J Neurophysiol 114: 1382-1398, 2015.
First published June 10, 2015; doi:10.1152/jn.00184.2015.

CALL FOR PAPERS | Decision Making: Neural Mechanisms

A neuro-computational model of economic decisions

Aldo Rustichini' and Camillo Padoa-Schioppa®

'Department of Economics, University of Minnesota, Minneapolis, Minnesota; and *Departments of Anatomy and

Neurobiology, Economics, and Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri

Submitted 24 February 2015; accepted in final form 5 June 2015

Rustichini A, Padoa-Schioppa C. A neuro-computational model
of economic decisions. J Neurophysiol 114: 1382-1398, 2015. First
published June 10, 2015; doi:10.1152/jn.00184.2015.—Neuronal re-
cordings and lesion studies indicate that key aspects of economic
decisions take place in the orbitofrontal cortex (OFC). Previous work
identified in this area three groups of neurons encoding the offer
value, the chosen value, and the identity of the chosen good. An
important and open question is whether and how decisions could
emerge from a neural circuit formed by these three populations. Here
we adapted a biophysically realistic neural network previously pro-
posed for perceptual decisions (Wang XJ. Neuron 36: 955-968, 2002;
Wong KF, Wang XJ. J Neurosci 26: 1314—1328, 2006). The domain
of economic decisions is significantly broader than that for which the
model was originally designed, yet the model performed remarkably
well. The input and output nodes of the network were naturally
mapped onto two groups of cells in OFC. Surprisingly, the activity of
interneurons in the network closely resembled that of the third group
of cells, namely, chosen value cells. The model reproduced several
phenomena related to the neuronal origins of choice variability. It also
generated testable predictions on the excitatory/inhibitory nature of
different neuronal populations and on their connectivity. Some aspects
of the empirical data were not reproduced, but simple extensions of
the model could overcome these limitations. These results render a
biologically credible model for the neuronal mechanisms of economic
decisions. They demonstrate that choices could emerge from the
activity of cells in the OFC, suggesting that chosen value cells directly
participate in the decision process. Importantly, Wang’s model pro-
vides a platform to investigate the implications of neuroscience results
for economic theory.

dynamic system; good-based decisions; neural network; neuroeco-
nomics; orbitofrontal cortex

ECONOMIC CHOICEs are thought to entail two mental stages:
subjective values are first assigned to the available options, and
decisions are made by comparing values. Evidence from lesion
studies (Fellows 2011; Rudebeck and Murray 2014), functional
imaging (Bartra et al. 2013; Clithero and Rangel 2014), and
neurophysiology (Mainen and Kepecs 2009; Padoa-Schioppa
2011; Wallis 2011) indicates that choices, in particular
choices between goods, involve the orbitofrontal cortex
(OFC). Neuronal recordings in primates choosing between
different juices identified three groups of neurons in this
area: offer value cells encoding the value of individual
juices, chosen juice cells encoding the binary decision
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outcome, and chosen value cells encoding the value of the
chosen juice (Padoa-Schioppa 2013; Padoa-Schioppa and
Assad 2006). Prima facie, these groups of neurons appear
sufficient to characterize—and possibly generate—a deci-
sion. Indeed, offer value cells capture the input to the decision
process, while chosen juice and chosen value cells capture the
identity and value of the chosen good, and thus the decision
outcome. A primary goal for decision neuroscience is to formalize
this intuition by building a biologically realistic model in which
the groups of cells found in OFC form a circuit that generates
decisions. Ideally, such a model would encompass all that is
known about these neurons and, concurrently, make new and
testable predictions.

Our thinking about the mechanisms of economic decisions is
influenced by work on motion perception (perceptual deci-
sions). In a simplified scheme, two brain regions play a primary
role: the middle temporal area (MT), where neurons encode the
momentary evidence, and the lateral intraparietal area (LIP),
where cells represent the decision outcome in the form of a
planned saccade (Gold and Shadlen 2007; Parker and New-
some 1998). Notably, there is a natural analogy between
neurons in MT and offer value cells and between neurons in
LIP and chosen juice cells. In contrast, chosen value cells do
not have a known correspondent in perceptual decisions.

Several models have been proposed to describe the neuronal
mechanisms of perceptual decisions (Bogacz et al. 2006; Dru-
gowitsch and Pouget 2012; Gold and Shadlen 2007). At the
biophysical level, a leading proposal is Wang’s model, in
which decisions emerge from a balance of recurrent excitation
and pooled inhibition. Different variants of the model account
for perceptual decisions (Wang 2002; Wong and Wang 2000),
similarity judgments (Engel and Wang 2011), probabilistic
inference (Soltani and Wang 2010), behavior in a competitive
game (Soltani et al. 2006), and flexible sensorimotor mapping
(Fusi et al. 2007). More recently, the model has been adapted
to describe the activity in LIP during foraging tasks (Soltani
and Wang 2006) and to fit aggregate neural activity during
value-based decisions (Hunt et al. 2012; Jocham et al. 2012).
However, a precise mapping between Wang’s model and the
activity of neurons in OFC (or any brain area) during economic
decisions has not yet been attempted. In this study, we exam-
ined the extent to which Wang’s model can reproduce neuronal
activity in the OFC. From a modeling perspective, this is a
challenging test because—as we argue in detail below—the
domain of economic decisions is significantly broader than that
for which the model was originally designed and because
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neuronal activity in the OFC during economic decisions only
partly resembles that in area LIP during perceptual decisions.
Our deliberate goal was to test the model without changing its
structure. Importantly, all the parameters in the model repre-
sent biophysical quantities such as synaptic efficacies and time
constants and are derived, at least approximately, from empir-
ical measures (Wang 2002). In our investigation, we used the
same parameters previously used to model perceptual decisions
(Wong and Wang 2006).

In most respects, Wang’s model reproduced the activity of
different groups of cells in OFC remarkably well. The two
layers corresponding to the input and the categorical output of
the network were identified with offer value cells and chosen
juice cells, respectively. Most surprisingly, the activity of
inhibitory interneurons in the network closely resembled that
of the third group of neurons found in OFC, namely, chosen
value cells. The model also reproduced several phenomena
related to the neuronal origins of choice variability, namely,
choice hysteresis, the “predictive activity” of chosen juice
cells, and the “activity overshooting” of chosen value cells
(Padoa-Schioppa 2013). Two aspects of the empirical data
were not reproduced. First, the model did not include neurons
with negative encoding. Second, a significant baseline in the
activity of offer value cells introduced distortions in the be-
havior of the network. However, simple extensions of the
model could overcome these limitations. The results of this
study render a biologically credible model for the neuronal
mechanisms of economic decisions.

MATERIALS AND METHODS

Structure of the model. In its extended form (Brunel and Wang
2001; Wang 2002), the model is a recurrent network of 2,000 spiking
neurons, of which 80% (Ng) are excitatory pyramidal cells and 20%
(N;) are inhibitory interneurons. All neurons in the network are leaky
integrate-and-fire cells endowed with biophysically realistic parame-
ters. Two external stimuli provide the primary input, and each stim-
ulus activates a fraction f = 0.15 of pyramidal cells. The remaining
(1 — 2f) Ng pyramidal cells are “nonresponsive.” The synaptic input
to each neuron is both excitatory and inhibitory. Excitatory inputs are
through AMPA- and NMDA-mediated synapses, while inhibitory
inputs are through GABA ,-mediated synapses. For each neuron, the
input has an external component and a recurrent component. For the
two groups of selective pyramidal cells, the external component
includes the external stimulus. In addition, each neuron in the network
receives an external background noise distributed as a Poisson pro-
cess. Stimulus current and external background are through AMPA-
mediated synapses. The recurrent component is provided by other
neurons in the network. In analogy to the Hebbian rule, synapses
between neurons in a given group (which fire together) are poten-
tiated by a factor w, > 1, whereas synapses between neurons in
different groups are depressed by a factor w_ < 1. The condition
w_ =1—= fiw, — /(1 — f) ensures that all excitatory cells have
the same spontaneous firing rate.

With a mean-field approach (Renart et al. 2003; Wong and Wang
2006), the network can be reduced to a dynamic system of 11
variables (see below). In the following, we refer to this version of the
model as W11. Under several additional assumptions and approxima-
tions, the model can be further reduced to a dynamic system of two
variables (henceforth W2). The advantage of the two-variable formu-
lation is that it is easily tractable—for example, it is possible to
examine the dynamics of the system in a phase plane. However, two
important reasons motivated us to examine W11. First, W11 is
expressed in terms of neuronal firing rates, which allows a direct
comparison between the activity of units in the model and that of cells
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recorded experimentally. In contrast, W2 is expressed in terms of
gating variables, which represent the fraction of open channels and are
not directly accessible in our experiments. Second, W11 expresses
explicitly the activity of each group of cells including inhibitory
interneurons. In contrast, interneurons in W2 exist only implicitly, and
their dynamics is not easily recovered. In summary, using W11
allowed us to contrast directly the predictions of Wang’s model with
the activity of neurons in the OFC.

Many previous studies examined the extended, spiking version of
the model or W2. In contrast, W11 was discussed only briefly by
Wong and Wang (2006). We thus recapitulate it here for convenience.
A schematic representation of the model is provided in Fig. 2. In
preliminary tests, we observed that the activity of inhibitory interneu-
rons in the model examined as a function of the offer type resembles
that of chosen value cells. Throughout this report, we refer to neurons
in OFC as offer value, chosen juice, and chosen value cells and to
nodes in the model as OV, CJ, and CV cells, respectively. The three
groups of pyramidal cells correspond to CJA cells (group 1), CJB
cells (group 2), and nonselective cells (group 3). Unless otherwise
indicated, all the parameters used in our simulations were set identical
to those used in the original W11 (Wong and Wang 2006). Their
values are indicated in Table 1.

The dynamic system is defined by the following 11 equations:

T

TaMPA, = i + (L) i=1,2,3 (1)
dr;
ToABA T T + ¢(1,1) )
t
ASawvpai  Sampa
AMPAG _ _ SAMPAG . i=1.2.3 3)
dr TAMPA
dSxvpai  SnMDAL
A + (1 - SNMDA,l)Wi i=1,2,3 4
dr TNMDA
dSgaBa _ ScaBA . )
dr TGABA '

In Eq. I and below, i = 1, 2, 3 refers to the three groups of pyramidal
cells and r; indicates the firing rate. In Eq. 2 and below, I indicates
interneurons. For each group of cells i and for each receptor type R,
Sg.i is the corresponding gating variable, defined as the fraction of
open ionic channels. The parameters 7 are time constants, and vy in Eq.
4 is a constant (see Table 1). Note that firing rates and gating variables
are all time dependent. The input-output relation for a leaky integrate-
and-fire cell is given by the simplified formula of Abbott and Chance
(2005):

CE,II syn IE,I
1 - exp(_gE,l(cE,lIsyn - IE,[))

Note that Eq. 6 is written separately for excitatory pyramidal cells (E)
and inhibitory interneurons (I). In this equation, I, is the total
synaptic input to the cell, and the parameters Iy, cg, and gg are,
respectively, the threshold current, the gain factor, and the noise factor
(see Table 1).

Currents and parameters. For each group of cells, the input current
I, includes several components:

syn

d(Lyn) = (©6)

Isyn = IAMPA,exl + IAMPA,rec + INMDA,rec + IGABA,rec + Islim (7)

In Eg. 7 and below, indices ext and rec refer to external and recurrent
currents. Currents depend on the gating variables through the follow-
ing equations:

IAMPA,ext,i == JAMPA,ext,perAMPACextrext + In,i i=1,2,3 (8

—Nef JAMPA,pyr(W+SAMPA,i + W—SAMPA_J‘;&;‘)
- NE(I - Zf)JAMPA,per—SAMPA,S Lj=12 (9

TaMPA rec,i =
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Table 1. Parameters used in simulations
Network parameters (same as in WI1I)
Ng 1,600 Total number of pyramidal cells
Ny 400 Total number of interneurons
Coxe 800 Number of external connections per cell
0.15 Fraction of pyramidal cells associated to each stimulus/good
Text 3.0 sp/s Mean firing rate of external cells
Time constants, synaptic efficacies, and noise (same as in WII)
TAMPA 2 ms Time constant for AMPA-mediated synapses
TNMDA 100 ms Time constant for NMDA-mediated synapses
TGABA 5 ms Time constant for GABA-mediated synapses
JAMPA extpyr —0.1123 Efficacy of external synapses, pyramidal cells
AMPA rec.pyr —0.0027 Efficacy of recurrent AMPA synapses, pyramidal cells
JNMDA rec pyr —0.00091979 Efficacy of recurrent NMDA synapses, pyramidal cells
GABA rec,pyr 0.0215 Efficacy of recurrent GABA synapses, pyramidal cells
J AMPA extin —0.0842 Efficacy of external synapses, interneurons
AMPA rec.in —0.0022 Efficacy of recurrent AMPA synapses, interneurons
JNMDA rec.in —0.00083446 Efficacy of recurrent NMDA synapses, interneurons
GABA rec,in 0.0180 Efficacy of recurrent GABA synapses, interneurons
Y 0.641 Proportionality between input firing rate and gating variable
o, 0.020 A Noise parameter of the Ornstein-Uhlenbeck process
Parameters of input-output function for integrate-and-fire neurons (same as in Wil)
I 125 Threshold current, pyramidal cells
8E 0.16 Gain factor, pyramidal cells
Cg 310 Noise factor, pyramidal cells
I; 177 Threshold current, interneurons
& 0.087 Gain factor, interneurons
c 615 Noise factor, interneurons
Parameters used to model OV cells
To 0 or 6 sp/s Baseline activity
Ar 8 sp/s Dynamic range
a tosrer T 175 ms See Eq. 23
b 30 ms See Eq. 23
c tosrer T 400 ms See Eq. 23
d 100 ms See Eq. 23
JampA input 30J Ampa extpyr Efficacy of AMPA-mediated synapses from OV to CJ cells
Inmpasecs = —Nef Jamp A’pyr(s ampa1 + Samp A,2) r'emoved the tim.e—dependent noisp dur@ng Fhe mean-field approxima—
_ NE(I _ 2f) JaMpAov Savpas  (10)  tion and then reintroduced a white noise in the form of a Ornstein-
P - Uhlenbeck process. Thus I, is according to the following equation:
INMDA,rec,i = —Ngf JNMDA,pyr 6JNMDA,1‘(W+SNMDA,[ + W—SNMDA,j;ﬁi)
— Ng(1 —2f)J w_S Lj=1,2 (I dr,; .
E( f) NMDA, pyr NMDA,3 J (1) TAMPA% _ _In,j T n(t)‘ /TAMPAO'%, i=1,2,3,1(18)
InMpArec3 = —Nef J, NMDA,pyr(SNMDA,l + SNMDA,Z) i
NE(I 2f)JNMDA’pyr Sswpas (12) where m (f) is a white noise with unit variance (Renart et al. 2003).
I6ABAreci = ~ NiJGaBA pyr 0JGABA.i SGABA i=1,2,3(I3) The parameter o, represents the amount of noise (see Table 1).

The corresponding equations written for interneurons are

Tampaextt = —Jampa.extinTAMPA Cext Text T It 4
Inmparecr = — Nef Taveain(Sampat + Sampa2)
= Ne(1 = 2f)ampain Sampas  (I5)
Invparect = — Nef Inmpa rec.in(Snvpat + Snvpa2)
- NE(l - 2f)JNMDA,rec,in SNMDA,S (]6)
IGaBA reci = ~ N1 JGaBAin SGABA 17)

In these equations, C,,, is the total number of external synapses per
cell and the parameters J are synaptic efficacies, whose values are
derived from empirical measures (Wang 2002; Wong and Wang
2006). The two parameters 8Jyypa,; and 8/ ;» Which were not
present in the original W11, were introduced here in certain simula-
tions to examine the effects of synaptic imbalance (see Imposing
nontrivial relative values). In the initial simulations, 8J\ypa,; and
8JGapa, Were set equal to 1.

Finally, I, ; in Eq. 8 and I, ; in Eq. 14 are noise terms. Neurons in
the extended, spiking network (Wang 2002) are noisy Poisson pro-
cesses. In the derivation of W11, Wong and Wang (2006) first

Modeling offer value cells. The last term in Eq. 7, namely I ., is
the primary input, which equals zero for nonselective pyramidal cells
and for interneurons. For CJA and CJB cells, we set I_; . as follows:

stim

Lsimi = —J ampa input OHLi O stimiTAMPAT OV i=1,2(19)
where rqy is the firing rate of OV cells. The synaptic efficacy
J AmpA inpu TEflECts the number of connections between OV cells and
CJ cells. In the original W11, Jxnipa inpue Was set equal t0 Janpa extpyr
Unless otherwise indicated, in all our simulations we set Jyipa in-
put = 30/ \npa exipyr Lhis adjustment provided a sizable dynamic
range for CV cells and reflected the fact that offer value cells and
chosen juice cells are found in close proximity in the same brain
region, while cells in MT and LIP are connected only long distance.
In Eq. 19, the parameter 8J;,, ; was introduced to impose nontriv-
ial relative values (see Imposing nontrivial relative values). In the
initial simulations, we set 8/, = (2, 1). Conversely, the parameter
0Jyy.; accounted for the Hebbian learning taking place after range
adaptation (see section Range adaptation, context-dependent prefer-
ences, and Hebbian learning). We generally set 8Jy;; = (AA/AB, 1).
Unless otherwise indicated, the two value ranges used in the simula-

tions were equal and &/, = (1, 1).
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For the sake of simplicity, the value encoded by offer value cells is
treated here as equivalent to the corresponding juice quantity. [In
reality, these two variables are distinct (Raghuraman and Padoa-
Schioppa 2014)]. For any session and for any juice X, #X indicates the
quantity of X offered in the current trial, #X,,, and #X_ ., indicate the
minimum and maximum quantities of X offered in the session, and
AX = [#X i #X,hax] 18 the value range. The encoding of values in
OFC undergoes range adaptation (Kobayashi et al. 2010; Padoa-
Schioppa 2009). In other words, the activity of offer value cells on any

given trial is a linear function of the value rank x:

x = (#X = #Xin)/ (#Xmax — #Xomin) (20)
The activity profile of OV cells was modeled as follows:
rovi(n. t) = ro + Ar f(t)x; i=1,2 )
(1) = g(r)/max(g(7)) 22)
1 1
) = e 1ren - 2

where 7 is the trial number, ¢ is time within a trial, and x; is the rank
for juice X,. Juices A and B correspond to X, and X, respectively.

The baseline activity (r,), dynamic range (Ar), and time constants
(a, b, ¢, d) used in the simulations are indicated in Table 1. Unless
otherwise indicated, in all the simulations we set the same value range
for the two juices, namely AA = AB = [0, 20]. This large range
allowed to generate choice patterns and neuronal activity at high
resolution.

Simulations. Simulations were run in MATLAB (MathWorks).
Unless otherwise specified, each session included 4,000 trials with
both offers randomly selected on each trial from the range [0, 20].
Offers 0A:0B were excluded. The network dynamics was generated
with a resolution dz = 0.5 ms and then examined averaging over 5-ms
time bins. For each trial, the choice outcome was identified by
comparing the activity of CJA and CJB cells in the interval 400-600
ms after the offer (similar results were obtained with different time
windows). A trial type was defined by two offers and a choice (e.g.,
[2A:5B, B]). For the study of activity profiles (e.g., Fig. 4A), trials
were divided in groups according to the relevant criterion and the
activity was averaged across trials for each group. For the study of
tuning functions (e.g., Fig. 4, B-D), we focused on specific time
windows, namely, 0-500 ms after the offer for OV cells and CV cells
and 500-1,000 ms after the offer for CJ cells. However, qualitatively
similar results were obtained with different time windows. Firing rates
were averaged across trials for each trial type. Choice patterns (e.g.,
Fig. 5A) were analyzed with logistic regressions (see RESULTS). The
code is available upon request.

RESULTS

Summary of experimental observations. Figure 1 summa-
rizes the primary experimental results that we sought to repro-
duce with Wang’s model. In the experiments (Padoa-Schioppa
and Assad 2006, 2008), monkeys chose between two juices
labeled A and B, with A preferred. On any given trial, the offers
appeared on a computer monitor on the two sides of a center
fixation point. After the offer, the animals maintained center
fixation for a randomly variable delay that lasted 1-2 s, after
which the center fixation was dimmed (go signal). The animal
indicated its choice with a saccade. Juice quantities varied from
trial to trial, and choice patterns typically presented a quality-
quantity trade-off. For example, in the session shown in Fig.
1A, the monkey was roughly indifferent between 1A and 3B.
Recordings were performed in central OFC. In the initial
analysis, we defined several time windows aligned with differ-
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ent behavioral events and a large number of variables that
neurons could conceivably encode. A variable selection anal-
ysis indicated that /) neurons in OFC encoded one of three
variables, namely, offer value, chosen juice, and chosen value.
Further analyses showed that 2) the encoding of these variables
was roughly linear and that 3) each cell encoded one variable
or another variable, but not a mixture of variables. We also
found that 4) any given cell generally encoded the same
variable in different time windows. Thus neurons encoding the
three variables were conceptualized as forming different
groups of cells (Padoa-Schioppa 2013). For each variable, 5)
the encoding could be either positive (higher activity for higher
values) or negative (lower activity for higher value). Impor-
tantly, experiments in which animals chose between three
juices offered pairwise showed that 6) cells encoding the offer
value of one particular juice did not depend on the juice offered
in alternative (menu invariance). Last but not least, 7) the
activity of both offer value and chosen value cells adapted to
the range of values available in any given session (Padoa-
Schioppa 2009).

Three examples of neurons encoding the offer value B, the
chosen juice A, and the chosen value are illustrated in Fig. 1.
Figure 1, A, C, and E, depict the population activity profile
recorded for each group of cells (only the populations of cells
with positive encoding are shown). Figure 1D and behavioral
measures (Padoa-Schioppa, unpublished observations) indicate
that decisions were made within a few hundred milliseconds
after the offer.

Wang’s model for economic decisions. Figure 2 illustrates
the structure of the model. We identified the input node (OV
cells, corresponding to MT in perceptual decisions) with offer
value cells. In the original W11, the input current has the form

Lgimi = —Jampaext Tampa Ho(1 £ coh)  i=1,2 (24)

where w, = 40 sp/s, coh € [—1, 1], and the * signs refer to
pools A and B, respectively. The fact that the range of possible
inputs is bounded to the interval [0, 80] sp/s is essential for the
network to operate properly. As we moved from perceptual to
economic decisions, we had to consider several factors.

First, unlike motion coherence, values are not bounded to a
finite range. In principle, this fact could pose a challenge for
the network. In reality, however, this challenge does not arise
thanks to the phenomenon of range adaptation (Kobayashi et
al. 2010; Padoa-Schioppa 2009). After neurons have adapted to
the range of values available in the behavioral context (current
session), their activity on any given trial is a linear function of
the value rank, which varies in the interval [0, 1] (see Eq. 20).
We discuss below ways in which range adaptation presents a
challenge for Wang’s model. However, at this stage range
adaptation makes it easy to identify offer value cells with the
input node of the model.

Second, in the random dot task (Newsome 1997), the two
inputs are perfectly anticorrelated. In this sense, the stimulus is
intrinsically one-dimensional (and indeed it is parameterized
by the unidimensional parameter coh). Thus if we consider the
plane formed by I, ; and I, », the inputs for the random dot
task lie on the diagonal with slope —1, and the data point
corresponding to coh = 0 is in the center of the diagram (Fig.
3A). In contrast, the two offers in economic choice tasks
(Padoa-Schioppa 2011) can vary independently of one another
and assume any value within the range spanned in the behav-
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Offer value cells
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Fig. 1. Summary of experimental results. A:
neuronal response encoding offer value B.
Left: x-axis represents different offer types.
Black dots represent % of trials in which the
animal chose juice B, and red symbols indicate
the neuronal firing rate. Each symbol repre-
sents 1 trial type. Diamonds and circles indi-
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cate trials in which the animal chose juice A
and juice B, respectively. Right: the same
neuronal response (y-axis) is plotted against
the encoded variable (x-axis). It can be noted
that the encoding is close to linear. B: activity
profile for offer value cells. The plot illustrates
the population activity. For each neuron, trials
were divided into 3 groups (tertiles) based on
the value of the encoded juice (low, medium,
high). A trace was computed for each group by
averaging the activity across trials, and the
resulting traces were averaged across the pop-
ulation. Only cells with positive encoding are
shown here. C: neuronal response encoding
the chosen juice. Same conventions as in A. In
this case, the activity is roughly binary de-
pending on the juice chosen by the animal. D:
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activity profile for chosen juice cells. In this
case, trials were divided depending on whether
the animal chose the juice encoded by the cell
(E chosen) or the other juice (O chosen). Here
the “encoded” juice was defined as that which
elicited higher activity. Traces are population
averages. E: neuronal response encoding the
chosen value. Same conventions as in A. F:
activity profile for chosen value cells. In this
case, trials were divided into 3 groups (tertiles)
depending on the chosen value (low, medium,
high). Traces are population averages. Figure
is adapted from Padoa-Schioppa (2013) with
permission.
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ioral session. Thus the input to the model can lie anywhere on
the plane formed by I, , and Iy, , (Fig. 3B). As a conse-
quence, there are many sets of offers that induce behavioral
indifference. In practice, offers used in the experimental ses-
sions did not cover the plane densely, because in most trials
one of the two juices was offered in quantity 1 (Padoa-
Schioppa and Assad 2006, 2008). However, in the present
study, we simulated offers covering the full plane (Fig. 3B). In
other words, we tested the neuronal network well beyond its
original domain of definition.

Third, in the original W11 the time profile of the input
currents is a boxcar, which mimics the fact that neurons in MT
respond with good time fidelity to the momentary motion of the
visual stimulus. In contrast, the time profile of offer value cells
in OFC is more complex (Fig. 1B). In particular, we note
several salient aspects. /) There is a baseline of ~6 sp/s and a
dynamic range of ~8 sp/s. Importantly, the ratio between
dynamic range and baseline is modest compared with that

3B:0A

8 |
]

offer

%0

5
chosen value

10

500 ms

typically reported for MT and modeled in W11, where the
baseline is negligible and the dynamic range is roughly 80 sp/s.
2) Compared with baseline, the modulation due to value is all
in the direction of increased firing rates. In other words,
focusing on the 500 ms following the offer, the baseline-
subtracted mean firing rate of offer value cells ranges roughly
between 0 and 8 sp/s, depending on the value offered in the
trial. Thus in our simulations, we used a semirealistic time
profile to model the activity of offer value cells. In the initial
simulations we set the baseline to zero. The effects of intro-
ducing a nonzero baseline are examined in The baseline activ-
ity of offer value cells.

Fourth, the input from MT to LIP is via long-distance
connections. In contrast, offer value cells and chosen juice cells
are in the same anatomical region, and thus they presumably
enjoy the density typical of local connections. We thus in-
creased the connectivity between OV cells and CJ cells (Eq.
19). In the simulations, we set Janpainpue = 30JaMPA extpyr
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Fig. 2. Schematics of W11. Excitatory and inhibitory connections are indicated
in blue and red, respectively. Different arrowheads indicate synaptic efficacies
between different groups of cells (see key and corresponding numerical values
in Table 1).

This value was chosen to obtain a sizable dynamic range for
CV cells. Notably, even considering the fact that the dynamic
range of offer value cells is much lower than that of neurons in
MT, this value made the input current higher than that used in
the original W11.

Fifth, the activation of chosen juice cells in OFC is largely
phasic (Fig. 1B). Their activity profile increases shortly after
the offer, peaks ~350 ms after the offer, and decays rapidly in
the following 300—400 ms, even though the offers are still
on the monitor and the animal has not yet revealed its choice.
The traces corresponding to the two choice outcomes remain
separated, but that signal is relatively small until after the
animal has performed its saccade. Furthermore, if one compares
the traces for easy and split decisions (see below), it appears clear
that the activity of chosen juice cells does not resemble a race to
threshold. This largely phasic activity profile differs from that
reported for LIP in the random dot task, and this difference is
relevant to the model. Indeed, the precursor to Wang’s model
discussed here was a model designed to describe the persistent
delay activity observed in lateral prefrontal cortex and other
association areas (Brunel and Wang 2001; Compte et al. 2000).
Reverberation mediated by NMDA receptors, which have a
slow dynamics, is a characteristic trait of this model. Working
memory activity generally increases with w,, and the original
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W11 set w, = 1.80 (Wong and Wang 2006). However, the
authors noted that, depending on w__, the model could perform
decisions with or without working memory. In our initial
simulations we set w, = 1.75, which provided a largely phasic
(as opposed to a working memory-like) time profile for chosen
juice cells. The dependence of the results on w_ is described
later in Dependence on the strength of recurring synapses.

Initial simulations. Figure 4 shows the results of one simu-
lation. Figure 4, A-D, illustrate the activity of OVB cells.
Figure 4A depicts the activity profile, splitting trials depending
on whether the encoded value was low, medium, or high.
Figure 4B depicts the full two-dimensional tuning curve. The
x- and y-axes represent the quantities of juice A and juice B
offered, and the z-axis represents the firing rate. Each data
point represents one trial type, and trial types are coded
depending on whether the model chose juice A or juice B. To
visualize the tuning of OV cells in a one-dimensional format
similar to that of Fig. 1A, we downsampled the tuning curve,
selecting a subset of offer types analogous to those typically
employed in the experiments (Fig. 4C). Finally, Fig. 4D illus-
trates the activity of OVB cells plotted against the encoded
variable (offer value B).

Figure 4, E-H, illustrate the activity of CJB cells in a similar
format. In Fig. 4F, trials were divided depending on whether
the model chose juice A or juice B. Figure 4F depicts the full
tuning curve, with colors indicating the chosen juice. Figure
4G shows a downsampled version of the tuning curve, and Fig.
4H displays the activity of CJB cells as a function of the
variable chosen juice.

Figure 4, I-L, illustrate the activity of CV cells. To generate
these plots, we analyzed the network’s choices and derived the
relative value of the two juices from the indifference point. The
details of this computation are described in the next section. In
essence, the relative value reconstructed from choices (p =
2.03) was very close to the ratio 8/, 1/8/ 4 » = 2. Following
the approach used in the analysis of empirical data (Padoa-
Schioppa and Assad 2006), we could thus express quantities of
either juice on a single value scale, and we conventionally used
units of juice B (uB). For each trial type, we could thus
calculate the chosen value. In Fig. 41, trials were divided
depending on whether the chosen value was low, medium, or
high. Figure 4J depicts the full tuning curve, with colors
indicating the chosen juice. Figure 4K shows a downsampled
version of the tuning curve, and Fig. 4L displays the activity of
CV cells as a function of the variable chosen value.

Several points are noteworthy. First, for both CJ cells and
CV cells, the activity profile (Fig. 4, E and I) reproduces fairly
well the corresponding activity profile recorded experimentally
(Fig. 1, B and C). Second, for CJ cells, the tuning curve clearly
separates between the two choice outcomes—the activity of
CJB is higher (lower) when the network chooses juice B (juice
A) (Fig. 4F). At the same time, the tuning is not quite binary.
For given choice, the activity of CJB cells increases (de-
creases) with the quantity of juice B (juice A) offered. This
characteristic was already present in the extended version of
the model describing perceptual decision (see Fig. 4 in Wang
2002). Third, the tuning curve obtained for CV cells (Fig. 4K)
closely resembles those obtained experimentally for chosen
value cells. Inspection of Fig. 4L reveals that, for given chosen
value (x-axis), the activity of CV cells is essentially identical
when the network chooses juice A and when it chooses juice B.
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This fact means that CV cells indeed capture the relative value
of the two juices (p).

The resemblance between CV cell and chosen value cells
was unexpected and quite remarkable if one considers the fact
that interneurons were included in the model for biological
realism and stability (Amit and Brunel 1997)—not to repro-
duce empirical observations analogous to chosen value cells.
An intuition for this result can be gained by noting that CV
cells receive an input proportional to the activity sum of CJA
and CJB cells (Egs. 15 and 17). By virtue of the decision, this
sum eventually equals the activity of the winning pool. In turn,
CJA and CJB cells receive an input proportional to the value of
the corresponding juice weighted by the relative value p.
Consequently, the input to—and thus the activity of—CV cells
is linearly related to the value of the chosen juice, namely, the
chosen value. Important in this respect is the fact—rarely noted
but clearly apparent in Wang (2002)—that the network attrac-
tors depend on the input currents. Figure 4L reveals that the
activity of CV cells as a function of the chosen value is slightly
sublinear. To some extent, this is also true in the empirical
population data (Padoa-Schioppa, unpublished observations),
although the departure from linearity at the level of individual
cells rarely reaches significance. As described below, the
magnitude of these effects depends on the parameter w ..

Wang’s network also includes a population of nonselective
(NS) pyramidal cells, which are interconnected with both
groups of CJ cells and CV cells (Fig. 2). For the reasons
discussed above, this pattern of connectivity suggests that the
activity of NS cells should resemble that of chosen value cells
in OFC, and this is indeed what we found (not shown). Apart
from the excitatory/inhibitory nature of the neurons, one dif-
ference between CV cells and NS cells is that the latter group
presented a lower dynamic range (~1 sp/s for the simulation of
Fig. 4) and a higher trial-by-trial variability (relative to the
dynamic range). Importantly, while inhibitory interneurons
(CV cells) are critical to the decision mechanism, NS cells do
not play a significant role in the decision (Amit and Brunel
1997; Wong and Wang 2006). Thus we will not discuss them
further.

Imposing nontrivial relative values. Consider a subject
choosing between quantities of goods A and B. If value func-
tions are linear (i.e., if the subjective value assigned to each
good increases as a linear function of the good’s quantity), the

0 1 0 AB
offer B

relative value between the two goods, namely p, is defined as
the quantity that makes the subject indifferent between 1A and
pB. A hallmark of economic decisions is the fact that relative
values are subjective and even variable over time. In fact,
relative values capture the quintessence of economic decisions,
namely, the fact that subjective value provides a common unit
of measure to compare qualitatively different goods. In gen-
eral, goods A and B have different physical dimensions, and p
has the physical dimensions necessary to convert one unit of
good A into one unit of good B. A fundamental but often
underappreciated issue concerns the neural origins of relative
values. In essence, the question is: How is p determined in the
brain?

To appreciate this issue, consider in our experiments choices
between two juices offered in equal ranges. In this case, p is a
number. In general, p can assume any value and we can
conventionally set p = 1 (i.e., A is preferred to B). In principle,
the relative value between two goods could be induced by
differences in the activity of different groups of offer value
cells. For example, if the animal choosing between juices A and
B is indifferent between 1A and 3B, one might expect to
observe that the firing rate of offer value A cells measured
when the animal is offered 1A is three times as large as that of
offer value B cells measured when the animal is offered 1B.
However, experimental results indicate that this is not the
case—in fact, the activity range of any given cell was found to
be independent of the relative value of two juices (Padoa-
Schioppa 2009). In other words, relative values do not simply
reflect differences in the activity of offer value cells. This fact
highlights an important point, namely, that economic decisions
cannot be conceptualized as simple comparisons of neuronal
firing rates. So how are relative values determined in the brain?
We examined this issue in the framework of Wang’s model.

The original W11 is symmetric in A and B. If the activity of
OV cells does not depend on the intrinsic preference for the
corresponding juice, and if the two value ranges are equal, the
symmetry of the network implies p = 1. However, nontrivial
relative values (i.e., p > 1) can be imposed, introducing an
imbalance in the synaptic efficacies linking the various pools of
neurons associated with the two juices. We experimented with
introducing such imbalance at different stages of the network.
Figure 5A illustrates the choice patterns obtained in the same
simulation illustrated in Fig. 4. The x- and y-axes represent the
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Fig. 4. Initial test of Wang’s model. A: OVB cells, activity profile. Trials were divided into 3 groups (tertiles) depending on the offer value B (same convention
as in Fig. 1B). B: OVB cells, tuning curve. The firing rate (z-axis) is plotted as a function of the 2 offers (x- and y-axes). Each data point represents 1 trial type.
Red diamonds and blue circles represent trial types in which the network chose juice A and juice B, respectively. C: OVB cells, reduced tuning curve.
Downsampled version of the data shown in B, displayed in the format of Fig. 1A. D: OVB cells, activity vs. encoded variable. Same firing rates shown in B plotted
as a function of the encoded variable (offer value B). E-H: activity of CJB cells. In E, trials were divided into 2 groups depending on the variable chosen juice
(same convention as in Fig. 1D). I-L: activity of CV cells. In I, trials were divided into 3 groups (tertiles) depending on the variable chosen value (same
conventions as in Fig. 1F). In all panels, red diamonds (blue circles) represent choices of juice A (juice B).

quantities of juices A and B offered, and the z-axis represents
the proportion of trials in which juice B was chosen. Each gray
dot represents one trial type, and the color surface shows the
result of a two-dimensional logistic regression. Specifically, to
examine departures from linearity, we used a logistic model
including all second-order terms:

choice B = 1/(1 + efx)

_ 2 2 (23)
X= ag + [ll#A+(12#B + (13#A + (14#B + [ls#A#B

In Eq. 25, the variable choice B is the proportion of B
choices; #A and #B are the quantities of juice A and juice B
offered, respectively. Figure 5B shows the same surface shown
in Fig. 5A seen from the z-axis. In this simulation, the synaptic
imbalance was introduced at the level of the input current:
referring to Eq. 19, we set 8Jy;,, = (2, 1). The ensemble of

stim

offers for which the model was indifferent between the two
juices is termed the indifference function. Notably, the indif-
ference function in this simulation was a straight line through
the origin (Fig. 5B). Furthermore, the slope of the indifference
function was essentially equal to the synaptic weight ratio = 2.
A simplified logistic model including only first-order terms
provided the measure p = a,/a, = 2.03. (This value was used
to generate Fig. 4, I-L.)

In another simulation, we introduced the synaptic imbalance
in the recurrent, NMDA-mediated self-excitation of CJ cells
(Fig. 5C). In this case, referring to Eq. 11, we set 8/xyppa =
(1.05, 1). (These values were chosen such that the indifference
function would cross offers [10A:20B].) Notably, the indiffer-
ence function was no longer a straight line and, more impor-
tantly, it was no longer homogeneous (it did not cross the
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Fig. 5. Choice patterns obtained for different
balances of synaptic efficacies. A: choice
pattern for the simulation illustrated in Fig.
4. Each data point (gray dots) represents 1
offer type. The % of B choices (z-axis) is
plotted as a function of the 2 offers (x- and
y-axes). The surface illustrates the result of a
logistic fit including all second-order terms
(Eq. 25). B: same surface as in A viewed
from the z-axis. The indifference function,
roughly corresponding to the green pixels
(see color key) is a straight line through the
origin. In this simulation, 6/, = (2, 1) and
all other synaptic weights were balanced. C:
choice pattern obtained with an imbalanced
NMDA-mediated reverberation. D: choice %
pattern obtained with an imbalanced inhibi- 80
tion. In both C and D, parameters were 70
chosen such that the model was roughly

indifferent between 10A and 20B. In both ~ *°
cases, the indifference function did not cross 50
the origin. 40

% B choice

100

offer A

30
20

origin). This behavior is not realistic because it amounts to
stating that the model consistently chooses no juice over small
quantities of juice B. We obtained similar results when we
imposed the imbalance in the inhibition from interneurons to
CJ cells (Fig. 5D). In this case, referring to Eg. 13, we set
0Jgaga = (1, 1.02). Again, the indifference function was
nonlinear and, most importantly, nonhomogeneous. We con-
cluded that within Wang’s model nontrivial relative values
emerge from an imbalance in the input synaptic ratio.

Dependence on the strength of recurring synapses. Wang’s
model is biophysically realistic in the sense that all the param-
eters represent biophysical quantities (synaptic efficacies, time
constants, etc.) and their values are derived from or constrained
by experimental measures (with some tuning). In this study, we
used the same parameters previously set for perceptual deci-
sions (Wong and Wang 2006). The only (partially) free param-
eter was the relative strength of recurring synapses w,. This
parameter is also thought to characterize different brain regions
(Murray et al. 2014). We thus examined how the results
described above depended on w.

In the simulations described so far, we set w, = 1.75. Figure
6 summarizes the results of three additional simulations, in
which we set w, = 1.55 (Fig. 6, A-D), w, = 1.70 (Fig. 6,
E-H), and w, = 1.85 (Fig. 6, I-L). For each simulation in Fig.
6, the activity of CJB cells is illustrated on the left and the
activity of CV cells is illustrated on the right. The results
obtained for the three simulations are qualitatively similar, but
a few quantitative trends can be observed. First, as w, in-
creased the sustained, working memory-like delay activity of
CJB cells increased (Fig. 6, A, E, and I). Concurrently, the

WANG’S MODEL FOR ECONOMIC DECISIONS

offer A

offer A

15 20

10
offer B

steady-state activity of these cells became more binary (Fig. 6,
B, F, and J). As described in the next section, the “predictive
activity” of CJ cells increased as a function of w . Finally, the
relation between the activity of CV cells and the chosen value
was closer to linear for lower values of w_ (Fig. 6, D, H, and
L). These trends notwithstanding, the primary observation of
these analyses is that the results presented in previous sections
held essentially true in a fairly wide range of w.

Choice hysteresis and the predictive activity of chosen juice
cells. We next examined whether Wang’s model could repro-
duce a series of empirical phenomena related to the origins of
choice variability. Relevant to all these phenomena is the
distinction between easy and split decisions. Consider the
behavior shown in Fig. 1E. For many offer types, away from
the indifference point, the animal chose consistently the same
juice (A or B). These decisions are referred to as “easy.” For
other offer types, closer to the indifference point, the animal
split its choices between the two juices. These decisions are
referred to as “split.”

All other things equal, monkeys in our experiments had the
tendency to choose on any given trial the same juice chosen
(and received) in the previous trial (Fig. 7A). This phenomenon
is termed “choice hysteresis” (Padoa-Schioppa 2013). Other
analyses showed that the activity of chosen juice cells prior to
the offer correlated with the eventual decision of the ani-
mal—an effect termed “predictive activity” (Padoa-Schioppa
2013). The predictive activity can be observed in Fig. 7B.
Trials were divided into four groups depending on whether the
animal chose juice A or juice B and on whether decisions were
easy or split. For easy trials, the activity of chosen juice cells

J Neurophysiol » doi:10.1152/jn.00184.2015 « www.jn.org



WANG’S MODEL FOR ECONOMIC DECISIONS

CJB cells
A A chosen B A chosen|
4| B chosen B chosen
15 B
o —
";; 12+ -200 OI
0 a
n o |
AN
~ o 9 !
N s !
+ |
2 2 6 I
= |
L — RS
I
0
-500 0 500 1000 offer A offer B
offer
4
20
—_ 2w DI
9 15
o =
o
~ @ :
~ =~ |
TR |
©
+ o |
o
=2 !
= ==
[T |
0 1
-500 0 500 1000 offer A offer B
offer
4
30
—_ -200 ol
»
n =
Qg !
~ =~ |
o2 [
+ E |
10
=2 I
= !
[T
0 1
-500 0 500 1000 offer A offer B
offer

1391
CV cells
c high D A chosen
medium 16 B chosen
low
16 |
|
|
14 !
|
I
|
12 |
|
I
10 L 10
-500 0 500 1000 0 10 20 30 40

chosen value (uB)

10
-500 0 500 1000 0 10 20 30 40
chosen value (uB)

10
-500 0 500 1000 0 10 20 30 40
chosen value (uB)

Fig. 6. Robustness with respect to the strength of recurring synapses. A—D: summary of results obtained with w, = 1.55. A and B summarize the results obtained
for CJB cells (same format as in Fig. 4, E and F). C and D summarize the results obtained for CV cells (same format as in Fig. 4, I and L). E-H: summary of
results obtained with w, = 1.70. I-L: summary of results obtained with w, = 1.85.

recorded before the offer did not correlate with the eventual
decision. In contrast, the preoffer activity recorded in split
trials correlated with the eventual decision of the animal.
Importantly, a large component of the predictive activity ob-
served in Fig. 7B was tail activity from the previous trial. In a
conservative interpretation, this tail activity was correlated
with the current decision because the decision on any given
trial was mildly correlated with that in the previous trial. In
other words, a large component of the predictive activity was
closely related to choice hysteresis. However, the predictive
activity had also a smaller, “residual” component that did not
depend on the outcome of the previous trial (Padoa-Schioppa
2013).

We now examined whether W11 reproduced these phenom-
ena. First, we considered the same simulation depicted in Fig.
4 and conducted on the activity of CJ cells the same analysis as
that conducted on neuronal data. As illustrated in Fig. 7C, we
found a consistent predictive activity. Interestingly, this pre-
dictive activity increased as a function of w_ (Fig. 6, A, E, and
I). This trends reflects the fact that baseline fluctuations in-

crease with w_. Also, for higher w__ the decision is made more
rapidly (the network is more “impulsive”) and thus the initial
bias becomes more relevant (see below).

The predictive activity in Fig. 7C (W11) is noticeably
modest compared with that in Fig. 7A (experimental data).
Importantly, in all the simulations discussed so far, the initial
conditions of the network were reset at the beginning of each
trial. This reset effectively prevented any choice hysteresis
(Fig. 7D). As a consequence, the predictive activity observed
in Fig. 7C corresponds exclusively to the residual component
of the predictive activity observed empirically. To further
investigate choice hysteresis and the predictive activity within
W11, we ran a series of simulations in which the initial
conditions of the network were set, in each trial, equal to the
final conditions at the end of the preceding trial. For any value
of w__this policy induced some choice hysteresis and enhanced
the predictive activity. However, these effects were more
pronounced for higher values of w_ (because of the larger tail
activity). Figure 7, E and F, illustrate a simulation in which we
set w, = 1.82. It can be noted that there is a robust choice
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Fig. 7. Predictive activity and choice hysteresis. A:
choice hysteresis (experimental data). In this represen-
tative session, trials were divided into 2 groups depend-
ing on whether the outcome of the previous trial was
juice A (A- trials) or juice B (B- trials). It can be
observed that the relative value of juice A was higher in
A- trials compared with B- trials. In other words, all
other things equal, the animal had a tendency to choose
on any given trial the same juice as in the previous trial.
B: predictive activity of chosen juice cells (experimental
data). See text. C: predictive activity of CJ cells
(model). Same simulation as in Fig. 4. The activity
immediately before and after the offer is enlarged in
inset. It can be noted that the predictive activity is
significant but relatively modest compared with that
measured experimentally (see text). D: lack of choice
hysteresis in initial simulations. Same simulation as in
C and Fig. 4. In this simulation, the initial conditions
were reset at the beginning of each trial. In the analysis,
trials were divided into A- trials (red squares) and B-
trials (red squares) depending on the previous outcome,
and the 2 data sets were separately fitted with a logistic
function. The 2 fits are completely overlapping, indicat-
ing the lack of choice hysteresis. In other words, the
predictive activity in C corresponds to the “residual”
predictive activity measured in orbitofrontal cortex
(OFC) (see text). E and F: predictive activity in the
presence of choice hysteresis. In this simulation, we set
the initial conditions in each trial equal to the final
conditions in the previous trial (tail activity) and w, =
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hysteresis and that the predictive activity is clearly enhanced
(note the different y-axis scales in the insets of Fig. 7, E and C).

In conclusion, W11 reproduces both components of the
predictive activity, as well as choice hysteresis. These results
suggest the following interpretation. The preoffer activity rep-
resents the state of neural assembly prior to the offer, which
varies to some extent from trial to trial because of history (tail
activity from the previous trial) or stochastic fluctuations. On
any given trial, the initial state introduces a small bias. When
one of the two offered values dominates (easy trials), the initial
bias is irrelevant and the higher value is always chosen. When
the two offer values are close (split trials), the initial bias
contributes significantly to the decision. This contribution

offer

determines a correlation between the preoffer activity and the
decision (predictive activity). Within W11, the tail component
of the predictive activity causes choice hysteresis. While con-
sistent with current data, this causal link remains to be tested
empirically.

The overshooting of chosen value cells. Another phenome-
non observed in the empirical data pertains to chosen value
cells. All other things equal, the activity of these neurons
presented a transient but robust “overshooting” when the de-
cision was more difficult (Padoa-Schioppa 2013). For the
analysis of neuronal data, we focused on trials in which the
animal chose 1A and divided them into easy and split (Fig. 8A).
In first approximation, the activity recorded for the two groups
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Fig. 8. Activity overshooting. A: overshooting of chosen value
cells (experimental data). Only trials in which the animal chose
1A are included. See text for details. B: overshooting of CV
cells (model). Same simulation as in Fig. 4. For each quantity
of A that induced some split decisions (i.e., offer value A =
1...10), trials in which the network chose juice A were divided
into easy and split (see text). The activity overshooting was
observed for each value of A. The main plot here illustrates the
effect averaged across values of A. Inset illustrates the effect for
offer value A = 8. A is reproduced from Padoa-Schioppa (2013)
with permission.
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of trials was the same (same chosen value). However, the
activity recorded in split trials presented a transient overshoot-
ing in the time window extending 150—400 ms after the offer.

We now repeated this analysis on the activity of CV cells
in W11. We examined the same simulation as in Fig. 4, and
we focused on trials in which 1A was offered. We divided
trials into easy and split, and we computed the two activity
profiles. We then repeated this calculation for each quantity
of A that induced some split decisions (offer value A =
1...10), and we averaged the activity profiles obtained for
different values of A offered. As illustrated in Fig. 8B, the
model reproduced the activity overshooting. Notably, this
result provides a novel interpretation for the overshooting.
We previously showed that the overshooting of chosen
value cells could be explained if the relative value of the two
juices (p) fluctuated from trial to trial (Padoa-Schioppa
2013). However, the activity overshooting for CV cells was
obtained here without introducing any variability in the
synaptic efficacies. Of course, this observation does not
exclude that synaptic efficacies do fluctuate from trial to
trial, which would provide an additional contribution to the
overshooting.

Range adaptation, context-dependent preferences, and Heb-
bian learning. The issue of range adaptation and Hebbian
learning was addressed elsewhere (Padoa-Schioppa and Rus-
tichini 2014), and we discuss it here briefly for the sake of
completeness.

As described above, the activity of offer value cells adapts to
the range of values available in any behavioral context (Padoa-
Schioppa 2009). In principle, range adaptation ensures an
efficient representation. At the same time, range adaptation
also poses a computational challenge, in the following sense.
First, note that in W11—and in other decision models (Bogacz
et al. 2006; Krajbich et al. 2010)—decisions are ultimately
comparisons of firing rates. Now consider a session in which
offers of juice A and juice B vary in ranges AA = [0, 3] and
AB = [0, 6], respectively, and assume that the relative value is
such that 1A = 2B. If decisions are made by comparing firing
rates, the animal chooses juice A whenever the activity of offer
value A cells is higher than that of offer value B cells. Now
imagine that we run a second session in which the range of
Jjuice A remains unchanged (AA = [0, 3]) while the range of
Jjuice B is doubled (AB = [0, 12]). The activity of offer value
B cells will adapt to the new value range. If decisions are made
by comparing firing rates, range adaptation will inevitably
induce a change of preferences in the new session such that

1000 -500 0 500

1000

1A = 4B. Interestingly, framing effects described in behavioral
economics show that preferences can depend on the behavioral
context in ways qualitatively similar to that described here
(Ariely et al. 2003; Savage 1972; Tversky and Kahneman
1981). At the same time, it would seem puzzling if preferences
could be manipulated so easily and so arbitrarily by modifying
the range of options. Indeed, an experiment in which monkeys
chose between two juices in two subsequent blocks showed
that relative values were fairly stable even when the ratio of
offer value ranges (AA/AB) was varied by a factor of 2 (Conen
K, Cai X, Padoa-Schioppa C, unpublished observations). These
considerations raise one question: How can the network
achieve (reasonably) stable preferences under varying ranges
of offer values?

The issue of preference stability in the presence of range
adaptation is closely related to that of nontrivial relative values
(p > 1) discussed above. In essence, we propose that the
network responds to the changes in value ranges by altering the
synaptic efficacies between OV cells and CJ cells (Eg. 19). As
previously shown, this synaptic plasticity can be achieved with
a mechanism of Hebbian learning (Padoa-Schioppa and Rus-
tichini 2014). Framing effects may be reproduced if this
Hebbian learning lags range adaptation of OV cells.

Stable points of the dynamical system. One important ques-
tion concerns the number of steady states of the model. Wong
and Wang (2006) provided a bifurcation diagram, in which the
number of attractors and the working-memory regime were
examined as a function of the input firing rate (w,) and the
parameter w . Their analysis was done for the reduced version
of the model (W2) and for coh = 0. Generating a bifurcation
diagram for W11 is more difficult because the system is time
dependent and high dimensional. As a first step, we conducted
a series of simulations to examine the end state of the network
for different sets of offer values (Fig. 9). For these simulations
we set AA = AB = [0 15] and &J;,, = (1, 1), such that p =
1. For comparison, although w_ defined in W11 is not identical
to w, defined in W2, the value of w, used here is comparable
to values examined by Wong and Wang (2006). In contrast,
stimulus currents are substantially higher in our case. Specif-
ically, in our simulations we normally used AJ = Jnpa inpud
Jampa exepyr = 30 (see Table 1). In such conditions and for the
data point at the center of Fig. 3B, the product Jsypa inpulov
is roughly equal to 100/ ,ppa excpyr (S€€ Eg. 19). In contrast, in
the original W11, the equivalent product was set to 40
J AmPA extpyr When coh = 0.
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Fig. 9. Stable points of W11. A/-A3 represent the space of possible offers (as in Fig. 3B). BI-B3, C1-C3, and D/-D3 represent the results of 3 simulations,
with w, = 1.75 and AJ = 30 (normal parameters, B/-B3), w, = 1.85 and AJ = 30 (CI-C3), and w, = 1.75 and AJ = 15 (DI-D3). In each panel, the 2 axes
represent the “final” activity of CJA cells (y-axis) and CJB cells (x-axis) (time window 400—600 ms after the offer). Each data point represents 1 trial, and data

points are color-coded according to the key in the corresponding A panel.

Consider Fig. 9BI. In this scatterplot, x- and y-axes repre-
sent, respectively, the “final” activity of CJA and CJB cells as
measured in the time window 400-600 ms after stimulus on.
Each symbol + represents one trial, and symbols are color
coded according to the offer type; the color legend is indicated
in Fig. 9A1. Figure 9, B2 and B3, illustrate the same data
focusing on a subset of trials. Several points can be noted.
First, the network clearly separated between the two end points
when the value difference was sufficiently high (purple, blue,
and green symbols in Fig. 9, BI and B2). It did not clearly
separate between the end points when offer values were close
(Fig. 9B3). In separate simulations, we observed that extending
the stimulus in time for 1 s or increasing the levels of noise in
the system did not affect these results (not shown). The
simulation in Fig. 9, BI-B3, was based on our normal param-
eters w, = 1.75 and AJ = 30. We then repeated the simula-
tions using parameters w. 1.85 and AJ = 30 (Fig. 9,
CI1-C3), and w, = 1.75 and AJ = 15 (Fig. 9, DI-D3). The
results were qualitatively similar, although the separation for

difficult decisions tended to increase when w+ was raised (Fig.
9C2) and to decrease when AJ was reduced (Fig. 9D2).

The formulation of W2 for economic decisions and a more
formal analysis of the steady states will be presented
elsewhere.

The baseline activity of offer value cells. As illustrated in Fig.
1A, offer value cells presented a baseline activity of ~6 sp/s,
which is smaller but comparable to the value-related dynamic
range (~8 sp/s). Experimental work showed that this baseline
activity does not depend on the value range, on the juice prefer-
ence, or, for given juice pair, on the relative value of the juices
(Padoa-Schioppa 2009). As we examine the effects of introducing
a baseline in the activity of OV cells, two premises are in order.
First, the original W11 set the baseline equal to zero—a reason-
able approximation since the baseline activity of MT cells is
indeed low. Second, the presence of a substantial baseline changes
dramatically the input to the network.

In a series of simulations we tested W11, introducing a
realistic baseline. If we consider the situation in which all
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A chosen
B chosen

Fig. 10. Effects of nonzero baseline in OV
cells. A—F: symmetric network. A shows the
simulated activity of OVB cells, B and C
show the activity of CJB cells, D and E show
the activity of CV cells, and F shows the
choice pattern. The presence of the baseline
activity in OV cells changes dramatically the
nature of the input. However, with small
adjustments, the symmetric network is robust
to this change. In this simulation, we set w
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synaptic efficacies are balanced, the network is robust to the
introduction of a baseline. In this condition, even using the
same parameters as in the initial simulations, we obtained for
the indifference function a straight line through the origin (not
shown). Small adjustments to the parameters provided realistic
profiles for CJ cells and for CV cells (Fig. 10, A—F). However,
problems arise when one considers the fact that the relative
value p between two goods should be free to assume any value
(see Imposing nontrivial relative values) and/or the fact that
(only) the value-dependent component of offer value cells
activity adapts to the range of offer values (see Range adap-
tation, context-dependent preferences, and Hebbian learning).
The approach used in the baseline-subtracted case, namely, to
introduce an imbalance in the synaptic efficacies, no longer
works. In other words, the indifference function becomes

value. G—L: asymmetric network. In this sim-
ulation, we set &/, = (1.2, 1) all other
parameters as in A—F. Although the activity
profiles of CJ cells (H and /) and CV cells (J)
are realistic, the indifference function is non-
homogeneous. Tests in which we tried to
recover this departure from homogeneity in-
troducing imbalances at other stages of the
network did not provide successful results.

chosen
B chosen

nonhomogeneous even if the synaptic imbalance is limited to
the input (Fig. 10, G-L). This is because the synaptic efficacies
0Jim multiply the entire activity of OV cells, including the
baseline. As a consequence, when 6J;,1 > 0Jimo. the
network chooses zero quantities of juice A over small quanti-
ties of juice B. In conclusion, the baseline activity of offer
value cells poses a challenge for W1l. Possible ways to
address this issue are discussed below.

DISCUSSION

We examined a biophysically realistic model previously
proposed to describe the activity of area LIP during perceptual
decisions, namely W11, and we tested the extent to which it
could reproduce the activity recorded in the OFC during
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economic decisions. Our analysis represented a challenging
test for the model for at least four reasons. /) Stimuli (i.e.,
offers) in economic decisions are intrinsically two-dimen-
sional, whereas stimuli in perceptual decisions are one-dimen-
sional. 2) The relative value between two given goods is
arbitrary. Thus to accommodate subjective preferences, the
network must be flexible. 3) Offer value cells undergo range
adaptation but decisions should, in first approximation, not
depend on the range of offer values. In other words, the
network must be adaptable. 4) The activity of neurons in the
OFC only partially resembles that of neurons in area LIP, for
which the model was designed. Specifically, in addition to
offer value cells (analogous to MT) and chosen juice cells
(analogous to LIP), there are chosen value cells, which have no
known correspondent in perceptual decisions. Moreover, even
the resemblance between chosen juice cells and neurons in LIP
is weak, because the representation of chosen juice cells is
categorical while that of LIP is continuous (spatial), and
because chosen juice cells do not present the race to threshold
and the working memory activity the model was originally
designed to reproduce. Despite all these challenges, the spirit
of this study was not to design a new model. Rather, we tested
Wang’s model as much as possible off the shelf, without
modifying its structure or even adjusting its parameters. We
did, however, adapt the network in two important ways. First,
we strengthened the connections between OV cells and CJ cells
(reflecting the fact that offer value cells and chosen juice cells
are found in the same area). Second, we introduced mecha-
nisms of synaptic plasticity to account for the required flexi-
bility and adaptability of the model.

Several traits make W11 a particularly attractive model.
First, the model is biophysically realistic. Elements in the
extended, spiking network are neurons endowed with realistic
synaptic connections and time constants, and the mean-field
approach preserves the realism of the model. Second, the
model is nearly without free parameters. In other words, the
model is very constrained, especially when tested outside its
original domain. Third, the model makes testable predictions
on the excitatory/inhibitory nature of different neuronal popu-
lations and on their connectivity. These traits set W11 apart
from other computational models of economic decisions in-
cluding the drift-diffusion models, the mutual inhibition mod-
els, and the leaky competing accumulator model (Bogacz et al.
2006; Hare et al. 2011; Krajbich et al. 2010; Usher and
McClelland 2001). Furthermore, the explicit inclusion of in-
hibitory interneurons in W11 provides an account for chosen
value cells, which are not explained in more schematic models
including the drift-diffusion model and the leaky competing
accumulator model. Other studies examined Wang’s model in
the context of value-based decisions. In particular, Behrens and
colleagues used the simplified W2 version to generate aggre-
gate regressors for the analysis of MEG data (Hunt et al. 2012;
Jocham et al. 2012). In this respect, we note that the tests run
here were significantly more stringent because we matched
each node in the network with a specific group of neurons,
because the original analysis of neuronal data (Padoa-Schioppa
and Assad 2006) tested a large number of variables and not
only variables generated from the model, and because we
reproduced a variety of empirical findings.

We found that W11 provides a remarkably accurate account
for the activity of neurons in the OFC. The input node of the

WANG’S MODEL FOR ECONOMIC DECISIONS

model (OV cells) can be identified with offer value cells. The
model naturally generates binary decisions, and the activity
profile of the output node (CJ cells) is fairly similar to that
of chosen juice cells. Perhaps most surprisingly, the activity of
inhibitory interneurons (CV cells) is very similar to that of
chosen value cells (more on this below). In addition, W11
reproduces several phenomena related to the neuronal origins
of choice variability, namely choice hysteresis, the predictive
activity of chosen juice cells, and the activity overshooting of
chosen value cells. We examined what changes in the network
are necessary to ensure that relative values are arbitrary and to
accommodate the fact that offer value cells undergo range
adaptation. We found that these two requirements are ad-
dressed only when synaptic plasticity is introduced in the
connections between OV cells and CJ cells. We also found that
W11 falls short of the experimental data in at least two ways.
First, the model includes only neurons with positive encoding
(i.e., higher firing rate for higher values). In contrast, for each
of the three variables, a substantial fraction of the neurons in
OFC presents negative encoding (i.e., higher firing rate for
lower values) (Padoa-Schioppa 2009, 2013). Second, the
model can provide the flexibility necessary to accommodate
any relative value, or it can handle a significant baseline
activity in the input node (OV cells), but it cannot do both of
these things at the same time. As discussed below, these
limitations appear conceptually surmountable, although more
theoretical work is necessary in this respect.

Chosen value signals and interneurons in the OFC. One of
the main results of this study is that interneurons of W11 were
found to encode the chosen value. This observation was un-
foreseen and somewhat extraordinary. Interneurons were in-
cluded in the progenitor models of W11 for biological realism
and network stability (Amit and Brunel 1997)—not to repro-
duce empirical observations analogous to chosen value cells.
Furthermore, chosen value cells have no known correspondent
in perceptual decision tasks. In contrast, chosen value signals
have been observed in numerous studies of value-based deci-
sions and in multiple brain regions (Amemori and Graybiel
2012; Cai et al. 2011; Cai and Padoa-Schioppa 2012, 2014;
Grabenhorst et al. 2012; Lau and Glimcher 2008; Lee et al.
2012; Padoa-Schioppa and Assad 2006; Roesch et al. 2009;
Strait et al. 2014; Sul et al. 2010; Wunderlich et al. 2010).
While it is clear that chosen value signals could inform a
variety of mental functions including associative learning,
visual attention, emotion, and others, the possible contributions
of chosen value signals to economic decisions have remained
mysterious. The present results suggest that chosen value cells
in the OFC may be directly involved in the decision. This
suggestion is bolstered by the fact that CV cells in the model
reproduce the activity overshooting seen in chosen value cells.
Importantly, the hypothesis that chosen value cells in the OFC
participate in the decision does not imply that all chosen value
signals in the brain are the signature of a decision process.
Indeed, once computed and explicitly represented by a neuro-
nal population, the variable chosen value could be transmitted
broadly to other brain regions and thus facilitate various mental
functions.

Considering the similarity between CV cells and chosen
value cells from a different angle, W11 makes the strong
prediction that all chosen value cells in the decision circuit are
interneurons and that all chosen juice cells are pyramidal cells.
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Future experiments will test these predictions. Importantly, the
present model provides an account for the decision circuit.
However, OFC likely comprises additional neuronal popula-
tions that do not directly intervene in the decision but receive
input from the decision circuit. Thus testing the predictions of
the model will require distinguishing between neurons that
contribute to the decisions and other neurons within OFC.
Notably, the hypothesis that the variable chosen value is first
computed in OFC and then transmitted to other brain regions
implies that this variable is passed from the decision circuit to
pyramidal cells in layers 5 and 6 of OFC, where cortico-
cortical projections originate. In principle, NS pyramidal cells
in W11 (whose activity resembles that of chosen value cells
with low dynamic range) could serve that purpose, although
alternate schemes are also possible.

In its current form, W11 presents two clear limitations—the
fact that the model only includes neurons with positive encod-
ing and the challenge posed by the baseline activity of offer
value cells. Negative encoding is an intriguing phenomenon,
partly because it is not observed in sensory systems (to our
knowledge). More detailed neurophysiology work is necessary
to establish the excitatory/inhibitory nature of neurons with
negative encoding, whether these neurons are preferentially
located in specific cortical layers, and whether they present
specific patterns of connectivity. From a modeling perspective,
the presence of cells with negative encoding can be viewed as
a degree of freedom present in the empirical data but not used
by the model. In principle, this degree of freedom could help
resolve the challenge posed by the baseline activity in offer
value cells, because two inputs encoding the same variable
with opposite sign (excitatory and inhibitory) could be com-
bined in a way that reduces or even eliminates any baseline. In
the light of these considerations, we view W11 as a benchmark
and a starting point for biophysically realistic models of eco-
nomic decisions. The next steps are to examine empirically the
excitatory/inhibitory nature of different groups of cells in OFC,
to assess possible differences between cortical layers, and to
establish the actual connectivity between the different groups
of neurons (a set of challenging tasks!). The results of these
enquiries should then inform new and more accurate neuro-
computational models.

To conclude, Wang’s model provides a biologically credible
account for the neuronal mechanisms of economic decisions.
In the model, decisions are generated by three groups of cells
whose activity closely resembles the activity of the three
groups of neurons previously found in the OFC. This close
resemblance does not demonstrate that economic decisions
take place in the OFC, or that the decision mechanisms are
based on recurrent excitation and pooled inhibition. However,
the model does provide an important proof of concept that
economic decisions could emerge from the activity of neurons
identified in this area. In this framework, W11 suggests that
chosen value cells are a key component of the decision process.
The model makes several nontrivial predictions that require
further empirical testing. Last but not least, Wang’s model
represents an important bridge between neuroscience and eco-
nomics, providing a platform to investigate the implications of
neuronal data for economic theory. We will examine some of
these implications in future work.
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