
Neurons in Orbitofrontal Cortex Encode Economic 
Value 

We used the following juices, listed in roughly 
decreasing order of preference (associated colors in 
parenthesis): high-sugar lemon Kool-Aid (dark 
yellow), grape juice (bright green), fruit punch 
(magenta), apple juice (diluted to 1/2 with water, dark 
green), cranberry juice (diluted to 1/3 or 1/4 with 
water, pink), water (white), milk (red), peppermint tea 
(bright blue), tea (light brown), low-sugar agua frescas 
Kool-Aid (light red), low-sugar tamarind Kool-Aid 
(dark brown), slightly salted water (0.60 g/l or 0.65 g/l 
concentration, light gray).  
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Supplementary Methods 

Subjects, setup, and experimental design 

One male (“V”, 9.5 Kg) and one female (“L”, 6.3 Kg) 
rhesus monkey (Macaca mulatta) participated in the 
experiments. Neither animal had been used for 
previous studies. During the experiments, monkeys sat 
in a monkey chair in a darkened room. Their head was 
restrained, and their eye position was monitored 
continuously using a scleral eye-coil system1 (River-
bend Instruments). A computer monitor was placed 57 
cm in front of the monkeys. The behavioral task was 
controlled by custom-written software through a 
computer interface (ITC-18, Instrutech Corporation).  

Recording sessions lasted typically 200-500 trials. The 
number of trials per offer type presented in each trial 
block was determined at the beginning of each session, 
and we generally tried to have more trials for offer 
types near the animal’s (foreseen) indifference point. 
Typically, this resulted in 20-65 trials for each offer 
type in each recording session. The left/right 
configuration of each offer type was pseudo-
randomized and counterbalanced within each trial 
block. Each day, monkeys completed 2-8 sessions 
(typically 5-6), with different pairs of juices used in 
different sessions.  

Each trial began with the appearance of a fixation 
point (0.2° of visual angle) placed in the center of the 
monitor. The monkey directed gaze to the fixation 
point. After 1.5 s, two sets of squares appeared on the 
left and on the right sides of the fixation point (offer). 
The color of the squares indicated the juice type, and 
the number of squares indicated the juice amount. 
After the offer, the monkey maintained fixation for a 
1-2 s randomly variable delay, until a go signal. The 
go was signaled by the appearance of two saccade 
targets (0.2° of visual angle) placed 7° to the left and 
to the right of the center fixation point. After the go, 
the monkey had 1.5 s to indicate its choice by making 
an eye movement towards one of the saccade targets. 
The monkey then maintained fixation onto the chosen 
target for an additional 0.75 s before juice delivery. 
The trial was aborted if the monkey broke center 
fixation at any time before the go signal, or after target 
acquisition but before juice delivery. Trials were 
separated by a 1.5 s inter-trial interval. Center fixation 
was imposed within 1°. 

For the current experiments, we wanted to have a 
stable relative value within any recording session. 
Indeed, the relative value was generally stable (though 
3% of sessions were excluded from the analysis for 
unstable behavior). However, juice values could vary 
considerably from session to session within each day. 
In particular, early in the day monkeys were thirstier, 
and relative values tended to differ less from unity. 
Later in the day, monkeys generally became more 
selective and the relative value of less sweetened 
juices decreased. As a result, some variability was also 
present in the relative value measured for any given 
pair of juices in different days. For any given juice 
pair, the range of variability was typically twofold or 
less. The order of preference of different juices (i.e., 
their ranking) remained fairly stable across sessions 
and across days for both monkeys (though it was not 
exactly the same for the two monkeys).  

Training lasted 6-8 months. During the training, 
monkeys initially indicated their choice by moving a 
bidirectional lever by hand. For most of the training, 
we used only water offered in variables amounts (e.g., 
1 drop versus 2 drops). Monkeys spent most of the 
training learning non-specific aspects of the task, for 
example that objects on the monitor carried 
information about the to-be-received liquid, that a 
hand movement towards the right was associated to 
the visual stimulus placed on the right, and, later in 
training, that fixation should be maintained during the 

Sets of 0-10 squares indicating the offers were located 
around the (initially not visible) saccade targets, within 
4.2° of visual angle. The side of each individual square 
subtended 1.05°. The spatial configuration of a given 
set of squares (for example, 3 squares on the right) 
remained the same throughout the experiments. The 
same color was associated with any given juice type 
throughout the experiments. 
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delay. Monkeys were familiarized with each juice 
separately for 1-3 single-juice sessions. The most 
specific aspect of the task, namely the trade-off 
between juice type and juice quantity, did not require 
training, as monkeys showed it spontaneously and 
immediately. This was consistent with our previous 
observations in capuchins using solid foods in full 
sight2. For the current experiments, we wanted to have 
relative values away from unity. At the same time, we 
wanted relative values to lie within the tested range of 
offer types, so that, if the less preferred juice was 
offered in sufficiently large amount, the monkey 
would choose it. Prior to recordings, we tested 
numerous juice types to find suitable pairs.  

Juices were delivered through a three-line juice tube. 
Each juice line was controlled by a separate solenoid 
valve. We routinely calibrated the three juice lines 
individually so that the valve-opening times 
corresponded to the desired multiple of juice quantum. 
During recordings, we used quanta of 80 µl and 65 µl 
for monkeys V and L, respectively.  

Surgery and recordings 

Under general anesthesia and aseptic surgery, we 
implanted a head-restraining device and a recording 
chamber on the skull of the monkeys, and a scleral eye 
coil1. In both monkeys we used a large oval custom-
made chamber (main axes 50x30 mm). The chambers 
were centered on stereotaxic coordinates (A30, L0), 
with the longer axis parallel to a coronal plane. Thus, 
chambers covered the frontal lobes bilaterally. 
Following surgery, monkeys were given antibiotics 
(cefazolin, 20 mg/kg) and analgesics (buprenorphine, 
0.005 mg/kg; flunixin, 1 mg/kg) for 3 days. 
Throughout the experiments, we strictly followed the 
NIH Guide for the Care and Use of Laboratory 
Animals and the guidelines of the Harvard Medical 
School Standing Committee on Animals. 

For recordings, we used tungsten electrodes (125-µm 
diameter, 5±1 MΩ initial impedance, Frederick Haer 
& Co.). Electrodes were advanced with custom-built 
motorized micro-drives. The micro-drives, consisting 
of a titanium housing containing a 0-80 trapped screw, 
were anchored to a Teflon grid placed on the chamber. 
A brushless miniature precision gear motor (5.8-mm 
outer diameter, Micro Precision Systems) drove the 
trapped screw and was controlled remotely. The 
system allowed up to 0.5 µm of depth resolution. 
Typically four (and up to six) electrodes were used 
each day. We usually advanced electrodes by pairs 
(one motor for two electrodes), with the two electrodes 

placed 1 mm apart. Electrical signals from each 
channel were amplified and band-pass filtered 
(custom-designed miniature amplifiers, low frequency 
cutoff 400 Hz, high frequency cutoff 6 kHz) and 
recorded at 20 kHz by a dedicated processor (Power 
1401, Cambridge Electronic Design). Action potentials 
were detected online by threshold crossing and 
waveforms were saved to disk for subsequent analysis. 
Spike sorting was performed semi-manually using 
commercially available software (Spike 2, version 5, 
Cambridge Electronic Design). We routinely used 
multiple algorithms, including template matching, 
clustering on waveform measurements, and principal 
component analysis. 

Structural MRI scans (1-mm sections) were obtained 
for both monkeys before and after placing the 
recording chambers. Scans were performed in a 3.0 T 
magnet (General Electric) and three-dimensional 
reconstruction was performed off-line (Slicer-3D, 
www.slicer.org). 

Recordings areas 

Recordings were performed on the left hemisphere of 
monkey V and on the right hemisphere of monkey L. 
For their sulcal pattern, both hemispheres were 
classified as of type II of Chiavaras and Petrides3.  

The position of the chamber allowed us to reach OFC 
through nearly straight dorso-ventral penetrations. 
Because the chambers were large, we were able to 
record from an extended region of OFC. Based on 
exploratory recordings, we identified in both monkeys 
a region of interest where neuronal responses were 
modulated by the offer type in our task. In monkey V, 
the region of interest was centered in stereotaxic 
coordinates (A32.5, L–9.0) and extended for 6 mm 
rostro-caudally and 5 mm medio-laterally. In monkey 
L, the region of interest was centered in stereotaxic 
coordinates (A33.5, L8.5) and extended for 6 mm 
rostro-caudally and 2 mm medio-laterally. Based on 
the MRI scans and on the sequence of gray and white 
matter encountered during electrode penetrations, we 
located the regions of interest in the lateral bank of the 
medial orbital sulcus and in the medial part of the 
posterior orbital gyrus. Comparing our reconstruction 
to the architectonic subdivision of Carmichael and 
Price4,5, we tentatively identified our regions of 
interest with area 13m.  
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All the neurons described here were recorded from the 
regions of interest. Apart from this criterion and apart 
from imposing good and stable electrical isolation, 
neurons were not otherwise selected prior to data 
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collection or during the analysis. We did not attempt to 
identify the cortical layer of recordings. However, 
because we reached OFC dorso-ventrally from the 
white matter, we presume that the lower layers are 
largely represented in our dataset. 

Analysis of choice pattern and 3-way ANOVA 

Unless otherwise specified, we always assume linear 
value functions. Indicating with V(x) the value of x, 
the linear assumption means that a multiple q of a unit 
volume of juice X has a value V(qX) = q V(X). 

Data are analyzed in Matlab (PC version 6.5, Math-
Works). In each session, we fit the choice pattern with 
a sigmoid function, which for our data generally 
provides an excellent fit (R2>0.95). The flex of the 
sigmoid determines the relative value n* such that 
V(A) = n* V(B). From this equation, we can compute 
the value of any amount of juice A and B, up to a 
scaling factor. For example, expressing values in units 
of V(B), the value of b drops of juice B is b, and the 
value of a drops of juice A is n*a. Because the 
analysis of neuronal responses in relation to the juice 
values is based on linear regressions (see below), the 
results do not depend on the particular units used to 
express value.  

For quantitative analyses, neuronal firing is averaged 
over the following time windows: pre-offer (0.5 s be-
fore the offer, a control time window); post-offer (0.5 s 
after the offer); late delay (0.5-1.0 s after the offer); 
pre-go (0.5 s before the go); reaction time (RT; from 
the go to the saccade); pre-juice (0.5 s before the 
juice); and post-juice (0.5 s after the juice).  

We first analyze single-trial data from each neuron 
with a 3-way ANOVA (factors: [position of juice A] x 
[movement direction] x [offer type]), separately in 
each time window. We impose a significance level of 
p<0.001. We choose a relatively conservative 
threshold because of the large number of responses 
analyzed (931 neurons x 7 time windows). Because 
factors [position of juice A] and [movement direction] 
are rarely significant, we collapse data across these 
two factors in all subsequent analyses. We also use the 
results of the ANOVA as a screening criterion for sub-
sequent analyses, which  (unless otherwise indicated) 
we restrict to neurons and time windows for which the 
factor [offer type] yields a significant effect.  

We divide trials into “trial types” based on the offer 
type and the choice. For example, a monkey facing the 
offer type 3B:1A can choose either 1A or 3B, 
corresponding to the two trial types (3B:1A, 1A) and 

(3B:1A, 3B). In principle, there are twice as many trial 
types as offer types in any given session. However, 
many trial types are “empty,” because for most offer 
types the choice of the monkey is univocal (for 
example, in a given session, a monkey offered 3B:1A 
might always choose 3B). In subsequent analyses, we 
include only trial types with two or more trials. 

Neuronal activity is averaged across trials separately 
for each trial type. Hereafter, the term “response” 
refers to the average activity of one neuron in one time 
window, as a function of the different trial types. Note 
that, for sake of clarity, in figures 2d and 3a-e of the 
main text we grouped trials by offer type, not by trial 
type.  

Neuro-econometric analysis: defined variables and 
correlation matrix  

What variables are encoded in OFC? As illustrated in 
the main text (figure 3), many responses seem quali-
tatively related to the variables chosen value, value A 
offered, value B offered, and taste. For a quantitative 
analysis, however, we want to consider alternative hy-
potheses, namely other variables with which neuronal 
responses could a priori correlate. For example, we 
want to test the hypothesis that some responses might 
encode the other value (i.e., the value of the non-
chosen juice), or the total value, or the value A chosen; 
etc. In addition, we want to test variables that might 
capture the decision process, such as the value 
difference (chosen–other) value and the value ratio 
(other/chosen) value. Most importantly, we want to 
distinguish between variables related to value and 
variables related to physical properties of the 
juice/stimulus, such as quantity, volume, number, etc. 
These physical properties are all proportional to each 
other, and we collectively refer to them with the 
variable number.(a) To put value and number on equal 
                                                           
a In our experiments, value is subjective but operationally-defined. 
The neuronal correlates of value and number cannot be dissociated 
easily using a single good (e.g., a single juice) because in that case 
the two variables are inextricably inter-related (assuming a linear 
value function, value and number are in fact proportional to each 
other). Introducing uncertainty does not help, because the 
confusion remains between expected value and expected number. 
However, value and number can be dissociated using two different 
juices, insofar as the relative value of the two juices (i.e., the ratio 
V(A)/V(B)) differs from unity. For example, in a session in which 
1A=3B, a smaller number (say 2A) may have higher value than a 
larger number (say 4B). Of course, a correlation between value and 
number always remains (after all, a large quantity of any given 
juice is always more valuable than a small quantity of that same 
juice). For this reason dissociating definitively the neuronal 
correlates of value and number ultimately requires the “neuro-
econometric” analysis described below. 
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Neuro-econometric analysis: variable selection footing in the analysis, we want to test in the number 
domain every variable tested in the value domain. In 
summary, we want to analyze the 19 variables defined 
in figure s1. 

The variable-selection analysis is based on the 
assumption that individual responses encode each (at 
most) one variable. For this analysis, we regress each 
response separately on each of the 19 variables. Each 
regression provides a slope and the corresponding R2. 
We consider a variable capable of “explaining” a 
given response if the regression slope is significantly 
different from zero (p<0.05), and we conventionally 
set R2 = 0 for variables that do not explain the respon-
se. In general, any given response can be explained by 
multiple variables. Largely, this is because variables 
are often highly correlated with each other (for 
example, this is the case for variables chosen value, 
total value and chosen number), a situation referred to 
as multi-collinearity6,7.  

These 19 variables are often highly correlated with 
each other. To estimate the typical correlation between 
any two variables X and Y, we proceed as follows. For 
each session, we compute the correlation coefficient: 

22),( yxyxYX
session

rrrr
⋅⋅=ρ   

where  and xr yr  are vectors of values taken by 
variables X and Y for different trial types. So defined, 
the correlation coefficient varies between –1 and +1. 
Most informative in this context is the absolute value, 
which we compute and average across sessions: 

In the presence of multi-collinearity, it is often 
possible to identify a small subset of variables that 
account for much of the data. However, the problem of 
identifying the appropriate subset is in principle not 
trivial. For our analysis we adapt two methods of 
variable selection routinely used in the case of multi-
linear regressions, namely the “stepwise selection” 
method and the “best-subset” method6,7. Notably, our 
situation differs from that typically found in multi-
linear regression, where any single response depends 
on multiple variables. Each of our responses is 
sampled in few data points (typically 8-10 trial types), 
many fewer than the number of variables we want to 
test (19 variables). However, we can capitalize on the 
large number of responses available (a total of 1379 
responses pass the ANOVA screening criterion) and 
identify the most relevant variables through a 
population analysis (see below). 

sessionssession
YXYX ),(),( ρρ =  

Repeating for all pairs of variables, we obtain a 
symmetric matrix ρ  of elements ),( YXρ  that vary 
between 0 and 1. Hereafter, we refer to ρ  as the 
“correlation matrix.”  

The 19 variables defined in figure s1 cast a wide net. 
But ultimately we would like to test whether few 
variables can capture the neuronal activity of OFC, 
and identify those that best do so. To achieve this goal, 
we proceed in two steps. First, we assume that 
individual OFC responses encode each only one 
variable and that value functions are linear. We 
perform independent linear regressions of each 
response on each variable, and we apply methods of 
variable selection. We thus identify value A offered, 
value B offered, chosen value, and A|B chosen as the 
variables that best account for the dataset. These 
variables explain well the large majority of OFC 
responses. Second, having identified for each response 
the variable encoded “at the first order,” we relax the 
two initial assumptions. We test with standard multi-
regression methods whether adding a second variable 
or a quadratic value term improves the regression, and 
we observe that for the large majority of responses this 
is not the case. In other words, both the “one response-
one variable” assumption and the assumption of linear 
value functions are, by and large, warranted. We 
conclude that indeed OFC responses encode the 
variables identified by the variable-selection 
procedures.  

In addition to the 19 original variables, we define two 
“collapsed” variables value A|B offered and value A|B 
chosen, as follows. The variable value A|B offered is 
taken to explain a given response if at least one of the 
two variables value A offered and value B offered 
explains the response. The R2 of the collapsed variable 
is equal to the higher R2 obtained from of the two 
original variables (and equal to zero if none of the 
original variables explains the response). Similarly, the 
variable value A|B chosen is defined by collapsing 
variables value A chosen and value B chosen.  

Neuro-econometric analysis: second order encoding 

To explore the possibility that individual OFC 
responses might encode a mixture of variables, we 
proceed formally as follows8.  

The next sections and the Supplementary Results 
detail the methods and results of these analyses. 
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Consider a response encoding at the first order the 
variable X with  (i.e., a response explained 
by X better than by any other selected variable, 
with ). To establish whether adding a second 
variable Y to the regression provides a significantly 
better account, we compute 

22
XRR =

02 >XR

( ) )1()(3 222
| XYXXYXY RRRnF −−∗−=   

In the equation,  is obtained from the linear regres-
sion on X only;  is obtained from the bi-linear 
regression on X and Y; and n is the number of trial 
types (data points in the regression). We compute 

 for each of the variables Y we wish to test as 
potentially encoded at the second order, and we take 
the maximum 

2
XR

2RXY

XYF |

{ }XYF |maxF = . The degrees of 
freedom of F are 1 for the numerator and 3−n  for the 
denominator. We then set a threshold F* corresponding 
to a desired p* = 0.01 (we choose this threshold be-
cause residuals are not pre-screened and because we 
test each response with multiple potential second order 
variables). If F passes the criterion, we identify the 
second order variable encoded by the response. If F 
does not pass the criterion, we conclude that the 
response does not encode any second order variable (at 
least among those tested).  

For second order encoding, we test some of the 
variables tested for first order encoding. In addition, 
we test value-encoding responses with quadratic value 
terms. Hence, with this analysis we scrutinize the 
validity of the two assumptions underlying the variable 
selection procedures, namely that individual OFC 
responses encode each only one variable and that 
value functions are linear. 

Analysis of time course 

To analyze the time course by which neurons in OFC 
encode variables value A offered, value B offered, 
chosen value, and A|B chosen, we define 50-ms non-
overlapping time bins, aligning trials separately at the 
time of the offer and at the time of juice delivery. For 
each 50-ms time bin, we subject each cell in the 
population of Ntot

 = 931 neurons to independent linear 
regressions on the four selected variables. We assign a 
neuron to a variable if the regression slope differs 
significantly from zero in that time bin. If more than 
one variable has a non-zero slope (a rare case), we 
assign the neuron to the variable with highest R2. For 
this analysis, we do not screen neuronal data prior to 
regression, because small time bins result in spike 

counts mostly equal to 0 or 1. For this reason, we 
choose a slightly more conservative threshold (p<0.01) 
to identify regression slopes as significantly non-zero. 
In each time bin, the number of neurons expected to be 
assigned by chance to each class is Nchance = p* Ntot = 
9.31. For each time bin, we then compute:  

Nvalue A|B offered = Nvalue A offered + N value B offered – Nchance 

Supplementary Results 

Neuronal database, linear regressions, and 
correlation matrix  

We recorded the activity of 931 neurons (375 from 
monkey V; 556 from monkey L). Figure s2 reports the 
number of cells for which each main factor in the 
ANOVA has a significant effect. In particular, the 
factor [offer type] yields a significant effect in at least 
one time window for 505 (54%) neurons in total (211 
= 56% from monkey V; 294 = 53% from monkey L). 
We refer to these as “task-related” cells. Figure s3 
shows the average neuronal activity separately for 
task-related cells and for “other” (i.e., not task-related) 
cells. It can be observed that the average activity 
profile of task-related cells peaks early after the offer, 
slowly decays during the delay, and has two secondary 
peaks before and after juice delivery. In contrast, the 
average activity profile of other cells is lower and 
essentially flat throughout the trial. 

A total of 1379 responses are significantly modulated 
by [offer value] in the ANOVA (656 from monkey V; 
723 from monkey L). We further analyze these respon-
ses in relation to the variables defined in figure s1. In 
total, 1227/1379 (89%) responses are explained by at 
least one of the 19 variables (567/656 = 86% from 
monkey V; 660/723 = 91% from monkey L). Methods 
for variable selection are applied to this dataset.  

Figure s4 illustrates the results of individual linear 
regressions obtained for one particular response (i.e., 
the activity of one neuron in one time window as a 
function of the different trial types). The two top left 
panels show the behavioral choice pattern and the 
neuronal response plotted with respect to offer type. In 
the other panels, the same neuronal response is plotted 
against each of the 19 variables. A blue regression line 
indicates that the slope is significantly non-zero 
(p<0.05); if so, the respective R2 is indicated in the top 
left corner of the panel. In the top left panels, the 
activity of the cell as a function of the offer type has a 
U-shaped profile, qualitatively similar to that 
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hypothesized for a response encoding the chosen 
value. In fact, the variable chosen value explains the 
response (R2 = 0.90). However, the response is also 
explained by several other variables, for example total 
value (R2 = 0.72), chosen number (R2= 0.50), etc. 

The fact that multiple variables can explain the same 
response is not surprising, since the variables are in 
general not independent. This point is illustrated in 
figure s5, which shows the correlation matrix. In the 
figure, different shades of gray represent different 
values of correlation (ρ ) with black corresponding to 

1=ρ  and white corresponding to 0=ρ . A small 
white circle or cross indicates 8.0>ρ . For example, 
the variables chosen value and total value are highly 
correlated with each other and with other variables 
(e.g., total number, max number, and chosen 
number)—a case of multi-collinearity. 

Ideally, to provide a concise description of the dataset, 
we would like to achieve two goals: first, to assign 
each response to only one variable; second, to identify 
a small subset of variables that can explain as many 
responses as possible. Clearly, achieving the second 
goal helps to achieve the first. But how can we select 
the “right” subset of variables? In the following 
sections, we first make a qualitative case for variable 
selection and then we illustrate the results obtained 
with statistically principled procedures. 

Variable selection: Qualitative analysis 

Consider the response analyzed in figure s4. Our initial 
hypothesis that U-shaped responses might reflect the 
chosen value is bolstered by the fact that the variable 
chosen value provides the best fit (i.e., the highest R2). 
However, at this level of analysis, it would be 
unreasonable to rule out other variables (for example 
total value) that provide a slightly lower R2. A 
potentially powerful approach is to consider the entire 
population of responses. For example, we might 
discover that whenever (or most often when) both 
variables chosen value and total value provide a non-
zero slope, the variable chosen value provides a 
slightly higher R2. If that were the case, we could 
conclude that neuronal responses genuinely encode the 
chosen value, and that the variable total value has no 
additional explanatory power. This argument is 
obviously complicated by the fact that, as we observed 
qualitatively (figure 3, main text), not all responses in 
our dataset encode the same variable. In addition, 
variables have more than just pairwise correlation and 
cannot be simply considered two at the time. So we 

must analyze the entire population of responses and all 
the variables at once.  

Figure s6 illustrates two complementary ways to 
derive a population analysis from the individual linear 
regressions. In figure s6a, we compute for each time 
window and for each variable the number of responses 
explained. For example (top left), in the post-offer 
time window, the variable total value explains 130 
responses. Because, as we noted, more than one 
variable may explain any given response, any given 
response may appear in multiple bins in this plot. 
Some trends emerge clearly. First, as indicated by the 
ANOVA, more responses are modulated by the trial 
type in early time windows (post-offer and late delay) 
and late time windows (pre-juice and post-juice), as 
compared to the peri-movement time windows (pre-go 
and RT). Second, focusing on the post-offer time 
window we observe that a group of variables explain a 
large number of responses. For example, the variables 
total value, chosen value, total number, max number, 
chosen number, (max–min) number, and value B 
offered all explain more than 100 responses. 
Inspection of figure s5 reveals that these variables are 
highly inter-correlated. So the picture in figure s6a 
clearly contains a high degree of redundancy, which 
we may hope to resolve with further analysis. Third, in 
addition to these variables, which are prevalent in the 
post-offer, pre-juice and post-juice time windows, 
there is another group of variables, including (chosen–
other) number, A|B chosen, and value B chosen, which 
are common in the pre-juice and post-juice time 
windows, but not in earlier time windows. Again, 
inspection of figure s5 reveals that these variables are 
highly inter-correlated, a redundancy that we may 
hope to resolve with further analysis. 

A complementary way to derive a population analysis 
from the individual regressions is to consider for each 
response only the variable providing the best fit (i.e., 
the highest R2). By doing so, we essentially force each 
response in only one bin. Figure s6b shows the result 
of this analysis. Note that much of the redundancy of 
figure s6a seems naturally resolved. For example, 
many more responses are best fit by the variable 
chosen value than by any of the variables total value, 
total number, etc. that are highly correlated with 
chosen value. Likewise, many more responses are best 
fit by the variable A|B chosen than by either (chosen–
other) number, or value B chosen. Thus, although the 
population picture obviously remains complex, figure 
s6b suggests that fewer variables than the 19 initially 
considered may be sufficient to account for most 
responses. 
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In some sense, the pictures presented in figures s5a 
and s5b represent two opposite and extreme ways to 
analyze the population of responses. On the one hand, 
in figure s6a we forgo the possibility of ranking the 
quality of the linear fits (i.e., the R2) and, by doing so, 
we give up the possibility of a concise description. In 
fact, it could be argued that we spuriously added 
redundancy by including “unreasonable” variables in 
the analysis. And, indeed, one could easily come up 
with more variables that would further complicate the 
picture, to little or no advantage. On the other hand, in 
figure s6b we ignore that a given variable may 
sometimes provide a satisfactory explanation for a 
given response, even if another variable provides a 
better fit. That is clearly excessive: because neuronal 
data are noisy, responses that genuinely encode a 
given variable (say chosen value) might at times be 
best fit by another, highly correlated variable (say total 
value). In other words, it is likely that some responses 
that would genuinely belong to one bin in figure s6b 
“spilled over” to another bin because of noise. So here 
too it could be argued that we spuriously added 
complexity to the picture by including “unreasonable” 
variables in the analysis. And again, one could 
certainly further complicate the picture by adding 
more variables, to little or no advantage. 

In conclusion, an ideal account of the dataset would on 
the one hand make use of the information of figure 
s6b, namely that some variables (say chosen value) do 
consistently better than others (say total value) in 
fitting the population of neuronal responses. On the 
other hand, an ideal account would also use the 
information embedded in figure s6a, namely that one 
variable might provide a satisfactory (albeit 
suboptimal) explanation for many responses. But how 
can we identify a small subset of variables to explain a 
large number of responses? This problem closely 
resembles that of variable selection encountered in 
multi-linear regressions in the presence of multi-
collinearity. Methods commonly used for multi-linear 
regressions6,7 can be adapted to our case.  

Variable selection: Stepwise method 

One simple way to handle our problem is to select 
variables one at the time. First, we select the variable 
that provides the highest number of best fits (the 
darkest bin in figure s6b). In our case, this variable is 
A|B chosen. We explore the entire dataset and we 
remove all the responses that can be explained by this 
variable. Then we iterate the procedure by selecting a 
second variable, then a third variable, etc. We continue 
the procedure as long as any newly selected variable 

explains at least a certain percentage (for example 5%) 
of otherwise unexplained responses. At the end of the 
procedure, we classify responses based on the R2 (i.e., 
we assign responses explained by more than one 
selected variable to the variable with highest R2). This 
method is called “stepwise selection.”6,7 (b) 

We apply the stepwise selection method to our dataset. 
In figure s7, panels on the left represent the population 
of unexplained responses at different iterations of the 
procedure. Tables of best fit are shown, so that the top 
panel is the same as shown in figure s6b. For each 
iteration, a red asterisk indicates the selected variable; 
blue dots indicate variables excluded by the 5% 
selection criterion. The first four iterations select 
variables A|B chosen, chosen value, value A offered, 
and value B offered, and no other variable reaches the 
5% selection criterion in subsequent iterations.  

In the analysis shown in figure s7, we keep separate 
the 19 variables defined in figure s1. However, it could 
be argued that in some cases different variables really 
represent the same class of response. For example, the 
distinction between value A offered and value B 
offered is somewhat arbitrary, because one particular 
juice may be labeled “A” in a given session and “B” in 
another session. Furthermore, if a selection procedure 
identified only one of the two variables, the result 
would be difficult to interpret. Thus it is probably 
more correct to combine the variables value A offered 
and value B offered using the “collapsed” variable 
value A|B offered (see Supplementary Methods). 
Likewise, we can use the other collapsed variables 
value A|B chosen. This leaves us with 17 variables. 
We re-analyze our dataset using collapsed variables. 
The stepwise procedure selects the three variables 
value A|B offered, chosen value, and A|B chosen, 
confirming our previous result.  

In summary, the stepwise method applied to our 
dataset selects three variables: chosen value, value A|B 
offered, and A|B chosen. These three variables explain 
                                                           
b The stepwise selection method is used with the following caveat. 
The “marginal explanatory power” of one particular selected 
variable X is the number of responses that are explained by X and 
that are not explained by any other selected variable. The 5% 
selection criterion sets a threshold on the marginal explanatory 
power of newly selected variables. However, the marginal 
explanatory power of a selected variable X generally drops over 
iterations, because variables selected after X may explain some of 
the responses previously explained only by X. Eventually, it is 
possible that a selected variable X only explains a small percentage 
(less than 5%) of otherwise unexplained responses. For a correct 
procedure, we check at each iteration that all of the selected 
variables actually meet the 5% selection criterion, and we exclude 
previously selected variables that fail to meet the criterion. 
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1085 responses, corresponding to 79% of all responses 
significantly modulated by offer type (1379), and to 
88% of responses explained by all 17 variables (1227). 
In other words, in limiting ourselves to three variables, 
we “lost” only 12% of responses. Having thus 
identified the variables encoded in OFC, we classify 
responses based on the R2 (i.e., we assign responses 
explained by multiple selected variables to the variable 
with highest R2). Figure s8 (top) summarizes the final 
result of this classification. Note that, to provide a 
more intuitive interpretation of the variables, in the 
main text we renamed variable value A|B offered as 
offer value and variable A|B chosen as taste. The 
histograms in figure s8 (bottom) illustrate the 
distribution of R2 obtained as a result of the final 
classification. In general, selected variables capture the 
variability of individual responses remarkably well 
(mean R2 = 0.63). 

In the following sections, we show that alternative 
procedures for variable selection yield essentially the 
same results. 

Variable selection: Best-subset method  

One potential limitation of the stepwise method for 
variable selection is that the results obtained may be 
“path-dependent,” and the method is not guaranteed to 
select the best possible subset of variables. This goal 
can be achieved using the “best-subset” method6,7. 

The idea of the best-subset method is to compute for 
each possible subset of d variables the corresponding 
number of responses explained; to identify the best 
subset of d variables as the subset that explains the 
maximum number of responses; and to repeat the 
procedure for d = 1, 2, 3, … If n(d) is the number of 
responses explained as a function of d, the number d* 
of variables necessary to characterize the population 
can be determined either by an “elbow” in the function 
n(d), or with a threshold criterion (e.g., imposing that 
at least 85% of responses be explained).  

Figure s9 shows the results of analyzing our dataset 
with the best-subset method. In the top panel, the x-
axis represents the number d of variables included in 
each subset, and the y-axis represents the percentage 
n(d) of responses explained by the best subset. The 
bottom table indicates the variables included in the 
best subset for various d. Several points should be 
noted. First, although n(d) does not present a clear 
“elbow,” selecting only three variables seems 
reasonable, as additional variables add limited 
explanatory power. Second, the three variables 
identified by the stepwise selection method, namely 

chosen value, value A|B offered, and A|B chosen, are 
indeed the best possible subset of three variables. 
Third, these three variables are also included in the 
best subset of four variables and in the best subset of 
five variables. This is not necessarily expected, 
because in general the best subset of d+1 variables 
might not include all or any of the variables included 
the best subset of d variables. The fact that the three 
variables that make up the best subset for d = 3 are 
also included in the best subset for d = 4 and for d = 5 
is a sign of robustness of the result. 

In conclusion, the variable-selection analysis using the 
best-subset method confirms the results obtained with 
the stepwise selection method. In both cases, the three 
selected variables are chosen value, value A|B offered, 
and A|B chosen.(c, d) 

Variable selection: Over-fitting and post hoc analysis  

Although it guarantees optimality, the best-subset 
procedure does not provide a measure of reliability of 
the result. For example, in our case, the method indi-
cates that, among the subsets of three variables, chosen 
value, value A|B offered, and A|B chosen explain the 
highest number of responses, but we do not know how 
well these three variables do compared to the possible 
alternatives. In other words, we might have a problem 
of over-fitting. In multi-linear regressions, the standard 
way to handle this problem is to repeat measures and 
to analyze multiple datasets6,7 (see below). But in 
addition to repeating measures, our case also lends 
itself to an informative post hoc analysis.  

In the post hoc analysis, we want to test selected 
variables against highly correlated but discarded 
variables. For example, the best-subset method selects 
the variable chosen value. We want to establish 
whether selecting this variable is significantly better 
than selecting the variable total value, which is highly 
                                                           
c The stepwise selection method and the best-subset method differ 
in how different time windows are analyzed. Using the stepwise 
method, responses from different time windows are analyzed 
separately but in parallel. Variables are selected for the number of 
best fits by time window, but variables can then explain responses 
in any time window. In contrast, using the best-subset method, 
responses from different time windows are pooled together. 
Keeping time windows separate may or may not be viewed as a 
desirable feature. In any case, it is reassuring that the two methods 
provide converging results. 

d One important advantage of the best-subset method is that results 
do not depend on “irrelevant” variables. That is to say, including in 
the analysis variables that turn out to have little explanatory power 
has no effect on the outcome. This ensures that we don’t “add 
noise” to the procedure by testing “unreasonable” variables. 
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correlated with chosen value and is therefore a 
presumably “challenging” alternative. That chosen 
value, and not total value, is part of the best subset 
ultimately means that chosen value has a higher 
marginal explanatory power: disregarding responses 
explained by either value A|B offered or A|B chosen, 
the number of responses explained by chosen value 
and not by total value is greater than the number of 
responses explained by total value and not by chosen 
value. To establish whether this inequality is true in a 
statistical sense, we can formally proceed as follows.  

Consider the sub-population of responses explained by 
chosen value (variable X) and/or by total value 
(variable Y), and not explained by any other variable 
in the best subset (i.e., value A|B offered and A|B 
chosen). Of this sub-population, a number nX of 
responses are explained by X and not by Y; a number 
nY of responses are explained by Y and not by X; and 
the other responses are explained by both X and Y. 
The best-subset method indicates that nX>nY, but it is 
possible that nX is actually quite close to nY. The 
problem of determining whether the inequality nX>nY 
is statistically significant is equivalent to asking how 
unlikely it is to draw nX heads out of nX+nY tossings 
of a fair coin, and can be addressed with a simple 
binomial test. For this particular case, we have nX = 
58 and nY = 21, from which we infer that the marginal 
explanatory power of chosen value is significantly 
higher than that of total value (p<10-5).  

We repeat this procedure for all the pairs of variables 
(X,Y) for which X is a variable in the best subset and 
Y is a variable highly correlated to X (i.e., 

8.0),( >YXρ ; see figure s5). Additionally, we test 
chosen value against chosen number. The results are 
presented in figure s10. In these pairwise comparisons, 
all the variables included in the best subset do 
significantly better than the challenging alternatives 
(maximal p<10-5). The only exception is that the 
variable A|B chosen fails this test against the variable 
value A|B chosen (p = 0.12). As discussed below, this 
degree of ambiguity remains largely unresolved in our 
analysis. For all other aspects, the post hoc analysis 
confirms our previous conclusions. 

Variable selection: Other procedures and conclusions 

We employed a number of alternative procedures to 
select variables. Essentially, they all confirm the 
results described in previous sections. For example, in 
the spirit of repeating measures, we find that data from 
the two monkeys analyzed separately yield statistically 
indistinguishable results. Another variant consists in 

weighting the contribution of each response to the 
explanatory power of any variable with the 
corresponding R2. The variable selection analyses 
using this alternative metrics yields results identical to 
the ones obtained with the binary “explained/not-
explained” metrics. Finally, correcting regressions for 
unequal variance also provides identical results.(e) 
Using collapsed variables, all these procedures 
consistently indicate that the best subset includes value 
A|B offered and chosen value, and either A|B chosen or 
value A|B chosen, with these two latter variables 
having statistically indistinguishable marginal 
explanatory power. Using non-collapsed variables, all 
the procedures provide statistically consistent results. 
However, using non-collapsed variables, we find that 
the marginal explanatory power of A|B chosen is 
significantly higher than that of either value A chosen 
or value B chosen.  

Although the issue between  A|B chosen and value A|B 
chosen remains largely unresolved, two arguments 
seem to favor the former variable. First, in the analysis 
of non-collapsed variables, A|B chosen does signi-
ficantly better than either value A chosen or value B 
chosen taken alone Second (and partly related), A|B 
chosen, with only one intrinsic degree of freedom (i.e., 
the relative value of the two juices), is more 
parsimonious than value A|B chosen, which has two 
intrinsic degrees of freedom (i.e., the relative value, 
and which one of the two juices is coded for). In 
summary, although these arguments are largely 
heuristic, it seems preferable to summarize our data in 
terms of the variable A|B chosen.(f) 

                                                           
e The least-squares method, used here for all regressions, is based 
on two assumptions: gaussianity (i.e., data must come from 
gaussian distributions) and homoscedasticity (i.e., the gaussians 
must all have the same variance). Cortical single-trial spike counts 
are known to violate both these assumptions [ref 9]. Responses 
analyzed here (i.e., averages across trials) approximately satisfy 
gaussianity (for the central limit theorem). However, responses 
generally do not satisfy homoscedasticity. In cases of unequal 
variance (heteroscedasticity), the least squares method can be 
corrected by weighting the residual associated to each data point 
mi with a term proportional to 1/σi, where σi is the standard 
deviation of the distribution from which mi is drawn [ref 8]. In our 
case, mi is the response measured for a particular trial type and we 
can estimate σi with the standard error. Notably, 1/σi is 
proportional to the square root of the number of trials. This 
suggests that, in our case, it might be preferable not to correct for 
unequal variance, because trial types close to the indifference 
point, which are in many respects the most informative, are also 
those for which we have fewer trials (because monkeys “divide” 
their choices between the two juice types). For this reason, we 
generally use uncorrected linear regressions in all our analyses. 
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In conclusion, having tested a large number of hypo-
theses with a variety of variable selection procedures, 
we identified value A|B offered, chosen value, and A|B 
chosen as the three variables encoded by OFC respon-
ses. These three variables describe our dataset well, 
and significantly better than challenging alternatives. 

Second order encoding 

The variable selection analysis presented in previous 
sections rests on two key assumptions: the assumption 
that OFC responses encode each only one variable and 
the assumption that value functions are linear. We now 
put these two working hypotheses under scrutiny.  

For second order encoding, we test variables selected 
at the first order (that is, we test whether responses 
encode mixtures of selected variables). We also test 
the two variables value A chosen and value B chosen 
that were excluded last in the variable selection 
analysis, as well as the variable chosen number. 
Finally, for responses encoding at the first order value 
A offered, value B offered, and chosen value, we test 
the corresponding quadratic term (value A offered)2, 
(value B offered)2, and (chosen value)2. We extend this 
analysis to the population of 1085 responses classified 
at the first order (figure s8) and we pool together 
responses from different time windows. The results are 
presented in figure s11.  

In the two tables, rows indicate first order variables 
and columns indicate second order variables. The 
rightmost column indicates responses that do not 
encode any second-order variable. The top table 
(figure s11a) reports the number of responses. The 
bottom table (figure s11b) reports the same data as 
percentages (normalized by the number of responses 
explained by each first-order variable). In general, we 
observe that the vast majority of responses do not 
encode second order variables, independently of the 
variable encoded at the first order. Over the entire 
population, 837/1085 (77%) responses do not encode 
second order variables. If we exclude from this 
analysis the quadratic value terms, we find that 
890/1085 (82%) responses do not encode second order 
variables. We interpret this result as a substantial 
justification for the one response-one variable 
assumption. Similarly, for most value-encoding 
responses, adding a quadratic term does not improve 
the regression significantly. Repeating the analysis 
with only quadratic terms as potential second order 

variables, we find that in 757/817 (93%) cases qua-
dratic terms fail to provide a statistically appreciable 
gain. Again, we interpret this result as a justification 
for the assumption of linear value functions.(g)  

In summary, the analysis of second order encoding 
provides post facto support for the two main 
assumptions underlying the variable selection analysis, 
namely the one response-one variable assumption and 
the assumption of linear value functions. This result 
concludes our “neuro-econometric” analysis. 

Relationship between slope ratio and relative value 

During the experiments, we used a large number of 
juice pairs. In each session we measured the relative 
value n* from the behavioral pattern of choice, 
through a sigmoid fit. Naturally, we measured 
different relative values for different juice pairs. For 
example, monkeys generally had a mild preference for 
grape juice over fruit punch (typically, n*<2), but a 
strong preference for grape juice over peppermint tea 
(typically, n*≥3). In addition, the relative value of any 
given juice pair could vary from session to session and 
from day to day. For example, the relative value of ½ 
apple juice over peppermint tea varied over many days 
in the range n*∈(1.5,3). If U-shaped responses indeed 
encode the chosen value, we should expect them to 
reflect this variability. The following analysis confirms 
this prediction.  

To avoid any bias, we want to identify U-shaped 
responses independently of the specific variable that 
they might encode. We proceed using a bi-linear 
regression: 

B)#(aA)#(aafr BA0 ++=   (1) 

where fr is the firing rate of the neuron, and (#A) and 
(#B) are, respectively, the number of drops of juice A 
and juice B chosen by the monkey. (Note that in any 
given trial either (#A) = 0 or (#B) = 0.) We then define 
a response to be “U-shaped” if the regression slopes aA 
and aB are both significantly different from zero 
(p<0.01). (For this analysis, we do not pre-screen 
responses with the ANOVA.)  

                                                           

                                                                                                  
168/931 (18%) of recorded neurons, most prevalently at the time 
of juice delivery (i.e., in pre-juice and post-juice time windows). 
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present results do not exclude the possibility that a consistent 
departure from linearity may emerge upon more refined 
examination, or in experiments that span a wider range of values. 



As illustrated in figure s12 for one particular response, 
the regression slopes aA and aB are in general different 
from each other. Since both aA ≠ 0 and aB ≠ 0, Eq.1 
can be re-written as follows:  

( )B)#(A)#( kmafr *
0 ++=   (2) 

with m = aB and k* = aA/aB. The hypothesis that U-
shaped responses encode the chosen value leads to a 
simple prediction regarding the slope ratio k*, which 
should be (statistically) equal to the relative value of 
the two juices. Critically, k* should co-vary with n*.  

At least for the response in figure s12, the relationship 
k* ≈ n* holds true. Indeed, from the bi-linear 
regression we obtain k* = 3.0 (±1.4) (±s.d.), while 
from the behavioral choice pattern we obtain n* = 3.2. 
Applying the bi-linear regression criterion to all 931 
neurons, we identify 254 U-shaped responses. Figure 
s13 illustrates the relationship between k* and n* 
observed for this population. The scatter plot in figure 
s13a includes data from all sessions, pooling together 
all pairs of juices. In the plot, the x-axis represents the 
behaviorally measured relative value n*, the y-axis 
represents the neuronal slope ratio k*, and both axes 
are plotted in log scale. Each dot represents one 
response. Defining “A” as the preferred juice is 
equivalent to imposing n* > 1. In principle, the slope 
ratio k* could assume any possible value. However, 
nearly always k* > 1. Moreover, we observe a signifi-
cant correlation between k* and n* (p<10-12).  

Most importantly, the relationship k* ≈ n* can be 
observed when the analysis is restricted to responses 
recorded with individual pairs of juices, as shown in 
figure s13b for one particular pair of juices (A = ½ 
apple, B = peppermint tea). During the experiments, 
We used a total of 25 different juice pairs. The number 
of U-shaped responses recorded with any given juice 
pair varied between 1 and 40. Restricting our analysis 
to the 7 pairs of juices for which we have >10 respon-
ses, we test whether the relationship k*≈ n* holds true 
using the regression function: 

*
10

* nbb k +=    (3) 

For the pair of juices shown in figure s13b, the 
regression indicates b0 = 0.08 and b1 = 1.18, with 95% 
confidence intervals b0∈(-0.21, 0.37) and b1∈(0.77, 
1.59). Congruent results are obtained for all 7 pairs of 
juices. Figure s13c illustrates in particular for different 
juice pairs (y-axis), the value of the regression slope b1 
(x-axis), together with the 95% confidence intervals. 
Notably, the values of b1 are distributed around the red 
dashed lined corresponding to b1 = 1. Averaging across 
the 7 juice pairs, we obtain <b1> = 1.05 ± 0.15 (mean 

± s.e.m.). With respect to the intercept, averaging 
across juice pairs we obtain <b0> = -0.13 ± 0.15. These 
results are consistent with the predicted identity k* = 
n*. 

In summary, the neuronal “U” shapes recorded in OFC 
closely match the behavioral choice pattern on a juice-
by-juice and session-by-session basis, a phenomenon 
naturally captured by the concept of economic value.  

Ingredient-based hypothesis 

One concern is whether U-shaped responses, which 
vary with the quantity of both juices A and B chosen 
by the monkey, may simply encode the quantity of one 
particular ingredient, or combination of ingredients, 
present in both juices. By “ingredient,” we mean any 
compound contained in the juice, for example a 
compound that would elicit a taste response (e.g., 
water, sugar, citric acid, etc.)10-13. The strongest 
argument against the ingredient-based hypothesis 
follows from the relationship k* ≈ n* found in the 
previous section. To appreciate this point, let us refer 
to the cartoon shown in figure s14.  

To summarize the results of the previous section, we 
showed that for any two juices A and B, in the scatter 
plot of k* versus n*, data lie on a diagonal line (figure 
s14, gray line) and cannot be described by a horizontal 
line. We can now examine different variants of the 
ingredient-based hypothesis.  

The first variant is the hypothesis that U-shaped 
responses all encode the quantity of one particular 
ingredient. If this is true, given the ingredient and two 
juices A and B, the two regression slopes aA and aB 
should be proportional to the concentrations ρA and ρB 
at which the ingredient is present in the juices. 
Therefore, the slope ratio k* should be equal to the 
concentration ratio ρA/ρB, independently of the relative 
value n* recorded in the session. Consider for example 
the ingredient water. Because for any amount of juice 
the quantity of water is equal to the juice volume, if U-
shaped responses all encode the quantity of water, 
neuronal data should lie on the horizontal line k* ≈ 1 
(figure s14, blue line), contrary to what we observe. In 
other words, the sole fact that neuronal data 
overwhelmingly lie in the quadrant {k*>1, n*>1} rules 
out the possibility that U-shaped responses all encode 
the quantity of water consumed by the monkey. (This 
is an alternative way to rule out the variable chosen 
number.) Consider now another ingredient, for 
example sugar, which we may assume to be present in 
given juices A and B at a certain concentration ratio 
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ρA/ρB. If U-shaped responses all encode the quantity of 
sugar chosen by the monkey, we should observe 
neuronal data lying on the horizontal line k* ≈ ρA/ρB, 
independently of the relative value n* recorded in the 
session. However, our observations contradict this 
prediction. More generally, no matter what ingredient 
one may want to test, the same argument can always 
be made. If OFC responses all encode that particular 
ingredient, given two juices A and B, neuronal data 
should always lie on a horizontal line corresponding to 
the concentration ratio, contrary to our observations. In 
conclusion, the simple hypothesis that U-shaped 
responses all encode one single ingredient can be 
rejected. 

A second variant of the ingredient-based hypothesis is 
that U-shaped responses all encode a particular linear 
combination of multiple ingredients, such as water, 
sugar, etc. However, any linear combination of 
horizontal lines in figure s14 is itself a horizontal line, 
such as the brown dashed line in the figure. Therefore, 
if U-shaped responses all encode a linear combination 
of ingredients, neuronal data should lie on some 
horizontal line, contrary to our observations. Hence, 
this variant of the ingredient-based hypothesis can be 
also rejected. 

A third variant is the hypothesis that different U-
shaped responses encode different ingredients. For 
example, the linear relationship between k* and n* 
could be perhaps explained if U-shaped responses with 
large k* encode, say, sugar (red line), while U-shaped 
responses with small k* encode another ingredient, say 
ingredient X (green line). However, this hypothesis 
can only be true assuming that we happened to record 
from sugar-encoding neurons on days in which n* was 
large, and that we happened to record from X-
encoding neurons on days in which n* was small—a 
seemingly impossible coincidence. Thus this variant 
can also be rejected.  

The fourth and last variant of the ingredient-based 
hypothesis is that different U-shaped responses encode 
different linear combinations of ingredients. This 
variant combines the second and third variants, and 
can be rejected for the same reasons. 

Studies of gustatory responses in various areas of the 
orbitofrontal cortex, particularly those of Rolls and 
colleagues, found neurons encoding the taste of one 
particular juice, whose responses decreased following 
selective satiation of that juice12,14. We emphasize that 
the relationship between k* and n* observed in our 
data cannot be accounted for by the ingredient-based 
hypothesis taken in combination with the phenomenon 

described by Rolls. To appreciate this point, consider 
again the response shown in figure s12. According to 
the ingredient-based hypothesis, the response is U-
shaped because the activity of this neuron encodes the 
quantity of some ingredient X present in both juices A 
and B. (Here we refer to the first variant of the 
hypothesis, but the argument is valid more generally.) 
In the context of the ingredient-based hypothesis, the 
phenomenon described by Rolls can be described in 
terms of reduced responsiveness, or neuronal de-
sensitization. For example, under de-sensitized 
conditions, the response of the neuron in figure s12 to 
any given quantity of ingredient X may be reduced by 
half. Imagine now to record from this same neuron 
under conditions of reduced responsiveness. Since the 
activity of the neuron encodes the quantity of X 
consumed by the monkey, and since X is present in 
both juices, reduced responsiveness will affect both 
trials in which the monkey chooses juice A and trials 
in which the monkey chooses juice B. For example, if 
the neuronal responsiveness is halved, we will observe 
half-sized responses when the monkey chooses A, and 
half-sized responses when the monkey chooses B. As a 
consequence, in figure s12, both slopes aA and aB will 
be halved. But if both slopes are halved, their ratio 
does not change. More generally, if both slopes are 
scaled by the same factor, their ratio does not change. 
As quantified in Eq.2, this means that any change in 
responsiveness to the encoded ingredient affects the 
scaling parameter m, which multiplies both (#A) and 
(#B), but does not affect the ratio parameter k*. In 
summary, even assuming changes in responsiveness of 
the kind described by Rolls, the ingredient-based 
hypothesis predicts that k* should be constant and 
independent of n*, contrary to our observations. Thus 
the ingredient-based hypothesis cannot be “salvaged” 
by appealing to changes in neuronal responsiveness a 
la Rolls. 

To conclude, our analysis demonstrates that U-shaped 
responses do not encode the quantity of any particular 
ingredient or combination of ingredients, but rather the 
value the monkey assigns to the juice it chooses to 
consume. 

Conclusions 

We showed that OFC responses do not depend on the 
visuomotor contingencies of the task. Assuming that 
OFC responses encode each only one variable and that 
value functions are linear, we showed that OFC 
responses are best described as encoding value A|B 
offered, chosen value, and A|B chosen. In the main 
text, we refer to these variables respectively as offer 
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value, chosen value, and taste. The explanatory power 
of these three variables is high (mean R2 = 0.63) and 
significantly higher than that of challenging 
alternatives. Conversely, we showed that in the large 
majority of cases, it is sufficient to assume that OFC 
responses encode each only one variable, if that 
variable is one of the three characteristic of this area. 
Indeed, taking into consideration the possibility that 
OFC responses encode a mixture of variables 
generally does not provide a significantly better 
account. We also showed that for the large majority of 
OFC responses recorded in our experiment it is 
adequate to assume a linear value function. In a 
separate analysis of U-shaped neuronal responses we 
showed a statistical identity between the slope ratio 
and the behaviorally measured relative value. For any 
given pair of juices, the two quantities co-vary on a 
session-by-session basis, which rules out any 
ingredient-based hypothesis. Finally, we showed that 
the timing by which OFC neurons encode offer value, 
chosen value and taste corresponds well to the mental 
operations that monkeys presumably undertake during 
economic choice. Specifically, neurons encoding the 
offer value—an operation necessary to make a 
choice—are the most prevalent shortly after the offer 
is presented to the monkey. Neurons encoding the 
chosen value are frequently observed during the delay, 
when the monkey has presumably internally made a 
choice, but before the choice is actually revealed. 
Finally, neurons encoding the taste of the chosen juice 
are most prevalent immediately before and after juice 
delivery. Taken together, these results suggest that 
neurons in OFC provide a substrate for value 
assignment during economic choice. 
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Figure s1. Tested variables. We tested variables related to value, variables related to number, and variables related to 
one of the two juices. Note that having assumed a linear value function (see Supplementary Methods), the value of one 
of the two juices offered or chosen is proportional to the number of drops of juice. The two collapsed variables are 
indicated in the bottom left of the table. In the main text, we re-labeled the variable value A|B offered = offer value, and 
the variable A|B chosen = taste.
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Figure s2. 3-way ANOVA. We recorded the activity of 931 cells. We analyze each cell in each time window with a 3-
way ANOVA (factors [position of juice A] x [movement direction] x [offer type]). The three columns in the table indicate 
the number of cells for which each of the main factors has a significant effect (p<0.001). The bottom row indicates the 
number of cells whose activity pass the ANOVA test in at least one time window. The factor [offer type] is significant for 
a total of 1379 responses.
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Figure s3. Average activity profile. Neuronal activity was analyzed in 10ms-large, non-overlapping time bins. For each 
cell, we included in this analysis all trials and all trial types. We then averaged the resulting activity profile across cells.
This analysis was done separately for task-related cells (i.e., cells that passed the ANOVA criterion in at least one time 
window; blue color) and for other cells (i.e., cells that did not pass the ANOVA criterion in any time window; red color). 
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Figure s4. Linear regressions. The two top left panels show the behavioral choice pattern and one response plotted in 
the same coordinates. The response is the same shown in figure 3a (main text), except that here we grouped trials by 
trial type (squares for “A” choices; circles for “B” choices). In the other panels, the neuronal response (y-axes) is plotted 
against each of the 19 variables (x-axes), and each dot represents one trial type. Values are expressed in units of V(B). 
Blue regression lines indicate regression slopes significantly different from zero. For variables that explain the 
response, the R2 is indicated on the top left corner in the panel. The highest R2 (chosen value) is marked in red. 
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Figure s5. Correlation matrix. Elements of the correlation matrix vary between 0 and 1 (see Supplementary Methods). 
Here the correlation matrix ρ is rendered in gray scale so that ρ=1 is represented in black (diagonal elements) and ρ=0 
is represented in white. Small circles and crosses indicate matrix elements for which ρ>0.8 (excluding the diagonal). 
We use circles for correlations that include one of the selected variables and crosses otherwise. 
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Figure s6. Qualitative analysis. Top. Numbers in the top panel represent for each variable (x-axis) and for each time 
window (y-axis) the number of responses for which the linear regression provided a non-zero slope (i.e., the number of 
responses explained by the variable). The color table underneath reports the same numbers in gray scale. Bottom. 
Numbers in the bottom panel represent for each variable and for each time window the number of responses for which 
the corresponding variable provided the best fit (highest R2). Again, the color table represents the same numbers in 
gray scale. 
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Figure s7. Stepwise selection method. See Supplementary Results.
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Figure s8. Population summary. Top. The figure illustrates the final result of the classification. The three columns on 
the left repeat teh results of the s-way ANOVA (figure s2). The factor [offer type] is significant for a total of 1379 
responses. The five columns on the right summarize the results of the variable selection analysis. Responses that 
cannot be explained by any of the 19 variables appear in the rightmost column (unclassified). Variables value A|B 
offered, chosen value and A|B chosen collectively explain 1085 responses (79% of the total, 88% of responses 
explained by the 19 variables). Responses explained by one of the 19 variables but not explained by any of the 
selected variables appear on the second column on the right (other class). The remaining three columns indicate the 
number of responses classified as value A|B offered, chosen value, and A|B chosen, respectively. The color table 
represents the same number in gray scale. The prevalence of different response classes varies over time windows: 
value A|B offered is most prevalent shortly after the offer, chosen value is prevalent throughout the trial, and A|B 
chosen is most prevalent late in the trial, before and after juice delivery. This time course can be also observed at much 
higher resolution (figure 4, main text). Bottom. How well are responses accounted for in the final classification? The 
histograms show for the four response classes the number of responses (y-axis) with the corresponding R2 (x-axis). 
The responses included in the four histograms are 159, 286, 372 and 268, respectively. The mean (avg) and median 
(med) of the four  distributions are (avg=0.61, med=0.60), (avg=0.63, med=0.61), (avg=0.64, med=0.64) and (avg=0.64, 
med=0.63), respectively.
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Figure s9. Best-subset method. See Supplementary Results.
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Figure s10. Post hoc analysis. The best subset of three variables includes chosen value, value A|B offered, and A|B 
chosen. We tested these three variables separately against all other variables highly correlated with them (ρ>0.8). The 
relevant pairs of variables are marked by small white circles in the correlation matrix in figure s5. The collapsed variable 
value A|B offered is tested here against variables highly correlated either with value A offered or with value B offered. In 
addition to the comparisons dictated by the ρ>0.8 criterion, we tested the variable chosen value against the alternative 
variable chosen number. In the table, the two left columns indicate the tested variable and the alternative variable, the 
next two columns indicate the marginal explanatory power of the two variables, and the right column indicates the result 
of a binomial test. In essence, all tests indicate that selected variables have significantly higher explanatory power than 
the challenging alternatives, except that the variable A|B chosen does not reach significance level against the 
alternative value A|B chosen (bottom row). 
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Figure s11. Second order encoding. See Supplementary Results.
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Figure s12. One example of U-shaped response (same shown in figures 3a and s4). In the left panels, the behavioral 
choice pattern and the neuronal response are plotted in the usual “ordinal” x-axis coordinates. From the behavioral 
choice pattern, we obtain the relative value n*=3.2. In the right panel, the neuronal response is plotted in “cardinal” x-
axis coordinates, separately for trials in which the monkey chose juice A and juice B. The two regression slopes are 
plotted in red. From the bi-linear regression, we obtain a slope ratio k* = 3.0 (±1.4) (±95% confidence interval). 
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Figure s13. Relationship between slope ratio k* and relative value n*. See Supplementary Results.
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Figure s14. Predicted relationship between k* and n*. If U-shaped responses encode chosen value, the values of k* 
should lie on a diagonal (gray line). If they encode the quantity of some juice ingredient (e.g., water, sugar, or some
other ingredient X or Y), values of k* should lie on some horizontal line corresponding to the concentration ratio (blue, 
red, green, and yellow lines). Similarly, if U-shaped responses encode the linear combination of multiple ingredient, 
values of k* should lie on some horizontal line (e.g., brown dotted line).
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