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SUMMARY

To investigate the mechanisms through which eco-
nomic decisions are formed, I examined the activity
of neurons in the orbitofrontal cortex while monkeys
chose between different juice types. Different clas-
ses of cells encoded the value of individual offers
(offer value), the value of the chosen option (chosen
value), or the identity of the chosen juice (chosen
juice). Choice variability was partly explained by the
tendency to repeat choices (choice hysteresis).
Surprisingly, near-indifference decisions did not
reflect fluctuations in the activity of offer value cells.
In contrast, near-indifference decisions correlated
with fluctuations in the preoffer activity of chosen
juice cells. After the offer, the activity of chosen juice
cells reflected the decision difficulty but did not
resemble a race-to-threshold. Finally, chosen value
cells presented an ‘‘activity overshooting’’ closely
related to the decision difficulty and possibly due to
fluctuations in the relative value of the juices. This
overshooting was independent of choice hysteresis.

INTRODUCTION

In recent years, significant progress has been made in under-

standing the neural underpinnings of economic choices. In

particular, much work has focused on the computation and rep-

resentation of subjective values. Lesion studies have shown that

value-based decisions are selectively disrupted after lesions to

the orbitofrontal cortex (OFC) and/or the amygdala, but effec-

tively spared after lesions to other brain regions (Buckley et al.,

2009; Camille et al., 2011; Gallagher et al., 1999; Rudebeck

and Murray, 2011; West et al., 2011). Neurophysiology experi-

ments have found that neurons in the primate OFC encode the

subjective value of different goods during economic decisions

and integrate multiple dimensions on which goods can vary

(Kennerley et al., 2009; Padoa-Schioppa and Assad, 2006;

Roesch and Olson, 2005). Functional imaging in humans has

consistently confirmed and extended these results (Kable and

Glimcher, 2007; Levy et al., 2010; Peters and Büchel, 2009;
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Plassmann et al., 2007). But in spite of these advances, funda-

mental questions remain open. Perhaps most pressingly, the

precisemechanisms through which values are compared remain

unclear. In this respect, OFC appears particularly noteworthy. In

a computational sense, an economic decision is a process

through which the values of different goods are compared and

one good is eventually chosen. Studies in which monkeys chose

between different juice types have shown that neurons in the

OFC encode three variables: offer value (the value of individual

goods, independent of the eventual choice), chosen value (the

value of the chosen good, independent of its identity), and

chosen juice (the identity of the chosen good, independent of

its value) (Padoa-Schioppa and Assad, 2006, 2008). OFC thus

appears to represent all the components of the decision pro-

cess, suggesting that closer examination of activity in this area

might shed light on key aspects of economic choice.

In the effort to unravel the neuronal mechanisms of economic

decisions, it could be fruitful to establish ananalogybetweeneco-

nomic decisions and other behaviors frequently examined in

neurophysiology (Sugrue et al., 2005). In particular, extensive

research has focused on the decision process underlying the

visual perception of motion (henceforth ‘‘perceptual decisions’’).

In a somewhat simplified account, two brain areas play a critical

role. Neurons in the middle temporal (MT) area encode the direc-

tion of motion for the stimuli present in the visual scene at any

given time. In contrast, neurons in the lateral intraparietal (LIP)

area encode the binary result of the decision process.When stim-

uli are degraded such that the decision process stretches over

longer periods of time, neurons in MT encode the instantaneous

evidence fromthevisual stimuli,withnomemory. Incontrast, neu-

rons in LIP encode the accumulated evidence in favor of one

particular decision (Newsome, 1997; Shadlen et al., 1996).

Tracing the analogy between economic and perceptual deci-

sions, offer value cells in OFC may correspond to neurons in

MT, whereas chosen juice may correspond to neurons in LIP.

Indeed, the former seem to represent the main input to the deci-

sion process, whereas the latter seem to represent the binary

outcome of the decision. In contrast, chosen value cells in OFC

donot appear to have a clear counterpart in perceptual decisions.

The analogy with perceptual decisions highlights two funda-

mental and open issues in economic decision-making. First,

extensive work on perceptual decisions has been devoted

to understanding how fluctuations in the activity of dif-

ferent neuronal populations contribute to decisions near the
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indifference point (threshold). In particular, the observation that

near-indifference decisions are mildly, but significantly, corre-

lated with activity fluctuations in area MT (Britten et al., 1996;

Cohen and Newsome, 2009) has provided a critical link between

this area and the perception of motion. In contrast, the neuronal

origins of variability in economic choices have not yet been

examined, and we do not yet understand what drives decisions

near the indifference point. Second, the time necessary to reach

either a perceptual or an economic decision depends on the

decision difficulty (Padoa-Schioppa et al., 2006; Roitman and

Shadlen, 2002; Soltani et al., 2012). Building on this notion,

much research has focused on neuronal activity reflecting the

formation of a perceptual decision over time. In particular, the

activity of neurons in LIP was found to increase gradually during

perceptual decisions, suggesting that these cells encode the

evolving decision state of the animal (Roitman and Shadlen,

2002; Shadlen and Newsome, 2001). By comparison, less is

known about how economic decisions form over time, or about

how economic decisions depend on the decision difficulty.

In addition to these empirical questions, considerable work

on perceptual decisions has been devoted to mathematical

conceptualization. Specifically, activity profiles in area LIP

have been described with a variety of models, including race-

to-threshold processes and dynamical systems (Bogacz et al.,

2006; Gold and Shadlen, 2007; Wang, 2002). In contrast,

although several proposals were recently put forth (Hunt et al.,

2012; Krajbich et al., 2010; Soltani et al., 2012; Solway and Bot-

vinick, 2012), a comprehensive model for the neuronal mecha-

nisms of economic decisions remains elusive (see Discussion).

To address these issues and gather elements that would inform

future models, I examined data recorded in the OFC of monkeys

engaged in economic choices.

RESULTS

Neuronal activity in OFCwas recorded in two experiments during

which monkeys chose between different juice types (see Exper-

imental Procedures). In experiment 1, animals chose between

two juices labeled A and B, with A preferred (Padoa-Schioppa

and Assad, 2006). Offers were represented by sets of colored

squares on a computer monitor and the animals indicated their

choices with an eye movement. Juice quantities varied from trial

to trial and behavioral choice patterns typically presented a qual-

ity-quantity trade-off (Figures 1A and 1B). In experiment 2, the

procedures were very similar except that three juices were

used in each session (Padoa-Schioppa and Assad, 2008). Two

of the three juices were offered in each trial, with the three juice

pairs randomly interleaved.

From Neuronal Responses to Cell Classes
Previous analyses were based on neuronal responses, defined

as the activity of one cell in one time window (see Experimental

Procedures). It was shown that the vast majority of neuronal re-

sponses encoded one of three variables: offer value (Figure 1C),

chosen value (Figure 1D), and chosen juice (Figure 1E). Notably,

the firing rate could increase or decrease as a function of the

encoded variable (positive or negative encoding). However,

two important questions were not previously addressed. First,
N

because variables offer value, chosen value and chosen juice

were intrinsically correlated, individual responses were often

explained bymore than one variable. For example, one response

could have a nonzero slope when regressed onto either offer

value or chosen value. In such case, the response was assigned

to the variable with the highest R2. However, this criterion did not

assess whether offer value and chosen value were distinct

classes of responses or, alternatively, whether the two variables

represented ‘‘poles’’ of a continuum. Second, previous studies

did not test whether offer value, chosen value, and chosen

juice corresponded to separate groups of cells. In principle,

any given neuron could encode different variables at different

times. Alternatively, each cell could consistently encode a single

variable. I addressed these issues as follows.

To assess whether offer value and chosen value are distinct

classes of responses, I computed for each response the linear

regression onto variables offer value and chosen value, from

which I obtained the two R2. I then defined DR2 = R2
offer value –

R2
chosen value, which ranged from �1 to +1. For a response

perfectly explained by offer value (chosen value) and poorly ex-

plained by chosen value (offer value), DR2 is close to +1 (�1). If

offer value and chosen value are two poles of a continuum, the

distribution of DR2 should be unimodal with a peak close to

zero. Conversely, if offer value and chosen value are distinct clas-

ses of responses, the distribution of DR2 should be bimodal with

a dip close to zero. As illustrated in Figures 1F and 1G, the distri-

bution obtained forDR2was indeed bimodal (p < 0.02, Hartigan’s

dip test). Thus, offer value and chosen value appeared to be

distinct classes of responses. I repeated this analysis for the

two other pairs of variables (offer value versus chosen juice

and chosen value versus chosen juice). In both cases, the distri-

bution for DR2 was clearly bimodal (both p < 10�10, Hartigan’s

dip test; Figures 1H–1K). In conclusion, offer value, chosen value,

and chosen juice responses are best thought of as different

classes of responses, not as poles of a continuum.

To assess whether different neurons encoded different

variables, I first examined data from experiment 1. Neuronal re-

sponses were classified as encoding one of four variables: offer

value A, offer value B, chosen value, or chosen juice. Responses

that were not task-related or that were not explained by any var-

iable were unclassified. Given a neuron and two time windows, I

defined a ‘‘classification conflict’’ if the neuron was classified in

both time windows but it encoded different variables. A conflict

was also detected if a cell encoded the same variable but with

different sign. I thus sought to establish whether the incidence

of classification conflicts in the populationwas greater, compara-

ble, or lower than expected by chance. Chance level was

estimated with a bootstrap technique (see Supplemental Experi-

mental Procedures available online). This analysis showed that

the number of classification conflicts present in the data was

significantly lower than expectedby chance (p < 10�10, t test; Fig-

ure S1A). Conversely, for each pair of time windows, cells with

consistent classificationwere significantlymore frequent thanex-

pected by chance (Figure S1B; all p < 10�10, t test). Data from

experiment 2 provided very similar results both for the analysis

of classification conflicts (p < 10�10, t test) and for that of classifi-

cation consistency (all p < 10�10, t test). In other words, OFC neu-

rons typically encoded the same variable across time windows.
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Figure 1. Categorical Encoding of Offer Value, Chosen Value, and Chosen Juice

(A) Task design. Animals maintained center fixation and offers were represented by two sets of color squares. After a randomly variable delay, animals indicated

their choice with a saccade.

(B) Typical choice pattern. The x axis represents offer types ranked by the ratio #B:#A. The y axis represents the percentage of trials in which the animal chose

juice B. In this session, the animal was roughly indifferent between 1A and 4B.

(legend continued on next page)
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In the light of these results, I assigned each neuron to the var-

iable that best explained responses across all time windows

(sum of R2 across time windows), taking into account the sign

of the encoding. The resulting data set included 245 offer value

cells (188/57 with positive/negative encoding), 273 chosen value

cells (161/112 with positive/negative encoding), and 265 chosen

juice cells. The sign of chosen juice cells could be assessed un-

equivocally only for data from experiment 2 (146 chosen juice

cells, 96/50 with positive/negative encoding). Unless otherwise

specified, all the analyses of chosen juice cells were performed

by pooling data from the two experiments and rectifying cells

with negative encoding such that the ‘‘encoded’’ juice elicited

higher neuronal activity.

Figure 2 illustrates the average activity profile obtained for

each neuronal population. Importantly, inspection of Figure 2E

suggests that decisions were made within 500 ms of the offer.

Computational Framework
Consider a session in which the animal chose between juice A

and juice B. When the two offer values were sufficiently different,

the animal consistently chose the same juice. However, near-

indifference decisions were typically split: on some trials the

animal chose juice A, in other trials it chose juice B. This phenom-

enon is referred to as choice variability (Figure 3A). The primary

goal of this study was to shed light on the neuronal origins of

choice variability.

The analyses presented here were guided by the computa-

tional framework depicted in Figure 3B (see also Padoa-

Schioppa, 2011). At the outset of this study, I conceptualized

the decision between two goods as a process in which two offer

values are compared on the basis of a relative value. The deci-

sion outcome is represented by the identity and value of the

chosen good. The three populations of neurons found in the

OFC appear to match this scheme. Indeed, offer value cells

encode the value of individual offers, whereas chosen value

and chosen juice cells encode, respectively, the value and iden-

tity of the chosen good. This observation led to the working hy-

pothesis that motivated this study, namely that each class of

cells in the OFC may be identified with the corresponding

computation.

Choice Hysteresis
Choice patterns in the experiments were generally saturated,

indicating that the animals had strict preferences. However,

when the two offers had similar values, monkeys were more

likely to choose the same juice that they had chosen in the pre-

vious trial. I refer to this behavioral phenomenon as ‘‘choice hys-
(C) Response encoding the offer value. Black symbols represent the behavioral ch

after the offer. Each data point represents one trial type and diamonds and circles r

bars represent SE.

(D) Response encoding the chosen value. Color symbols represent the firing rate

(E) Response encoding the chosen juice. Color symbols represent the firing rate

(F and G) Categorical encoding of offer value versus chosen value. The scatter plo

offer value or the chosen value. For each response, I considered the two R2s ob

(F) The two R2s are plotted against each other. (G) Illustrates the distribution obt

(H and I) Offer value versus chosen juice.

(J and K) Chosen value versus chosen juice.

See also Figure S1.
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teresis.’’ One example session is illustrated in Figure 4A, where I

separated trials into two groups depending on the outcome of

the previous trial. The choice pattern obtained when the

outcome of the previous trial was juice A (trials A,) was displaced

to the right (higher indifference point) compared to the choice

pattern obtained when the outcome of the previous trial was

juice B (trials B,). Choice hysteresis was consistent across ses-

sions (Figure 4B). The indifference point measured in A, trials

was typically higher than that measured in B, trials (p < 10�10,

sign test). In some cases, the outcome of the previous trial was

neither juice A nor juice B. These trials (X, trials) followed incom-

plete trials or, in experiment 2, trials in which the animal chose

the third juice offered in the session. The indifference point

measured in X, trials was typically between those obtained for

A, trials and B, trials. Importantly, choice hysteresis largely

dissipated after one trial (Figure 4C).

To quantify choice hysteresis more precisely, I used a logistic

analysis. I constructed the following logistic model:

choice B= 1=ð1+ e�XÞ
X= a0 + a1 logð#B=#AÞ+ a2ðdn�1;B � dn�1;AÞ: (Equation 1)

The variable choice Bwas equal to 1 if the animal chose juice B

and 0 otherwise. #A and #B were, respectively, the quantities of

juices A and B offered to the animal in any given trial. The current

trial was referred to as trial n and the variable dn-1, J was equal to 1

if in the previous trial the animal received juice J and 0 otherwise.

Note that the difference (dn-1, B � dn-1, A) was equal to 1, �1, or

0 depending on whether the previous trial ended with receipt

of juice B, juice A, or otherwise (e.g., with receipt of the third juice

in experiment 2). The logistic regression provided an estimate for

parameters a0, a1, and a2. By construction, a1 > 0. In the simpli-

fied model with a2 = 0, a1 was the inverse temperature and a

measure of choice variability, whereas the indifference point

was provided by exp(�a0/a1). Choice hysteresis corresponded

to a2 > 0. However, it was useful to quantify the effect of choice

hysteresis with the normalized coefficient a2/a1. This logistic

regression was performed for each session in the data set (304

sessions total). I thus obtained a distribution for a2/a1 across

sessions (Figure 4D). The median of the distribution m = 0.124

was significantly >0 (p < 10�10, Wilcoxon sign test). Behaviorally,

this means that the effect of obtaining juice B in the previous trial

was equivalent to multiplying the quantity of juice B by a factor of

exp(m) z1.13.

In subsequent analyses, I examined the contributions of

different neuronal populations to choice variability while control-

ling for choice hysteresis.
oice pattern and green symbols represent the firing rate recorded in the 500ms

epresent, respectively, trials in which the animal chose juice A and juice B. Error

recorded in the 500 ms after the offer.

recorded in the 500 ms before juice delivery.

t and the histogram include all the responses classified as encoding either the

tained from linear regressions against variables offer value and chosen value.

ained for DR2.
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Figure 2. Average Activity Profiles

(A and B) Average population activity for offer value cells. For each cell, trials were divided into three tertiles based on the value of the encoded juice (high,

medium, and low). The activity of each tertile was averaged across the population. (A) and (B) show the activity for neurons with positive/negative encoding

(188/57 cells).

(C andD) Average population activity for chosen value cells. For each cell, trials were divided into three tertiles based on the chosen value (high, medium, and low).

(C) and (D) show the activity for neurons with positive/negative encoding (161/112 cells).

(E and F) Average population activity for chosen juice cells. The figure includes only data from experiment 2, for which positive/negative encoding could be

established (see main text). For each chosen juice cell, trials were divided depending on whether the animal chose the juice encoded by the cell (E chosen) or the

other juice (O chosen). (E) and (F) show the average activity for neurons with positive/negative encoding (96/50 cells).
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Fluctuations in the Activity of Offer Value Cells Do Not
Explain Choice Variability
In the framework of Figure 3B, offer value cells (Figure 1C) repre-

sent the primary input to the decision process. Intuitively and by
1326 Neuron 80, 1322–1336, December 4, 2013 ª2013 Elsevier Inc.
analogy with results in perceptual decisions, it is reasonable to

wonder whether choice variability reflects fluctuations in the ac-

tivity of offer value cells. To examine this issue, I analyzed all offer

value cells focusing on offer types for which decisions were split.



Figure 3. Computational Framework

(A) Choice variability (cartoon). Consider a session in which the animal chose

between juice A and juice B. The experimental design and the analysis

assumed that, for each offer type, the percent of B choices (black dots) de-

pended only on the ratio #B:#A. Choice variability corresponds to the fact that

the normal distribution derived from the sigmoid fit has nonzero variance. The

mean of the distribution is the indifference point.

(B) Computational framework. The decision model proposed here assumes

that there is an input layer represented by offer value cells. The input feeds into

a circuit that includes chosen juice neurons and chosen value neurons, which

collectively represent the choice outcome. This computational framework

does not specify the architecture of the network, and is thus compatible with a

variety of possible architectures (Bogacz et al., 2006). The relative value be-

tween the two goods (r) can generally be thought of as a ratio of synaptic

efficacies. For example, in a mutual-inhibition model or in a pooled-inhibition

model, the input units (offer value cells) feed into response units (chosen juice

cells) with synaptic efficacies rA and rB. In this scenario and under reasonable

assumptions, the relative value r equals the ratio rA/rB. Alternatively, in a

pooled-inhibition model, r s 1 could also emerge from an imbalance of the

other synaptic efficacies defined in the network. In principle, synaptic effi-

cacies (and their ratios) can fluctuate stochastically on a trial-by-trial basis.

Neuron
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Thus, in some trials the animal chose the juice encoded by the

neuron under consideration (juice E), whereas in other trials

the animal chose the other juice (juice O). For each offer type,

the firing rate was averaged separately for the two groups of tri-

als. The resulting traces were averaged across offer types to

obtain two traces for each offer value cell: one for trials in which

the animal chose the encoded juice (E chosen) and another for

trials in which the animal chose the other juice (O chosen). These

traces were baseline-subtracted and averaged across neurons.

As illustrated in Figure 5A (positive encoding), the resulting

population traces appeared indistinguishable throughout the

1 s following the offer. A receiver operating characteristic

(ROC) (see Experimental Procedures) analysis focused on the

150–400 ms after the offer confirmed this impression. Specif-

ically, the area under the curve (AUC; also referred to as choice

probability) did not consistently differ from the null hypothesis of

0.5 (mean AUC = 0.504; p = 0.6, t test). Thus there was no evi-

dence that the activity of offer value cells was elevated on trials

in which the animal chose the juice they encoded. Similar results

were obtained for negative encoding cells (Figure 5B) and in

several different variants of this analysis (Supplemental Experi-

mental Procedures; Figure S2).

To further test the possible relationship between fluctuations

in the activity of offer value cells and near-indifference decisions,

I ran a logistic analysis using an approach similar to that of Yang

and Shadlen (2007). This analysis focused on the 500 ms

following the offer. I constructed the following logistic model:
N

choice E= 1=ð1+ e�XÞ
X= a0 + a1 logð#E=#OÞ+ a2ðdn�1;E � dn�1;OÞ+ a3 4residual:
(Equation 2)

For each offer value cell, E was the juice encoded by the cell, O

was the other juice, and 4residual was the residual firing rate re-

maining after the linear regression of the raw firing rate (4) onto

the variable offer value E. Other notations were as in Equation 1.

The null hypothesis corresponded to a3/a1 = 0. The logistic

regression was performed for each offer value cell in the data

set (cells from experiment 2 contributed each with two data

points). Figure S5B illustrates the distribution for a3/a1 obtained

across the population. In this histogram, cells with positive and

negative encoding were pooled after inverting the sign of a3 for

cells with negative encoding. The median of the distribution

m = 0.001 was in the expected direction but did not reach statis-

tical significance (p = 0.12, Wilcoxon signed-rank test).

In summary, I did not find consistent evidence that near-indif-

ference decisions correlate with stochastic fluctuations in the

activity of offer value cells. This result is somewhat surprising

and qualitatively different from observations on perceptual

decisions (see Discussion).

Chosen Juice Cells, Decision Difficulty, and Predictive
Activity
I next examined chosen juice cells (Figure 1E). By definition, the

activity of these neurons depended on the type of juice the animal

chose, but not on its value. One important question was whether

and how their activity depended on the decision difficulty. To

address this issue, I pooled cells from the two experiments and

rectified neurons such that the encoded juice was defined as

thatwhich elicited higher activity. For each cell, I divided trials de-

pending onwhether themonkey chose the encoded juice (juice E)

or the other juice (juice O) and on whether decisions for that offer

type were easy or split (see Experimental Procedures). I thus ob-

tained four groups of trials: ‘‘E chosen easy,’’ ‘‘E chosen split,’’

‘‘O chosen split,’’ and ‘‘O chosen easy.’’ For each group, I aver-

aged theactivity profiles across trials andacross cells (Figure 6A).

Several aspects of the results are noteworthy.

First, even though the encoding was basically binary (high or

low depending on the chosen juice), the activity profile clearly

depended on the decision difficulty. In particular, consider trials

in which the monkey chose the encoded juice (blue lines in Fig-

ure 6A). In the time window 200–450 ms following the offer, the

activity was significantly higher for easy decisions than for split

decisions (ROC analysis: across the population, mean AUC =

0.556; p < 10�10, t test). Conversely, for trials in which the animal

chose the other juice (red lines in Figure 6A), the drop of activity in

the same time window was significantly more pronounced when

decisions were easy than when they were split (mean AUC =

0.477; p < 10�4, t test).

Second, the activity of chosen juice cells did not resemble a

race-to-threshold. Indeed, although the traces for easy and split

decisions converged, they did so �500 ms after the offer for E

trials and, most strikingly, well into the descent phase that

followed the activity peak. In this respect, there appears to be

a difference between chosen juice cells in OFC and neurons in

LIP (but see Discussion).
euron 80, 1322–1336, December 4, 2013 ª2013 Elsevier Inc. 1327



Figure 4. Choice Hysteresis

(A) Choice hysteresis in one example session.

Trials were separated into two groups depending

on the outcome of the previous trial. The choice

pattern obtained when the outcome of the previ-

ous trial was juice A (trials A,, dark gray) was dis-

placed to the right (higher indifference point)

compared to the choice pattern obtained when the

outcome of the previous trial was juice B (trials B,,

light gray).

(B) Choice hysteresis across sessions. Each data

point corresponds to one juice pair in one session,

and the two axes indicate the indifference point

measured in A, trials (x axis) and B, trials (y axis).

Arrows point to the session shown in (A) (gray

circle).

(C) Choice hysteresis largely dissipated within one

trial. The panel compares AA, trials and BA, trials.

(D) Logistic analysis. The x axis represents the ratio

a2/a1 defined in Equation 1, the y axis represents

the number of session (304 total).
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Third, an interesting phenomenon can be observed in the

500 ms preceding the offer. The activity profiles recorded

when decisions were easy (dark blue and dark red in Figure 6A)

were essentially indistinguishable, consistent with the intuition

that the animal could not have made a decision before the offer.

However, the activity profiles recorded when decisions were

split (light blue and light red lines in Figure 6A) seemed to defy

this intuition. Indeed, the activity preceding choices of the

encoded juice was clearly higher than that preceding choices

of the other juice. By analogy with effects observed in other

behavioral tasks (Shadlen and Newsome, 2001; Williams et al.,

2003; Wyart and Tallon-Baudry, 2009), I refer to this as ‘‘predic-

tive activity.’’ In the framework of Figure 3B, a possible interpre-

tation of the predictive activity is that trial-by-trial fluctuations in

the initial state of the neuronal assembly, reflected in the activity

of chosen juice cells, contributed to the decision of the animal. In

this view, when one of the two offer values clearly dominated, the

initial state was irrelevant: animals always chose the dominant

offer. However, near the indifference point, when there was no

clearly dominant offer, relatively small fluctuations in the initial

state effectively biased the decision. (More specific hypotheses

are discussed below.)

It was important to assess whether predictive activity was

generally present in individual cells. To examine this issue, I per-

formed an ROC analysis focused on the 500 ms before the offer.

For each cell, I identified offer types in which decisions were split,

and I divided trials into twogroupsdepending on thechosen juice.
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Comparing the two distributions of firing

rates, I measured the AUC. Across the

population, the mean AUC significantly

exceeded the null hypothesis of 0.5

(mean AUC = 0.527, p < 10�6, t test), indi-

cating that predictive activity was typically

present in individual chosen juice cells.

One possible concern was whether the

activity of chosen juice cells was genu-

inely binary. Indeed, in the experiments,
the indifference point typically corresponded to lower juice

quantities (see Figure 1B). Thus the difference in neural activity

between easy decisions (dark blue in Figure 6A) and split deci-

sions (light blue in Figure 6A) could be explained if the activity

of chosen juice cells depended to some extent on the chosen

juice quantity. To address this issue, I isolated trials in which

the animal chose one drop of the preferred juice (1A), and I iden-

tified neurons encoding the chosen juice A. I then divided offer

types into easy and split and repeated the analysis (Figure 6C).

The results confirmed those based on all the trials: (1) the activity

recorded after the offer was significantly higher when decisions

were easy, (2) the traces did not seem to reach a specific

threshold, and (3) the activity recorded prior to the offer was

elevated in split-decision trials. Note that in Figure 6C, the cho-

sen option was identical for both traces, so differences in the

activity of chosen juice cells cannot be explained by quantity-

dependent encoding. Rather, all the differences between the

two traces seem genuinely related to the decision difficulty.

The relationship between the preoffer activity of chosen juice

cells and near-indifference decisions was also tested with a

logistic analysis. I constructed the following model:

choice E= 1=ð1+ e�XÞ
X= a0 + a1 logð#E=#OÞ+ a2 4:

(Equation 3)

For each chosen juice cell, 4 was the firing rate in the 500 ms

preceding the offer (in sp/s). Figure S5C illustrates the



Figure 5. Choice Variability Is Not Explained by Fluctuations of Offer Value Cells

(A) Population with positive encoding. The analysis focused on offer types where choices were split. For each offer type, trials were divided depending on the

animal’s choice (juice E or juice O) and the activity was averaged separately for the two groups of trials (R2 trials per trace). The resulting traces were averaged

across offer types for each cell and then across cells. The eventual choice of the animal does not correlate with fluctuations in the activity of offer value cells.

Average traces shown here are from 177 cells. The gray bar highlights the time window on which the ROC analysis was conducted (150–400 ms after the offer).

Inset: the histogram shows the distribution of AUC obtained across the population. The mean AUC was statistically indistinguishable from 0.5.

(B) Population with negative encoding. Same procedures as in (A). Average traces shown here are from 52 cells. Across the population, the AUC was indis-

tinguishable from 0.5.

See also Figure S2.
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distribution for a2/a1 obtained across the population. Themedian

of the distribution m = 0.005 was significantly >0 (p < 10�8, Wil-

coxon signed-rank test). In essence, this means that when the

preoffer activity of chosen juice cells increased by one spike

per second, the animal made its choice as though the quantity

of the encoded juice was multiplied by a factor of z1.005.

In summary, these results suggest that near-indifference deci-

sions are partly driven by the initial state of the neuronal assem-

bly, which fluctuates on a trial-by-trial basis and is reflected in the

preoffer activity of chosen juice cells.

Residual Predictive Activity of Chosen Juice Cells
While discussing the predictive activity, one important caveat re-

lates to the presence of choice hysteresis. Indeed, previouswork

has found that reward-related activity in the OFC can outlast the

trial end (Simmons and Richmond, 2008). Thus on any given trial,

chosen juice cells might present some tail activity from the pre-

vious trial. Because of choice hysteresis, such tail activity would

appear as predictive activity for hard decisions. Indeed, referring

to Figure 6A, more ‘‘E chosen split’’ trials follow trials in which the

animal chose juice E, and more ‘‘O chosen split’’ trials follow tri-

als in which the animal chose juice O. To assess the relation

between choice hysteresis and predictive activity, I examined

whether the outcome of the previous trial affected the activity

of chosen juice cells (Figure S4). Consistent with previous re-

sults, the activity of chosen juice cells early in the trial was slightly

elevated after trials in which the animal chose juice E and slightly

depressed after trials in which the animal chose juice O. This tail

activity was in the same direction as, and thus confounded with,

the predictive activity.

Importantly, the two interpretations for the predictive activity

(tail activity from the previous trial or baseline fluctuation reflect-
N

ing a bias in the current choice) are not mutually exclusive.

Indeed, predictive activity could in principle provide a neuronal

mechanism for choice hysteresis. In this respect, it is interesting

to assess whether predictive activity was entirely explained as

tail activity from the previous trial (H0) or, alternatively, whether

predictive activity also reflected additional sources of stochas-

ticity (H1). To examine this issue, I separated trials into three

groups depending on whether in the previous trial the animal

chose the juice encoded by the cell (E, trials), the other juice

offered (O, trials), or neither juice (X, trials). Because the

outcome of the previous trial was fixed, the presence of the

residual predictive activity (Figures S4B–S4E) provided evidence

in favor of H1. For a quantitative assessment of residual predic-

tive activity, I constructed the following logistic model:

choice E= 1=ð1+ e�XÞ
X= a0 + a1 logð#E=#OÞ+ a2ðdn�1;E � dn�1;OÞ+ a3 4residual:

(Equation 4)

For each chosen juice cell, 4residual was the residual firing rate

remaining after the linear regression of the raw firing rate 4 onto

the variable (dn-1, E � dn-1, O). The null hypothesis corresponded

to a3/a1 = 0. Figure S5D illustrates the distribution for a3/a1 ob-

tained across the population. The median of the distribution

m = 0.002 was small but significantly >0 (p < 0.02, Wilcoxon

signed-rank test). In other words, trial-by-trial fluctuations in

the preoffer activity of chosen juice cells were significantly corre-

lated with the decision of the animal, even when the outcome of

the previous trials was controlled for.

In conclusion, predictive activity reflected additional sour-

ces of stochasticity above and beyond the tail activity from the

previous trial.
euron 80, 1322–1336, December 4, 2013 ª2013 Elsevier Inc. 1329



Figure 6. Activity Profiles of Chosen Juice

Cells

(A) All trials. Neurons from the two experiments

were rectified (see main text) and pooled. Trials

were divided depending on whether the animal

chose the juice encoded by the cell (juice E) or

the other juice (juice O) and on whether the de-

cisions were easy or split. Average traces shown

here are from the 257 cells for which I could

compute all four traces (R2 trials per trace). The

activity after the offer depended on the decision

difficulty but did not resemble a race-to-

threshold. In the 500 ms before the offer, the

activity for ‘‘E chosen split’’ trials was elevated

compared to that for ‘‘O chosen split’’ trials

(predictive activity).

(B) ROC analyses. Histograms show the results

obtained for the five comparisons indicated in (A)

and (C).

(C) Control for juice quantity. This analysis

focused on trials in which the animal chose one

drop of the preferred juice (1A). Trials were divided

into easy and split and average traces shown here

are from the 181 cells for which I could compute

both traces (R2 trials per trace). All the effects

described in (A) were also observed when the

quantity of the chosen juice was fixed.

See also Figures S3–S5.
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Activity Overshooting of Chosen Value Cells
I now turn to chosen value cells (Figure 1D). To examine their ac-

tivity in relation to choice variability, I focusedon trials inwhich the

animals chose one drop of the preferred juice over various

amounts of the other juice (trials 1A< qB,where q is the quantity

of juice B offered). Themotivation for this analysis was as follows.

In principle, choice variability could ensue if the value of any

particular good fluctuated from trial to trial. If so, one would

expect that the activity of chosen value cells, conditioned on

the animal choosing 1A, would be enhancedwhen the alternative

offer ismoredesirable. To test this prediction, I dividedoffer types

into easy and split. Consistent with the prediction, the activity of

chosen value cells with positive encoding was clearly higher for

split decisions compared to easy decisions (Figure 7A). This ef-

fect, termed ‘‘activity overshooting,’’ was evident in the time win-

dow150–400msafter theoffer,whichcorresponds roughly to the

time period in which the decision was made.

To assess whether the activity overshooting was generally

measurable for individual cells, I performed an ROC analysis
1330 Neuron 80, 1322–1336, December 4, 2013 ª2013 Elsevier Inc.
focusing on the 150–400 ms after the

offer. For each cell, I identified trials in

which the animal chose 1A, and I divided

them into easy and split decisions.

Comparing the two distributions of firing

rates, I obtained a measure for the AUC

(Figure 7A, inset). In general, the AUC var-

ied substantially across cells. However,

the mean AUC for the population was

significantly above the null hypothesis

of 0.5 (mean AUC = 0.526, p < 10�4,
t test). In other words, individual cells typically presented an

activity overshooting.

The result illustrated in Figure 7A was very robust (Figure S6).

In a variant of this analysis, I divided the amount of juice B

offered into three segments. Confirming the first observation,

the activity of chosen value cells gradually varied as a function

of the quantity of juice B (Figure 7B). Restricting the analysis

to cells that were significantly tuned yielded similar results (Fig-

ure 7C). With respect to chosen value cells with negative encod-

ing, one would expect a higher firing rate for easy decisions

compared to split decisions. Focusing again on the 150–

400 ms after the offer, this prediction was qualitatively met (Fig-

ure 7D), although the difference in signal was rather small and

did not reach significance threshold (mean AUC was 0.485;

p = 0.08, t test). Restricting the analysis to significantly tuned

cells yielded similar results (mean AUC = 0.480; p = 0.12,

t test; Figure 7E). Hence it was not clear whether chosen value

cells with positive and negative encoding differed qualitatively

or, alternatively, whether the measure obtained for cells with



Figure 7. Activity Overshooting in Chosen Value Cells

(A) Population with positive encoding. The analysis included only trials in which the animal chose one drop of juice (e.g., juice A). Trials were divided into two

groups depending on whether the offer type was easy or split (see legend). Each trace represents the average activity profiles for positive encoding chosen value

cells. Averages were calculated including only cells for which I could compute both traces (R2 trials per trace). Cells from experiment 1 contributed to each

average with at most one trace (choices of 1A). However, some cells from experiment 2 contributed with two traces (choices of 1A or 1B). In total, each population

trace shown here is the average of 212 individual traces from 151 cells. The insert illustrates the results of the ROC analysis.

(B) Same analysis as in (A), splitting trials into three groups. In all cases, the animal chose 1A over qB, with variable q. The three groups of trials correspond to easy

decisions (dark blue), split decisions with q <mean(r) (orange) and split decisions with qRmean(r) (green). Each population trace is the average of 112 individual

traces from 90 cells.

(C) Same analysis as in (A) including only cells that were significantly tuned in the 150–400ms after the offer. Each population trace is the average of 156 individual

traces from 112 cells.

(D) Population with negative encoding. Each population trace is the average of 155 individual traces from 106 cells. Consistent with the hypothesis that the chosen

value fluctuated from trial to trial, the dark red line was slightly above the light red line in the 150–400 ms after the offer. However, the effect did not reach

significance threshold.

(E) Same analysis as in (D) including only cells that were significantly tuned in the 150–400 ms after the offer. Each population trace is the average of 91 individual

traces from 62 cells.

See also Figures S6 and S7.
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negative encoding was, for some reason, noisier. Thus, subse-

quent analyses of chosen value cells focused on the population

with positive encoding.

Interpreting the Activity Overshooting: the Relative
Value as a Stochastic Variable
Comparing the results for chosen value cells with those for

offer value cells may seem to present a puzzle. Consider the
N

analyses illustrated in Figures 7A and S2E, respectively. Both

analyses focused on trials in which the animal chose 1A. In

both cases, the activity of neurons encoding the value of 1A

(as an offer value in Figure S2E and as a chosen value in Fig-

ure 7A) was analyzed as a function of the quantity of juice B.

The rationale for the two analyses was similar. However,

chosen value cells presented a robust overshooting, whereas

offer value cells showed no such effect. In other words, it
euron 80, 1322–1336, December 4, 2013 ª2013 Elsevier Inc. 1331
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seemed that the overshooting was not driven by fluctuations in

the activity of offer value cells. So how can the overshooting be

explained?

In the framework of Figure 3B, decisions depend on the sub-

jective value of each juice and on the ‘‘exchange rate’’ between

the two juices, referred to as the relative value (r). Given two

goods, r can change over relatively long periods of time, for

example due to changes in internal motivation (Padoa-Schioppa

and Assad, 2006). More subtly, r could fluctuate on a trial-

by-trial basis. Interestingly, stochastic fluctuations of r would

induce overshooting in the activity of chosen value cells similar

to that shown in Figure 7A. To appreciate this point, consider tri-

als in which the animal chose between juices A and B. If value

functions are linear, r is the quantity ratio that makes the animal

indifferent between the two juices:

VðAÞ= rVðBÞ: (Equation 5)

Assume now that r is a stochastic variable with given distri-

bution. The choice of the animal in any particular trial imposes

a constraint on the possible realizations of r in that trial.

Consider, for example, trials in which the monkey chose one

1A over qB (trials 1A < qB). Disregarding other sources of

choice variability, Equation 1 implies that r R q. Thus the

average r in trials 1A < qB increases as a function of q.

This variability will also be reflected in the activity of chosen

value cells. Furthermore, considering trials in which the animal

chose 1A, Equation 5 implies r = chosen value (in units of

juice B). In conclusion, if r fluctuates stochastically, the activity

of chosen value cells in trials 1A < qB increases as a func-

tion of q.

The activity overshooting of chosen value cells can thus

be explained by fluctuations of r. An alternative hypothesis

is that chosen value cells actually encode the total value.

However, a quantitative analysis found that the explanatory

power of chosen value corrected for fluctuations of r

was significantly higher than that of total value (p < 0.01,

Kruskal-Wallis test; Supplemental Experimental Procedures;

Figure S7).

In summary, evidence suggested that the activity over-

shooting observed in chosen value cells reflected trial-by-trial

fluctuations in r. If this is true, two neuronal phenomena

described here appear related to choice variability: predic-

tive activity of chosen juice cells and activity overshooting of

chosen value cells. One important question was whether these

phenomena were different manifestations of the same un-

derlying source of variability or, alternatively, whether activity

overshooting and predictive activity were mutually indepen-

dent. As a first step to examine this issue, I took advantage

of the fact that predictive activity was largely accounted for

by choice hysteresis, and I repeated the analysis of chosen

value cells while controlling for the outcome of the previous

trial. The results provided strong evidence that the activity over-

shooting was independent of choice hysteresis (Figure 8; Sup-

plement Experimental Procedures). In contrast, the relation

between the activity overshooting of chosen value cells and

the residual predictive activity of chosen juice cells remains to

be examined.
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DISCUSSION

I presented five primary results, each of which bears comments.

(1) Variables offer value, chosen value, and chosen juicewere

encoded by different groups of neurons. The fact that

these variables are encoded categorically and by different

neurons appears rather significant and opens numerous

questions regarding, for example, the possible corre-

spondence between the three cell classes identified

here and morphologically defined cell types. Addressing

this and related issues is a primary goal for future

research.

(2) Trial-by-trial fluctuations in the activity of offer value cells

did not explain choice variability in near-indifference de-

cisions. Future work might revisit this issue with higher

statistical power (e.g., collecting a larger data set or

perhaps asking the animals to fixate individual offers).

But taking the current findings at face value, how might

this negative result be explained? Recent theoretical

work demonstrates that choice probabilities (CPs) �0.5

are proportional to the matrix product of noise correla-

tions by read-out weights (Haefner et al., 2013). In this

perspective, a distribution of CPs might be centered on

zero due to several possible reasons. First, read-out

weights could equal zero (in this case, offer value cells

do not contribute to the decision). However, CPs would

also be close to zero if noise correlations were very

small, or if noise correlations within and across groups

of cells encoding the offer value of different juices were

similar, or if different neurons had positive and negative

read-out weights. Starting from these considerations,

future research shall examine noise correlations in

the OFC.

(3) The activity of chosen juice cells after the offer depended

on the decision difficulty but did not resemble a race-to-

threshold. At the outset of the study, I traced an analogy

between chosen juice cells and neurons in LIP. The pre-

dictive activity found for chosen juice cells resembles

that observed in LIP (Shadlen and Newsome, 2001) and

thus supports this analogy. At the same time, the activity

profile of chosen juice cells after the offer differs qualita-

tively from that described for LIP (Roitman and Shadlen,

2002; Shadlen and Newsome, 2001). Two observations

seem relevant to this discrepancy. First, the concept of

accumulation of evidence over time, which is central to

perceptual decisions (Gold and Shadlen, 2007), does

not equally apply to economic decisions. Indeed the

‘‘evidence’’ in economic decisions (i.e., offer values) is

immediately available, not delivered gradually over time.

Second, the steady-state activity of neurons in LIP during

standard perceptual decisionsmay partly encode amotor

plan (Andersen and Cui, 2009; Bisley andGoldberg, 2010)

as distinguished from the decision outcome. In contrast,

when decision outcomes and motor plans are dissoci-

ated, decision signals in LIP are transient and qualitatively

similar to those illustrated here for chosen juice cells

(Bennur and Gold, 2011).



Figure 8. The Overshooting of Chosen Value Cells Is Independent of Choice Hysteresis

(A) Analysis of chosen value cells restricted to A, trials. The insert illustrates the result of the ROC analysis performed in the 150–400 ms after the offer. All

conventions are as in Figure 7A. The activity overshooting observed in chosen value cells is independent of the outcome of the previous trial.

(B) Analysis of B, trials.

(C) Analysis of X, trials.

(D) Comparing the AUC obtained for A, trials and B, trials. Each data point represents one neuron. Across the population, the two measures of AUC were

significantly correlated (correlation = 0.22, p < 0.01). In other words, the AUC for any given cell was reproducible. However, the difference between the two

measures of AUC was statistically indistinguishable from zero (slanted histogram; p = 0.48, t test).

(E) Comparing the AUC obtained for A, trials and X, trials.

(F) Comparing the AUC obtained for B, trials and X, trials.
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(4) Prior to the offer, chosen juice cells presented predictive

activity correlated with the upcoming decision. Previous

studies observed similar phenomena in other decision

tasks (Shadlen and Newsome, 2001; Williams et al.,

2003;Wyart and Tallon-Baudry, 2009). One notable differ-

ence is that the predictive activity found here is largely

(but not entirely) related to the outcome of the previous

trial. Predictive activity might suggest that chosen juice

cells actively participate in the decision process. How-

ever, current results do not necessary imply this scenario.

Indeed, an equally valid hypothesis is that other neurons,

not yet identified, participate in or even determine the
Neur
decision, and separately inform the activity of chosen

juice cells. In this latter scenario, the relation between

the predictive activity documented here and the deci-

sion would be correlational, not causal. Disambiguating

between these hypotheses will likely require different

technical approaches such as selective microstimulation.

(5) In a limited time window shortly after the offer, chosen

value cells presented an activity overshooting related to

the decision difficulty. The present analyses suggest

that the activity overshooting reflected stochastic fluctua-

tions in the relative value r. Under this interpretation, an

important question relates to how r is instantiated at the
on 80, 1322–1336, December 4, 2013 ª2013 Elsevier Inc. 1333
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neuronal level. In the framework of Figure 3B, r can be

thought of as akin to a ratio of synaptic efficacies. Future

work should examine this hypothesis in detail. At the

same time, the framework schematized in Figure 3B is

very general and compatible with a variety of possible ar-

chitectures (Bogacz et al., 2006). More specific hypothe-

ses with respect to the architecture might conceivably

provide additional or alternative interpretations for the

overshooting of chosen value cells.

Comparing Mechanisms for Economic and Perceptual
Decisions
It has often been hypothesized that the neural systems governing

economic and perceptual decisions share fundamental princi-

ples and core mechanisms (Gold and Shadlen, 2007; Shadlen

et al., 2008; Summerfield and Tsetsos, 2012; Wang, 2008).

Upon a closer examination, the two neuronal systems do present

important similarities, but also clear differences. First, offer value

cells do not showconsistent choice probabilities, unlikeMTcells.

Second, the activity of chosen juice cells does not resemble a

race-to-threshold, unlike that of LIP cells (but see above). Third,

chosen value cells do not have an obvious analog in perceptual

decisions. Consequently, there is no known counterpart for

the activity overshooting. Fourth, the encoding of value in the

OFC undergoes range adaptation and, more generally, depends

on the behavioral context in ways that differ from those found in

MT (Kohn, 2007; Padoa-Schioppa, 2009; Padoa-Schioppa and

Assad, 2008). Last but not least, neuronal activity in the OFC is

nonspatial. In summary, economic decisions appear to involve

distinct neuronal mechanisms that cannot be simply equated

to those underlying perceptual decisions.

The hypothesis examined in the present study, namely that

good-based decisions take place within the OFC, differs from

a recently-proposed ‘‘attentional drift-diffusion model’’ (ADDM)

(Krajbich et al., 2010). According to the ADDM, subjects switch

their attention back and forth between the options and, at any

given time, a comparator increments a decision variable in favor

of the attended option. The comparator is thought to reside in the

dorso-medial prefrontal cortex (dmPFC). Few considerations are

in order. First, the relation between fixation patterns and choices

(Krajbich et al., 2010) may, at least in part, reflect a causal

relation opposite to that assumed in the ADDM. In other words,

subjects might tend to look longer at offers they are leaning

toward. Second, the evidence implicating dmPFC (Hare et al.,

2011) is based on analyses of aggregate data and builds on

assumptions that may not hold when neuronal responses are

heterogeneous. Third, according to the ADDM, neurons in the

OFC would encode not the chosen value per se, but rather the

variable chosen value � other value (Lim et al., 2011). However,

vanishingly few neurons were found to encode this variable

(Padoa-Schioppa and Assad, 2006; 2008). In summary, current

support for the ADDM is not conclusive. These considerations,

together with an established literature showing that lesions to

the OFC selectively impair value-based decisions, justify the

hypothesis examined in this study.

To conclude, I showed that three variables intimately related

to economic decisions—offer value, chosen value, and chosen

juice—are encoded by three distinct groups of neurons in the
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OFC. My analyses suggest that choice variability may be driven

partly by the initial state of the neuronal assembly (revealed by

the predictive activity of chosen juice cells) and partly by sto-

chastic fluctuations in the relative value of the juices (revealed

by the activity overshooting of chosen value cells). Finally, this

study highlighted important analogies but also significant differ-

ences between the neuronal mechanisms of economic and

perceptual decisions.
EXPERIMENTAL PROCEDURES

Task Design and Preliminary Analyses

Data analyzed in this study are from two experiments (Padoa-Schioppa and

Assad, 2006, 2008). Procedures for behavioral control, neuronal recording,

and preliminary analyses have been described in detail. In both experiments,

trials started with the animal fixating the center of a computer monitor (Fig-

ure 1A). After 0.5 s, two sets of colored squares, representing the two offers,

appeared on the two sides of the fixation point. For each offer, the color rep-

resented the juice type and the number of squares represented the juice

amount. The animal maintained central fixation for a randomly variable delay

(1–2 s), after which the fixation point was extinguished and two saccade tar-

gets appeared by the offers (go signal). The animal indicated its choice with

a saccade and maintained peripheral fixation for 0.75 s before juice delivery.

Two animals, L and V, participated in each experiment. In experiment 1 (931

cells), animals chose in each session between two juices. In experiment 2

(557 cells), animals chose between three juices offered pairwise, and trials

with the three juice pairs were randomly interleaved.

An offer type was defined by two offers (e.g., [1A:3B]). Juice pairs and offer

types varied from session to session. Within a session, different offer types

were pseudo-randomly interleaved. Their frequency varied, but each offer

type was typically presented at least 20 times in each session. A trial type

was defined by an offer and a choice (e.g., [1A:3B,A]). The analysis presented

in the section, From Neuronal Responses to Cell Classes, and the subsequent

cell classification was based on four primary time windows: postoffer (0.5 s

after the offer), late delay (0.5–1 s after the offer), prejuice (0.5 s before juice

delivery), and postjuice (0.5 s after juice delivery). A neuronal response was

defined as the activity of one cell in one time window as a function of the trial

type. Task-related responses were identified with an ANOVA (factor trial type,

p < 0.001). Across experiments, 843/1,488 (57%) neurons were task-related in

at least one time window. Previous studies showed that variables offer value,

chosen value, and chosen juice explain the vast majority of task-related

responses. To classify responses, I performed a linear regression of each

task-related response on each variable. A variable was said to explain a

response if the regression slope differed significantly from zero (p < 0.05). If

a variable did not explain a response, R2 was set equal to zero. If more than

one variable explained one response, the response was assigned to the vari-

able with the highest R2. Across experiments, neurons encoding one of the

three variables in at least one time window were 783/1,488 (53%; 443 from

experiment 1; 340 from experiment 2).

Statistical Analyses

Several analyses presented in this Article were conducted by dividing trials into

two groups—easy and split. In all cases, split refers to offer types in which the

animal split its decisions between the two offers, conditioned on the fact that

the animal chose either option at least twice; easy refers to offer types in which

the animal consistently chose the same option. The label ‘‘easy’’ captures the

fact that these decisions were presumably easier. Restricting the analysis to

trials in which the animal chose one drop of juice A against variable quantities

q of juice B (1A < qB), easy/split also corresponds to low/high values of q.

All ROC analyses were done on row spike counts, without time averaging or

baseline correction. The details of the analysis, however, differed to some

extent depending on the neuronal population. For Figure 5A, I identified offer

types in which decisions were split. For each offer type, I divided trials into

two groups depending on the chosen juice (E or O). The two groups were

compared with an ROC, from which I measured the area under the curve
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(AUC). This AUC is equivalent to the measure of choice probability defined for

perceptual decisions (Britten et al., 1996; Nienborg et al., 2012). To obtain a

single AUC for each neuron, I averaged the AUC across offer types (Kang

and Maunsell, 2012). The same procedure was used for Figure 5B. The results

reported in Figures 5A and 5B were obtained with an arithmetic average. How-

ever, the results obtained weighing the AUC obtained for each offer type with

the geometric mean of the two trial numbers (corresponding to choices of E

and O) were essentially identical. For Figure 6A, I identified offer types in which

decisions were split, and I divided trials into two groups depending on the cho-

sen juice (E or O). In this case, trials from different offer types were pooled and

compared with the ROC analysis. For Figures 6C and 7A, I focused on trials in

which the animal chose one drop of the preferred juice (1A). These trials were

divided into two groups depending on whether decisions with the correspond-

ing offer type were easy or split. The two groups of trials were compared

directly with the ROC analysis. The analyses illustrated in Figures 7C–7E,

S2A, and S2B were restricted to cells that were significantly tuned in the

150–400 ms following the offer. For each cell, tuning was established with

an ROC analysis of all trials, dividing them into tertiles of chosen value (as in

Figures 2A–2D), comparing the activity obtained for the ‘‘high’’ and ‘‘low’’ ter-

tiles and requiring that the AUC differ significantly from 0.5 (p < 0.05).

For logistic analyses, data from experiment 2 were divided into three groups

corresponding to the three juice pairs. For simplicity, I refer to each of these

groups of trials as a ‘‘session.’’

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures
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Figure S1. Analysis of classification conflict (related to Figure 1). a. In total, 443 cells from Exp.1 were classified in at least one 
time window and included in this analysis. The left panel refers to actual neuronal data. For each pair of time window, the number 
indicated the number of cells that showed classification conflict. The right panel refers to chance level and indicates, for each pair 
of time windows, the mean of the distribution obtained from the bootstrap (rounded). Shades of gray illustrate the same numbers 
graphically. For every pair of time windows, actual classification conflicts were significantly fewer than expected by chance. 
b. Analysis of classification consistency. For each pair of time windows, the number indicated the number of cells that presented 
consistent classification. The right panel refers to chance level. In every pair of time windows (except on the diagonal), the 
consistency of classification was much more frequent than expected by chance.



Figure S2

Figure S2. Control analyses for offer value cells (related to Figure 5). ab. Same analysis as in Fig.5ab including only neurons 
that were tuned in the 150-400 ms after the offer. Traces for positive and negative encoding are from 130 cells and 33 cells, 
respectively. cd. In this analysis, trials were split depending on the outcome of the previous trial (trials E•, O•, and X•). Each 
neuron thus contributed up to three traces. Population traces for positive and negative encoding are the average of 509 traces 
and 154 traces, respectively. e. Activity in relation to the other value (positive encoding). This analysis focused on offer value 
cells and on trials in which the animal chose one drop of the preferred juice (1A). Trials were divided into two groups depending 
on whether the offer type was easy (dark blue) or split (light blue) (see Experimental Procedures). Average traces shown here 
are from the 59 cells for which I could compute both traces (≥2 trials per trace). The results fail to support the hypothesis that 
near-indifference decisions were driven by fluctuations in the activity of offer value cells. f. Activity in relation to the other value 
(negative encoding cells). Average traces shown here are from 24 cells.
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Figure S3

Figure S3. Control analyses for chosen juice cells (related to Figure 6). To verify the robustness of the results obtained for 
chosen juice cells, I repeated the analysis for different subsets of neurons: cells from monkey L (a, 169 cells), cells from 
monkey V (b, 96 cells), cells recorded in Exp.1 (c, 119 cells), cells recorded in Exp.2 (d, 146 cells). In all those cases, 
neurons with positive and negative encoding were pooled together. Data from Exp.2 were further broken down into positive 
encoding (e, 96 cells) and negative encoding (f, 50 cells). Both phenomena described for Fig.5a ‒ namely the dependence 
on the decision difficulty and the predictive activity ‒ can be observed for each subset of cells.
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Figure S4

Figure S4. Chosen juice cells, activity in relation to the previous trial (related to Figure 6). a. Trials were divided depending 
on both the previous outcome and the current choice (see legend). The activity of chosen juice cells mainly depends on the 
current choice (green traces above purple traces after the offer). However, there is a tail activity from the previous trial (dark 
traces above light traces before the offer). b-d. Residual predictive activity. These plots focus only on split decisions. For 
these plots, the activity traces were coarse-grained by averaging firing rates in 75 ms bins (non-overlapping). e. Residual 
predictive activity, combined. Each line represents the difference between the two traces shown in (b-d). The combined 
distribution was displaced above zero.
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Figure S5
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Figure S5. Results of logistic analyses (related to Figures 4, 5, 6). a. Choice hysteresis (same as Fig.4a). The x-axis 
represents the ratio a2/a1 defined in Eq.1, the y-axis represents the number of sessions (304 total). b. Analysis of offer 
value cells. The x-axis represents the ratio a3/a1 defined in Eq.2, the y-axis represents the number of cells (324 total). 
Note that offer value cells from Exp.2 contributed to the histogram with 2 data points. c. Chosen juice cells, predictive 
activity. The x-axis represents the ratio a2/a1 defined in Eq.3, the y-axis represents the number of cells (411 total). d. 
Chosen juice cells, residual predictive activity. The x-axis represents the ratio a3/a1 defined in Eq.4. e. Time course of 
choice hysteresis. The x-axis represents trial number and the y-axis represents the median regression coefficient (bk/a1) 
across the population (see model 6) . The data point for trial n-1 (roughly) corresponds to the median of the distribution in 
panel (a). The effect of choice hysteresis per se was essentially confined to trial n-1. In addition, there was a smaller effect 
that could be measured over several trials likely due to small drifts of relative value within the course of a session. f. Chosen 
juice cells, residual predictive activity accounting for the previous 2 trials. The results obtained here (model 7) are almost 
identical to those obtained accounting for the previous 1 trial (panel (d), model 4). In each analysis, I removed data points for 
which the logistic regression did not converge. The analysis of offer value cells focused on the 500 ms after the offer. The 
analysis of chosen juice cells focused on the 500 ms before the offer. Histograms in b, c, d and f include neurons with 
positive and negative encoding (the sign of the x-axis was reversed for negative encoding cells).



Figure S6

Figure S6. Control analyses for chosen value cells (related to Figure 7). Same analysis and all conventions as in Fig.7a. 
a. Data from Exp.1 (88 traces from 87 cells). b. Data from Exp.2 (124 traces from 64 cells). c. Data from monkey L (144 
traces from 104 cells). d. Data from monkey V (68 traces from 47 cells).
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Figure S7

Figure S7. Overshooting of chosen value cells: contrasting variable chosen value X and total value (related to Figure 7). 
a. Comparing chosen value and chosen value X, example session. The choice pattern is the same as in Fig.1d. Blue 
and red symbols refer to variables chosen value and chosen value X, respectively. Away from the indifference point, the 
two variables are essentially identical. However, near the indifference point, the two variables differ. Specifically, 
chosen value X is higher than chosen value for trials in which the animal seemingly chooses the "lesser" option. 
b. Chosen value X (y-axis) versus chosen value (x-axis). Same data as in (a). c. Chosen value X (y-axis) versus total 
value (x-axis). d. Contrasting the explanatory power of chosen value X and total value. Each symbol represents one cells 
and one trial group (A•, B• and X•). The y-axis (x-axis) represents the R2 obtained from the linear regression of the 
neuronal firing rate onto the variable chosen value X (total value). It can be noted that most of the data points lie above 
the diagonal line, indicating that chosen value X generally provided a better fit for the data.
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 S1

Supplemental Experimental Procedures 

From neuronal responses to cell classes 

 Previous analyses showed that individual responses in the OFC encode individual variables. 
Indeed, adding a second variable or a quadratic term to the linear regression usually failed to 
significantly improve the linear fit (Padoa-Schioppa and Assad, 2006). To examine whether offer value 
and chosen value were different classes of responses or, alternatively, two poles of a continuum, I 
first focused on Exp.1. I considered all the responses encoding either offer value or chosen value. 
Notably, offer value was a collapsed variable and responses could in fact encode either offer value A 
or offer value B. For each response, I considered each of the R2 obtained from the linear regressions 
onto the encoded variable and the other, non-encoded variable (independently of whether the latter 
explained the response). I then computed the difference ∆R2 = R2

offer value – R2
chosen value. This was done 

in one of two ways. For offer value responses, R2
offer value was always the higher of the two R2 provided 

by offer value A and offer value B. For chosen value responses, R2
offer value was either the higher of the 

two R2 provided by offer value A and offer value B or, alternatively, one of the two R2 randomly 
selected. The results reported here refer to the latter procedure. The former procedure provided very 
similar results (a bimodal distribution for ∆R2; p<0.01, Hartigan's dip test), except that the distribution 
was displaced towards higher values of ∆R2 (as expected). Responses from Exp.2 (were offer value 
responses could encode offer value A, offer value B or offer value C) were treated similarly. 
Analogous procedures were used to compare variables chosen value and chosen juice and variables 
offer value and chosen juice. Data from the two experiments are pooled in Fig.1f-k.  

 Next, I sought to establish whether the incidence of classification conflicts actually found in the 
population was greater, comparable or lower than the incidence expected if conflicts occurred by 
chance. To estimate chance level, I used a bootstrap technique. For each time window, each cell was 
reassigned to a new variable with a random permutation of the variables recorded across the 
population in that time window. The permutation was done separately for each time window and the 
procedure was repeated for 1,000 times. This procedure thus provided, for each pair of time windows, 
two distributions for the number of classification conflicts and for the number of classification 
consistencies expected by chance. The procedure also provided a distribution for the total number of 
conflicts expected across the population. The results of this analysis are shown in Fig.S1. 

Activity profiles 

 Several analyses presented in the paper were conducted by dividing trials into two groups ‒ 
easy and split. In all cases, split refers to offer types in which the animal split its decisions between 
the two offers, conditioned on the fact that the animal chose either option at least twice; easy refers to 
offer types in which the animal consistently chose the same option. To calculate the activity profile 
(i.e., the spike density function), trials were aligned at the time of the offer and separately at the time 
of juice delivery. For each alignment and each trial, the spike train was smoothed using the method of 
So and Stuphorn (2010). Spike times, expressed in 1 ms resolution, were convolved with the kernel:  

  k (t) = (1 - exp (-t/g))* exp (-t/d)   for t ≥ 0  
  k (t) = 0      for t < 0 

This kernel mimics a post-synaptic potential and ensures that each spike only exerts its influence 
forward in time. Following previous work (Sayer et al., 1990; So and Stuphorn, 2010), I used g = 1 ms 
and d = 20 ms. For each cell, I then averaged the spike trains across all relevant trials and obtained a 
smoothed activity profile. Finally, I coarse-grained the signal by averaging the activity in non-adjacent 
5 ms bins. This binning was performed only for display purposes; all statistical analyses were based 
on spike counts. 
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 With the exception of Fig.2, all activity profiles are displayed after baseline subtraction. To 
calculate them, I subtracted from the activity of each cell the average activity in the 0.5 s preceding 
the offer. I then averaged the activity profiles across the relevant population.  

Analysis of activity profiles by quantile 

 For each offer value and chosen value cell, I divided trials into three tertiles depending on the 
value of the encoded variable (high, medium, low). I then averaged the activity of each tertile across 
the population. This was done separately for cells with positive and negative encoding (Fig.2a-d). 
Several aspects emerged from this analysis. First, the overall baseline activity ranged between 6 and 
10 Hz for the various populations. The overall modulation (activity difference between the first and last 
tertile) ranged from roughly 2 to 6 Hz. Second, neurons with negative encoding did not simply 
decrease their activity compared to baseline. Rather, they often showed an increased activity for 
lower values of the encoded variable (this was most clear for offer value cells). Third, different groups 
of cells (e.g., offer value cells with negative encoding) presented robust preparatory activity preceding 
the offer. 

 Before conducting a similar analysis for chosen juice cells, I examined the sign of the encoding 
for this neuronal population. Indeed, previous work described the sign of the encoding for offer value 
and chosen value cells (Padoa-Schioppa, 2009), but it did not establish whether negative encoding 
also exists for chosen juice cells. In fact, this issue cannot be addressed based on data from Exp.1, 
where only two juices A and B were included in each session, because one cannot disambiguate 
between higher firing rate for one juice (positive encoding) and lower firing rate for the other juice 
(negative encoding). However, the sign of the encoding can be examined in data from Exp.2, where 
three juices (A, B and C) were included in each session. In this case, a neuron encoding, for example, 
chosen juice A with a positive sign would have high activity when the animal chooses juice A and low 
activity when the animal chooses either juice B or juice C. In contrast, a neuron encoding chosen juice 
B with a negative sign would have high activity when the animal chooses either juice A or juice C and 
low activity when the animal chooses juice B. In total, 146 chosen juice cells were recorded in Exp.2. 
Across this population, the sign of the encoding was positive for 96 (66%) cells and negative for 50 
(34%) cells. 

 Based on this classification, I analyzed the average neuronal signal for chosen juice cells with 
positive and negative encoding. I divided trials depending on whether the animal chose the juice 
encoded by the cell (E) or the other juice (O; Fig.2e). For both groups of cells, the overall baseline 
activity and overall modulation during the delay were roughly equal to 10 Hz and 2 Hz, respectively. 
Both groups of cells presented preparatory activity preceding the offer. After the offer, chosen juice 
cells did not simply decrease their activity when the animal chose the other juice. Interestingly, the 
activity of this population clearly discriminated between the two juices starting <200 ms after the offer.  

Control analyses for offer value cells 

 A general concern is whether the negative results of Fig.5ab were veridical or due to spurious 
factors in the analysis. I considered several possible factors.  

 First, the ROC analysis in Fig.5ab focused on the time window 150-400 ms after the offer. This 
window was chosen based on inspection of Fig.2e and for consistency with the analysis of chosen 
value cells (Fig.7). At the same time, it is reasonable to question whether it would be more appropriate 
to run the ROC analysis on a later time window. However, the analysis repeated on the time window 
300-500 ms after the offer yielded very similar results for both positive encoding cells (mean AUC = 
0.509; p = 0.28; t-test) and negative encoding cells (mean AUC = 0.480; p = 0.19; t-test).  



 S3

 Second, the analysis in Fig.5ab pooled all offer value cells, including those that were not tuned 
in the time period immediately following the offer (these cells became tuned later in the trial). One 
concern might be that these cells effectively added noise and thus obfuscated the signal of interest 
here. Thus I repeated this analysis including in the pool only offer value cells that were significantly 
tuned in the 150-400 ms following the offer (see Experimental Procedures). The results (Fig.S2ab) 
confirmed those illustrated in Fig.5ab for both positive encoding cells (mean AUC = 0.502; p = 0.83; t-
test) and negative encoding cells (mean AUC = 0.474; p = 0.18; t-test). 

 Third, the analysis in Fig.5ab averaged traces across offer types and then across cells. For 
positive (negative) encoding cells, this procedure could overweight high-value (low-value) offer types 
within each neuron, or could over-emphasize cells with higher firing rates, effectively reducing the 
statistical power of the analysis. I controlled for this issue as follows. In any time window, the encoding 
of value in OFC is linear and range adapting (Padoa-Schioppa, 2009). In formulas, φ = φ0 + ∆φ * V / 
∆V, where φ is the firing rate, φ0 is the baseline activity, ∆φ is the activity range, V is the encoded 
value and ∆V is the value range. (Note that for offer value cells in the experiment the minimum value 
V0 was always zero, so that ∆V = Vmax.) Here I am interested in small fluctuations on φ related to an 
endogenous factor (i.e., whether the encoded juice was eventually chosen). It is reasonable to 
assume that, if they exist, such fluctuations are proportional to the firing rate. Thus the formula can be 
re-written as follows φ * (1 + ε) = φ0 + ∆φ * V / ∆V, where ε is the fluctuation. This makes it clear that ε 
depends on both V / ∆V and ∆φ . In essence, the analysis of Fig.5ab aims at studying ε by averaging 
neuronal traces across offer types (i.e., across values) and across cells. However, by simply 
averaging the firing rates, the analysis overweighs offers with large values (because ε increases with 
V / ∆V) and cells with large activity range (because ε increases with ∆φ). Thus to increase the 
resolution of the analysis one would like to rescale the firing rate (and ε). I did so in two steps. First, I 
rescaled φ → φ' = (φ - φ0) * ∆V / V (value range rescaling). Second, I rescaled φ' → φ'' = φ' / ∆φ 
(activity range rescaling). In these transformations, I used for φ0 the average activity in the 500 ms 
before the offer and for ∆φ the activity range in the 500 ms after the offer (post-offer time window). 
None of these variants of the analysis affected the results for the mean AUC (all p > 0.3; t-test).  

 Fourth, because of choice hysteresis, the signal of interest here might be examined with 
higher resolution by separating trials depending on the outcome of the previous trial. I thus conducted 
a variant of the analysis as follows. For each offer value cell, I separated trials into three groups 
depending on the outcome of the previous trial (trials E•, O• and X•). For each group of trials, I 
identified offer types for which offers were split, and I calculated the two neuronal traces and the AUC 
as in Fig.5ab. The results are shown in Fig.S2cd. For positive encoding neurons, the results 
confirmed those of Fig.5a (mean AUC = 0.494; p = 0.25, t-test). For negative encoding cells, the 
population AUC was significantly below 0.5 (mean AUC = 0.472; p < 0.02, t-test). Note that this 
departure is in the direction predicted by the hypothesis that fluctuations of offer value cells drive 
near-indifference decisions. However, when I examined data from individual animals, the effect was 
significant only for one monkey (L, mean AUC = 0.44; p < 0.005, t-test) and not for the other (V, mean 
AUC = 0.494; p = 0.64, t-test). In conclusion, the evidence that choices are driven by fluctuations of 
offer value cells was at best tentative. 

 In another analysis, I specifically examined trials in which the animal chose one drop of the 
preferred juice (1A). I focused on neurons encoding offer value A (the preferred juice) and I divided 
trials depending on the quantity of juice B offered in alternative to 1A. The rationale for this analysis 
was as follows. In principle, one can hypothesize that choice variability reflects stochastic fluctuations 
in the subjective value of any particular juice. In particular, the subjective value of 1A, represented by 
the activity of offer value A cells, might randomly fluctuate from trial to trial. All other things equal, one 
would expect that positive fluctuations in the activity of offer value A cells would facilitate choices of 
juice A. By the same token, one would expect that the activity of offer value A cells, conditional on the 
animal choosing 1A, would be enhanced (by chance) when the alternative offer is more desirable. 
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This argument would predict that the activity of positive encoding offer value A cells would be higher 
when 1A is chosen against large amounts of juice B compared to when 1A is chosen against small 
amounts of juice B. To test the prediction, I divided trials in easy (offer types for which the animal 
always chose the same option) and split (offer types for which the animal split its decisions between 
two options). Contrary to the prediction, the activity recorded for the two groups of trials was 
indistinguishable throughout the 1 s following the offer (Fig.S2e). Similar results were found for 
negative encoding cells (Fig.S2f). 

Time course of choice hysteresis and its relation to predictive activity 

 As noted in Fig.4c, choice hysteresis largely dissipated after one trial. To quantify its time 
course more precisely, I constructed a logistic model taking into consideration the five trials preceding 
the current one, as follows: 

 choice B = 1 / (1 + e-X) 

 X = a0 + a1 log (#B / #A) + Σk=1:5 bk (δn-k, B - δn-k, A)     (6) 

Variable δn-k, J = 1 if the animal chose and received juice J in trial (n-k), and 0 otherwise. Across the 
population, I found the following values: median (bn-1/a1) = 0.128, p<10-10; median (bn-2/a1) = 0.037, 
p<10-10; median (bn-3/a1) = 0.029, p<10-10; median (bn-4/a1) = 0.013, p<10-5; median (bn-5/a1) = 0.013, 
p<10-4 (all Wilcoxon sign test; Fig.S5e). These results confirm that choice hysteresis was 
predominantly related to the previous trial. At the same time, there was also an effect that persisted 
for several trials and reached a plateau level of ~0.013. This plateau might be due to the fact that the 
animals' preferences often drifted toward the preferred juice during the course of the session, 
probably due to reduced thirst. 

 In light of this result, one concern might be whether the residual predictive activity of chosen 
juice cells observed in Fig.S5d is in fact related to the persistence of choice hysteresis past the 
previous trial. To examine this issue, I repeated the analysis of firing rates residuals taking into 
consideration the preceding two trials. Specifically, I constructed the following logistic model: 

 choice E = 1 / (1 + e-X) 

 X = a0 + a1 log (#E / #O) + a2 (δn-1, E - δn-1, O) + a3 (δn-2, E - δn-2, O) + a4 φresidual 2 (7) 

For each chosen juice cell, φresidual 2 is the residual firing rate remaining after the bilinear regression of 
the raw firing rate φ onto variables (δn-1, E - δn-1, O) and (δn-2, E - δn-2, O). The null hypothesis corresponds 
to a4/a1 = 0. Across the population, the median of the distribution was m = 0.002 (p<0.02, all Wilcoxon 
signed-rank test; Fig.S5f). Notably, this measure is almost identical to that obtained for a3/a1 in model 
4, which considered only the previous trial (n-1). This observation suggests that the residual predictive 
activity of chosen juice cells is not due to the persistent plateau effect or to drifting preferences. In 
other words, baseline fluctuations in the activity of chosen juice cells appear to explain a portion of 
choice variability above and beyond that explained by behavioral analyses alone. 

Overshooting of chosen value cells: control for variable total value 

 Consider offers [aA:bB], where a and b are quantities of juices A and B, respectively. The 
experimental design and all the analyses were based on two assumptions. First, it was assumed that 
the choice pattern (i.e., the percent of trials in which the animal chose juice B) depended only on the 
quantity ratio b/a. Second, it was assumed that value functions were linear. In other words, indicating 
with V(qX) the value assigned to a quantity q of juice X, it was assumed that V(qX) = qV(X). If this is 



the case, choice patterns can be described in one dimension as a function of the quantity ratio b/a. 
Then the relative value (ρ) is defined as the quantity ratio that makes the animal indifferent between 
the two juices: V(A) = ρ V(B). 

 The activity overshooting of chosen value cells can essentially be described as follows. 
Restricting the analysis to trials in which the animal chose 1A over qB (1A►qB), the activity of chosen 
value cells recorded in the time window 150-400 ms after the offer increased as a function of q. As 
discussed in the main text, the overshooting can be explained qualitatively if one assumes that the 
relative value of the two juices fluctuated from trial to trial. In the following, I refer to this hypothesis as 
chosen value cells encoding the variable chosen value X, which is the same as the variable chosen 
value corrected for fluctuations of ρ (see below). However, an alternative explanation is that chosen 
value cells actually encode the variable total value (defined as the sum of the two offer values, which 
increases as a function of q). These two hypotheses were contrasted as follows.  

 To compute the variable chosen value X, it is necessary to specify the probability distribution 
for the relative value ρ. In the following analyses, I assumed that, once controlled for choice hysteresis, 
choice variability was entirely due to fluctuations of ρ. If this is true, then the probability distribution for 
ρ can be derived from the choice pattern. Choice patterns in the experiments were well fitted with a 
normal sigmoid (probit function) in log space (typical R2>0.95). If choice variability is entirely due to 
fluctuations of ρ, the underlying normal distribution can be viewed as a probability distribution for the 
variable x = log ρ. Thus the probability distribution for ρ is N(x(ρ), μ, σ) dx/dρ = N(log ρ, μ, σ) 1/ρ. On 
this basis, one can compute the variable chosen value X in each trial, as follows.  

 First consider one trial in which the animal chose 1A over qB. As noted in the main text, if 
values are expressed in units of juice B, Eq.5 implies chosen value X = ρ ≥ q. Now consider many 
trials in which the animal chose 1A over qB. On average, the variable chosen value X1A►qB = < ρ >ρ≥q 
is equal to:  
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More generally, when the animal chose a drops of juice A over b drops of juice B (aA►bB), chosen 
value XaA►bB = a chosen value X1A►b/aB. This can be calculated substituting b/a for q in Eq.8. 

 Now consider trials in which the animal chose qB over 1A. To proceed formally as when the 
animal chose juice A, I define ξ such that B = ξ A and x = log ξ. In this case, the probability distribution 
for x is N(x, -μ, σ) and the probability distribution for ξ is N(log ξ, -μ, σ) 1/ξ. Thus the variable chosen 
value X1B►1/q A = < ξ >ξ ≥ 1/q is equal to: 

 
































)log(

)log(

1

1

),,(

),,(

1),,(log

1),,(log

q

q

x

q

q
q

dxxN

dxexN

dN

dN








    (9) 

 S5



 S6

Importantly, Eq.9 expresses the chosen value X in units of juice A. To express all chosen values in 
units of juice B, I multiply for the average conversion factor <ρ>. In conclusion, one obtains for each 
trial type a measure of the variable chosen value X.  

 The results of this calculation are illustrated for one representative session in Fig.S7a. Away 
from the indifference point, chosen value X is nearly identical to chosen value. However, close to the 
indifference point, chosen value X is generally higher than chosen value. Fig.S7bc also illustrate the 
fact that although variables chosen value, chosen value X, and total value are highly correlated, they 
are distinguishable. In particular, it can be noted that total value and chosen value X are most 
correlated near the indifference point, but appreciably different away from the indifference point.  

 To contrast the explanatory power of variables chosen value X and total value, I specifically 
examined the 150-400 ms after the offer and I restricted the analysis to neurons from Exp.1 that were 
significantly tuned in this time window (positive encoding). For an accurate measure of chosen value 
X, I removed the variability due to choice hysteresis by dividing trials into three groups depending on 
the outcome of the previous trial. The three groups of trials A•, B• and X• were analyzed separately, 
with all the trials included in the analysis. For each cell, for each group of trials and for each trial type, 
I computed the variables chosen value X and total value and I averaged the activity across trials. 
Then I performed a linear regression of the neuronal firing rate onto each variable, from which I 
obtained the two R2. (Note that these procedures are essentially the same as used in previous studies 
(Padoa-Schioppa and Assad, 2006).) As illustrated in Fig.S7d, the R2 obtained for chosen value X 
was generally higher than that obtained for total value (p<0.01, Kruskal-Wallis test). This result 
indicates that the explanatory power of chosen value X, corresponding to the hypothesis that the 
overshooting of chosen value cells is due to fluctuations of relative value ρ, is significantly higher than 
that of total value.  

The overshooting of chosen value cells is independent of choice hysteresis 

 This study describes two neuronal phenomena seemingly related to choice variability: 
predictive activity of chosen juice cells and activity overshooting of chosen value cells. One important 
question is whether these phenomena are different manifestations of the same underlying source of 
variability or, alternatively, whether activity overshooting and predictive activity are mutually 
independent. To examine this issue, I took advantage of the fact that predictive activity was largely 
accounted for by the outcome of the previous trial (choice hysteresis). To assess whether the choice 
variability related to the activity overshooting added to, or was redundant with, that related to the 
choice hysteresis, I repeated the analyses of chosen value cells described in Fig.7a while controlling 
for the outcome of the previous trial. The analysis included only trials in which the animal chose one 
drop of the preferred juice (1A) against various amounts of the other juice (qB). These trials were 
divided into three groups depending on the outcome of the previous trial (trials A•, B• and X•). Each 
group of trials was further divided depending on the whether the offer type was easy or split (see 
Experimental Procedures). As illustrated in Fig.8a-c, the activity of chosen value cells presented the 
overshooting even when the previous trial's outcome was controlled for. 

 For each chosen value cell and for each group of trials (A•, B• and X•), I also performed the 
ROC analysis and computed the AUC. The results obtained pooling trials (insert in Fig.7a) held true 
separately for each group of trials (all p<0.05, t-test; inserts in Fig.8a-c). I also noted that the mean 
AUC obtained for each group of trials was quantitatively similar to that obtained pooling all trials 
(pooling trials, mean AUC = 0.526; for A•, B• and X• trials, mean AUC = 0.531, 0.526 and 0.530, 
respectively). These measures suggest that the activity overshooting is independent of the outcome of 
the previous trial.  
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 To further test the relation between activity overshooting and choice hysteresis, I compared for 
each chosen value cell the AUC obtained for A• trials and that obtained for B• trials (Fig.8d). Two 
important results emerged from this analysis. First, although each measure was rather noisy, the two 
measures were significantly correlated across the population (correlation coefficient = 0.22, p<0.01). 
This correlation is important because it indicates that the AUC is a reproducible measure for any given 
chosen value cell (Britten et al., 1996). Second, the difference between the two AUC obtained for the 
two groups of trials, examined at the population level, was statistically indistinguishable from zero (p = 
0.48, t-test; insert in Fig.8d). This result stands as strong evidence that activity overshooting was 
independent of choice hysteresis. Indeed, if even a portion of the activity overshooting had been 
redundant with choice hysteresis, the AUC measured in A• trials would be overall smaller than that 
measured in B• trials ‒ contrary to the observation. I repeated this analysis comparing A• trials and X• 
trials (Fig.8e) and, separately, B• trials and X• trials (Fig.8f). The results reinforced the conclusions 
already drawn. First, in both cases there was a significant correlation between the AUC measured for 
any given cell in different groups of trials (both p<0.003). Second, in both cases the difference 
between the two measures of AUC obtained for the two groups of trials was statistically 
indistinguishable from zero (inserts in Fig.8ef). In conclusion, the activity overshooting of chosen value 
cells is independent of choice hysteresis. 
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