: trial type) identified 473 task-related responses.
Opverall, the 19 nonspatial variables included in the analysis ex-
plained 433 of 473 (92%) responses. The stepwise method iden-
tified Chosen Value, Chosen Juice, and Total Value in the first
three iterations, and no other variable reached the 5% criterion in
subsequent iterations. The best-subset method revealed that the
highest explanatory power was provided by Chosen Value (as a
single variable), by Chosen Value and Chosen Juice (as a pair of
variables), and by Chosen Value, Chosen Juice, and Max # (as a
set of three variables). The partial discrepancy between the results
obtained with the two methods was clarified by the post hoc anal-
ysis, which revealed the following points. First, the explanatory
power of both Chosen Value and Chosen Juice was significantly
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Figure 4. ACCd, variable selection analysis. a, Stepwise selection. The figure illustrates the results of six iterations of the procedure (from top to bottom). The first panel is the same as in Figure
3b. In the first iteration, we select the variable that provides the highest number of best fits in any time window, namely the Chosen Value (highlighted with a star symbol immediately below the
panel). Across time windows, this variable explains 556 (66%) responses. The second panel illustrates the residual population of neuronal responses that were not explained by Chosen Value. In the
second iteration, we select the variable that provides the highest number of best fits for this residual population, namely the Mov Dir Only. Across time windows, this variable explains an additional
146 (17%) responses. In the third iteration, we select the Chosen Juice, which explains an additional 61 (7%) responses. In all subsequent iterations, the marginal explanatory power of selected
variables (i.e., the number of additional responses explained) failed to reach the threshold of 5% of the total. These variables (highlighted with a dot symbol immediately below the panel) were thus
discarded. b, Stepwise selection, percentage of explained responses. The figure illustrates the percentage of responses explained at subsequent iterations of the stepwise procedure. In this plot,
“100” on the y-axis represents the total number of responses that passed the ANOVA criterion. The dotted line ( y = 95%) indicates the number of responses explained overall by the 24 variables
examined in the analysis. The three variables Chosen Value, Mov Dir Only, and Chosen Juice collectively explained 95% of the responses explained by the 24 variables, corresponding to 90% of the
total responses. ¢, d, Best-subset selection.  illustrates the percentage of responses ( y-axis) explained by the best subset as a function of the number of variables (Figure legend continues.)
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higher than that of any other challenging variable (all p < 0.005).
In particular, the explanatory power of Chosen Value was signif-
icantly higher than that of Total Value (p < 10 ). Second, the
explanatory power of Max # was statistically indistinguishable
from that of Total Value and Total #. In summary, these analyses
indicated that the population of neurons in ACCv certainly en-
coded variables Chosen Value and Chosen Juice. Together, these
two variables explained 367 responses, corresponding to 85% of
the responses explained by the whole 19 variables, and to 78% of
the responses that passed the ANOVA criterion. In addition, a
smaller population of neurons in ACCv might encode the Max #,
or the Total # or the Total Value. However, we could not disam-
biguate between these possibilities based on our current data.

Based on these results, we concluded that the population of
ACCvindeed encoded variables Chosen Value and Chosen Juice.
We thus classified task-related responses from ACCv as encoding
one of these two variables. In general, the two variables provided
a good account of the population [across variables, mean(R?) >
0.5; Fig. 7e]. In all subsequent analyses of ACCv, we pooled trials
for different movement directions.

Subjective value versus physical properties: analysis of
U-shaped responses

One major conclusion of the analyses presented above is that we
found in both ACCd and ACCv neurons that encode the Chosen
Value. Apart from the dissociation between Chosen Value and other
value variables (Total Value, etc.), perhaps the most interesting as-
pect of this result is that neurons in both ACCd and ACCv appear to
encode economic value—a subjective quantity that integrates phys-
ically distinct dimensions (juice type and juice amount). In this re-
spect, however, one caveat is in order. Although our analysis
included many physical variables, it forcedly did not include all pos-
sible physical variables. For example, we did not examine the variable
Sugar Amount. Thus, to test whether U-shaped responses indeed
encode the subjective value as opposed to any physical property of
the juices, we conducted the following analysis.

The hypothesis that U-shaped responses encode the Chosen
Value leads to a simple prediction. Separating trials in which the
animal chose juice A and juice B, we can regress separately the
neuronal firing rate against the amounts of juice A and juice B
chosen by the animal. The two regressions provide slopes a and 3
(Fig. 8a,b). If the neuronal response indeed encodes the Chosen
Value, then slope a should be proportional to the subjective value
of juice A, slope 8 should be proportional to the subjective value
of juice B, and the ratio o/ 8 should be equal to the value ratio. In
other words, the slope ratio /B provides an independent and
neuronal measure of the relative value of the two juices, which
should be equal to the relative value measured behaviorally from
the choice pattern. For the response illustrated in Figure 84,b, this
prediction is met: the relative value measured neuronally (/3 =

<«

(Figure legend continued.) (x-axis). d, The table indicates the best subset forn = 1,2, and 3
variables. In essence, variables Chosen Value, Mov Dir Only, and Chosen Juice provide indeed the
best subset of three variables. The fact that Chosen Value and Mov Dir Only also provide the best
subsets of one and two variables can be seen as a sign of robustness of this result. Most impor-
tantly, the results obtained with the best-subset method are essentially identical to those
obtained with the stepwise selection. e, Distribution of R, Each response was classified as
encoding one of the three selected variables based on the R2. Notably, many more responses
encoded the Chosen Value (N = 521) compared with the Mov Dir Only (V = 137) and the
Chosen Juice (N = 105). The three histograms here represent the distribution of R? for each of
the three variables. The mean of the distribution was equal to 0.55, 0.52, and 0.46 for Chosen
Value, Mov Dir Only, and Chosen Juice, respectively.
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Figure5.  ACCv, activity of single neurons. The figure represents the activity of four neuronal

responses. All conventions are as in Figure 2. a, Response encoding the Chosen Value. In the left
panel, the x-axis represents different offer types, the black dots represent the behavioral choice
pattern, and the color symbols indicate the neuronal firing rate. Each symbol represents one
trial type, . The diamonds and circles represent, respectively, trials in which the animal chose
juice A and juice B. The red and green symbols represent, respectively, trials in which the animal
executed aleftward and rightward saccade. In the right panel, the same data points ( y-axis) are
plotted against the variable Chosen Value (expressed in units of juice B). The two lines represent
the results of the ANCOVA (parallel model). As typically the case in ACCv, the activity of this cell
is not directionally selective. This response was recorded in the Late Delay time window. b, An-
other response encoding the Chosen Value. This response was recorded in the Prejuice time
window. ¢, Response encoding the Chosen Value with a negative slope. This response, recorded
in the Postjuice time window, was higher for lower values. d, Response encoding the Chosen
Juice. This neuronal response, recorded in the Postjuice2 time window, was binary depending
on the chosen juice. All conventions in b—d are asin a.
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b, Best fit. The number indicated in each bin represents the number of responses for which the corresponding variable provides the best explanation (highest R). The best fitting variable was
identified separately for each response (i.e., for each time window). Notably, ACCv neurons were most frequently modulated after juice delivery (Table 2). In terms of encoded variables, Chosen Value
appears dominant throughout the delay, whereas Chosen Juice is most prominent after juice delivery. All conventions are as in Figure 3.

2.2 = 0.6, SD computed with error propagation) is statistically
indistinguishable from that measured behaviorally at the indif-
ference point (A/B = 2.6).

The evidence that U-shaped responses indeed encode subjec-
tive value as opposed to any physical property of the juices
emerges from the following observation. For any given juices A
and B, the relative value measured behaviorally may vary to some
extent from day to day. For example, on some days, the animal
may be very thirsty and may not forego large quantities of juice B
to obtain 1A, resulting in a lower relative value. On other days, the
animal may be less thirsty, resulting in a higher relative value. If
U-shaped responses encode a physical property of the juices, they
should be unaffected by this day to day variability. Conversely, if
U-shaped responses encode the subjective value, the slope ratio
o/ should also vary from day to day matching the variability in
relative value measured behaviorally. Our data were consistent
with the latter prediction. In Figure 8¢, we plotted the neuronal
measure of relative value (slope ratio, y-axis) against the behav-
ioral measure of relative value (indifference point, x-axis). Each
circle represents one response, and the plot includes all and only
U-shaped responses recorded in ACCv with 2/3 fruit punch and
1/3 cranberry juice. A linear regression y = a,, + a,x provided the
following estimates (*+95% confidence interval): a, = 0.09
(*£0.45) and a, = 0.99 (£0.66). In other words, the two measures
of relative value were statistically indistinguishable.

To test the identity between neuronal and behavioral mea-
sures of relative values across the population, we performed an

ANCOVA (full model) in which we regressed the slope ratio
against the behavioral indifference point and we grouped re-
sponses by the juice pair. This analysis was done separately for the
two brain areas. For ACCd (six juice pairs; Fig. 8d), we found that
the slope ratio depended significantly on the indifference point
(p < 107" but did not depend on either the juice pair or the
interaction (indifference point by juice pair) (both p > 0.07).
Specifically, for the relationship between slope ratio and indiffer-
ence point (main term), we obtained slope = 1.18 (£0.24) and
intercept = —0.19 (£0.22) (estimate = SEM). In other words,
the neuronal measure and the behavioral measure of relative
value were statistically identical with one another.

For ACCv (seven juice pairs; Fig. 8e), we obtained very
similar results. The full model ANCOVA indicated that the
slope ratio depended significantly on the indifference point
(p <10 '°) but did not depend on either the juice pair or the
interaction (indifference point by juice pair) (both p > 0.5).
For the relationship between slope ratio and indifference
point (main term), we obtained slope = 0.83 (*0.16) and
intercept = 0.20 (*0.12) (estimate = SEM). (Note that the
intercept did not differ significantly from zero, p > 0.09.) In
other words, the two measures of relative value were statisti-
cally identical to one another.

In conclusion, this analysis demonstrates that U-shaped re-
sponses indeed encode a subjective quantity—namely, the Chosen
Value—as opposed to any physical property of the juices.
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responses. ¢, d, Best-subset selection. cindicates the percentage of responses ( y-axis) explained by the best subset as a function of the number of variables (x-axis). d, The table indicates the best subset forn =
1, 2. Variables Chosen Value and Chosen Juice provide the best subset of two variables. (See main text for details on post hoc analysis.) e, Distribution of R2. Each response was classified as encoding either the
Chosen Value or the Chosen Juice based on the R2 The two histograms here represent the distribution of R for the two variables. The distribution mean was equal to 0.53 for the Chosen Value (V = 221) and
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Indifference point

U-shaped responses reflect the subjective nature of value. a, b, One response. This neuron was recorded in ACCv and trials for different movement directions were pooled (see Materials

and Methods). For this analysis (b), the firing rate was regressed on the amount of juice chosen and received by the animal, separately for trials in which the animal chose juice A and juice B. We thus
obtained slopes cand 3. If the response indeed encodes the Chosen Value, the slope ratio ce/[3 should provide a neuronal measure for the relative value and thus equal the behavioral measure
obtained from the choice pattern—a prediction met by this response (slope ratio c/ 3 = 2.2 == 0.6; indifference point A/B = 2.6). ¢, Match between neuronal and behavioral measures of relative
value, one juice pair. The scatterplot (log—log scale) includes all U-shaped responses recorded from ACCv while monkeys chose between 2/3 fruit punch and 1/3 cranberry juice (55 responses).
The line, obtained from a linear regression, is statistically indistinguishable from identity (y = x). The fact that the neuronal measure of relative value (y-axis) matched the variability observed in the
behavioral measure (x-axis) demonstrates that these neurons indeed reflect the subjective nature of value. Indeed, if U-shaped responses encoded a physical property of the juice, the variability in
the slope ratio should be independent of that observed in the choice pattern and the regression line should be horizontal. d, e, Neuronal versus behavioral measure of relative value, population. In
the scatterplot, each symbol represented one response, different symbols and colors indicate different juice pairs (see legend), and regression lines represent the results of the ANCOVA (full model).
This analysis included only juice pairs for which we had at least 20 responses. For both areas, we found a significant effect of the main factor and no effect of either the group or the interaction. In both

areas, the relationship between neuronal measure (slope ratio) and behavioral measure (indifference point) was statistically indistinguishable from identity.

Range adaptation in ACCd and ACCv

In a previous study, we found that value-encoding neurons in
the OFC adapt to the range of values available in any given
session (or trial block). In other words, the same range of
neuronal firing rates describes different ranges of values in
different behavioral conditions (Padoa-Schioppa, 2009). This
adaptation phenomenon ensures in principle a computation-
ally efficient encoding of subjective value. We thus examined
whether the representations of subjective value in ACCd and
ACCyv also undergo range adaptation.

We first examined the population of 521 Chosen Value
responses recorded in ACCd. Consistent with previous reports
(Seo and Lee, 2007; Kennerley et al., 2009), their activity could
either increase or decrease as a function of the encoded value.
Specifically, responses with positive and negative slopes were
310 0f 521 (60%) and 211 of 521 (40%), respectively (Fig. 9a).
Apart from the sign, the two distributions obtained for posi-
tive and negative slopes had equal median (p = 0.84, Wilcox-

on’s rank-sum test). For all the analyses of range adaptation,
we thus rectified negative-slope responses and pooled them
with positive-slope responses (Fig. 9b).

The variable selection analyses presented above indicated that the
encoding of the variable Chosen Value was roughly linear. In other
words, indicating with ¢ the firing rate, with V the Chosen Value,
and with ¢, and ¢, the intercept and slope of the encoding, respec-
tively, the following held true: ¢ = ¢, + ¢, V. Having defined the
value range AV as the range of values chosen by the animal within a
session and the minimum value V;, as the lowest value chosen in that
session, this relationship can be written as follows: ¢ = ¢, +
Ad* (V= V,)IAV,where ¢, = ¢, + ¢, V, is the baseline activity and
A¢ = ¢, * AV is the activity range. In this formalism, the hypothesis
that neuronal firing rates adapt to the range of values available in any
given session corresponds to the hypothesis that neuronal parame-
ters ¢, and A¢ are independent of the value range AV.

In our experiments, each neuron was recorded in one session
with one value range (AV'). However, the range of chosen values
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the distributions obtained for positive and negative slopes had equal median (p = 0.84, Wilcoxon's rank-sum test). We thus rectified responses with negative slopes and we pooled all
responses for this analysis. b, Distribution of unsigned slopes. ¢, Regression slope versus value range. In the scatterplot, each cross represents one response, the y-axis represents the
regression slope (¢;), and the x-axis represents the range of values (AV) available to the monkey in the corresponding session. Responses were divided in two groups depending on
whether AV = 6 uB or AV > 6 uB. The two color diamonds represent the two groups (blue for AV < 6 uB; yellow for AV > 6 uB). Their x- and y-coordinates are in the center of mass
of the corresponding group. On average, regression slopes measured in sessions with a small value range (blue) were larger than regression slopes measured in sessions with a large value
range (yellow) (p << 10 ~', ANOVA). d, Population firing rates, individual responses. The plot shows the entire population of 521 responses Chosen Value responses recorded in ACCd.
Each response was normalized, rectified, and color coded depending on the value range. e, Average neuronal responses. The blue and yellow lines represent, respectively, the average
neuronal response obtained for AV < 6 uB and for AV > 6 uB. Notably, the two average responses are well separated throughout the value spectrum, and both are close to linear.
f, Distribution of activity ranges. Each histogram illustrates the distribution of activity ranges (A ¢) obtained for the corresponding group. The small triangles indicate the medians. The
two distributions are statistically indistinguishable (p = 0.10, Kruskal-Wallis test). Color codes in d—f are the same as in c.

varied from session to session, roughly twofold between 4 and 8 uB.
We thus divided neuronal responses in two groups depending on
whether the range values chosen in that session was AV =< 6 uB or
AV > 6 uB. If neuronal firing rates indeed adapt to the value range,
then the slope of the encoding ¢, should be inversely proportional to
the value range AV. Consistent with this prediction, we found that
the average slope was significantly higher when neurons were re-
corded with AV < 6 uB compared with when neurons were re-
corded with AV > 6 uB (p < 10 ~'°, ANOVA; Fig. 9¢).

The most direct evidence for neuronal adaptation came from a
population analysis of the firing rate as a function of the Chosen
Value. For this analysis, we normalized each response by subtracting
the baseline activity ¢, corresponding to the minimum chosen value
V. The entire population of 521 responses is illustrated in Figure 94,
where the two colors label responses recorded with AV = 6 uB and
AV > 6 uB, respectively. In general, activity ranges (y-axis) varied
substantially across the population. However, when we averaged the
firing rates separately for the two groups of responses neuronal ad-
aptation appeared evident (Fig. 9¢).

We also examined the distributions of activity ranges (A¢)
measured for the two groups of responses. Consistent with range
adaptation, the two distributions were statistically indistinguish-
able (p = 0.10, Kruskal-Wallis test; Fig. 9f). One possible con-
cern is that this last result may be due to saturation or ceiling
effects, as opposed to adaptation. However, it can be noted that
the two activity traces in Figure 9e are well separated throughout
the spectrum of chosen values, and both traces are close to linear.

This observation indicates that the fact that activity ranges are
independent of the value range (Fig. 9f) is genuinely due to range
adaptation.

We repeated these same analyses for the population of 256
Chosen Value responses recorded in ACCv, and we obtained very
similar results (Fig. 10). In ACCyv, responses with positive and
negative slopes were 172 of 256 (67%) and 84 of 256 (33%),
respectively. The two distributions had equal median (p = 0.69,
Wilcoxon’s rank-sum test; Fig. 10a). Thus, we rectified negative-
slope responses and pooled them with positive-slope responses
(Fig. 10b). We separated neuronal responses in two groups de-
pending on whether they had been recorded in sessions with
value range AV = 6 uB or AV > 6 uB, and we examined the slope
of the encoding as a function of the value range. Consistent with
range adaptation, the average slope was significantly higher when
neurons were recorded with AV = 6 uB compared with when
neurons were recorded with AV > 6 uB (p < 10~'°, ANOVA;
Fig. 10c). We then examined the neuronal firing rate directly as a
function of the Chosen Value. We normalized responses by sub-
tracting the baseline activity, and we plotted the entire population of
256 responses (Fig. 10d). In general, activity ranges ( y-axis)
varied substantially across the population. However, when we
averaged the firing rates separately for the two groups of re-
sponses, neuronal adaptation appeared evident (Fig. 10e). The
distributions of activity ranges measured for the two groups of
responses were statistically indistinguishable (p = 0.65, Kruskal-
Wallis test; Fig. 10f). Importantly, the activity traces for the two
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The two distributions are statistically indistinguishable (p = 0.65, Kruskal-Wallis test). Color codes in d—f are the same asin ¢.

groups of responses (Fig. 10e) were well separated throughout the
spectrum of chosen values, indicating that the result in Figure 10f
was indeed due to neuronal adaptation as opposed to saturation or
ceiling effects.

In conclusion, our analyses indicated that value-encoding neu-
rons in both ACCd and ACCv undergo range adaptation. In both
areas, neuronal responses encoding the Chosen Value adapted in
such a way that a given range of firing rates represented different
ranges of values in different behavioral conditions.

Partial adaptation on the timescale of individual trials

The results illustrated in Figures 9 and 10 demonstrated range
adaptation on the timescale of behavioral sessions, which in this
study typically included 200—400 trials. One interesting question
concerns the time course of the adaptation process. In our exper-
iments, monkeys learned the range of values included in each
session by performing in the task. Thus, adaptation presumably
took place over the course of multiple trials at the beginning of
each session. In the following analysis, we examined whether and
to what extent adaptation could be observed on a trial-by-trial
basis.

We used the same approach previously undertaken for the
analysis of OFC. In our experiments, different trial types were
randomly interleaved so that the Chosen Value varied from trial
to trial. The hypothesis that neurons undergo range adaptation
leads to a simple prediction. Consider for example the cell in
Figure 11a, recorded in a session in which the Chosen Value
varied between 2 and 6 uB. Consider now only trials in which the
monkey chose 3B (Chosen Value = 3 uB). These trials could

follow trials in which the Chosen Value was <3 uB; alternatively,
they could follow trials in which the Chosen Value was >3 uB. If
the neuron indeed undergoes adaptation, then its activity should
depend at least slightly on the value chosen in the previous trial.
Specifically, its activity should be slightly elevated when the value
chosen in the previous trial was <3 uB; it should be slightly
depressed when the value chosen in the previous trial was >3 uB.

To test this prediction more generally, we divided trials de-
pending on whether the Chosen Value in the current trial (trial n)
was higher or lower than the Chosen Value in the previous trial
(trial n — 1). Indicating with V(k) the value chosen in trial k, the
two groups of trials were thus defined as V(n) > V(n — 1) and
V(n) < V(n — 1). Consistent with the prediction, the activity for
trials V(n) > V(n — 1) was slightly higher than that for trials
V(n) < V(n — 1) (Fig. 11a).

To quantify this effect, we computed for each trial type the “nor-
malized difference,” defined as the difference between the firing rate
obtained for trials V(1) > V(n — 1) and the firing rate obtained for
trials V(n) < V(n — 1), normalized by the firing rate obtained pool-
ing all trials. We then defined & as the average normalized difference
(average across trial types). Thus, & represented the average percent-
age modulation of trial # — 1 on trial n. For the response in Figure
11a, we obtained & = 13%. Two panels in Figure 115 illustrate the
distributions of 6 obtained, respectively, for the population of 521
Chosen Value responses recorded in ACCd and for the population
of 256 Chosen Value responses recorded in ACCyv. Although both
areas present a substantial variability, responses with & > 0 were a
significant majority in both areas (both p < 10 ~*, binomial test). Fur-
thermore, in both areas, mean(8) was significantly greater than zero
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(both p < 107, t test). Quantitatively, we
measured mean(6) = 5% and mean(d) = 7%
in ACCd and ACCyv, respectively. Interest-
ingly, these measures are similar to the one
previously obtained for OFC [mean(6) = 6%
(Padoa-Schioppa, 2009)].

To test the reliability of this result, we
repeated the analysis for n — 2, n — 3, etc.,
dividing trials depending on whether the
Chosen Value on trial n was higher or lower
than the Chosen Value on trialn — 2,n — 3,
etc. As expected, the adaptation effect faded
rapidly with the trial distance in both areas
(Fig. 11c). For a control, we repeated the
analysis for n + 1 dividing trials depending
on whether the Chosen Value on trial n was
higher or lower than the Chosen Value
on trial # + 1. We did not expect any
effect in this case because neurons
should not adapt to future events. In-
deed, mean(8) was statistically indistin-
guishable from zero.

In conclusion, a small but significant neu-
ronal adaptation could be observed at the
timescale of individual trials in both ACCd
and ACCyv, with an incidence and a time
course very similar to those previously mea-
sured for OFC (Padoa-Schioppa, 2009).

Discussion

We reported three main results. First, we
found clear physiological differences be-
tween the activity of neurons in the dorsal
and ventral bank of the anterior cingulate
sulcus. Specifically, spatially selective neu-
rons were frequent in ACCd (20%) but
nearly absent in ACCv. With respect to
the time profile, ACCd was most active
during the delay before movement initia-
tion, whereas ACCv was most active at the
end of the trial, after juice delivery. Sec-
ond, we found representations of subjec-
tive value in both areas. Specifically,
neurons in both ACCd and ACCv en-
coded variables Chosen Value and Cho-
sen Juice. In addition, neurons in ACCd
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most trial types, the “yellow firing rate” was slightly higher than the “blue firing rate,” consistent with neuronal adaptation. The
difference between the yellow firing rate and the blue firing rate was computed for each trial type and averaged across trial types.
We thus obtained the normalized difference & = 0.13. This measure represents the mean percentage modulation of trialn — Ton
the activity recorded on trial n. The response shown here is the same as in Figure 2b. However, for this analysis, we pooled together
trials with different movement directions (i.e., we analyzed data based on the trial type, not the trial type,g). b, Population
analysis, distribution of & for n — 1. The two histograms refer to ACCd and ACCv, respectively. In each histogram, the x-axis
represents & and the y-axis represents the number of responses. In both areas, & varied substantially across the population.
However, in both areas 6 was above zero in a significant majority of cases (binomial test) and mean(5) was significantly greater
than zero (ttest). Mean, SD, and p values are indicated in each histogram. ¢, Population analysis, mean(&) over trials. The mean (8)
(==SEM) ( y-axis) is plotted against the trial number (x-axis), separately for ACCd (red) and for ACCv (blue). The filled squares
indicate data points statistically different from zero (binomial test, p << 0.01; t test, p << 0.01). In the two areas, mean(5) equal
5-7% for n — 1, equal 1-2% for n — 2, and are indistinguishable from zero for earlier trials. As expected, mean(d) are also
indistinguishable from zero for n + 1in both areas.

2005; Tobler et al., 2005; Clifford et al., 2007; Dean et al., 2008;

encoded the direction of the eye movement. In each area, these
variables explained a vast majority of neuronal responses and did
so significantly better than all other variables examined. Many
previous studies concluded that neurons in ACC encode re-
ward (Niki and Watanabe, 1979; Shidara and Richmond,
2002; Tto et al., 2003; Matsumoto et al., 2003; Williams et al.,
2004; Amiez et al., 2006; Seo and Lee, 2007). However, this is
the first unequivocal demonstration that neurons in these
areas represent subjective value as distinguished from the
physical properties of the rewards. Third, we found that value-
encoding neurons in both areas adapt to the range of values
available in any behavioral condition. Range adaptation mea-
sured in ACCd and ACCy is qualitatively and quantitatively
similar to that previously found in OFC (Padoa-Schioppa,
2009; Kobayashi et al., 2010) and analogous to phenomena
observed in other brain systems (Laughlin, 1989; Griffin et al.,

Bermudez and Schultz, 2010).

A role of ACCd and ACCv in decision making?

From the point of view of economic choice behavior, it is partic-
ularly interesting to compare ACCd and ACCy, on the one hand,
and OFC, on the other hand. In this respect, we observed three
key differences. First and perhaps most important, neurons in
OFC encoded both pre-decision variables (Offer Value) and
postdecision variables (Chosen Value, Chosen Juice). In contrast,
neurons in ACCd and ACCv encoded only post-decision vari-
ables. Second, the engagement of OFC in the trial preceded that
of ACCd and ACCyv. Specifically, responses peaked in the Postof-
fer time window for OFC, in the Late Delay time window for
ACCd, and in the Postjuice time window for ACCv. [Similar
findings were previously reported by Kennerley and Wallis
(2009b).] Third, the direction of the saccade executed by the
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animal modulated the activity of neurons in ACCd. In contrast,
the activity of neurons in OFC and ACCv did not depend on the
visuomotor contingencies of the task. Together, our results indi-
cate that information about the choice outcome (Chosen Value
and Chosen Juice) reached ACCd and ACCyv after the compari-
son between values (i.e., the decision) took place in other brain re-
gions. In this respect, it is also interesting to note that, although the
activity of neurons in ACCd was spatially selective, we did not find
evidence for the encoding of “action value” variables Offer Value L
and Offer Value R. In other words, at least from the limited vantage
point provided by ACCd, it appears that decisions in our choice task
did not involve the comparison of action values. Conversely, the
activation timing and the coexistence in ACCd of choice outcome
signals and movement direction signals raises the possibility that this
area may contribute to the processes through which choice out-
comes and subjective values inform the motor systems.

Prima facie, the conclusion that ACCd/v are computationally
downstream of economic decisions may appear at odds with pre-
vious studies (Walton et al., 2002; Williams et al., 2004; Kennerley
et al., 2006; Rudebeck et al., 2008; Camille et al., 2011). Upon
closer examination, however, the present results complement
well recently emerging notions on the functional role of ACC. In
broad strokes, decision tasks can be distinguished depending (1)
on whether the task includes or does not include a learning com-
ponent and (2) on whether options are defined by stimuli and/or
by actions. For example, Rudebeck et al. (2008) tested monkeys in
two tasks that included a learning component and such that op-
tions were defined either only by stimuli or only by actions. A
recently emerging notion is that ACC lesions seem to impair
performance particularly in tasks that include a learning compo-
nent, and especially if options are defined exclusively by actions.
In contrast, performance is essentially spared in tasks that do not
include learning and/or when options are defined by stimuli
(Kennerley et al., 2006; Rudebeck et al., 2008). Notably, our eco-
nomic choice task did not include a learning component. Fur-
thermore, in any given trial, each option was associated with both
a stimulus and an action. Thus, the conclusion that ACCd/v does
not contribute to decision making in our task is consistent with
previous results. In fact, our present observations seem to reso-
nate with recent reports indicating a specific role of ACC in asso-
ciative learning (Alexander and Brown, 2011; Kennerley et al.,
2011; Wallis and Rich, 2011). It can be noted that variables Cho-
sen Value and Chosen Juice encoded in ACCd/v, if measured in a
learning context, could provide the quantities necessary to eval-
uate performance and thus compute a teaching signal. In this
view, the role of ACC in decision making would be indirect: by
influencing learning, the activity of this areas in any given trial
would affect decisions in subsequent trials.

Possible roles of ACCd and ACCv in other cognitive processes
Our results are also relevant to two hypotheses previously put
forth on the functional role of ACC. First, based mostly on imag-
ing data, several authors proposed that neural activity in ACC
generally reflects the cognitive conflict or the difficulty of the task
(Botvinick et al., 2001; Paus, 2001; Ridderinkhof et al., 2004;
Rushworth et al., 2004). In our experimental paradigm, the deci-
sion difficulty can be operationally identified with the variable
Value Ratio (i.e., Oth/Ch Value). This variable has its maximum
at the indifference point (Value Ratio = 1), where the two values
are very similar and thus the decision is presumably difficult. As
one “moves away” from the indifference point, the Value Ratio
becomes smaller and the decision becomes presumably easier. In
the extreme cases of forced choices (Value Ratio = 0), the deci-
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sion is trivial. Consistent with this operational definition, we pre-
viously observed in a version of the task that did not impose a
delay between offer and movement initiation that reaction times
were highly correlated with the Value Ratio (Padoa-Schioppa et
al., 2006). With this premise, current results appear in contrast
with the cognitive conflict hypothesis because vanishingly few
neurons encoded the Value Ratio in either area. Notably, our
recordings sampled densely and extensively both banks of the
cingulate sulcus. Thus, the negative result vis-a-vis decision dif-
ficulty appears credible. Interestingly, other studies searched and
failed to find individual cells encoding cognitive conflict or task
difficulty in the primate ACC (Ito et al., 2003; Nakamura et al.,
2005). The discrepancy between single-cell and imaging studies
may possibly be due to anatomical mismatches between species
(e.g., human ACC include cell types not found in macaques) or
perhaps to the imperfect correspondence between hemodynamic
responses and neuronal spiking activity (Botvinick, 2007). In any
case, the cognitive conflict hypothesis did not find support in our
data.

Second, in a recent study, Hayden et al. (2009) reported that
neurons in the ACC encode fictive (counterfactual) reward sig-
nals. In their experiment, monkeys selected one among eight
possible targets, seven of which delivered a small amount of juice
and one of which (the optimal target) delivered an amount of
juice randomly variable but on average much higher than that of
the other targets. On any given trial, the position of the optimal
target was most likely (60% of trials) the same as in the previous
trial. Thus, the optimal strategy was to select on each trial the
target located in the same position occupied by the optimal target
in the previous trial. If on trial # the monkey selected the optimal
target, the optimal strategy on trial # + 1 was to select the same
target; if on trial n the monkey selected a different target, the
optimal strategy on trial n + 1 was to switch and select the posi-
tion occupied by the optimal target on trial 7. Since the amount of
juice delivered by the optimal target varied randomly from trial to
trial, switching in the latter case was optimal independently of the
amount “missed” on trial n (the fictive reward). However, curi-
ously, the fictive reward significantly affected switching in both
animals. Remarkably, Hayden et al. (2009) found in ACC neu-
rons encoding the fictive reward size as well as the actual reward
size. In our experiments, fictive rewards are measured by the
variable Other Value, which accounted for very few responses in
our data sets. So how can our results be reconciled with those of
Hayden et al. (2009)? In this respect, it can be noted that, in the
study by Hayden et al. (2009), fictive rewards were behaviorally
relevant because they guided target selection in the next trial. In
other words, the task included a learning component that was
based on both the location and the amount of the fictive reward.
Thus, one possibility is that neurons recorded by Hayden et al.
(2009) did not encode fictive reward per se (i.e., Other Value),
but rather encoded the value of stimuli that guided the learning
process. This hypothesis predicts that fictive reward signals in
ACC should disappear if they do not guide learning. In this view,
our conclusion that neurons in ACCd and ACCv encode the
subjective value of chosen goods might extend to the subjective
value of other behaviorally relevant goods. Similar considerations
apply to OFC, where very few responses encoded the Other Value
in our experiments (Padoa-Schioppa and Assad, 2006, 2008),
whereas a recent study found fictive reward signals in a learning
context (Abe and Lee, 2011) [see discussion in the study by
Padoa-Schioppa and Cai (2011)].

In conclusion, we found two independent representations of
subjective value in ACCd and ACCyv. The general roles of these
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representations in various cognitive functions remain somewhat
unclear. Our results suggest that these two areas do not contrib-
ute to economic decisions per se. At the same time, our results
complement well recent work indicating a specific role of ACC in
associative learning. More generally, the coexistence in ACCd of
choice outcome signals and movement direction signals suggests
that this area may represent a gateway through which the choice
system informs motor systems.
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