Normal numbers - a primer

Malabika Pramanik

University of British Columbia, Vancouver

On the Interface of Geometric Measure Theory and Harmonic Analysis Banff International Research Station

June 9-14, 2024

- Normal number - definitions and preliminaries
- Some basic facts that we will need
- What will we learn?

What is a normal number?

- $b \in\{2,3, \ldots\}$: called a base
- Every $x \in[0,1)$ admits a representation:

$$
x=0 \cdot x_{1} x_{2} \cdots=\sum_{k=1}^{\infty} x_{k} b^{-k}, \quad x_{k} \in\{0,1, \ldots, b-1\} .
$$

- $\left\{x_{k}: k \geq 1\right\}$: digits of x in base b

Normality in base b

Say x is b-normal if $\forall k \in \mathbb{N}$ and $\left(d_{1}, \ldots, d_{k}\right) \in\{0,1, \ldots, b-1\}^{k}$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{0 \leq j \leq N-1:\left(x_{j+1}, \ldots, x_{j+k}\right)=\left(d_{1}, \ldots, d_{k}\right)\right\}=\frac{1}{b^{k}}
$$

- É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Math. Palermo 27 (1909), 247-271.
- I. Niven \& H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math. 1 (1951), 103-109.

Examples, non-examples, knowns and unknowns

- Exercise: Show that rational numbers are not b-normal for any b :

$$
\text { Hint: } \quad \frac{1}{7}=0.142857142857 \cdots \quad \text { (decimal expansion) }
$$

- The decimal expansion obtained by concatenating all positive integers

$$
\xi_{c}:=0.1234567891011121314 \cdots
$$

is normal in base 10 .

- D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260.
- Borel (1909) Lebesgue almost every $x \in[0,1]$ is b-normal $\forall b \geq 2$.
- Not known whether $\sqrt{2}, \pi, e$ are normal in any base.

Why study normal numbers?

Connections to many problems in

- Number theory
- Geometric measure theory
- Harmonic analysis
- Ergodic theory
- Computer Science
- :
some of which will appear in this mini-course.
- Y. Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge Tracts in Mathematics, 193. Cambridge University Press, Cambridge, 2012.

What is this course about? Take 1

- Sets of partly normal numbers: For $\mathscr{B}, \mathscr{B}^{\prime} \subseteq \mathbb{N} \backslash\{1\}$,

$$
\mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right):=\left\{x \in[0,1) \left\lvert\, \begin{array}{l}
x \text { is } b \text {-normal } \forall b \in \mathscr{B}, \\
x \text { is not } b^{\prime} \text {-normal } \forall b^{\prime} \in \mathscr{B}^{\prime}
\end{array}\right.\right\} .
$$

- Borel's theorem $\Longrightarrow \mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right)$ is Lebesgue-null if $\mathscr{B}^{\prime} \neq \emptyset$.
- Preliminary question: When is $\mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right) \neq \emptyset$? (next slide)

A general question about numbers normal in some, but not all, bases What can we say about finer

- analytic,
- measure-theoretic
properties of nontrivial $\mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right)$?

Plan

- Normal number - definitions and preliminaries
- Some basic facts that we will need
- Size of sets of partly normal numbers
- Normality and equidistribution
- Normality almost everywhere
- Sets of uniqueness and their connection to normality
- What will we learn?

How large are sets of partly normal numbers?

Multiplicative independence

- Say $r, s \in \mathbb{N} \backslash\{1\}$ are multiplicatively independent \& write $r \sim s$ if

$$
\frac{\log r}{\log s} \in \mathbb{Q}, \quad \text { i.e. } \quad \exists m, n \in \mathbb{N} \text { such that } r^{m}=s^{n} .
$$

- For $\mathscr{B} \subseteq \mathbb{N} \backslash\{1\}$, the multiplicatively dependent closure of \mathscr{B} is

$$
\overline{\mathscr{B}}:=\{c \in \mathbb{N} \backslash\{1\}: \exists b \in \mathscr{B} \ni c \sim b\} .
$$

- For $r \sim s$, a number is r-normal \Longleftrightarrow it is s-normal.

$$
\mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right)= \begin{cases}\emptyset & \text { if } \overline{\mathscr{B}} \cap \overline{\mathscr{B}^{\prime}} \neq \emptyset, \\ \text { uncountable } & \text { otherwise. }\end{cases}
$$

- W. Schmidt, On normal numbers, Pacific J. Math. 10 (1960) 661-672.

$$
\operatorname{dim}_{\mathbb{H}}\left(\mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right)=1 \quad \text { if } \overline{\mathscr{B}} \cap \overline{\mathscr{B}^{\prime}}=\emptyset .\right.
$$

- A. Pollington, The Hausdorff dimension ... numbers, Pacific J. Math 10 (1981) 193-204.

Normality and uniform distribution mod 1

- A sequence $\left\{x_{n}: n \geq 1\right\} \subseteq \mathbb{R}$ is uniformly distributed mod 1 if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq n \leq N:\left\{x_{n}\right\} \in[\alpha, \beta)\right\}=\beta-\alpha \quad \forall 0 \leq \alpha<\beta<1
$$

- $\{x\}=x-\lfloor x\rfloor$ fractional part of x.

Weyl's criterion for uniform distribution (1916)
$\left\{x_{n}\right\}$ is uniformly distributed mod 1 if and only if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} e^{-2 \pi i h x_{n}}=0 \forall h \in \mathbb{Z} \backslash\{0\}
$$

- H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann. 77 (1916), 313-352.

Wall's characterization of normality (1949)
$x \in[0,1)$ is b-normal $\Longleftrightarrow\left(b^{n} x\right)_{n \geq 1}$ is uniformly distributed mod 1 .

- D. D. Wall, Normal numbers. PhD thesis, University of California, Berkeley, CA, 1949

Measures and normality almost everywhere

- μ : Borel probability measure on $[0,1), b \in \mathbb{N} \backslash\{1\}$.

$$
\widehat{\mu}(n)=\int_{0}^{1} e^{-2 \pi i n x} d \mu(x)=n^{\text {th }} \text { Fourier coefficient of } \mu, \quad n \in \mathbb{Z}
$$

A criterion of Davenport, Erdős and LeVeque (1963)

$$
\text { If } \begin{aligned}
& \sum_{N=1}^{\infty} \frac{1}{N} \int_{0}^{1}\left|\frac{1}{N} \sum_{n=0}^{N-1} e^{-2 \pi i h b^{n} x}\right|^{2} \mathrm{~d} \mu(x) \\
&=\sum_{N=1}^{\infty} \frac{1}{\mathrm{~N}^{3}} \sum_{m, n=0}^{N-1} \widehat{\mu}\left(\mathrm{~h}\left(\mathrm{~b}^{\mathrm{n}}-\mathrm{b}^{\mathrm{m}}\right)\right)<\infty \quad \forall \mathrm{h} \in \mathbb{Z} \backslash\{0\},
\end{aligned}
$$

then μ-a.e. $x \in[0,1]$ is b-normal.
-H. Davenport, P. Erdős and W. J. LeVeque, On Weyl's criterion for uniform distribution, Michigan Math. J. 10 (1963), 311-314.

A few warm-up exercises

- Exercise: Replicate DEL's Lebesgue-measure proof for a general μ.
- Exercise: Use DEL's criterion to prove Borel's theorem on absolutely normal numbers.
- Exercise: Use DEL's summability criterion to show that for $\kappa>0$,

$$
\limsup _{n \rightarrow \infty} \frac{|\widehat{\mu}(n)|}{|\log \log n|^{1+\kappa}}<\infty \Longrightarrow \mu \text { a.e. } x \text { is } b \text {-normal } \forall b \geq 2
$$

Hint: Try out the simpler case of measures with power decay en route to the general case.

What is this mini-course about? Take 2
A question of Kahane and Salem (1964)
"Is the set of non-normal numbers a set U^{*} ?"
In our notation, if $\mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right) \neq \emptyset$, does \exists a probability measure $\mu \ni$

- μ-a.e. $x \in \mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right)$,
- μ is Rajchman, i.e., $|\widehat{\mu}(n)| \rightarrow 0$ as $|n| \rightarrow \infty$
- Kahane \& Salem's question was posed initially for dyadic expansions.

Lyons (1986)

\exists a Rajchman measure μ_{L} for which a.e. $x \in \mathscr{N}(\cdot ;\{2\})$.
P-J. Zhang (2024)
μ_{L}-a.e. x is odd-normal but not even-normal.

- No natural generalizations of μ_{L} for arbitrary $\left(\mathscr{B}, \mathscr{B}^{\prime}\right)$.

Motivation: Normality and Fourier analysis

Sets of uniqueness and of multiplicity
A Lebesgue measurable set $E \subseteq[0,1)$ is a set of uniqueness if

$$
\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi i n x}=0 \quad \forall x \in[0,1) \backslash E \Longrightarrow c_{n}=0 \quad \forall n \in \mathbb{Z} .
$$

Otherwise, it is a set of multiplicity.

- Rich history originating in the work of Riemann, Heine, Cantor ...
- Exercise:

Countable sets \subset sets of uniqueness \subset Lebesgue-null sets.

- Normal number - definitions and preliminaries
- Some basic facts that we will need
- What will we learn?

So ... what is this course really about? Take 3

P-J. Zhang (2024)

- Non-empty partly normal sets $\mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right)$ are sets of multiplicity.
- If $b \nsim b^{\prime}$ for all $\left(b, b^{\prime}\right) \in \mathscr{B} \times \mathscr{B}^{\prime}$, then \exists a Rajchman measure $\mu \ni$

$$
\mu-\text { a.e. } x \in \mathscr{N}\left(\mathscr{B}, \mathscr{B}^{\prime}\right) .
$$

We will discuss some ideas behind the proofs:

- Lecture 1: What are skewed measures?
- Lecture 2: Randomness in multiplicative independent bases
- Lecture 3: (Non)-normality \& Rajchman property

