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Range-Adapting Representation of Economic Value in the
Orbitofrontal Cortex

Camillo Padoa-Schioppa
Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110, and Department of Neurobiology, Harvard
University, Boston, Massachusetts 02115

While making economic choices, individuals assign subjective values to the available options. Values computed in different behavioral
conditions, however, can vary substantially. The same person might choose some times between goods worth a few dollars, and other
times between goods worth thousands of dollars, or more. How does the brain system that computes values—the “valuation system”—
handle this large variability? Here we show that the representation of value in the orbitofrontal cortex (OFC), an area implicated in value
assignment during economic choice, adapts to the behavioral condition of choice and, more specifically, to the range of values available
in any given condition. In the experiments, monkeys chose between different juices and their choice patterns provided a measure of
subjective value. Value ranges were varied from session to session and, in each session, OFC neurons encoded values in a linear way.
Across the population, the neuronal sensitivity (defined as the change in neuronal activity elicited by the increase in one value unit) was
inversely proportional to the value range. Conversely, the neuronal activity range did not depend on the value range. This phenomenon
of range adaptation complements that of menu invariance observed in a previous study. Indeed, the activity of each neuron adapts to the
range values it encodes but does not depend on other available goods. Our results thus suggest that the representation of value in the OFC

is at one time instantiative of preference transitivity (menu invariance) and computationally efficient (range adaptation).

Introduction

Multiple lines of evidence implicate the orbitofrontal cortex
(OFCQ) in value assignment underlying economic choice. Neural
activity in this area is generally elevated when subjects make
choices compared with when choices are made for them (Arana et
al.,, 2003; Chaudhry et al., 2009). Moreover, blood oxygenation cor-
relates with assigned values in a variety of choice tasks (Plassmann et
al., 2007; Tom et al., 2007; Valentin et al., 2007; Hare et al., 2009;
Venkatraman et al., 2009). Individual OFC neurons encode the
subjective value monkeys assign to different juices when they
choose between them (Padoa-Schioppa and Assad, 2006). Inter-
estingly, neuronal activity in this area is also affected by the effort
exerted by the animal to obtain the juice, by the probability with
which the juice is delivered (Kennerley et al., 2009), and by the
duration of a delay intervening before juice delivery (Roesch and
Olson, 2005). Finally, OFC lesions specifically disrupt choice be-
havior (Gallagher et al., 1999; Rahman et al., 1999; Fellows and
Farah, 2007; Machado and Bachevalier, 2007). Current evidence
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thus suggests that economic choices may be based on values rep-
resented in the OFC.

A broad and fundamental question is whether and how this
representation of value depends on the behavioral context of
choice. Notably, the behavioral context can vary in multiple ways.
For example, a person in a wine store might serially compare
different pairs of bottles: she might first compare a Nebbiolo to a
Bordeaux, and later compare the same Nebbiolo to a Zinfandel.
Changes in the alternative to a given option, which typically occur
moment to moment, are referred to as changes of menu. How-
ever, the context of choice can also change in other ways. For
example, while visiting northern Italy, the same person might
choose between buying a 12-bottle case of that Nebbiolo and
spending one more night in Venice. Broad changes such as from
awine store to a vacation, in which value ranges vary, are referred
to as changes of condition. In previous work, we found that the
representation of value in the OFC is invariant for changes of
menu (Padoa-Schioppa and Assad, 2008). Here we investigated
whether and how this representation of value depends on the
behavioral condition.

Several reasons led us to hypothesize that the representation of
value in the OFC might be subject to neuronal adaptation. First,
an early observation of Tremblay and Schultz, considered in the
light of our previous results, suggests an adapting encoding of
value (Tremblay and Schultz, 1999; Padoa-Schioppa and Assad,
2008). Second, from a computational perspective, a valuation
system endowed with neuronal adaptation would present clear
advantages. Indeed, while values faced in different conditions can
vary by orders of magnitude, any neuronal representation of
value is ultimately subject to physiological limitations on neuro-
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nal firing rates. These limitations imply that choices cannot be
ubiquitously accurate (i.e., consistent) unless the valuation sys-
tem effectively adapts to the range of values available in any given
condition. On this basis, we predicted an inverse relationship
between the sensitivity of value-encoding neurons and the range
of values available in any particular condition. Our results con-
firmed this hypothesis.

Materials and Methods

Main dataset. For this study, we pooled and reanalyzed two datasets
originally collected to examine the neuronal representation of economic
value [experiment 1 (Exp. 1)], 931 cells (Padoa-Schioppa and Assad,
2006)] and its independence from the menu [Exp. 2, 557 cells (Padoa-
Schioppa and Assad, 2008)]. In all the experiments, monkeys chose in
every trial between 2 juices labeled A and B, with A preferred. In Exp. 1,
two juices (A and B) were used in each session. Offers were represented
by sets of colored squares on a computer monitor, and monkeys indi-
cated their choice through eye movements (Fig. 1a). In any given session,
the amounts of the two juices varied from trial to trial, and the behavior
of the monkey presented a quality/quantity trade-off. When offered
equal amounts of the two juices, monkeys would consistently choose
juice A. However, when juice B was offered in sufficiently large amounts,
the monkeys would choose it. The “relative value” of the two juices was
inferred from the indifference point—the quantity ratio for which the
monkey would choose either juice equally often. For example, if the
monkey was indifferent between 1A and 3B, we inferred that the value of
1A was equal to the value of 3B (relative value = 3). Trials were divided
into “trial types” based on the offer type and the choice. For example, a
monkey facing the offer type 4B:1A could choose either 1A or 4B, corre-
sponding to the two trial types (4B:1A, 1A) and (4B:1A, 4B). Neuronal
firing rates were examined in seven time windows: 0.5 s preoffer, 0.5 s
postofter, late delay (0.5-1.0 s after the offer), 0.5 s pre-go, reaction time
(from “go” to saccade), 0.5 s prejuice, and 0.5 s postjuice. A “neuronal
response” was defined as the activity of one neuron in one time window
as a function of the trial type. In Exp. 2, we used identical procedures for
behavioral control and neuronal recordings except that three juices (A, B,
and C) were used in each session (Padoa-Schioppa and Assad, 2008).
Trials with the three juice pairs (A:B, B:C, and A:C) were randomly
interleaved. For the present study, we separated the three sets of trials and
we relabeled, for each juice pair, the two juices as A and B (A preferred).
Thus, each neuron recorded in Exp. 2 provided three separate neuronal
responses for each time window (separate sets of trials). Data from Exp.
2 were then analyzed with the same procedures used for Exp. 1.

The analysis performed here builds on previous results showing
that the population of neurons in the OFC encodes three variables:
offer value (the value of one of the two juices) (Fig. 1b,c), chosen value
(the value of the chosen juice) (Fig. 1d), and taste (a binary variable
indicating the identity of the chosen juice but not its quantity). Only
neuronal responses significantly modulated by the trial type (ANOVA,
p < 0.001) were included in the analysis. For each response, we per-
formed a linear regression on each variable. A variable was said to “ex-
plain” the response if the regression slope differed significantly from zero
(p <0.05). If a given response was explained by more than one variable,
the encoded variable was identified as the one with the highest R% The
encoding of value was linear in the sense that adding a quadratic term to
the regression generally failed to significantly improve the fit (Padoa-
Schioppa and Assad, 2006).

The present study focused on neuronal responses encoding the offer
value or the chosen value. For each response, “slope” and “intercept” were
obtained from the linear regression onto the encoded variable. The
“value range” was defined as the difference between the maximum value
and the minimum value available in that session, the “activity range” was
defined as the product of the slope by the value range, and the “baseline
activity” was defined as the activity corresponding to the minimum value
available in that session. Neuronal responses recorded in different time
windows likely differ for their functional significance. However, the
present results held true in each time window. We thus describe our
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Figure1.  Experimental design and preliminary analysis. a, At the beginning of each trial, the
monkey fixated the center of a computer monitor. Two sets of squares appeared on opposite
sides of the fixation point (“offer”). Different colors of the squaresindicated different juice types
and the number of squares indicated the juice amount. After a randomly variable delay (1-2s),
two saccade targets appeared near the offers (“go”). The monkey indicated its choice and
maintained fixation on the saccade target for 0.75 s before juice delivery. The trial was aborted
if the monkey broke fixation before the go. For any juice pair, the quantities of the two juices
varied randomly. For any given pair of offers (offer type), left/right positions were randomly
counterbalanced. b, Neuronal response encoding the offer value A. In the left, black circles
represent the behavioral choice pattern, i.e., the percentage of B choices ( y axis) recorded for
different offer types (x axis). The relative value, obtained from a sigmoid fit, is indicated in the
panel. In the same panel, red symbols represent the neuronal firing rate == SEM. Diamonds and
circles represent trials in which the monkey chose juice A and juice B, respectively. On the right,
the same firing rate ( y axis) is plotted against the encoded variable offer value A (x axis). The
black line is obtained from the linear regression and the regression parameters (slope and
intercept) are indicated. ¢, Neuronal response encoding the offer value B plotted against the
offer type (left) and against the encoded variable (right). d, Neuronal response encoding the
chosen value plotted against the offer type (left) and against the encoded variable (right).
Regression slopes are expressed in conventional value units uV, corresponding to uA for offer
value A and uB for offer value B and chosen value (see Materials and Methods). sp, Spikes.
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findings pooling responses from different time
windows, although we also report the main re-
sults obtained for individual time windows.

Each neuron in this dataset (main dataset)
was recorded in one session with one value
range. However, sizable groups of neurons
were recorded with different value ranges. To ex-
amine how the encoding depended on the value
range, we thus proceeded with a population-
based approach. We divided the dataset in “sub-
populations” of neuronal responses recorded
with different value ranges. We then consid-
ered one encoding parameter (slope, activity
range, etc.), analyzed it for each subpopula-
tion, and compared the results across sub-
populations (see Fig. 4d). This can be viewed as
a repeated-measure procedure performed at
the level of the neuronal population.

Unless otherwise indicated, we always ex-
press values in conventional units uV, defined
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as uA for offer value A, uB for offer value B, and
uB for chosen value. Units uA (uB) are defined
as equal to the value of 1 drop of juice A (juice
B). Value ranges were thus “quantized” for of-
fer value responses, while they could assume
any numerical value for chosen value responses
(see Fig. 4a—c, x axes). Subpopulations were
naturally defined for offer value responses. For
chosen value responses, we divided value ranges
in bins of 1-2 uB width and we computed the
average value range for each bin. A similar pro-
cedure was used to analyze neuronal responses
in nonconventional value units (see Fig. 8).

Range adaptation for individual neurons.
Population analyses of the main dataset indi-
cated that the encoding of value in the OFC
adapts to the range of values available in the
behavioral condition. To confirm that adapta-
tion takes place at the level of individual neu-
rons, we collected an additional 111 cells from
the OFC of one monkey. The experimental
procedures were similar to those previously de-
scribed (Padoa-Schioppa and Assad, 2006), with minor differences.
Briefly, all surgical procedures were as previously described. The behavioral
task was controlled by a custom-written software (Asaad and Eskandar,
2008) based on Matlab (PC version R2007b, MathWorks). Tungsten elec-
trodes were advanced using a motorized microdrive as previously de-
scribed. Neuronal signals were amplified and filtered (Neuralynx; low-
frequency cutoff 300 Hz, high-frequency cutoff 5 kHz), recorded at 25
kHz by a dedicated processor (Power 1401, CED) and saved to disk for
off-line processing. Recordings were located in the same region exam-
ined in previous studies, tentatively identified as area 13m. Clustering
procedures and preliminary data analyses were all as previously de-
scribed. All experimental procedures conformed to the National Insti-
tutes of Health guidelines and with the regulations of the Washington
University School of Medicine.

The behavioral task was identical to that of Exp. 1 (Fig. 1a). However,
each session included two blocks of trials, with small/large value range.
For both offer value and chosen value responses, large value ranges were
approximately twice as large as small value ranges. Each trial block in-
cluded 200-300 trials. Data from the two trial blocks were first analyzed
separately. For each neuron, time window, and trial block, we deter-
mined whether the activity was modulated by the trial type (ANOVA,
p < 0.01) and, if so, whether it was explained by any variable (offer
value A, offer value B, chosen value, taste; regression slope different
from zero, p < 0.05). Each linear regression provided an R and we
conventionally set R*> = 0 for variables that did not explain the re-
sponse. For each neuron, we then identified the encoded variable as
the one that best explained responses across time windows and across
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Slope distributions. a— ¢, Distribution of signed slopes. The histograms represent the number of responses ( y axis) recorded
with a given regression slope (x axis), separately for the three encoded variables. For each variable, the two distributions obtained for the
subsets of responses with positive and negative slopes are statistically indistinguishable (all p > 0.15, Wilcoxon test). d—f; Distribution of
rectified slopes. The distribution obtained for offer value A responses is significantly broader than that obtained for offer value B responses
(p<<10~"°, Wilcoxon test). For each variable, the median of the distribution is indicated in the corresponding panel. sp, Spikes.

trial blocks (highest total R?). To compare across trial blocks, we
imposed that neuronal responses encode the same variable in both
trial blocks. These criteria identified 19 offer value responses and 17
chosen value responses.

Results

Distribution of regression slopes and model of

neuronal adaptation

Our main dataset included 937 responses encoding the offer value
(Fig. 1b,c) and 817 responses encoding the chosen value (Fig. 1d).
We previously found that the encoding of value is linear in our
experiments (Padoa-Schioppa and Assad, 2006). In other words,
there is a linear relationship between the firing rate ¢ of a neuron
encoding the offer value or the chosen value and the encoded value
Vv,

¢ =

where parameters ¢, and ¢, represent, respectively, the intercept
and the slope of the encoding.

To study how the representation of value depends on the be-
havioral condition, we first examined the regression slope. We
considered separately neuronal responses encoding offer value A,
offer value B, and chosen value. For each response we computed
the numerical value of the regression slope, and we plotted the
results obtained for the entire population in a histogram (Fig.

o+ aV,

(1)
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Figure3. Model of range adaptation. a, Firing rate. The model describes the activity of a value-encoding neuron recorded in different

behavioral conditions. The generic variable value of X corresponds either to the variable offer value X (if X is one particular juice) or to the
variable chosen value (if X is the chosen juice). The relationship between the neuronal firing rate ( y axis) and the value variable (x axis) is
assumed to be linear. Different behavioral conditions are characterized by different value ranges. The fundamental assumption of the
model is that the neuronal activity range remains constant and independent of the value range. In other words, the relationship between
the neuronal firing rate and the encoded value depends on the value range: the neuron adaptsin such away thatits activity range describes,
inany behavioral condition, the entire range of available values. b, ¢, Slope. According to the model, the slope of the encoding (correspond-
ing to the neuronal sensitivity) is proportional to the inverse value range.
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Figure4. Regression slope versus value range. a- ¢, Slope distributions. The three panels refer to neuronal responses encoding

offervalue A (a), offer value B (b), and chosen value (c). In each panel, the regression slope ( y axis) is plotted against the value range
(x axis) and each black cross represents one neuronal response. Value ranges are measured in conventional units. Color diamonds
represent the mean slopes computed for the corresponding subpopulation. In the case of chosen value responses, means are
computed binning value ranges (see Materials and Methods). For all encoded variables, the mean regression slope decreases as a
function of the value range. d, e, Mean slopes. Mean slopes are plotted against the value range (AV, d) and against the inverse
value range (1/AV, e). The three colors represent the three encoded variables. The relationship slope o< 1/AV can be observed in
both panels and is confirmed by a linear fit (see Results).

2a—c). This analysis revealed several points. First, for each en-
coded variable, neuronal responses can have either positive or
negative slopes. Second, for each variable, the two distributions
obtained for the subsets of responses with positive slopes and
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rectified negative slopes were statistically
indistinguishable (all p > 0.15, Wilcoxon
test). We thus combined for each variable
the two subsets of responses by comput-
ing the slope’s absolute value (Fig. 2d—f).
Interestingly, the distributions obtained
for the three variables were different. In
particular, the slope distribution for of-
fer value A responses was significantly
broader than that for offer value B re-
sponses (p < 10 '°, Wilcoxon test).
This result may seem somewhat puz-
zling. In principle, neurons encoding of-
fer value A and offer value B would seem
to be “of the same type” as their re-
sponses encode the value of one of the
juices available in the session. Labels A
and B indicate only which one of the two
juices is preferred, and it is not clear why
this should affect the slope of the encod-
ing. How can we explain the difference
in slope distribution?

One possible explanation follows from
the observation that, in the experiments,
the range of juice B offered to the monkeys
was typically larger than the range of juice
A. Indeed, in all the sessions, the mini-
mum quantity offered for each juice was
always 0 drops, whereas the maximum
quantity varied. Since monkeys preferred
juice A to juice B, we generally offered
larger quantities of juice B to ensure that
the animals would choose juice B for some
offer types. For example, in one represen-
tative session (Fig. 1b), the quantity of
juice A offered varied between 0 drops and
3 drops (value range = 3 units), while the
quantity of juice B offered varied between
0 drops and 6 drops (value range = 6
units). (also see Fig. 1¢,d).

To illustrate how the difference in
value range may relate to the difference in
regression slope, we developed a qualita-
tive model of neuronal adaptation (Fig.
3a). The model describes, for example, the
activity of one neuron encoding the vari-
able offer value X recorded in different ses-
sions, in which juice X is offered in
different value ranges. The fundamental
assumption of the model is that the activ-
ity range of the neuron remains un-
changed in different sessions. In any given
session, the neuron adapts to the range of
values of X offered to the monkey in such
a way that the activity range of the neuron
(A¢, y axis) corresponds to the value
range (AV, x axis) offered in that session.
The key prediction of this adaptation
model is that the slope of the encoding

should be proportional to the inverse value range (Fig. 3b,c). In
other words, according to this model, the following relationship
should hold true: slope « 1/AV (where « stands for “is propor-
tional to”). In principle, the same model of neuronal adaptation
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might also describe the activity of neurons
encoding the chosen value, leading to the
same predicted relationship between
slope and value range.

Regression slope and inverse

value range

Each neuron in our main dataset was re-
corded in one session with one value
range. To test the predictions of the adapta-
tion model, we thus performed a popula-
tion analysis. We studied the distribution of
regression slopes as a function of the value
range (Fig. 4a—c). For each of the three
encoded variables (offer value A, offer
value B, and chosen value), we observe that
regression slopes decrease as a function of
the value range. This phenomenon is par-
ticularly clear when the mean slope is
plotted against the value range (Fig. 4d).
As predicted by the adaptation model, the
relationship between the mean slope and
the inverse value range appears approxi-
mately linear (Fig. 4e). For a statistical
test, we performed a linear fit of the mean
slope onto the inverse value range as fol-
lows: slope = a, + a, - 1/AV. The result
obtained for the coefficient a, does not
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inverse value range is statistically indistin-
guishable from the predicted relationship
slope =1/AV. Interestingly, this result does
not depend on the particular units used to
express values (see below, Scale
invariance).

Figure 4, d and e, suggests that offer
value A and offer value B responses are in-
deed of the same type and that the differ-
ence in slope distribution (Fig. 2) was due
to the difference in value range. To con-

Figure 5.  Population firing rate for offer value responses. a, Individual responses. The entire population of 937 neuronal
responses encoding the offer value is shown (offer value A and offer value B responses are combined). Neuronal responses were
baseline-subtracted, rectified and plotted here ( y axis) against the offer value (x axis). Different colors highlight different value
ranges. Qualitatively, we observe that for each value range neuronal activities are broadly distributed. However, the distributions
recorded for different value ranges appearrather similar. b, Average neuronal responses. Each line represents the average neuronal
response obtained for given value range (see color legend). Neuronal adaptation can be observed for any value, as average
neuronal responses recorded with different value ranges are well separated throughout the value spectrum (e.g., compare the
activity recorded at V = 2 for various ranges AV). ¢, Distribution of activity ranges. Each histogram illustrates the distribution of
activity ranges obtained for the subpopulation of responses recorded with the corresponding value range (color codes as in b).
Small triangles indicate the medians. Several statistical tests failed to find any significant correlation between activity range and
value range ( p > 0.13, Kruskal-Wallis test; p > 0.7, correlation analysis). Analyses in b and ¢ were performed only for subpopu-
lations of at least 40 responses. sp, Spikes.

firm this point, we restricted the compar-
ison of slope distributions to responses
recorded with the same value range. In
this case, we did not find any significant difference between offer
value A and offer value B (analysis performed for AV = 3 and
AV = 4, both p > 0.5, Wilcoxon test). We thus pooled all offer
value responses in subsequent analyses.

Population firing rate

A close match between the activity of neurons in the OFC and the
predictions of the adaptation model can also be observed exam-
ining directly the firing rate of individual neurons as a function of
the encoded value. We first describe the results obtained for the
population of 937 responses encoding the offer value (Fig. 5). For
each response, we subtracted the baseline activity corresponding
to the minimum value available in that session. We then rectified
neuronal responses with negative regression slope and plotted the
resulting firing rate as a function of the encoded value (Fig. 5a).
Different colors in the figure label subpopulations of neuronal
responses recorded with different value ranges. A qualitative in-
spection suggests that the various subpopulations have similar

distribution of maximum firing rates. This point is especially
clear when we average firing rates separately for each subpopula-
tion (Fig. 5b). The emerging picture well matches that of the
adaptation model (Fig. 3a).

To further test the relationship between the neuronal firing
rate and the range of values available in any behavioral condition,
we defined for each neuronal response the activity range A¢ as
the product between the regression slope and the value range.
Thus, Equation 1 can be rewritten as follows:

vV — v,
¢:¢0+A¢‘TV’ (2)

where A¢ = ¢, - AV is the activity range, ¢, = ¢, + ¢,V is the
baseline activity, and V,, is the minimum value available in that
session. We then analyzed the distribution of activity ranges at the
population level (Fig. 5¢). Multiple statistical analyses found that
the distributions of activity ranges obtained for different sub-
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populations (Fig. 6b) provides a picture
resembling that of the adaptation model
(Fig. 3a). Importantly, average firing rates
are separated throughout the value spec-
trum. Finally, statistical tests indicate that
the activity range A¢ is independent of
the value range AV ( p > 0.05, Kruskal—
Wallis test; p > 0.4, correlation analysis)
(Fig. 6¢).

These results were obtained pooling
responses from different time windows.
However, analyses of data from individual
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populations of responses did not depend on the value range ( p >
0.13, Kruskal-Wallis test; p > 0.7, correlation analysis).

Thus, for offer value responses, the distribution of neuronal
activity ranges remains constant and does not depend on the
range of values available in the behavioral condition. One con-
cern might be whether this result is due to saturating neuronal
activity or ceiling effects. The analysis of the average firing rate
(Fig. 5b), however, rules out this possibility. Indeed, the average
firing rates recorded for different value ranges (Fig. 5b, indi-
cated with different colors) are well separated throughout the
value spectrum, and the measure obtained for any particular
value (e.g., V = 2) varies orderly depending on the value range.
This indicates that the linear relationship between regression
slope and inverse value range or, equivalently, the fact that the
neuronal activity range does not depend on the value range, is
genuinely due to neuronal adaptation.

We repeated these same analyses for the population of 817
responses encoding the chosen value and we obtained very similar
results (Fig. 6). A qualitative inspection of individual responses
suggests that different subpopulations recorded with different
value ranges have similar distributions of maximum firing rates
(Fig. 6a). Computing the average firing rates for different sub-

Population firing rate for chosen value responses. a, Individual responses. The entire population of 817 neuronal ~ org  as
responses is shown. Neuronal responses were baseline subtracted and rectified, and they are plotted here ( y axis) against the
baseline-subtracted chosen value (x axis). Different colors highlight different value ranges. b, Average neuronal responses. We
binned value ranges and divided neuronal responses in subpopulations recorded with different value ranges. Each line in the plot
represents the average neuronal response obtained for a given value range (see color legend). Average neuronal responses
recorded with different value ranges are separated throughout the value spectrum (e.g., compare the activity recorded at I/ = 2 for
various ranges AV). ¢, Distribution of activity ranges. Each histogram illustrates the distribution of activity ranges obtained for the
subpopulation of responses recorded with the corresponding value range (color codes as in b). Small triangles indicate the
medians. Several tests failed to find any significant correlation between activity range and value range ( p > 0.05, Kruskal-Wallis
test; p > 0.4, correlation analysis). Analyses in b and c were performed only for subpopulations of at least 40 responses. sp, Spikes.

time windows provided a very similar pic-
ture (supplemental Fig. S1, available at
www.jneurosci.org as supplemental ma-
terial). In particular, we confirmed for
each time window and for each encoded
variable (offer value and chosen value) that
the activity range A¢ was independent of
the value range AV (all p > 0.05, Kruskal—
Wallis test; all p > 0.1, correlation analy-
sis). In another control, we restricted the
analysis to the neuronal population previ-

6 8
Chosen value (uV)

J:l ously shown to be menu invariant (Padoa-
% Schioppa and Assad, 2008). The results of
< % ¢ this analysis were very similar to those ob-
E tained for the entire population, indicating
450 50 75 that menu invariance and range adaptation

are complementary phenomena (supple-
mental Fig. S2, available at www.jneurosci.
supplemental material) (see
Discussion).

In conclusion, the activity of value-
encoding neurons in the OFC appears to
adapt to the range of values available in
any behavioral condition—a result that
holds true both for offer value neurons and
for chosen value responses. Thus, the en-
coding of value in this area seems well de-
scribed by Equation 2, in which the
activity range (A¢) is independent of the
value range (AV). Additional recordings confirmed this result at
the level of individual neurons (see Range adaptation for individ-
ual neurons).

Testing additional forms of neuronal adaptation

One important question is whether the encoding of value in the
OFC presents other forms of neuronal adaptation. Referring to
Equation 2, the question is whether the baseline activity (¢,)
depends on the value range and whether the baseline activity
and/or the activity range (A¢) depend on other variables that
describe the behavioral condition. We examined several
hypotheses.

First, we tested whether the activity range of neurons encoding
the offer value of one particular juice depended on whether that
juice was preferred or nonpreferred. In our experiments, any
given juice (e.g., cranberry juice) could be the preferred juice in
some sessions (e.g., when it was offered against peppermint tea)
and the nonpreferred juice in other sessions (e.g., when it was
offered against grape juice). We thus analyzed the distribution of
activity ranges recorded for neurons encoding the offer value of
cranberry juice in sessions in which cranberry juice was preferred
(juice A) or nonpreferred (juice B). As illustrated (Fig. 7a), the
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Second, we tested whether the activity c O°o

range of value-encoding neurons de- T T T T % ; 5 3 ) 5

pended on the relative value the monkey
assigned to the juices at the time of re-
cording. Given two juices (e.g., apple juice
and peppermint tea), preferences were
usually consistent across sessions (mon-
keys preferred apple juice). However, the
relative value of the two juices could vary
from session to session depending, for ex-
ample, on the thirst of the animal. For this
analysis we thus considered all the neuro-
nal responses encoding the chosen value
recorded in sessions in which apple juice
was offered against peppermint tea (Fig.
7b). A linear fit of the activity range onto the relative value did
not reveal any significant correlation between the two vari-
ables (95% confidence interval). We repeated this analysis across
the population as follows. For chosen value responses, we consid-
ered in each instance the set of neuronal responses recorded with
one particular pair of juices. For offer value responses, we consid-
ered in each instance the set of responses encoding the value of
one particular juice recorded in sessions in which that juice was
offered against another specific juice. We obtained a total of 32
instances (we restricted this analysis to instances with at least 20
data points). The results were rather consistent. In 29 of 32 in-
stances (91%) a linear fit failed to reveal any significant correla-
tion between the activity range and the relative value (95%
confidence interval).

Third, we examined whether the baseline activity (¢, in Eq. 2)
is also subject to adaptation. We performed a series of analyses
similar to those described above for the activity range. In partic-
ular, we investigated whether the baseline activity depends on the
value range, on the juice preference, or on the relative value. In
summary, we did not find any evidence of adaptation. These
results are detailed in supplemental Figures S3-S5, available at
www.jneurosci.org as supplemental material.

Finally, we examined whether either the activity range or the
baseline activity depend on the “other” value range (e.g., whether
the activity of neurons encoding the offer value A depends on the
range of values of B). We did not find any systematic relationship
(supplemental Fig. S6, available at www.jneurosci.org as supple-
mental material).

Figure 7.

Scale invariance

One interesting implication of Equation 2 is that the encoding of
value in the OFC is “scale invariant.” In other words, the relation-
ship between the neuronal firing rate ¢ and the value V should
not depend on the particular units used to measure value (if the
same units are used for V and AV). Consequently, the results
presented above should also not depend on the value units. We
tested this specific prediction as follows. Usually, we express val-

Activity range (sp/s)

Relative value

Invariance of the neuronal activity range. a, The activity range does not depend on the juice preference. Of the 100
neuronal responses encoding the offer value of cranberry juice in our dataset, 26 responses were recorded in sessions in which
cranberry juice was preferred (juice A) and 74 responses were recorded in sessions where cranberry juice was nonpreferred (juice
B). These two groups of responses are plotted separately here (black, preferred; gray, nonpreferred). The histogram shows the
percentage of responses ( y axis) recorded with different activity ranges (x axis). A comparison revealed that the distributions
measured for the two groups of responses are very similar ( p > 0.2, Wilcoxon test). b, The activity range does not depend on the
value. Our dataset includes 47 chosen value responses recorded in sessions in which monkeys chose between apple juice and
peppermint tea. The relative value of the two juices varied from session to session. In the scatter plot, each circle represents one
neuronal response, and the activity range ( y axis) is plotted against the relative value of the two juices (x axis). No systematic
relation between the two measures was found (95% confidence interval, linear fit). sp, Spikes.
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Figure8. Scaleinvariance. For each response in the main dataset, we computed the inverse

value range and the regression slope expressing values either in uA orin uB. We then binned the
inverse value range (bin size 0.05— 0.2, see Materials and Methods). In the scatter plot, mean
regression slopes ( y axis) are plotted against the inverse value range (x axis), separately for
different encoded variables (offer value or chosen value) and different value units (uA or uB, see
color legend). Thus, each neuronal response contributes to this plot twice (once for each value
unit). Regression lines are obtained from an analysis of covariance of the mean regression slope
using the inverse value range as predictor and the dividing data in four groups (2 encoded
variables X 2 value units). Computing the full statistical model amounts to testing whether the
regression lines differ significantly from each other for their intercepts (main factor group)
and/or for their slopes (interaction). The results did not find any such significant effect (both
p>0.).

ues in conventional units uV corresponding to uA for offer value
A, uB for offer value B, and uB for chosen value. However, the
behavioral choice pattern establishes in each session a relation-
ship between uA and uB—the relative value equals uA/uB—such
that any quantity of either juice can in fact be measured in either
units. Thus, we can test, for example, whether the relationship
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and 17 chosen value responses in sessions
divided in two trial blocks, with small
and large value ranges (small AV block
and large AV block). The activity of one
neuron encoding the chosen value is illus-
trated (Fig. 9a). Consistent with adapta-
tion, the slope of the encoding was
shallower in the large AV block com-
pared with the small AV block. This was

typically the case for these neurons. In-
deed, for 34 of 36 responses the regression
slope was shallower in the large AV block
compared with the small AV block, a very

4 6 8 10
Chosen value

L unlikely result if regression slopes varied
. randomly (Fig. 9b) (p < 10 ~°, binomial
P ’ test). In contrast, the activity range did not
R o systematically depend on the value range
L’ (Fig. 9¢) (p > 0.1, binomial test).
ce o. °

For the response illustrated in Figure 9a,
it can be noted that the firing rate corre-
° sponding to chosen value 6 uB was lower in
the large AV block than in the small AV
block, suggesting that the difference in slope
was indeed due to neuronal adaptation as
opposed to ceiling effects. To verify that this
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Figure 9.  Range adaptation for individual neurons. a, One response. The figure illustrates the activity of one chosen value

response recorded with a small value range (left, AV = 4.3 uB) and with alarge value range (center, AV = 8.1 uB). In both panels,
filled black circles represent the behavioral choice pattern and empty color symbols represent the firing rate (all conventions as in
Fig. 1b). Right, The same neuronal response is plotted against the chosen value separately for the two trial blocks. The emerging
picture closely resembles that of the adaptation model (Fig. 3). b, Change in regression slope. In the scatter plot, slopes recorded
with small AV (xaxis) are plotted against slopes recorded with large AV ( yaxis). Each circle represents one neuronal response, and
different colors identify offer value and chosen value responses (see legend). A square represents one outlier ( y = 3.58). Consistent
with adaptation, the vast majority of responses lie below the identity line. ¢, Change in activity range. Axes represent the activity
ranges recorded with small AV (xaxis) and large AV ( yaxis). Each circle represents one response, and different colors identify offer
value and chosen value (same colors as in b). A square represents one outlier ( y = 21.45). Activity ranges were approximately

stable across trial blocks. sp, Spikes.

between the regression slope and the value range (slope « 1/AV)
is indeed independent of the value units.

For offer value and chosen value responses, we plotted the mean
slope against the inverse value range, expressing all values in uA or,
separately, all values in uB (Fig. 8). The two sets of data points lie
essentially on the same line. Indeed, an analysis of covariance did not
find any significant difference between the four fitted lines ( p > 0.1).
Note that each data point in Fig. 8 represents the mean regression
slope ( y axis) measured for the subpopulation of responses re-
corded with a given value range (x axis). By changing value units,
we essentially reshuffled responses on the x axis. That the rela-
tionship between mean slope and value range was unaffected by
this procedure implies that the relationship slope = 1/AV indeed
holds true, and that the results obtained in conventional units
(Fig. 4e) were not accidental.

In addition to providing a useful control, scale invariance is also
interesting from a theoretical point of view. It implies that there is no
intrinsic unit for economic value at the neuronal level, at least in the
OFC.

Range adaptation for individual neurons

The results presented in previous sections were based on popu-
lation analyses. To confirm that individual cells undergo range
adaptation, we collected an additional 19 offer value responses

Activity range (small AV)

was true across the population, we consid-
ered for each response the firing rate re-
corded for the maximum value available in
both trial blocks. We rectified responses
with negative encoding and we compared
the firing rate across trial blocks. For a sig-
nificant majority of responses, the firing
rate was lower in the large AV block com-
pared with the small AV block (27/36 re-
sponses; p < 0.001, binomial test). This
result is consistent with adaptation but
not with ceiling effects.

In conclusion, this additional dataset
shows that range adaptation occurs at the
level of individual neurons, as depicted in Figure 3 and summa-
rized in Equation 2.

Partial adaptation on the time scale of individual trials

One interesting question concerns the timing of neuronal adap-
tation. In our experiments, the value range was not explicitly
indicated, but it remained constant for a large number of trials.
Since different trial types were randomly interleaved, monkeys
learned the value range by performing multiple trials at the be-
ginning of each session. Hence, neuronal adaptation presumably
took place gradually over the course of multiple trials. However,
recent results from other laboratories show that if the value
range is explicitly updated on a trial-by-trial basis, at least
partial neuronal adaptation can be observed on a short time
scale (Elliott et al., 2008; Kobayashi et al., 2009). We thus
examined whether trial-by-trial adaptation also occurred in
our experiments. Specifically, we examined whether, in any
given trial, neuronal responses encoding the value available in
that trial were partly modulated by the value available in the
previous trial.

Neuronal adaptation leads to a specific prediction. Consider a
neuron encoding the chosen value (Fig. 10a, red). There is a linear
relationship between the firing rate and the value chosen by the
monkey in the current trial. Now consider trials such that the
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chosen value = 4. If the cell undergoes ad-
aptation, then the activity in the current
trial should be slightly elevated if the cho-
sen value in the previous trial was lower
than 4. Conversely, the activity in the cur-
rent trial should be slightly depressed if
the chosen value in the previous trial was
higher than 4. To test this prediction, we
divided trials in two groups, depending on
whether the chosen value in the current
trial (trial n) was higher or lower than the
chosen value in the previous trial (trial n —
1). Indicating with V(k) the value chosen
in trial k, the two groups of trials were thus
defined by V(n) > V(n — 1) and V(n) <
V(n — 1), respectively. Consistent with
neuronal adaptation, the activity for trials
V(n) > V(n — 1) was slightly higher than
the activity for trials V(n) < V(n — 1) (Fig.
10a).

To quantify this effect, we computed
for each trial type the difference in firing
rate between trials V(n) > V(n — 1) and
trials V(n) < V(n — 1), normalized by the
firing rate obtained pooling all trials. We
then defined 6 as the average normalized
difference across trial types. In essence, &
represents the percentage modulation of
trial # — 1 on the activity measured on
trial n. For the response illustrated (Fig.
10a), we obtained 8 = 14%. We thus com-
puted & for each response in the main
dataset. For responses with negative en-
coding, we inverted the sign of 8. Thus, for
every response, trial-by-trial adaptation
would result in 6 > 0. For both offer value
and chosen value responses, 8 varied sub-
stantially across the population (Fig. 100).
However, for both variables there was a
significant majority of responses with & >
0 (both p < 10 ', binomial test). More-
over, mean(d) was significantly greater
than zero (both p < 10 ™7, t test). Quanti-
tatively, we found that mean(8) was ~6%
for both variables. To test the reliability of
this result, we repeated the analysis for
trial n — 2, trial n — 3, etc. (i.e., we divided

trials depending on whether the current value was higher/lower
than the value two trials before, three trials before, etc.). As ex-
pected, the effect faded rapidly with the trial distance: mean(8)
was ~6% for trial n — 1, ~2% for trial n — 2, and indistinguish-
able from zero for earlier trials (Fig. 10c). For a control, we re-
peated the analysis for trial n + 1 (i.e., we divided trials depending
on whether the current value was higher/lower than the value in
the next trial). We did not expect any such dependence because
neurons cannot adapt to future events. Indeed, mean(5) was sta-
tistically indistinguishable from zero (Fig. 10c).

In conclusion, partial neuronal adaptation occurred on the time
scale of individual trials, as the value available in any one trial mod-
ulated neuronal responses in the following trial. Notably, this effect
is in the direction opposite to that expected if the value available
inany one trial elicited long neuronal responses that outlast the trial

end (Simmons and Richmond, 2008).
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Figure 10.  Partial adaptation on the time scale of individual trials. a, One response. Red symbols represent the response
computed pooling all trials. Trials were then separated in two groups, with V(n) > V(n — 1) (blue symbols) and V(n) < V(n — 1)
(green symbols). For each trial type, trials with V/(n) = V(n — 1) were assigned to the group with fewer trials. For most trial types,
the “blue firing rate” [trials V(n) > V(n — 1)] was slightly higher than the “green firing rate” [trials V/(n) << V(n — 1)], consistent
with neuronal adaptation. For each trial type, we computed the difference between the blue firing rate and the green firing rate,
and we normalized it by the red firing rate. This normalized difference averaged across trial types defined &. Thus, Srepresents the
mean percentage modulation of trial n — 1on the activity recorded on trial n. For this particular response, & = 0.14. b, Population
analysis, distribution of & for trial n — 1. For both offer value (top) and chosen value (bottom) responses, the x axis represents dand
the y axis represents the number of responses. Both variables present a large variability. However, & was greater than zero in a
significant majority of cases [binomial test (bino)], and mean(8) was significantly larger than zero (¢ test; p values indicated in
inserts). ¢, Population analysis, mean(8) over trials. The mean(5) (==SEM) ( y axis) is plotted against the trial number (x axis)
separately for offer value and chosen value responses. Filled squares indicate data points statistically different from zero (binomial
test, p << 0.01; same results for ¢ test, p << 0.01). Mean(d) is ~6% for trial n — 1, ~2% for trial n — 2, and statistically
indistinguishable from zero for earlier trials. As expected, mean(d) is also indistinguishable from zero for trial n + 1. sp, Spikes.

Discussion

Values processed in different behavioral conditions can vary by
orders of magnitude. This variability is analogous to that faced by
the visual system, in which various mechanisms of neuronal ad-
aptation ensure that contrast sensitivity remains high indepen-
dently of the range of luminance (Laughlin, 1989; Clifford et al.,
2007). Our present results show that an analogous process of
neuronal adaptation takes place in the valuation system. In par-
ticular, we found that OFC neurons encode value in a linear way
and that their neuronal sensitivity (i.e., the slope of the encoding)
is inversely proportional to the range of values available in any given
condition. Conversely, the distribution of activity ranges does
not depend on the value range. Interestingly, similar phenom-
ena of neuronal adaptation were also observed in dopamine
neurons (Tobler et al., 2005) and in the anterior cingulate
cortex (Sallet et al., 2007).
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Menu invariance and range adaptation

The present results complement our previous findings. In an-
other study, we showed that the encoding of value in the OFC is
menu invariant. In other words, the response of a neuron encod-
ing the value of one good (a particular juice in the case of offer
value neurons, or the chosen juice in the case of chosen value
neurons) does not depend on the type and value of the other good
available at the same time (i.e., the nonencoded good) (Padoa-
Schioppa and Assad, 2008). Here we showed that the encoding of
value in the OFC is range adapting. In other words, the response
of a neuron encoding the value of one good (a particular juice in
the case of offer value neurons, or the chosen juice in the case of
chosen value neurons) adapts to the range of values available for
that good in the behavioral condition (i.e., the distribution of
encoded values). In essence, both offer value and chosen value
neurons adapt to the range of values they encode, while they do
not depend on the goods or values that they do not encode. Menu
invariance and range adaptation are thus complementary phe-
nomena (indeed, they were observed in the same neuronal pop-
ulation). Together, they indicate that the encoding of value in the
OFC is at one time instantiative of preference transitivity (menu
invariance) and computationally efficient (range adaptation).

One important issue relates to the time scale of range adapta-
tion. As in the study of Tremblay and Schultz (1999) (see below),
in our experiments value ranges remained constant for a large
number of trials. In contrast, menu invariance was demonstrated
by randomly interleaving trials with different juice pairs. This
might suggest that range adaptation is an intrinsically slow pro-
cess, whereas menu invariance is a property of the short time scale
(Padoa-Schioppa and Assad, 2008). However, our current anal-
ysis and other reports (Elliott et al., 2008; Kobayashi et al., 2009)
indicate that at least partial adaptation can take place on the time
scale of individual trials. In fact, menu invariance is fully consis-
tent with range adaptation occurring on a short time scale. Con-
sider for example a neuron encoding the offer value of apple juice.
The encoding undergoes adaptation in the sense that the neuro-
nal activity elicited by a particular quantity of apple juice depends
on the range of apple juice available in that session. At the same
time, the encoding is menu invariant in the sense that the neuro-
nal activity elicited by a particular quantity of apple juice does
not depend on the type and quantity of the other juice avail-
able. Thus, not only is the encoding of value both menu in-
variant and range adapting. Menu invariance holds true
independently of the time course of range adaptation. Impor-
tantly, this understanding captures the essence of menu invari-
ance and its fundamental link with preference transitivity (Grace,
1993; Tversky and Simonson, 1993; Shafir, 1994; Padoa-Schioppa
and Assad, 2008).

The present results shed new light on the early observation of
Tremblay and Schultz (1999). In their study, monkeys were de-
livered one of three possible juices (A, B, or C, in decreasing order
of preference). Trials were blocked, and only two juices were used
in each block. A subset of OFC neurons responded to juice A but
not to juice B in “A:B” blocks, and to juice B but not to juice C in
“B:C” blocks. Our results suggest that these might have been
chosen value neurons whose activity encoded the value received
by the monkey in any given trial, and whose encoding adapted to
the range of values received within each block. In A:B blocks, any
such neuron would respond with maximum firing rate when the
monkey received juice A and with minimum firing rate when the
monkey received juice B. In B:C blocks, the same neuron would
respond with maximum firing rate when the monkey received
juice B and with minimum firing rate when the monkey received
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juice C. In this view, neurons in the OFC encode value (not
relative preference), but in a range-adapting way. One interesting
question is whether range adaptation also explains similar obser-
vations in other brain regions (Hosokawa et al., 2007).

Open questions and perspectives

While the evidence for neuronal adaptation appears robust, im-
portant questions remain. First, the exact mathematical defini-
tion of “value range” remains to some extent undetermined. In
this study, we defined the value range as the difference between
the maximum value and the minimum value available in the
behavioral condition. However, for offer value responses, the
minimum value was always equal to zero in our experiments.
Thus, we cannot rule out that offer value neurons might adapt to
the maximum encoded value per se—an alternative definition of
value range. This distinction was theoretically possible for chosen
value neurons, but in practice our data did not disambiguate
between the two hypotheses. Thus, more experiments are neces-
sary to conclusively define the value range. Second, our results
demonstrate that the activity range of OFC neurons represents
different value ranges in different conditions, a “quantitative ad-
aptation.” In addition, it is possible that OFC neurons undergo a
“qualitative adaptation” when choices are made in different be-
havioral settings. For example, a neuron encoding the offer value
of apple juice in sessions in which apple juice is available might
encode the offer value of another juice in sessions in which apple
juice is not available. Given the relatively large number (10-12)
of juices used in our experiments, and the potentially much larger
number of goods available in nature, this putative mechanism of
flexible encoding seems a credible hypothesis. Future work will
investigate this intriguing issue.

An increasing body of work links the OFC to the computation
of subjective value underlying economic choice. Imaging studies
show that neural activity in the OFC and ventromedial prefrontal
cortex correlates with value in choices between food and money
(Plassmann et al., 2007; Hare et al., 2008), in risky choices (Rolls
et al., 2008; Venkatraman et al., 2009), in intertemporal choices
(Kable and Glimcher, 2007; Hare et al., 2009), in choices that
involve gains and losses (Tom et al., 2007; De Martino et al.,
2009), and in food devaluation paradigms (Valentin et al., 2007).
At the single-cell level, our work shows that individual neurons in
the OFC encode the offer value and the chosen value, two variables
seemingly necessary for economic choice (Padoa-Schioppa and
Assad, 2006). Moreover, neuronal activity in this area is affected
by a variety of variables relevant to choice behavior, including
food-specific satiety (Rolls et al., 1989; Pritchard et al., 2008),
exerted effort, probability of juice delivery (Kennerley and Wallis,
2009; Kennerley et al., 2009), and time delays (Roesch and Olson,
2005). Single-cell recordings in rats provide corroborating evi-
dence (Roesch et al., 2006; van Duuren et al., 2007; Kepecs et al.,
2008), although there are notable differences between rodents
and primates (Feierstein et al., 2006; Zald, 2006; Wise, 2008). Last
but not least, numerous studies demonstrate that OFC lesions
specifically impair choice behavior (Bechara et al., 1996; Pasquier
and Petit, 1997; Gallagher et al., 1999; Rahman et al., 1999;
Fellows and Farah, 2007; Koenigs and Tranel, 2007; Machado and
Bachevalier, 2007; Baxter et al., 2009). This accumulated evidence
suggests that economic choices may be based on values repre-
sented in the OFC (Fellows, 2007; Padoa-Schioppa, 2007; Wallis,
2007). The present study sheds further light onto the nature of
this computation, indicating that OFC neurons represent value
in an adapting and thus computationally efficient way. More
generally, it supports the understanding that fundamental prin-
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ciples first documented in sensory and motor systems, such as
neuronal adaptation, also govern neurobiological processes un-
derlying more complex behaviors, such as economic choice.
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