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Abstract
The recent development of Trusted Execution Environment

has brought unprecedented opportunities for confidential
computing within cloud-based systems. Among various
popular cloud business models, serverless computing has
gained dominance since its emergence, leading to a high
demand for confidential serverless computing services based
on trusted enclaves. However, the issue of cold start overhead
significantly hinders its performance, as new enclaves need
to be created to ensure a clean and verifiable execution
environment. In this paper, we propose a novel approach
for constructing reusable enclaves that enable rapid enclave
reset and robust security with three key enabling techniques:
enclave snapshot and rewinding, nested attestation, and
multi-layer intra-enclave compartmentalisation. We have
built a prototype system for confidential serverless computing,
integrating OpenWhisk and a WebAssembly runtime, which
significantly reduces the cold start overhead in an end-to-end
serverless setting while imposing a reasonable performance
impact on standard execution.

1 Introduction

Recently, confidential cloud computing has garnered
substantial interest due to the rapid development of Trusted
Execution Environment (TEE), an emerging hardware
feature offered by most main-stream general-purpose CPUs
to safeguard software applications from compromised or
malicious system software. Prominent TEEs include Intel’s
SGX and TDX, AMD’s SEV, and Arm’s CCA. Confidential
cloud computing leverages TEEs to shield cloud tenants’
sensitive code and data from cloud providers, offering cloud
tenants additional security assurance. Major cloud platforms
such as Azure [1], Google Cloud [2], and Aliyun [3] have
all introduced confidential cloud services.

Among various cloud business models, serverless comput-
ing has gained significant popularity since its inception, which
entails automated provisioning and scaling of computing re-
sources on demand, without manual intervention from cloud

customers. The name “serverless” refers to an illusion of
computing without building complex cloud infrastructures.
Function as a Service (FaaS) [4] is a form of serverless com-
puting, allowing customers to execute code in response to
requests with the ability to rapidly scale up and down. The
concept of constructing confidential serverless computing by
protecting the backend executors within TEEs has been inves-
tigated in several prior studies [5–7] and has even been com-
mercialised [8]. In such settings, as illustrated in Figure 1, a
frontend gateway handles the user requests and forwards them
to a set of backend executors that carry out the actual user
function execution. Executions of users’ functions within en-
claves ensure the confidentiality and integrity of the process.

However, the cold start problem poses a significant
challenge for serverless computing. As functions must
quickly scale up to accommodate large amounts of client
requests, code and data must be loaded into the memory and
execute the function with minimal delays [9]. The cold start
of a function involves time-consuming steps such as creating
and instantiating a new runtime environment required to
launch the user function. In confidential serverless, since
the runtime environment is protected within an enclave, the
process inevitably requires creating a new enclave, which is
more costly. As to be shown in section 7, creating an SGX
enclave with an industry median of 170 MiB of memory
takes 2482 ms. In contrast, recent studies have demonstrated
that the industry median execution time for a serverless
workload is within 1000 ms [10] [11]. The cold start time
is more than twice the duration of an average workload.

While techniques have been developed for traditional
serverless scenarios by keeping the execution environment
warm and reusing it instead of reinitialising [9] [12], they
are not applicable to confidential serverless. This is because
a malicious function workload could exploit vulnerabilities
in the function runtimes (e.g., CVE-2023-26489 [13]) to
compromise the enclave environment, which would also
expose other users’ workloads if the enclave is reused. As
discussed in the Conclave’s talk [14], for higher security
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Figure 1: A typical setup of regular and confidential serverless
computing.

assurance, an enclave must be discarded after every execution
in a confidential serverless setting.

In this paper, we propose reusable enclaves to facilitate
enclave (and hence the function executor) reuses in serverless
settings, enabling the cold start problem to be addressed
within the realm of confidential serverless computing. Specifi-
cally, the concept is enabled by three key techniques: enclave
snapshot and rewinding, nested attestation, and multi-layer
intra-enclave compartmentalisation. First, enclave snapshot
and rewinding allows for saving a known good enclave state
as a snapshot and rewinding the enclave to that state later.
This technique enables the rapid reset of a serverless executor
enclave to its initial state after executing a workload, ensuring
the security of the subsequent workload without resorting to
costly enclave relaunching. Second, nested attestation permits
the attestation of the runtime environment following reset.
Last but not least, multi-layer intra-enclave compartmentali-
sation (MLIEC) employs an extended software fault isolation
technique to segregate the enclave into multiple security
layers, preventing code in less-secure layers from accessing
more-secure ones, and thereby ensuring the security of secure
layers even after executing malicious serverless functions.

To showcase the concept, we have developed a comprehen-
sive prototype ranging from the toolchain to a fully functional
system. Specifically, we created a compiler-assisted toolchain
based on LLVM 11.0 to implement the MLIEC techniques,
achieving complete Intel SGX SDK instrumentation. Sub-
sequently, we employed this toolchain to integrate the entire
reusable enclave mechanism into a prototype confidential
serverless system based on OpenWhisk and WebAssembly
Micro Runtime with Intel SGX. We conducted performance
evaluations of cold start latency, execution overheads due
to instrumentation, and end-to-end execution performance
of real-world serverless functions. The results indicate that
reusable enclave techniques substantially enhance the overall
performance of confidential serverless execution by consid-
erably reducing the overhead compared to cold start while
imposing a reasonable impact on the workload execution.

In summary, this paper offers the following contributions
to confidential serverless computing:

• It proposes a novel solution to the issue of cold start latency
in confidential serverless settings, utilizing the innovative
concept of reusable enclaves.
• It presents key techniques to realise reusable enclaves, in-

cluding enclave snapshots and rewinding, nested attestation,
and multi-layer intra-enclave compartmentalisation.
• It provides an LLVM-based toolchain for performing
automated MLIEC, and a prototype confidential serverless
framework employing OpenWhisk, WAMR, and Intel SGX
for performance evaluation.

2 Background

In order to solve the cold start problem under the context of
confidential computing and serverless clouds, our key insight
is to design a fast reset mechanism and protect it using Soft-
ware Fault Isolation (SFI) techniques. In this section, to facil-
itate better understanding to our design and implementation,
we first introduce the concept of serverless computing and its
confidential variant (section 2.1), then the WASM backend ex-
ecutor (section 2.2) and Intel SGX enclaves (section 2.3) used
in our demo implementation as the confidential serverless
platform, and finally related knowledge of SFI (section 2.4).

2.1 (Confidential) Serverless Computing

Serverless computing is a popular cloud service model in
which the cloud provider takes care of the server on behalf
of the user and allocates computing resources on demand.
Developers could focus more on developing and designing
the application code and offload the backend infrastructure
management to the cloud provider. Function as a Service
(FaaS) is an important computing paradigm within serverless
computing, where the applications in the form of functions
run only in response to user requests or events. Popular open
source FaaS platforms like OpenWhisk [15] use high-level
programming language runtimes as the backend executor
to run user’s functions. Examples of cloud infrastructures
that support serverless computing include AWS Lambda [16],
Azure Functions [17], Google Cloud Functions [18], and IBM
Cloud functions [19]. Efforts like [5–7] have been made to
achieve confidential serverless computing by protecting the
user’s execution with TEEs. Confidential serverless has also
been commercialised in platforms like Conclave [8]. One
major concern about serverless computing is the problem
of cold start, i.e., the delay between a request to execute a
serverless function and the actual execution of the function
caused by setting up an executor environement [9].



2.2 WebAssembly: A Backend Executor

WebAssembly (abbreviated WASM) is a portable, low-level
bytecode format developed by W3C Community Group [20].
As a generic bytecode, most high-level programming lan-
guages can be compiled into WASM, making its runtime
suitable as a backend executor for the serverless computing.

WASM’s core is a virtual instruction set architecture
(virtual ISA), allowing it to be compatible across different
modern hardware and platforms. Various tools have been
introduced to compile high-level programming languages
to WASM binaries. For example, Emscripten [21] and
Binaryen [22] supports C/C++ while LLVM supports more
languages. The generated WASM binaries can be executed
in WASM runtimes. As a flexible low-level code, efforts have
been made to adopt WASM runtimes as backend executors
in serverless scenarios [12].

To reduce runtime overhead, ahead-of-time (AoT) compi-
lation could be adopted by compiling WASM code to native
code. The interactions between the WASM code (either AoT
binary or bytecode) and its underlying environment, such as
I/O and system calls, must be handled by a dedicated runtime
via defined APIs.

2.3 Intel SGX: Protecting the Executor

Under the confidential serverless context we are targeting, the
execution must be protected in a trusted execution environ-
ment. As a hardware-protected TEE, Intel SGX well suits this
scenario. More specifically, Intel Software Guard Extensions
(SGX) [23] is a set of micro-architectural extensions that has
been revisioned to SGX2 and is now actively supported target-
ing the cloud server market, providing a shielded execution
environment, called enclave, to protect the confidentiality and
integrity of the code and data loaded inside against privileged
adversaries such as a malicious OS or rogue administrator. A
specific range of DRAM, dubbed Enclave Page Cache (EPC),
is used to hold an enclave’s code, data and related data struc-
tures. Particularly, the EPC is split into 4 KiB EPC pages,
each of which can be assigned exclusively to one enclave
and will deny accesses from any software (including the OS)
other than the assigned enclave. To use an enclave, one must
first perform a heavy launching process that can take a few
seconds when the enclave is large as shown in studies [24,25]
and our evaluations in section 7. Following the convention in
Intel SGX SDK, an ECall refers to an API called by the un-
trusted code to execute enclave functions, and an OCall refers
to an API used by the enclave code to invoke untrusted code.

2.4 Software Fault Isolation: Sandboxing Us-
ing Software

Software Fault Isolation (SFI) is a technique that instruments
a piece of code with checks and security enforcement so
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Figure 2: Typical life cycle of a backend executor

that any unintentional or malicious behaviours (fault) can
be sandboxed and isolated from contaminating other compo-
nents [26]. A common use of SFI is to create compartments
within a single address space so that one compartment cannot
access the data in another compartment. This can enable an ap-
plication to protect certain higher security functions against its
regular code when process isolation or enclave isolation is not
applicable like within an enclave app itself [27] [28] or within
the kernel-space [29]. An example of of such technique is
Native Client (NaCl) [30] which utilised the segment registers
to divide the address spaces into several isolated sandboxes.

3 Overview

3.1 Problem Statement

Cold start latency refers to the time required to launch a
serverless function in a completely new execution envi-
ronment, an overhead that serverless computing aims to
minimise. A typical backend executor lifecycle is illustrated
in Figure 2. Numerous efforts have been made to reduce
this latency by replacing the launching step ❶ with a more
efficient one ❹, such as resetting the executor’s runtime en-
vironment to decrease the code start time [12] or maintaining
a warm environment by reusing the same docker [31].

However, these techniques cannot be easily applied to the
confidential serverless scenarios, which, ironically, experience
even more significant cold start problems due to the substan-
tial overhead of enclave launching in step ❶ [24]. In a server-
less architecture, a workload is stored in a database and is only
sent to the backend executor upon an execution request/event.
This means that after an execution, the next workload to be
executed on the same executor might be from a different user.
Since the runtime in the executor could be vulnerable (con-
taining exploitable bugs), reusing the executor might allow an
attacker to deploy a malicious function that exploit the bugs,
infecting the runtime and compromising the next user’s execu-
tion in the same reused executor. Consequently, to eliminate
such risks, enclave relaunch is currently unavoidable after ev-
ery execution to provide a clean execution environment [14].



As demonstrated in recent studies [10, 11] and our own
evaluation in section 7, although more than half of serverless
workloads finish within 1 second, creating and initialising an
SGX enclave incurs an overhead on the order of seconds [24],
rendering the cold start overhead challenging to accept. In pro-
duction solutions like Conclave [14] and previous academic
projects [5–7], the approach is to compromise the security by
trusting the runtime to be bug-free. Conclave is also consider-
ing offering users willing to accept the performance penalty
the option to relaunch the enclave [14]. The takeaway is that
there is currently a real-world trade-off between full secu-
rity guarantee and performance depending on whether an
executor enclave relaunch is performed after each execution.
This leads to the research problem: Can we design a fast
and secure reset to replace the burdensome relaunch? In
other words, is there a fast and secure step ❹ for confidential
serverless computing?

3.2 Threat Model

In the context of confidential serverless computing, our
system considers two attack scenarios as well as the
possibility of their collusion:
• Outside Adversaries: OS and Network. We assume an
outside adversary can exploit any exposed interfaces of the
runtime as well as OS-level capabilities, including calling
any enclave calls with arbitrary parameters, triggering
interrupts into the executor enclave, and so on.
• Inside Adversaries: Malicious Workloads. We assume
a malicious workload can execute any bytecode (or AoT
binaries compiled using the provided toolchain) and
leverage any bugs within the runtime, such as altering
critical parameters (e.g., heap pointers) or even persisting
malicious gadgets in memory.
• Collusion: The two types of attackers can also collaborate,
combining the abilities from both sides, like performing a
reset while the malicious workload is executing at a specific
critical timing.
We assume the runtime within the enclave to be in good

faith but potentially vulnerable. This means that the runtime
will correctly execute all the benign instructions given and
will not introduce danger or incorrect behaviours unless an
adversary deploys a workload to exploit the bugs in it.

We consider DDoS attacks and attacks against the TEE
hardware environment (e.g., side-channel attacks [32] and
speculative-execution attacks [33] to Intel SGX) to be out
of scope.

3.3 Design Goals

To address the problem of cold start in confidential serverless
clouds, we propose a secure approach to reuse enclaves for

hosting untrusted serverless functions. This design, however,
has to meet the following design goals:

• G1: Serverless architecture. The system should be tai-
lored for serverless scenarios, capable of executing function
workloads from remote users.
• G2: Isolated execution. The function workload execution

must take place within the enclave, ensuring its confidential-
ity and integrity, while shielding it from the service provider.
• G3: Fast and prompt reset. The execution environment
can be securely and promptly reset to its initial state for
executing a new workload. A malicious function workload
must not contaminate the execution environment.
• G4: Verifiable reset and deployment. The environment

must provide a mechanism to prove the reset and the identity
of the workload to the remote user via an attestation process.
• G5: Securing the reset and attestation. The reset and at-

testation procedures must be adequately safeguarded. The re-
set must not be interfered by either outside or inside attackers.
The attestation must be also protected from the reset module.

3.4 System Overview

Confidential Serverless Platform. Our system is designed
for the confidential (G2) serverless (G1) paradigm, utilizing
an enclave-protected high-level programming language run-
time as the backend executor. To achieve this, we proposed a
design applicable to generic enclave-protected executors of
serverless computing in section 4 using software techniques.
To demonstrate the technique and evaluate its performance
benefits, we also implemented a full-stack system with LLVM,
OpenWhisk [15], Intel SGX and WebAssembly Micro Run-
time (WAMR) [34] in section 5.

Fast Enclave Reset. One of the main contribution of this
paper comes from G3. We must provide a fast way to reset
the runtime executor enclave. In our system, we designed a
mechanism called enclave snapshot and rewinding, which
allows the serverless system to promptly reset and reuse an
enclave instead of relaunching it, significantly reducing the
overhead compared to cold start.

Verifiable Reset and Deployment. Another contribution of
this paper arises from G4, which requires the enclave to prove
the reset is properly conducted and secure the end-to-end
execution. We achieved this using an enclave-hosted crypto-
graphic service and a technique we call nested attestation. To
ensure the trustworthiness of the attestation, we must isolate
this module from potential attacks, including those against
the reset module.

Reset and Attestation Protection. The third contribution
of this paper comes from G5, which necessitates securing
the reset and attestation. To achieve this, we borrowed the
in-enclave SFI idea from SGX-Shield [27] and significantly



expanded it with unaligned critical function and multi-layer
compartmentalisation techniques to enable multi-layer in-
enclave compartmentalisation (MLIEC). In our system, each
thread is assigned a boundary based on its security layer,
preventing the thread from accessing or modifying any data
of a higher security layer. Transitions between different layers
of a thread must also be protected.

MLIEC is the enabling technique of reusable enclaves:
smaller in-enclave TCBs can be created and maintained in
more secure layers, isolated from the code in the normal
execution layer where complex and potentially buggy runtime
and user workloads are hosted. With this technique, we can
secure the enclave reset and attestation.

4 Design

In this section, we present the detailed design of our approach
for performing the fast and secure reset of the enclave. We
specifically present our solutions to address the following
challenges: (1) how to rewind enclave to its initial state
(section 4.1), (2) how to make the reset verifiable (section 4.2),
and (3) how to secure the reset procedure (section 4.3). We
present our approach in a generic way in this section, making
it widely applicable rather than targeting a specific backend
executor enclave. A demo implementation applying this
approach using OpenWhisk and WAMR on Intel SGX will
be provided in section 5.

4.1 Enclave Snapshot and Rewinding
The resetting process should bring the enclave state back to a
known good initial state captured at a point after the enclave
is launched. The overall snapshot and rewinding idea is
straightforward: We first make a copy of the enclave memory
as the snapshot, then write the memory back in rewinding.
However, capturing the entire enclave’s memory would
double the memory footprint and slow down the rewinding.
The challenge lies in finding a point where the necessary
portion of the memory included in the snapshot is minimal.

Our first observation is that the binary code itself is write-
protected when loaded in most systems. Although dynamic
loading is possible, which we discuss in section 4.3.4, we
consider the code pages to be unchanged for now. Therefore,
the only portions of enclave memory that change are the data
(global variables), stack and heap. These portions form the
snapshot we are about to rewind.

Our second observation is that the heap and stack are not
used and remain empty right after the enclave is launched.
This observation suggests that we can minimise the snapshot
to only the data portion of the enclave if we take a snapshot
when the heap and stack are not yet used.

With these two observations, our snapshot-taking proce-
dure involves creating a backup of the global variables’ initial
values. While tracking the values of an enclave’s variables

individually may seem nearly impossible, we can use a
special linker script to mark their beginning and end since
all of the data is stored in .data and .bss segments. We
then create a special buffer in the enclave to store the whole
segments as the snapshot when the heap is empty.

The rewinding process involves restoring the stack, heap
and the snapshot. The stack and heap, should be empty, so
we zero them out. We then copy the snapshot back to the
two segments. After these operations, the enclave is reset to
its initial state and is ready for reuse. The overhead of this
snapshot taking and rewinding process essentially involves
memory copying, which can be significantly faster than the
enclave launching process.

We designed the snapshot and rewinding mechanism with a
buffer and two special function calls that can be wrapped into
enclave calls (e.g., ECall in Intel SGX and OpenEnclave on
TrustZone) or called in the enclave’s internal procedure. The
buffer is dedicated to store the snapshot and is not in the scope
of enclave reset. The snapshot-taking call must be called
when the heap is empty, preferably right after the enclave
is launched. However, if an enclave call does not leave any-
thing in the heap but has some valuable information to keep
in global variables (e.g., provisioned secret from a remote
attestation session), it can be called before the snapshot. The
rewinding call can be called at any moment when the enclave
is not executing any other enclave calls and needs to be reset.

4.2 Nested Attestation Infrastructure

To fulfill the requirement of a confidential serverless scenario,
the reset must be verifiable to every user before they exe-
cute a workload. Additionally, user workloads in confidential
serverless computing, whether in bytecode or AoT binary
form, need integrity checks. The concept of nested attesta-
tion, which has been available for non-confidential usage [35],
can be employed to support this capability. In this subsec-
tion, we discuss the idea and the necessary infrastructures to
implement nested attestation.

The core idea is to have a software module dubbed
nested attestation module inside the enclave to perform
the attestation. The serverless platform provider can use
the enclave hardware’s remote attestation to build a secure
communication channel with the nested attestation module.
A public-private key pair for signing is generated within the
nested attestation module, and the private key is never shared
to the outside. The private key must also be protected from
any other code inside the enclave. This public key is sent to
the platform provider for distribution to the end user.

Each time a reset occurs, the user can challenge whether
the reset was successful. The enclave must be able to prove
the reset took place. For example, a reset counter serving
as a nonce can be stored in the reset module which is
monotonically increased by one after each successful reset
to prevent replay attacks. By creating a signed report with



the nonce counter and the hash of the current data segments
using the private signing key, the enclave owner can confirm
that a reset was successfully performed by verifying the
increased nonce and the matching hash.

Note that other information can also be added to the report,
like Intel SGX. The specific design and protocol of nested
attestation can vary depending on the enclave. We will present
a specific implementation for our system in section 5.

4.3 Multi-Layer Intra-Enclave Compartmen-
talisation

While the snapshot-and-rewinding technique with nested at-
testation can enable a fast and verifiable reset of an enclave,
ensuring the security of such techniques is not trivial, partic-
ularly in a serverless environment where an adversary may
try to breach the security by executing a malicious workload.
The interpreter for a high-level language runtime might not
be bug-free, and a malicious workload might be able to mod-
ify the snapshot. The AoT mode can bring native binaries
directly into the enclave, posing even higher risks. Moreover,
following the principle of modularity and least privilege [36],
as the final line of defense, the nested attestation must be able
to tell if the reset is performed correctly and if the snapshot is
correct (since a malicious OS can reenter the snapshot enclave
call) so it should have a even higher security level.

To address this issue, we proposed multi-layer intra-enclave
compartmentalisation (MLIEC) using compiler techniques.
MLIEC partitions the enclave address space into multiple
security layers. A thread running with a higher security layer
can access the data of a lower security layer but not vice versa.
MLIEC must also provide advanced support for serverless
scenarios, including preventing re-entrancy attacks to security
critical functions and supporting dynamically loaded code.

With MLIEC, we can protect the snapshot and rewinding
technique in a higher security layer than the regular enclave
code (e.g., the WASM runtime), ensuring that even if the regu-
lar enclave environment is compromised, the enclave reset can
still be carried out correctly and restore the environment. The
nested attestation module can be placed in another layer that
is higher than the reset module to ensure the trustworthiness
of the attestation result.

We draw inspiration from the compiler-based enforcement
of SFI from SGX-Shield [27] and significantly improve upon
it. The original SGX-Shield method enabled a single fixed
data access boundary that instrumented binary can only ac-
cess the data with addresses above that boundary, forming
a security layer. However, SGX-Shield mainly focused on
ASLR. We built our MLIEC by improving it to support:
• Critical function protection. While SGX-Shield simply

ignored security critical functions that call assembly code to
execute dangerous instructions (e.g., ENCLU in Intel SGX),
we propose a new method to protect these critical functions
that require meticulous design.

1 // Before:
2 movq %rax, 0x7(%rdx, %rcx, 3)
3
4 // After: %r15 for boundary, %r14 for offset
5 leaq 0x7(%rdx, %rcx, 3), %r14
6 subq %r15, %r14
7 shlq $1, %r14
8 shrq $1, %r14
9 movq %rax, (%r15, %r14, 1)

Figure 3: Example of shepherded memory access

• Multi-layer compartmentalisation. In SGX-Shield, the
boundary is fixed. With our critical function protection, we
are able to assign multiple boundaries for different security
layers to achieve multi-layer compartmentalisation.

While the overall idea of MLIEC is generic and machine-
independent, to facilitate a better understanding, we use x86-
64 code in this section to provide some concrete examples.

4.3.1 SFI-Based Compartmentalisation

Software Fault Isolation (SFI) aims to prevent code from a
lower security layer from accessing the data belonging to a
higher security layer. For SFI, we employed SGX-Shield’s
shepherded memory access and aligned branching. The
method reserves a register (the R15 register in examples)
to store the address of the boundary corresponding to the
current security layer and instruments code to prevent access
to anything below the boundary. Additionally, it prevents
bypassing the instrumentation by branching into the middle
of the instrumentation code.

Shepherded Memory Access (SMA). The SMA mechanism
instruments all memory access in the binary to ensure access
occurs above the boundary. In a binary, there are two types
of memory access: fixed-address and indirect. Fixed-address
accesses have the addresses fixed in the instruction that can’t
be changed throughout the execution. Indirect memory ac-
cesses, however, dereference addresses in registers. Therefore,
an indirect memory access can be hijacked by a piece of mali-
cious code while a fixed-address one won’t. We focus on the
indirect memory access and the goal is to force all indirect
memory accesses to happen above the boundary register.

Like SGX-Shield, we instrument these indirect memory
accesses by converting these addresses into offsets related to
the boundary and simply forcing these offsets to be positive
with fast bit-wise operations. We reserved R15 to store the
boundary and prohibited its use in code generation. We
also reserved R14 to work on these addresses. We copy the
address into R14 and subtract it with R15 to get the offset.
We then clear the top bit of R14, forcing the offset to be
positive. By adding the value of R15, a benign memory
access will obtain the same address as before the operation,
while a malicious access will get a different address above
the boundary, resulting in reading a random location above
the boundary (which, by design, is allowed because it is at



1 // Before:
2 jmpq *%rax
3
4 // After:
5 andq %rax, ~32
6 jmpq *%rax

(a) Example of indirect branch-
ing

1 // Before:
2 retq
3
4 // After:
5 popq %r14
5 andq %r14, ~32
6 jmpq *%r14

(b) Example of return instru-
mentation

Figure 4: Examples of aligned branching

a lower security level) or simply crashing. An example of
this mechanism is illustrated in Figure 3. Note that for a user
space x86-64 enclave, there is no overflowing issue with
this method since the boundary is in the user space below
0x7FFFFFFFFFFFFFFF and the offsets are positive.

A special case involves handling RSP, the stack pointer
register. RSP is used to access on-stack local variables with
small positive offsets or to be used by certain instructions (e.g.,
ret, and pop) to move upwards (except for push) by less than
8 bytes. As long as the register itself is above the boundary,
stack accesses are safe. The exception is the push and call
instructions that can move the stack pointer downwards and
can impose security risks if it moves below the boundary. This
is solved by adding a non-accessible page at the bottom so
that a small push cannot jump over the page but will instead
crash on it. We instrument all other modifications to RSP to
enforce its value to be greater than the boundary at all times
and leave simple stack accesses uninstrumented.

Aligned Branching. One can easily observe that the SMA
code must be executed as a whole to achieve the security
guarantee. However, indirect branching can breach such a
guarantee. Similar to indirect memory accesses, indirect
branching refers to instructions that jump to an address
stored in a register. Not only can it be exploited to bypass the
SMA, when jumping to the middle of a single instruction, the
instruction will be misinterpreted. By rewriting the register,
an attacker can hijack the control flow and bypass the SMA
or perform even more dangerous operations.

To solve this issue, we emit the code into blocks with
a fixed-size alignment unit and force an instrumented
instruction to be emitted into the same block with the
instrumentation code. For every starting point of a basic block
(e.g., jump targets, function entry, etc.), we also align them
to the alignment unit to ensure the proper functionality of a
benign indirect branching. We then instrument every indirect
branching to have its target aligned to the alignment unit. This
ensures that the SFI instrumentation is enforced and the target
is always a correct instruction. With aligned branching, SMA
instrumentation cannot be bypassed and no instruction mis-
interpreting can happen. An example of such instrumentation
using a 32-byte unit is illustrated in Figure 4a.

Another typical control flow hijacking attack is Return-
Oriented Programming (ROP). This is done by modifying the

1 // Basic block 1:
2 .align 32
3 ud2
4 ...
5 jmp l1
6 // Basic block 2:
7 .align 32
8 ud2
9 l1:

...

(a) Example of an unaligned
critical function

1 .align 32
2 aligned_wrapper_strlen:
3 jmp unaligned_strlen
4
5 .align 32
6 ud2
7 unaligned_strlen:
8 mov HIGH_BDRY, %r15
9 set_high_ctx
10 ...
11 set_low_ctx
12 mov LOW_BDRY, %r15
13 ret

(b) Example of an aligned wrap-
per and boundary transition

Figure 5: Examples of unaligned critical function

return pointer stored on stack to cause the code to branch into
arbitrary locations. We prevent this by replacing every ret
instruction with an instrumented indirect branching, as illus-
trated in Figure 4b. Since every return target will lead a new
basic block that is aligned, the return will work as expected.

4.3.2 Unaligned Critical Functions

While our instrumentation is enough to secure most in-enclave
functions, there are special critical functions that demand
even stronger protection since they either cannot be protected
with the instrumentation alone or should not be instrumented
due to two primary reasons: security and performance.
• Security: The instrumentation will be insufficient for cer-
tain security-critical instructions. For functions containing
instructions that grant a page with RWX permissions (e.g.,
emodpe in Intel SGX) or setup/transition the boundary (mod-
ifying the R15 register), a comprehensive security check is
needed. However, these checks can be lengthy and may not
fit within an alignment unit, making them susceptible to by-
passing even when protected using the aligned branching
technique.
• Performance: For certain regularly used but memory-
intensive functions (e.g., memcpy), instrumenting them can
cause significant performance degradation. While they can
be manually modified to have security checks, the checks
must be executed together with the function as a whole to
guarantee the security. Thus, similar to functions contain-
ing security-critical instructions, instrumentation alone is
insufficient to protect these functions.

For these functions, we aim for their exectuion as a whole
without any hijacked code jumping into the middle. For
security critical functions, we even do not want any code to
call them indirectly.

Control Flow Integrity (CFI) techniques can be applied to
achieve this. Conventionally, CFI is achieved by trapping and
checking [37] [38], which imposes significantly performance
penalty due to comparing and branching. We took the concept
and designed a fast CFI mechanism by applying the aligned
branching’s property in an opposite direction. Since the code



can only be hijacked to aligned addresses, the key observation
here is that if we emit these functions ‘unaligned’, a piece
of malicious code will not be able to hijack the control flow
into them. We refer to this technique as the unaligned critical
function technique.

Rather than trapping and checking, we perform a trapping
and faulting by emitting a ud2 instruction before the code
of each block in these functions, which will cause a #UD fault
and crash the execution. As a result, any instrumented code
attempting to perform an indirect branch into these blocks
will hit the ud2 and crash. For a function with multiple
basic blocks, we can chain them together using direct jmp
instructions. An example of two basic blocks with this
technique is described in Figure 5a. All of the basic blocks
starts with an ud2 (line 3 and 8) to prevent the instrumented
code from branching into. At the end of the basic block, it
chains to the next basic block using a jmp (line 5). By doing
this, the only way to call these functions is to do direct calling
which is fixed in protected code binary at compile time.

The execution of these critical functions can be interfered
by a piece of malicious code if we are still using the original
stack. To prevent this, their stack must be swapped to a secured
stack under any boundary. For a function that is not meant
to be called indirectly, emitting it unaligned is enough. For a
function that can be called indirectly but has to be executed as
a whole, we can write an aligned wrapper to make a direct call.

For a layer transition, it can be protected using the
unaligned critical function technique so that once control
flow enters the transition, it is out of the control of regular
code. In the transition, the boundary register R15 is changed
to the new boundary and then continues to the high-security
function. The stack and heap have to be swapped to the
new layer’s corresponding ones to prevent an adversary
from hijacking. When the high-security function returns to
the transition function, the transition function will set the
boundary register, stack and heap back before returning to
regular code. An example of an aligned wrapper and a layer
transition is shown in Figure 5b.

With this technique, we can ensure that these critical
functions must be executed as a whole. No code can be
hijacked into the middle of them and their security checks
cannot be bypassed.

4.3.3 Multi-Layer Compartmentalisation

As discussed above, we need more than two security layers for
regular code, reset module, and the nested attestation module.
A single-fixed boundary is inadequate to meet this demand.
Consequently, we propose a multi-layer compartmentalisation
technique to support multiple security layers within a single
enclave.

The design of this mechanism begins with using a cus-
tomised linker script to place segments in layers according to
their security level and mark out the boundaries with symbols.

1 ...
2 SECTION
3 {
4 ...
5 .attest
6 __boundary_1 = .;
7 .cdata
8 .reset
9 __boundary_2 = .;
10 .snapst
11 ...
12 .text
13 ...
14 __boundary_3 = .;
15 .data
16 ...
17 .bss
18 ...

(a) Example of an excerpt
from the linker script

Stack
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.data

...
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(b) The layered layout of an enclave

Figure 6: An enclave layout example with multiple layers

The higher the security level, the lower in the address space it
will be placed. The security levels are determined according
to specific design, and there is no limitation on the number of
layers that can be added. An example of such a linker script
is illustrated in Figure 6a, and the layout generated from the
linker script is shown in Figure 6b. In this script, there is a
.attest segment to store the attestation code and .cdata
to store the critical secret and they are placed in the first layer.
The reset module and snapshot (.reset and snapst) are
placed in the second layer. The regular code and data (.text,
etc.) are placed in the third layer. Each of the __boundary_x
marks the memory access boundary of a layer. Note that the
boundary is marked in the middle of a layer. This is because
we limit the access only to the data portion.

Hardware architectural critical data should be placed in the
most secure layer to prevent malicious code from modifying.
For example, the Save State Area (SSA) storing a thread’s
context in Intel SGX should be considered as critical.

The security layer of a thread is determined based on which
enclave call the thread called and the boundary register R15
is configured accordingly. We instrument all functions in
every layer except for those exempted and protected using the
unaligned critical functions mechanism. By doing this, even
if lower security level code branches into a higher one, it still
cannot violate the boundary since R15 is not changed.

By combining our snapshot-and-rewinding mechanism
with the MLIEC, we are able to provide a fast and secure
reset to reuse the enclave while preserving the security
guarantees, assuming that the code remains unchanged.

4.3.4 Dynamically Loaded Code

The approach discussed so far works well for statically
loaded code, with the assumption that the binary code is
unchanged. However, the ability to load code dynamically



can impose significant security concerns over the approach.
Clearly, a piece of dynamically loaded code must at least
be instrumented to maintain our SFI guarantees. However
instrumenting the code alone is not enough.

The concern is that the loader used during dynamic loading
must have the ability to grant a page executable permission
(e.g., using SGX’s emodpe instruction), and an adversary can
take advantage of this. A simple solution to this problem is to
completely disable the feature of dynamic loading and elimi-
nate the permission granting function. However, for serverless
scenarios, Ahead-of-Time (AoT) pre-compiled binaries are
necessary to achieve a high performance, and we must main-
tain and secure this feature.

We identified two criteria to enable the dynamic loading
that complies with the security requirement in our design:
• Protected Permission Granting: The permission granting
function must be protected to refuse a re-entrancy request.
• Equally-Treated Instrumentation: The loaded code must
be instrumented using the same compiler technique.
The first criterion can be achieved by using the unaligned

critical function mechanism with proper security checks. The
second one requires a mechanism to verify that the binary
is instrumented. The exact security check and verification
approach has to be tailored to specific needs. We will
demonstrate how we achieved these criteria in our prototype
in section 5.

5 Implementation

In this section, we present a prototype implementation of
the reusable enclave integrated into a full-stack confidential
serverless system, and show how we solved the security chal-
lenges in a real world scenario. We implemented our system
with 10,188 lines of code. The source code will be made
available on GitHub.

The implementation starts with an LLVM-based compiler
toolchain to implement the MLIEC. We then selected the
WebAssembly on OpenWhisk (WOW) [12] project that
has already ported a non-confidential version of WAMR to
OpenWhisk. We modified the WOW project and integrated
our instrumented Intel SGX-enabled WAMR with enclave
reset to the system. As a control, we also adapted an unin-
strumented SGX-enabled WAMR compiled out of a vanilla
LLVM compiler to the system to show the performance
overheads of our system. The overall architecture of the
system is illustrated in Figure 7.

5.1 The Toolchain
Our compiler toolchain is based on LLVM and has MLIEC
implemented as a backend pass. We implemented the system
based on LLVM 11.0 with 1,070 lines of C++ code. The
implementation provides full support for instrumenting

the Intel SGX SDK. To the best of our knowledge, due
to complex dependencies, our implementation is the first
one to instrument the whole Intel SGX SDK. This allows
our MLIEC to be applied to a wide spectrum of existing
SGX-SDK-based high-level programming language runtimes.

5.2 The WAMR Enclave

The WAMR enclave consists of a WAMR runtime library
with ECalls to expose the functionality of the runtime. We
modified 1,457 LoC to the untrusted portion of the WOW’s
executor to adapt it to an SGX-protected runtime. For the
WAMR enclave, the WAMR runtime library was ported to our
system with no change except for some alignment markups in
the invokeNative portion, which uses assembly code. Apart
from code of WAMR, we added a total of 4,098 LoC, among
which 704 LoC for exposing WAMR APIs, 179 LoC for the
enclave reset module and nested attestation module, and 3,215
for SGX’s remote attestation.

We compiled the WAMR runtime with MLIEC and
integrated the reset module and attestation module into the
enclave. The WAMR runtime as well as Intel SGX SDK
is placed in the lowest security layer (Layer 3) as shown in
Figure 7, while the reset module and the attestation module
are placed in Layer 2 and 1, respectively.

To eliminate any useful attack vectors from the untrusted
world, we simplified the exposed ECalls of the WAMR
runtime into a single one to cover the entire execution
procedure and the reset. This approach prevents the untrusted
code from rearranging the calling sequence or bypassing the
reset. We hard-coded all parameters except for the pointer
of the user workload , the error buffer, and their sizes.

5.3 MLIEC in WAMR Enclaves

While we have instrumented the whole enclave and SDK
with MLIEC, since WAMR is an execution engine for WASM
code, we must carefully consider the potential actions of mali-
cious WASM code. WASM code can be either compiled into
bytecode to be interpreted or into x86-64 machine binary for
native execution, also known as Ahead of Time Compilation
(AoT). The system must not be compromised in either mode.

Interpreter Mode. Protection in interpreter mode is straigh-
forward. Since the interpreter is instrumented, any WASM
bytecode interpreted in the WAMR enclave will not be able
to compromise security.

AoT Mode. As a native code binary, the AoT binary to be
executed may contain any instruction. AoT is essentially a
dynamic loading feature, and as discussed in section 4.3.4,
we must meet two criteria: Protected Permission Granting
and Equally-Treated Instrumentation.

For the Protected Permission Granting criterion, the key
observation is that the dynamic loading feature is for the use
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of the runtime instead of the user code. After loading the user
code, since the runtime no longer use this function, we can
disable the emodpe before the execution of the user code. To
accomplish this, we added a Boolean as a fuse in the reset
module’s security layer (Layer 2), where user code (Layer
3) cannot modify. Once the loading is completed, the fuse
Boolean will blow (be set to false) before any user code
is executed. We then modified the emodpe function in SGX
SDK to check this fuse and crash when the fuse is blown.
We protect the emodpe function using the unaligned critical
function technique so that the check cannot be bypassed. We
use the reset module to set the fuse back after an enclave reset.

The Equally-Treated Instrumentation criterion can lead to
two sub-problems: How we instrument the AoT binary and
how we verify that a binary is instrumented when we load
it. The first problem has a natural solution: We already have
an LLVM toolchain to perform the instrumentation, and we
can modify the AoT compiler wamrc to use our LLVM as the
backend to generate instrumented x86-64 binary code. The
generated AoT binary will be instrumented using the same
MLIEC technique, ensuring that loading it will not break the
security of the WAMR enclave.

The second problem is less straightforward. Statically
validating a random AoT binary with MLIEC instrumentation
would be too costly. However, we can require an AoT binary
to be notarised to conform to our security standards. Since
we already know that an AoT binary compiled using our
toolchain meets the security requirement, the serverless
platform provider can offer a trusted compilation and signing
service where users can upload their WASM bytecode.
The service will use our toolchain to properly compile the
bytecode into instrumented AoT binaries and sign them. With
the signature, the WAMR enclave can verify that the AoT
binary is indeed instrumented and can be safely executed.
As long as the WAMR enclave only executes AoT binaries
signed by the service, its security can be guaranteed. The

details of making the service fully protected and attestable
have been researched and discussed. Techniques from
existing works like [39] can be used.

5.4 End-to-End Trust

The concept of confidential computing naturally distrusts
all the communication processes unless verifiable. To ensure
the confidentiality of the workload deployment, and establish
an end-to-end chain of trust, we designed and implemented
a component called gateway enclave on the gateway server.
The OpenWhisk project was modified with 107 LoC to
connect with the gateway enclave. The gateway enclave itself
has 1,478 LoC in the untrusted portion and 1,978 LoC in
the trusted portion. The gateway enclave is a cryptographic
service, providing two functionalities: Delegated Remote
Attestation and Workload Relaying.

Delegated Remote Attestation. The gateway enclave will
perform attestation to all the worker WAMR enclaves and
is then self-attested by a remote user. Using Intel SGX’s
remote attestation, the gateway enclave can ensure that all
the WAMR enclaves associated with it are genuine. When
the remote user performs remote attestation to the gateway
enclave, they can not only verify that the gateway enclave is
genuine and protected, but also trust all the WAMR enclaves
associated with the gateway enclave.

Workload Relaying. During the remote attestation process,
the gateway enclave exchanges secret keys with the WAMR
enclaves, and the user to establish secure communication
channels. The user can use the secret key to encrypt the work-
load and send it to the OpenWhisk service. The OpenWhisk
service will request the gateway enclave to re-encrypt the
workload using the secret key exchanged with the chosen
WAMR worker enclave, and then sends the re-encrypted
workload to the worker. With the gateway enclave, a user can
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be assured that the executor enclave is trustworthy and their
workloads are always encrypted outside an enclave.

5.5 Nested Attestation for WAMR

With Intel SGX’s attestation, the user can verify that the
gateway OpenWhisk server is genuine and establish a secure
channel with it by exchanging a secret key. The gateway
OpenWhisk server will also delegate the user to do the same
with the WAMR executor enclaves, ensuring that the actual
executors are also trusted, as discussed in section 5.4.

However, in addition to checking if executors are genuine,
the reset must also be verifiable to the user. A remote user
might also want to verify that the workload is properly de-
ployed and then provision secrets into the workload to estab-
lish a direct security channel. We proposed the scheme nested
attestation and discussed the infrastructure in section 4.2. The
private-public key pair generated by the WAMR enclave will
be the root of the trust. In this subsection, we discuss a specific
protocol for the WAMR enclave.

We illustrate the nested attestation protocol in solid circled
numbers in Figure 8 as well as the preparations made during
the system deployment in hollow circled numbers. The nested
attestation protocol begins with the remote user’s challenge
to the workload in the WAMR enclave (step ❶). When the
workload receives the challenge, it requests the attestation
module to generate a report (step ❷). The report contains the
hash of the workload, in addition to the contents discussed in
section 4.2 for the workload integrity check. A customisable
data field is also provided for the workload to include data to
be signed, which can be used for key exchange algorithms, etc.
The report is then sent to the remote user (step ❸). The remote
user submits the report to the attestation service offered by
the serverless platform provider to verify the signature (step
❹). If the attestation service confirms that the signature is
valid, the remote user will then validate the workload’s hash

(step ❺) and, if needed, confirm the snapshot’s hash from the
attestation service. If the check passes, the nested attestation
procedure is complete and the enclave is trusted (step ❻).

6 Security Analysis

In this section, we analyse the security of our system. When
executing workloads inside the enclave, as long as the enclave
environment stays intact, the workloads’ security can be guar-
anteed. The execution security of the confidential serverless
has been extensively discussed in [5–7] and therefore we fo-
cus our discussion on the security impacts introduced by our
design. In our model, an attacker can be from outside (OS, net-
work, etc.), inside (malicious workloads), or both when they
collude. We analyse on each step shown in Figure 2 to demon-
strate possible attacks and how our system can defeat them.

6.1 Cold Start
The cold start (step ❶) is the simplest case. In this scenario,
since there is no involvement of malicious workload, the only
possible attacker is from the outside. During step ❶ when
we setup the enclave, every operation will be recorded in the
initialisation hash and an enclave with a mismatched hash will
be refused to be launched. The enclave will also be untrusted
if it does not pass the remote attestation and snapshoting
process. An attacker might also try to execute a malicious
workload before taking the snapshot, trying to leave unwanted
data in the snapshot. However, the hash of a genuine snapshot
that is correctly taken is known, and an incorrect snapshot
will result in a hash mismatch during the nested attestation.

6.2 Workload Execution and Result Returning
As described in section 5.2, we only have a single all-in-
one execution ECall that handles the whole execution and
the return of the results. Therefore, ❷ and ❸ are discussed
together.

Outside Attacker: Reentering ECalls. There are only two
ECalls exposed other than ECalls of the SGX’s remote attes-
tation: the snapshot ECall and the all-in-one execution ECall
that performs the execution and reset all together. For the
snapshot ECall, reentering it other than the initial state will
cause the snapshot to have a different hash, which can be de-
tected in the nested attestation procedure because the hash in
the signed report contains is different from a genuine snapshot
hash, causing the remote user to reject the execution.

For the execution ECall, it only takes the two untrusted
buffers and their sizes, leaving no procedure rearranging or
faulty parameter attacks. Reentering it will cause a fault since
an execution is already happening.

Inside Attacker: Steal or modify security-sensitive data.
A malicious workload may try to utilise runtime bugs to



compromise the environment. However, as the runtime
is instrumented and the workload is either a bytecode
interpreted by the runtime or an instrumented AoT binary,
it will not be able to read or write below its layer boundary.
This means that the snapshot and reset counter in the reset
module and the signing key in the attestation module may
never be read/write by a workload.

Inside Attacker: Gadget deployment. To deploy a gadget, a
malicious workload must be able to edit existing executable
pages or grant writable pages with executable permission by
reentering emodpe. Since the emodpe instruction is protected
with the fuse Boolean as described in section 5, and all code
pages are protected as read-only, a malicious workload can
neither modify the WAMR runtime nor itself. It also cannot
inject any gadget since it is not possible to grant a page with
executable permission without the emodpe.

Collusion: Architectural. An outside attacker may want to
collude with a malicious workload to attack the system using
architectural behaviours. The way to do this is to trigger
an interrupt to the enclave so that the states are saved to the
memory and then let the malicious workload modify the states.
For example, an attacker may want to modify the boundary
register R15 in the saved state, essentially allowing it to lower
the boundary to 0 to read and write any data. However, since
SSA and architectural security-sensitive data are protected
in the most secure layer, they may never be modified by a
malicious workload.

6.3 Environment Reset

The reset procedure ❹ is integrated into the all-in-one exe-
cution ECall and is performed automatically before the next
execution as described in section 5.2.

Outside Attacker: Delayed resuming. When a workload
is multi-threaded, an outside attacker may want to issue an
interrupt to an executor enclave thread during the execution
of a workload and delay the resuming after main thread per-
forms a reset to cause unexpected effects. However, this is not
possible on our system since the reset will not be performed
unless the workload is totally finished.

Inside Attacker: Persisting changes. A malicious workload
may have changed the runtime’s configuration and want to per-
sist the changes. However, as our reset mechanism overwrites
all data fields within the data segments and zeros out the heap
and stack, it is not possible for the malicious workload to
leave any changes within the runtime memory.

7 Evaluation

In this section, we present our evaluation results to demon-
strate the performance overhead imposed and to show our
performance benefits for serverless execution scenarios. We
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Figure 9: Time spent in relaunching and resetting. The blue
line shows the ratio of relaunching time over resetting time.

tested our system from multiple aspects to show the perfor-
mance improvement over relaunching the entire enclave, as
well as the overhead impact of our instrumentation. We also
compared our system with existing solutions using workloads
that can reflect real-world serverless characteristics. The
platform we used was an Intel Xeon Gold 5318Y CPU
running at 2.1 GHz with 32 GiB of RAM. The OS is Ubuntu
20.04 LTS with a stock Linux 5.11 kernel. AoT binary blobs
are compiled and instrumented with the same LLVM for our
implementation and with a vanilla Clang sandboxed using
-boundary-check as control. We present the result of our
experiments with an alignment unit of 32 bytes. We will also
discuss the performance implications of different alignment
unit sizes in this section.

7.1 Launching vs. Resetting

The relaunching time and resetting time of a WAMR enclave
varies depending on the enclave size, particularly the heap
size. We illustrate the relaunching time of a vanilla WAMR
enclave and the resetting time of our instrumented WAMR
enclave in Figure 9. On average, resetting is 159× faster
than launching an enclave. This is because the instructions
eadd and einit used during the launching process are very
time consuming. For resetting, in contrast, rewinding the
data segments takes only 87 µs on average, and the main
overhead comes from zeroing the heap. On modern x86-64
architecture, performing memset to zero the heap using
AVX2 or even simply rep stos can be very fast, saving
ranged from 378.19 ms on the 16 MiB side all the way up
to 16.5 seconds compared to relaunching.

In addition to the launching time, an SGX enclave must be
attested using the remote attestation each time after launching
to be trusted. We chose the fastest DCAP method for the
evaluation and the average overhead of it was 25 ms. However,
these overheads are too small compared to the relaunching
time and will not make a significant impact on the launching.



7.2 Instrumentation Overhead

To evaluate the instrumentation overhead, we chose
NBench [40] as our subject. We tested NBench in multiple
execution modes of the WAMR runtime: the AoT mode, the
classic interpreter mode, and the fast interpreter mode. In
Figure 10, we show the ratio of the NBench score acquired
by a vanilla WAMR runtime in SGX and ours that was
instrumented with MLIEC. Therefore, the figure shows how
many times faster the vanilla version runs than our version,
reflecting the slowdown of the MLIEC instrumentation.

Instrumentation Overheads of AoT Mode. In AoT mode,
we compiled the workload with our LLVM instrumentation
on our system while using WAMR’s stock boundary check
sandboxing in the vanilla version. The geometric mean of the
overhead is 20%. One can see that most of these benchmarks
have an overhead of 10% or below compared to the vanilla
version. Our instrumentation even made ASSIGNMENT,
NEURAL NET, and LU DECOMPOSITION perform faster
than WAMR’s AoT sandboxing.

However, the FOURIER benchmark was showing sig-
nificant performance degradation with our instrumentation.
Our investigation revealed that the FOURIER benchmark
highly depends on the C math library, resulting in excessive
native C calls during the execution. The native call wrapper
of WAMR is memory intensive due to ABI translation
mechanism from WASM to native x86. The mechanism
encodes C function prototypes as strings and parses the string
when a native C function is called. Parsing these strings and
arranging the arguments in memory requires massive variable
pointer dereferences which are instrumented using SMA.
The geometric mean of the rest of the benchmarks’ (without
FOURIER) overheads is only 5%.

Instrumentation Overhead of Interpreter Modes. In
WAMR, there are two interpreter modes: the classic mode
and the fast mode. Note that in the interpreter mode we run
the same WASM bytecode for both instrumented and vanilla,
since the security is guaranteed by the interpreter.

In the classic mode, the interpreter implements a standard
stack machine. The overhead of it (14%) is quite low. In the
fast mode, WAMR recompiles the code into a register-based
IR bytecode with other optimisations. This resulted in larger
memory footprints [41] and a higher average overhead of
32% (see Figure 10). In our system, the instrumentation to
memory implies more overheads to workloads that have more
pointer dereferences. In WAMR, since the code is stored in
a heap and all heap pointer dereferences will trigger SMA,
increasing the code size will inevitably increase the overhead.

Alignment Unit Sizes and Performance. To provide insight
into the impact of different alignment unit sizes, we also ran
NBench with a system sanitised with a 64-byte alignment
unit. The result remained unchanged with the same overhead

geometric means: 20% for AoT mode, 14% for classic
interpreter mode and 32% for fast interpreter mode.

This result is within our expectation, since the main
overhead comes from our SFI and DEP instrumentation.
Theoretically there is a trade-off between a small and a large
alignment unit because it is very hard to exactly fill up an
alignment block and there can be a few nops at the end of
a block. This means that using a larger alignment unit that
can have less nops. Although this may bring about some
fluctuation in the performance of certain workloads at a very
microscopic level, our result shows that generally there will
be no significant impact.

7.3 Real-World End-to-End Performance
To demonstrate the end-to-end real-world benefits of our sys-
tem, we evaluated the end-to-end performance using the work-
loads used in the WOW project [12] (excluding sleeping and
non-supported features like file system) and compared our
work to a vanilla WAMR executor without reset, as well as
existing confidential serverless projects: S-FaaS [5] and Ac-
cTEE [7]. The four workloads cover different perspectives
used in serverless scenarios, ranged from heavy computation
and hashing to light system calls and parameter handling.
Note that S-FaaS used Duktape embedded JS engine which
is not capable of performing complicated tasks like hashing
and finding large prime numbers. The executors of the two
existing projects are set to be relaunched after each execution.

The enclave was set to have a heap size of 256 MiB, in the
middle between the industry’s 50 percentile (170 MiB) and 90
percentile (400 MiB) in terms of serverless workload memory
consumption according to [10] [11]. For WAMR executors,
we broke down the execution time into Reset, Load, Instanti-
ate, Create Environment, Function Lookup, Execution and the
Communication overheads as well as the End-to-End Encryp-
tion and Report Generation overheads exclusive to our system.
For S-FaaS and AccTEE, due to the architectural difference,
we broke down the time into Reset, Init, and Execution. The
reuslt is shown in Table 1 and illustrated in Figure 11.

The result showed that our system can significantly
improve end-to-end performance compared to others. For the
vanilla version and the two existing solutions, the overhead
of relaunching the enclave claimed most of the end-to-end
time, resulting in massive delays and wasting a huge amount
of computation resources. In our system, the communication
costs dominated over the reset, however, in a much less
significant way compared to relaunching. Our end-to-end
encryption and nested attestation’s report generation only
took a fraction of the overall overhead.

7.4 Summary of Results
Reset Benefit. Recent studies [10] [11] have shown that
in real-world applications, more than 50% of serverless
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Figure 10: The normalised NBench result

Reset Load/Init Instantiate Create Env Lookup Execution Communication Encryption Report Gen Total

O
ur

s

ADD 24.80 3.09 0.27 0.02 0.01 0.08 94.90 9.31 0.82 133.30
CLOCK 24.21 2.04 0.29 0.04 0.02 0.11 89.59 10.05 0.53 126.88
HASH 23.79 3.15 0.28 0.04 0.02 0.09 92.63 9.15 0.51 129.66
PRIME 24.87 2.27 0.33 0.04 0.01 1031.21 85.01 11.24 0.51 1155.49

V
an

ill
a ADD 3266.52 0.95 0.16 0.01 0.01 0.06 83.80 N/A N/A 3351.52

CLOCK 3237.99 0.82 0.15 0.01 0.01 0.08 77.88 N/A N/A 3316.94
HASH 3233.70 0.94 0.15 0.01 0.01 0.07 78.51 N/A N/A 3313.38
PRIME 3294.87 1.01 0.15 0.01 0.01 818.07 78.91 N/A N/A 4193.02

S-
Fa

aS

ADD 2246.01 1.02 N/A N/A N/A 0.37 N/A N/A N/A 2791.63
CLOCK 2790.22 1.04 N/A N/A N/A 0.40 N/A N/A N/A 2247.46
HASH N/A N/A N/A N/A N/A N/A N/A N/A N/A Can’t run
PRIME N/A N/A N/A N/A N/A N/A N/A N/A N/A Can’t run

A
cc

T
E

E ADD 4589.42 340.20 N/A N/A N/A 0.79 N/A N/A N/A 4930.42
CLOCK 4591.99 373.60 N/A N/A N/A 0.83 N/A N/A N/A 4966.42
HASH 4597.17 407.86 N/A N/A N/A 1.31 N/A N/A N/A 5006.35
PRIME 4596.01 164.48 N/A N/A N/A 2075.07 N/A N/A N/A 6835.58

Table 1: The end-to-end execution time breakdown (in milliseconds)
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Figure 11: The end-to-end execution time breakdown

workloads finish under 1 second on average. These studies
also showed that 50% of serverless workloads take less than
170 MiB of memory and 90% take less than 400 MiB of
memory. Looking at Figure 9, we can easily observe that the
overhead of relaunching on its own is more than 2 times the
execution time even for a smaller 170 MiB enclave.

Note that while the memory can be dynamically expanded
in the latest SGX2, the expansion is even slower than having
the memory at launching [24], resulting in an even higher
overhead. This means that for the best performance, the en-
clave should have a heap that can accommodate the maximum
workload it can handle, no matter how much memory a real
workload running on it takes. However, larger enclaves will

impose even higher launching overheads on small and fast
serverless workloads compared to our resetting mechanism.

Interpreter Mode vs. AoT Mode. To provide the best
performance, the AoT mode is clearly the first choice. When
comparing the results of NBench, the fast interpreter is
14× slower than AoT while the classic interpreter is 49×
slower than AoT. The interpreter modes, even the vanilla fast
version, are too slow for real world applications. While the
overhead we imposed is acceptable, we do not believe that
using the interpreter mode in a production environment is
practical. However, the downside of adopting the AoT mode
is that it requires additional software tools to enable trusts
on the compilers, as described in section 5.3.

Possible Optimisations. Our system can be further improved.
For the AoT mode, one of the reasons for the huge overhead
introduced in the FOURIER benchmark is native C API
calling. We analysed that it is due to the C prototype string
parsing causing massive amount of pointer dereferences
and triggering many instrumented code paths. To overcome
this issue, optimisations can be made to the WAMR’s
native call mechanism to reduce the pointer dereferences
using techniques like caching. For the interpreter mode, the
slowdown mainly comes from the instrumentation during the
fetching of the bytecode. A viable solution can be achieved
by prefetching a large chunk of code onto the stack and
accessing them on the stack. Since stack accesses are not
instrumented, one can significantly reduce the overhead.



Name Special
Hardware

Compartments Special
SDK?

Commercially
Available? OverheadData Code

LIGHTENCLAVE
Intel MPK

HC Multi Multi N N ≈ 0%?

MPTEE Intel MPX Multi 1 N N 20%
Occlum Intel MPX Multi Multi Y N 36%
Spons & Shields Intel MPX Multi Multi Y N 22%
Nested Enclave HC Multi Multi Y N 2%?
SGX-Shield None 2 2 Y Y 14%
CHANCEL None Multi 1 Y Y 12%
Ours None Multi Multi N Y 20%

Table 2: Comparision between IEC techniques. ‘?’ means the
result is simulated. HC stands for ‘Hardware Changes’.

However, these require massive architectural changes to the
WAMR and we leave them for future work.

8 Related Work

Confidential Serverless Computing. Closest to our work is
the line of research integrating TEEs with serverless comput-
ing [5–7]. In particular, S-FaaS [5] also integrated Intel SGX
with OpenWhisk to build a confidential FaaS solution. In the
industry, commercially available platforms like Conclave [8]
are already providing confidential serverless computing ser-
vice to the public. However, all of the existing solutions have
the trade-off of security for practical performance by assum-
ing a perfect implementation of sandboxes or have to relaunch
for true security [14].

Confidential Runtime. There are many existing work on
protecting a high-level programming language runtime using
TEEs. For example, the support of WebAssembly runtime
within SGX has been an effort made by many to establish
portable and secure two-way sandboxes [7, 42, 43]. Open
source projects also include Confidential Computing Con-
sortium’s Enarx [44] and Bytecode Alliance’s WebAssembly
Micro Runtime [34], which is also used in our work.

To build a secure runtime that can be reused, MesaPy [45]
tried to use formal verification to build a Python runtime with
a high-security sandboxing. Unfortunately, MesaPy is not
finished and halts with the last update in 2018.

Intra-Enclave Compartmentalisation (IEC). Partitioning
an enclave into two or more compartments can be done using
hardware-assisted or software-only techniques. We list prior
works on IEC and provide a comparison with them in Table 2.

The first five IEC techniques require hardware support.
LIGHTENCLAVES [46] proposed new hardware extensions
to support the use of Intel MPK [47], which relies on an
untrusted OS to perform permission configurations, to
partition SGX enclaves. However, this requires new hardware
extensions that are not available on commodity CPUs. Other
works have proposed to use Intel MPX [48] to provide IEC,
such as MPTEE [49], Occlum [50] and Spons & Shields [51].
However, since MPX is buggy and has been deprecated [48],
these solutions no longer work in newer generations CPUs.
Moreover, the performance overhead of these solutions (20%

for MPTEE, 36% for Occlum, 22% for Spons & Shields)
is comparable to ours (about 20%), making the need of
special hardware unwarranted. The nested enclave [52] is
a new architectural design that enables an inner enclave
to run inside an outer enclave, such that the inner enclave
may possess a higher security level than the outer enclave.
However, it also requires special hardware extensions.

Software-only solutions such as SGX-Shield [27] and
CHANCEL [28] can also be used to partition an enclave. SGX-
Shield partitioned the enclave into two security levels, where
the higher one can access the other but not vice versa. CHAN-
CEL achieved time-sharing a single enclave by multiple users.

Our work is also software-only, but we extended and
improved the established methods, particularly SGX-Shield,
in the following aspects: Multi-Layer Support to support
multiple layers for hosting code and data with different
security levels, Unaligned Critical Function to protect the
control flow of security- or performance-critical functions
from being hijacked, and a modern and LLVM-based
Generic Tool Chain that allows existing executor runtimes
to be ported directly by instrumenting the SDK together on
commercially-available hardware.

Software Fault Isolation (SFI) and Control Flow Integrity
(CFI). SFI is designed to contain faulty or even malicious
behaviours of the software within certain domain [26]. SFI
can be done at multiple levels, commonly at the machine
code level [27], [30], [53], [29], [54] or at intermediate
high-level representations (IR) [55], [56], [57], [58], [59].

Our work falls into the category of SFI at machine code
level. To enumerate some of these studies, NaCl [30] utilised
obsolete x86 segment registers to partition an address
space into several isolated sandboxes. XFI [29] enables
dynamically-loaded code to be verified using a disassembler
and verifier, but it lacks support for advanced ISA extensions
(e.g., SSE, XMM). XFI uses a compare-and-branching
mechanism and is hence slower. Sehr et al. [54] proposed a
fast boundary plus offset mechanism that is similar to ours.
However, it requires that each compartment be 4 GiB, which
is not practical in enclave settings.

For dynamically loaded AoT binaries, SFI verification ap-
proaches theoretically can also be used to verify if a binary is
properly instrumented. Existing SFI verification approaches
usually require a large disassembler code base and are limited
in their capabilities.For example, XFI has limitations on mod-
ern instruction sets [29]. VeriWASM [60] also implemented a
verifier for the SFI generated by the Lucet compiler. However,
the Lucet compiler’s SFI is done in a coarse-grain way by
simply keeping the memory within a 4 GiB range compared
to our MLIEC [61]. To the best of our knowledge, building
a system that includes a verifier while still maintaining a
small TCB as our system would not be practical given that
a fully-fledged disassembler must be employed.

Our unaligned critical function technique, while facilitating
the SFI mechanism, can also fell into the broad category of



Control Flow Integrity (CFI). Designed for our specific needs,
the technique implements a fast and effective trap-and-fault
mechanism compared to the traditional trap-and-check
mechanism [37].

9 Conclusion

In this paper, we propose reusable enclaves, an innovative
technique that enables secure, rapid, and verifiable reuse
of SGX enclaves, and apply it to confidential serverless
computing in order to mitigate the cold boot latency, which
is critical to the performance of serverless functions. To
demonstrate its practicality and efficiency, we constructed
a prototype serverless cloud system using OpenWhisk,
integrating a WebAssembly runtime with reusable enclaves.
Our evaluation reveals that this approach significantly reduces
cold start latency while imposing a reasonable impact on the
performance of standard execution.
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