Normal numbers - a primer

Malabika Pramanik

University of British Columbia, Vancouver

On the Interface of Geometric Measure Theory and Harmonic Analysis

Banff International Research Station

June 9-14, 2024

3 > < 3
 </p>

• Normal number - definitions and preliminaries

• Some basic facts that we will need

• What will we learn?

Malabika Pramanik (UBC)

Normal numbers

06-2024 2 / 15

(3)

What is a normal number?

- $b \in \{2, 3, \ldots\}$: called a base
- Every $x \in [0, 1)$ admits a representation:

$$x = 0.x_1x_2\cdots = \sum_{k=1}^{\infty} x_k b^{-k}, \qquad x_k \in \{0, 1, \dots, b-1\}.$$

• $\{x_k : k \ge 1\}$: digits of x in base b

Normality in base b

Say x is *b*-normal if $\forall k \in \mathbb{N}$ and $(d_1, \ldots, d_k) \in \{0, 1, \ldots, b-1\}^k$,

$$\lim_{N\to\infty}\frac{1}{N}\#\{0\leq j\leq N-1:(x_{j+1},\ldots,x_{j+k})=(d_1,\ldots,d_k)\}=\frac{1}{b^k}.$$

É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ.
 Math. Palermo 27 (1909), 247-271.

► I. Niven & H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math. 1 (1951), 103-109.

Examples, non-examples, knowns and unknowns

• Exercise: Show that rational numbers are not *b*-normal for any *b*:

Hint :
$$\frac{1}{7} = 0.142857142857\cdots$$
 (decimal expansion)

• The decimal expansion obtained by concatenating all positive integers

 $\xi_c := 0.1234567891011121314\cdots$

is normal in base 10.

► D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254–260.

- Borel (1909) Lebesgue almost every $x \in [0, 1]$ is *b*-normal $\forall b \geq 2$.
- Not known whether $\sqrt{2}, \pi, e$ are normal in *any* base.

イロト 不得下 イヨト イヨト 二日

Why study normal numbers?

Connections to many problems in

- Number theory
- Geometric measure theory
- Harmonic analysis
- Ergodic theory
- Computer Science
- •

some of which will appear in this mini-course.

► Y. Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge Tracts in Mathematics, 193. Cambridge University Press, Cambridge, 2012.

- What is this course about? Take 1
 - Sets of partly normal numbers: For $\mathscr{B}, \mathscr{B}' \subseteq \mathbb{N} \setminus \{1\}$,

$$\mathcal{N}(\mathscr{B},\mathscr{B}') := \left\{ x \in [0,1) ig| x ext{ is } b ext{-normal } orall b \in \mathscr{B}, \ x ext{ is not } b' ext{-normal } orall b' \in \mathscr{B}'
ight\}.$$

- Borel's theorem $\implies \mathscr{N}(\mathscr{B}, \mathscr{B}')$ is Lebesgue-null if $\mathscr{B}' \neq \emptyset$.
- Preliminary question: When is $\mathscr{N}(\mathscr{B}, \mathscr{B}') \neq \emptyset$? (next slide)

A general question about numbers normal in some, but not all, bases What can we say about finer

- analytic,
- measure-theoretic

```
properties of nontrivial \mathcal{N}(\mathcal{B}, \mathcal{B}')?
```

Plan

• Normal number - definitions and preliminaries

• Some basic facts that we will need

- Size of sets of partly normal numbers
- Normality and equidistribution
- Normality almost everywhere
- Sets of uniqueness and their connection to normality

• What will we learn?

How large are sets of partly normal numbers?

Multiplicative independence

• Say $r,s \in \mathbb{N} \setminus \{1\}$ are multiplicatively independent & write $r \sim s$ if

$$\frac{\log r}{\log s} \in \mathbb{Q}, \quad \text{i.e.} \quad \exists m, n \in \mathbb{N} \text{ such that } r^m = s^n$$

• For $\mathscr{B} \subseteq \mathbb{N} \setminus \{1\}$, the multiplicatively dependent closure of \mathscr{B} is

$$\overline{\mathscr{B}}:=ig\{c\in\mathbb{N}\setminus\{1\}:\exists b\in\mathscr{B}
i c\sim big\}.$$

For r ~ s, a number is r-normal ⇐⇒ it is s-normal.

$$\mathcal{N}(\mathscr{B}, \mathscr{B}') = \begin{cases} \emptyset & \text{if } \overline{\mathscr{B}} \cap \overline{\mathscr{B}'} \neq \emptyset, \\ \text{uncountable} & \text{otherwise.} \end{cases}$$

▶ W. Schmidt, On normal numbers, Pacific J. Math. 10 (1960) 661-672.

$$\mathsf{dim}_{\mathbb{H}}(\mathscr{N}(\mathscr{B},\mathscr{B}')=1 \quad \text{ if } \overline{\mathscr{B}}\cap\overline{\mathscr{B}'}=\emptyset.$$

► A. Pollington, The Hausdorff dimension ... numbers, Pacific J. Math 10 (1981) 193-204.

Normality and uniform distribution mod 1

• A sequence $\{x_n : n \ge 1\} \subseteq \mathbb{R}$ is uniformly distributed mod 1 if

$$\lim_{N\to\infty}\frac{1}{N}\#\{1\leq n\leq N: \{x_n\}\in [\alpha,\beta)\}=\beta-\alpha\quad \forall 0\leq \alpha<\beta<1.$$

 $\blacktriangleright \{x\} = x - \lfloor x \rfloor$ fractional part of x.

Weyl's criterion for uniform distribution (1916) $\{x_n\}$ is uniformly distributed mod 1 if and only if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}e^{-2\pi ihx_n}=0\;\forall h\in\mathbb{Z}\setminus\{0\}.$$

▶ H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann. 77 (1916), 313-352.

Wall's characterization of normality (1949) $x \in [0,1)$ is *b*-normal $\iff (b^n x)_{n \ge 1}$ is uniformly distributed mod 1.

► D. D. Wall, Normal numbers. PhD thesis, University of California, Berkeley, CA, 1949. Malabika Pramanik (UBC) Normal numbers 06-2024 9/15

Measures and normality almost everywhere

• μ : Borel probability measure on [0, 1), $b \in \mathbb{N} \setminus \{1\}$.

$$\widehat{\mu}(n) = \int_0^1 e^{-2\pi i n x} d\mu(x) = n^{ ext{th}} ext{Fourier coefficient of } \mu, \quad n \in \mathbb{Z}.$$

A criterion of Davenport, Erdős and LeVeque (1963)

$$\begin{split} \text{If} \quad \sum_{N=1}^{\infty} \frac{1}{N} \int_{0}^{1} \left| \frac{1}{N} \sum_{n=0}^{N-1} e^{-2\pi i h b^{n} x} \right|^{2} \, \mathrm{d}\mu(x) \\ &= \sum_{N=1}^{\infty} \frac{1}{N^{3}} \sum_{m,n=0}^{N-1} \widehat{\mu} \big(h(b^{n} - b^{m}) \big) < \infty \quad \forall h \in \mathbb{Z} \setminus \{0\}, \end{split}$$

then μ -a.e. $x \in [0, 1]$ is *b*-normal.

►H. Davenport, P. Erdős and W. J. LeVeque, On Weyl's criterion for uniform distribution, Michigan Math. J. 10 (1963), 311–314.

Malabika Pramanik 🛛	(UBC)
---------------------	-------

A few warm-up exercises

- Exercise: Replicate DEL's Lebesgue-measure proof for a general μ .
- Exercise: Use DEL's criterion to prove Borel's theorem on absolutely normal numbers.
- Exercise: Use DEL's summability criterion to show that for $\kappa > 0$,

$$\limsup_{n \to \infty} \frac{\left|\widehat{\mu}(n)\right|}{|\log \log n|^{1+\kappa}} < \infty \implies \mu \text{ a.e. } x \text{ is } b\text{-normal } \forall b \ge 2.$$

Hint: Try out the simpler case of measures with power decay en route to the general case.

What is this mini-course about? Take 2

A question of Kahane and Salem (1964)

"Is the set of non-normal numbers a set U^* ?"

In our notation, if $\mathscr{N}(\mathscr{B},\mathscr{B}') \neq \emptyset$, does \exists a probability measure $\mu \ni$

- μ -a.e. $x \in \mathcal{N}(\mathscr{B}, \mathscr{B}')$,
- μ is Rajchman, i.e., $|\widehat{\mu}(n)|
 ightarrow 0$ as $|n|
 ightarrow \infty$

• Kahane & Salem's question was posed initially for dyadic expansions.

Lyons (1986)

 \exists a Rajchman measure μ_{L} for which a.e. $x \in \mathscr{N}(\cdot; \{2\})$.

P-J. Zhang (2024)

 $\mu_{
m L}$ -a.e. x is odd-normal but not even-normal.

• No natural generalizations of $\mu_{ extsf{L}}$ for arbitrary $(\mathscr{B}, \mathscr{B}')$.

Motivation: Normality and Fourier analysis

Sets of uniqueness and of multiplicity

A Lebesgue measurable set $E \subseteq [0, 1)$ is a set of uniqueness if

$$\sum_{n\in\mathbb{Z}}c_ne^{2\pi inx}=0 \ \forall x\in[0,1)\setminus E \implies c_n=0 \ \forall n\in\mathbb{Z}.$$

Otherwise, it is a set of multiplicity.

• Rich history originating in the work of Riemann, Heine, Cantor ...

• Exercise:

Countable sets \subset sets of uniqueness \subset Lebesgue-null sets.

• Normal number - definitions and preliminaries

• Some basic facts that we will need

• What will we learn?

(3)

So ... what is this course really about? Take 3

P-J. Zhang (2024)

- Non-empty partly normal sets $\mathscr{N}(\mathscr{B},\mathscr{B}')$ are sets of multiplicity.
- If $b \nsim b'$ for all $(b,b') \in \mathscr{B} imes \mathscr{B}'$, then \exists a Rajchman measure $\mu
 i$

$$\mu$$
 - a.e. $x \in \mathcal{N}(\mathscr{B}, \mathscr{B}')$.

We will discuss some ideas behind the proofs:

- Lecture 1: What are skewed measures?
- Lecture 2: Randomness in multiplicative independent bases
- Lecture 3: (Non)-normality & Rajchman property

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ