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The Pricing of Stock Index Options in a General
Equilibrium Model
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Abstract

This paper analyzes the pricing of stock index options in a simple general equilibrium
model. In this model, the volatility of the stock index and the spot rate of interest are
functions of a stochastic variable. The paper investigates the biases that arise when using
the Black-Scholes model with the assumed volatility and interest rate dynamics. It is
shown that the model can, in principle, explain the biases observed in empirical work on
stock index options.

I. Introduction

Most asset allocation techniques require the direct purchase or the dynamic
replication of stock index options. Since these options are so widely used in the
management of large portfolios, small pricing errors in these options can lead to
large dollar losses for investment strategies. Existing empirical research indicates
that, when the same option formula is used to price index and stock options, it
leads to different biases relative to the observed option prices. More precisely,
existing empirical work seems to suggest that option pricing models generally
overprice deep-in-the-money stock options and underprice deep-in-the-money
index options, while the opposite biases often have been observed for out-of-the-
money options.!

In this paper, we investigate the pricing of stock index options in a general
equilibrium model. In general equilibrium, the volatility of the index is nega-
tively related to the rate of interest. Consequently, it is not possible to consider
the effect of stochastic volatility on index option prices without at the same time
allowing the interest rate to vary stochastically. In this paper, we therefore price
index options in a model that allows the interest rate and the volatility of the
index to change randomly over time and to be related to each other. This model
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I See Evnine and Rudd (1985), Bailey (1986), Shastri and Tandon (1986), and Whaley (1986)
for empirical evidence on the pricing of index spot and futures options, and see Geske and Trautman
(1986) for a summary of the empirical evidence on the pricing of stock options.
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can potentially explain the empirical evidence on stock index options. We find
that, for one model of interest rate dynamics, the index option prices in our mo-
del are higher than Black-Scholes prices for deep-in-the-money options when the
interest rates are negatively related to the level of the index and lower otherwise.

The paper is organized as follows. In Section II, we develop our model,
assuming that the volatility of the index is constant. To stress the relevance of the
link between the interest rate and the index volatility, we compare two econom-
ies that differ only in the volatility of the index and show that the economy with
the highest index volatility can have lower index option prices. In Section III, we
investigate analytically the case in which the volatility of the index changes sto-
chastically, using the Cox, Ingersoll, and Ross (1985b) model. We are able to
show that, in some cases, the sign of the Black-Scholes bias depends on whether
the link between index volatility and interest rates is taken into account. In Sec-
tion IV, we provide numerical simulations for the model of Section III as well as
for an alternative model of interest rate dynamics. We compare the numerical
values for both models to Black-Scholes values and to values that assume a sto-
chastic volatility for the index but ignore the general equilibrium link between
index volatility and the rate of interest.

Il. Index Options in a Simple General Equilibrium Model

In this section, we study the pricing of index options in a simple production
economy with perfect markets and continuous trading. Only one good is pro-
duced. The technology to produce that good is exogenously given and exhibits
constant stochastic returns to scale. If g(¢) is invested in production at date ¢, its
dynamics are given by

(1) dq(n) = p,q(Ddr + o,q()dz,,

when input is always reinvested. ., and o, are assumed to be constant and dz, is
the increment of a standard Wiener process. We assume that production takes
place through firms. Without loss of generality, we assume that firms finance
production only through equity claims. Investors can buy and sell default-free
bonds among themselves, so that risk-free borrowing and lending can take place.
Because of the assumption of constant returns to scale, the value of a firm’s com-
mon stock is equal to the quantity of the commodity used by that firm in produc-
tion. If firms pay no dividends, the instantaneous rate of return on a firm’s com-
mon stock is dg/q.2 The value of the index at time ¢ is written /(f). With our
assumptions, it is natural to define /(¢) as the number of units of the commodity
owned by an investor who, at date ¢, #, < ¢, invested one unit of commodity in
production and reinvested the proceeds continuously. Hence, by construction,
dl/l = dg/q, so that the local variance and mean of the growth rate of the index
are, respectively, o qz and p . With this notation, a European index call option
that matures at date ¢’ and has exercise price equal to k, pays Max(/(¢") — k,0) at
date '.

2 Dividends are omitted for simplicity. As aggregate dividends equal consumption, the level of

dividends would be endogenous in our model and would depend, for instance, on the volatility of the
index.
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To price the stock index option, we need to derive the interest rate dynam-
ics. Let r(¢) be the rate of interest on a bond that matures instantaneously. We
assume that the representative investor has a constant degree of relative risk
tolerance, T, and a constant subjective rate of time preference, p.3 There is no
outside supply of default-free bonds. Therefore, the representative investor does
not hold bonds in equilibrium and invests all his wealth w(#) in production.

To solve for the dynamics of r, we assume that the representative investor
conjectures that r is constant and show that the investor’s conjecture is self-
fulfilling. If investors can borrow and lend at the rate r, the fraction of the repre-
sentative investor’s wealth invested in production at time ¢, n(?), satisfies

) n(i) =T My 3
%

In equilibrium, r(¢) must be such that n(¢) = 1. This implies that

3) r(t) = M, = (%)0; .

By construction, the right-hand side of Equation (3) is constant, so that the inves-
tor’s expectation of a constant rate of interest is rational. Note, however, that the
rate of interest falls with the volatility of the index.> This is because an increase
in the volatility of the index corresponds to an increase in the volatility of the
representative investor’s invested wealth. As a result, the investor would want to
put some of his wealth in riskless bonds. The riskless bonds therefore must be-
come a less attractive investment to induce the representative investor to keep no
wealth invested in the risk-free asset.

As the rate of interest is constant, trading is continuous, and markets are
perfect, the price of the index call option is given by the Black-Scholes formula.
Let c(I(t),x,t") be the price of the index option. Solving for c(/(¢),x,t') in terms of

exogenous variables, we obtain |
2
g

) cU () x5ty = I(ON(d)) - ke[”" T “](II_I)N(dZ) :

where

L L@k + (b, + (5= 7)) «-n

1 I

— — ,\’_
dz—a'1 O'qvl‘ t.

N(.) is the cumulative standard normal distribution function. Inspection of Equa-

tion (4) immediately reveals that the value of the call option depends on the ex-
pected growth rate of the index and its volatility.

3 Bick (1987) also makes the assumption that the representative investor exhibits constant rela-
tive risk tolerance to construct an economy in which the Black-Scholes formula holds.

4 See, for instance, Merton (1971).

5 See Breeden (1986) for an extensive discussion of the relation between production risks and
the rate of interest.
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We now turn to the comparative statics of the index option. The interpreta-
tion of these comparative statics is that we are comparing option values in differ-
ent economies, since we assume that in each economy the volatility of the index
is constant. Not surprisingly, the value of the option increases with g(¢) and with
time to maturity. It also decreases with the exercise price. More surprisingly, the
value of the option increases with the rate of growth of the index because the rate
of interest is an increasing function of the rate of growth of the index. The most
surprising result, however, is that an increase in the volatility of the index has an
ambiguous effect on the value of the option.

To understand why an increase in the volatility of the index does not neces-
sarily increase the value of the option, it is useful to note first that, if the repre-
sentative investor’s relative risk tolerance is large, the value of the option in-
creases with o 2. This is because, when T becomes large, the effect of an increase

q

ino 3 on the rate of interest becomes negligible. In contrast, whenever 7 is not

very large, an increase in o qz brings about a decrease in the rate of interest, which
reduces the value of the option. In this case, the total effect of an increase in the
volatility of the index on the value of the option is the sum of the positive vola-
tility effect, for a fixed rate of interest, plus the negative interest rate effect
caused by the negative relation between index volatility and the rate of interest.

The sum of these effects is given by

- o ke N () + kN ()5,
q q

where 7 = t' —t and N'(d,) is the first derivative of N(d,) with respect to d,. The
right-hand side of Equation (5) is the sum of a negative and of a positive term.
The positive term goes to zero as d, becomes large, while the negative term goes
to — (1/T)tkexp(—rr) < 0. Consequently, the right-hand side of Equation (5) is
negative for large values of d,. This means that the index option is more likely to
be a decreasing function of the volatility of the index if it is deep in the money.
As time to maturity becomes large, however, the right-hand side of Equation (5)
goes to zero. This is because the value of an option with infinite time to maturity
is equal to the value of the underlying asset and, hence, does not depend on the
volatility of that asset.

At this point, one might be tempted to believe that our surprising results
depend excessively on the strong assumptions we made to derive our model.
However, the key result that underlies our analysis is that the interest rate de-
pends positively on the expected rate of change of invested wealth and negatively
on its volatility. This result is fairly robust and is not specific to our model, as
evidenced by the analysis of Breeden (1986).

Ill.  Stochastic Volatility and Index Option Prices in General
Equilibrium

In this section, we explore analytically the case in which the representative

investor has a logarithmic utility function, and the index follows
(¢
(6) fle(t)z = px(ndt + o, x()dz, (1) .
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These dynamics imply that both the local mean and the local variance of the
growth rate of the index are proportional to x(f). Like Cox, Ingersoll, and Ross
(1985b), who use Equation (6) for the dynamics of aggregate wealth, we assume
that x(7) satisfies

(7 dx(t) = a(B—x(D)dt + o _x(Ddz (1) .

We assume that « = 0, B = 0, and o, > 0. With these dynamics, x(¢) drifts back
to B with a speed given by a.

Since the representative household has a logarithmic utility function, it does
not wish to hedge against unanticipated changes in interest rates and, conse-
quently, the interest rate is given by Equation (3) with the coefficient of relative
risk tolerance set equal to one,

(8) r(t) = px() — orx(1) .

Differentiating Equation (8) yields the interest rate dynamics$

) dr(t) = pdx(t) — ol dx(D) .

Equations (7)—(9) imply that the interest rate cannot be negative. It is important
to note that the index volatility dynamics cannot be specified arbitrarily, as they
may yield implausible interest rate dynamics. For instance, if the local mean
growth rate of the index is assumed to be constant, the interest rate is negative
when x(7) exceeds /o 7. In the next section, we investigate numerically a case
in which the local mean growth rate of the index is constant and the interest rate
is never negative.

If we let A = 1/(n;—op), it follows that x(r) = Ar(). Consequently, the
stock index and interest rate dynamics can be written as functions of Ar(z) instead
of x(t). Given Equations (6) and (7), the state of the world is completely specified
if one knows I(¢) and r(¢), so that the index option depends on only two stochastic
variables and time. Cox, Ingersoll, and Ross (1985b) solve for the price of de-
fault-free discount bonds when the rate of interest follows Equation (9) and show
that the returns on bonds are perfectly negatively correlated with changes in the
interest rate. This means that the index option can be hedged by taking appropri-
ate positions in the index and a discount bond. The option therefore can be
valued by discounting its payoff at maturity at the risk-free rate, using risk-neu-
tral price dynamics for the index. If C(/,k,r,¢) is the value of the index option, it

must satisfy
+7
- Ir(s)ds

(10) Clk,rt) = E e ; max [I'(t+71) — k0],

r(),I' (M

where

an dl' (1)

I'(n)

6 Ramaswamy and Sundaresan (1986) study the pricing of options on index futures using the
interest rate process of Equation (9), but keep the volatility of the index constant.

= r(ndr + N\, r(Ddz, .
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E, . r{*} is the expectation conditional on r(¢) and I'(#). The assumption that r(s)
is independent from /(j), j € [0,s], for all s, greatly simplifies Equation (10) and is
used in the remainder of this section. With this assumption, the distribution of
Ln/(j) conditional on [!*7r(s)ds is normal.” Define v(t+7) = [!*r(s)ds. With
this new notation, Equation (10) becomes

(12) C{krt)=E e " max [1’(z+~r)—k,O]H.

r()0' (1) {EV(I-H'),I'(I){

The expression in curly brackets on the right-hand side of Equation (12) cor-
responds to the expected payoff of the option discounted at the risk-free rate
for a given value of v(z+ 7). Hence, to compute the value of this expression,
we can use the Black-Scholes formula. Designating this expression by
C(,k,r,t | v(t+17)), we have

(13a) C(Lkyrt|v(t+7)) = IN(dl) - ke_v(’“)N(dz) ,

where

Lo(@k) + (14 (U2)a; N)v(r+)

13b d = )
(136) ! o, NI+
(13¢) d2 = dl — 0'1\/)\V(t+7) .

It follows from this that the value of the index option is the expected value of the
option price calculated for a given v(t+7). v(t+7) has the interpretation of 7
times the average interest rate.

We now turn to the comparative statics of the index option price. Since the
comparative statics of options that exhibit stochastic volatilities have been stud-
ied previously,® we compare the comparative statics of C(/,k,r,r) with those of a
call option on I when / follows Equation (6), but the rate of interest is assumed
constant. We denote the value of the option that ignores the relation between
index volatility and the rate of interest by C(I,k,x,t) and [/*"x(s)ds by h(t+T).
Let C(I,k,t | z) be the Black-Scholes value of a call option on / evaluated at the
mean value of z, where z is either v(t+7) or h(t+ 7). Let ¥ and & be the mean
values of v(z+ ) and A(t + 7). Hull and White (1987) use Jensen’s inequality to
show that

2
(14) sign{C (Lkx,t) — C(L,k,t | h)} = sign (a__%) .
Y

7 See Hull and White (1987) for this argument.

8 See Hull and White (1987), Johnson and Shanno (1987), Wiggins (1987), and Scott (1987).
Note that these authors assume different dynamics for the volatility. For instance, Hull and White
(1987) assume that the volatility of the rate of change of the index is constant, while here it falls as the
state variable increases to conform with the interest rate dynamics of Cox, Ingersoll, and Ross
(1985b).
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This relation follows since C(I,k,x,t) is the expectation of C(/,k,t | k). Eval-
uating 92C/9h?, Hull and White (1987) find that the Black-Scholes formula,
computed for the mean volatility, overprices at-the-money options and under-
prices deep in- or out-of-the-money options. To compare C(/,k,r,t) to C(I,k,x,t),
we note first that, if the interest rate in C(I,k,z | k) is set at /7, then C(I,k,t | h)
= C(l,k,t | v). We therefore can use Jensen’s inequality, so that

2 2
(15) sign{C (L) — CLkxn} = sign]2S - 2C0

av oh
Evaluating the term in curly brackets on the right-hand side of Equation (15), we
obtain

2 2

C o°C v+ il 12 12
= 2= = ke =N.({d,)d,o,N" v
Z _ 1\%2) %%

v R (%)
16

(16) Lnl/k + v—%olz)\v

+ %Ni (dZ) (’1)‘1/2 P + N(d2)

The right-hand side of Equation (16) is negative for large values of Ln//k and is
negligible for small values. If the rate of interest exceeds  times the mean vola-
tility of the growth rate of the index, then the right-hand side of (16) is negative
for all positive values of Lnl/k, while otherwise it is negative for all sufficiently
large values of Lnl/k. Hence, Equation (16) suggests that the theoretical Black-
Scholes formula underpricing of deep-in-the-money options is lessened when
one takes into account the relation between index volatility and the interest rate.
This result follows because, for deep-in-the-money options, the Black-Scholes
formula is a concave function of the interest rate and a convex function of the
volatility. For an option that is sufficiently deep in the money, it is possible for
the interest rate effect to dominate the volatility effect, so that the option value
falls as the volatility increases and the Black-Scholes formula overprices the op-
tion. For this case, ignoring the link between the interest rate and the index vola-
tility leads one to accept the nongeneral equilibrium comparative statics (Equa-
tion (14)) and to mistakenly believe that the Black-Scholes formula underprices
the option. Numerical simulations have to be used to obtain further insights into
the comparative statics of index options when the index follows the dynamics
assumed here. Such simulations are presented in the next section, along with
simulations for an alternative model of index dynamics.

IV. Numerical Comparisons of Index Option Pricing Models

In Section 1II, we consider a model of index price dynamics with the prop-
erty that both the drift and the volatility of the index are proportional to the state
variable x(¢). The advantages of using these index dynamics are that (1) bond
prices satisfy a known formula derived by Cox, Ingersoll, and Ross (1985b), and
(2) the interest rate is always positive. In this section, we numerically investigate
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option values for an alternative model of index dynamics with constant drift.
This model makes it possible to focus the analysis squarely on the implications of
stochastic volatility. However, since the drift is constant, one must restrict the
range of the volatility if one wants to insure that the rate of interest is always
positive. The option values obtained for this model of index dynamics are com-
pared to Black-Scholes values, to the values that obtain for the model used in
Section 111, and to stochastic volatility values that assume a constant interest rate.
Assuming that the drift of the index is constant, we have the following price
dynamics for the index i
(17) T(tt)) = wdt + o, K(Ddz (1) .
Equation (17) implies that the local variance of the index is proportional to x(z),
which is also the case for the model of volatility dynamics assumed in Section
III. The dynamics for x(7) are the same as those assumed in Section III, that is

(18) dx() = a(B—x(D)dt + o, F(Ddz,(0) ,

where a, B, and o, are assumed to be positive.

As in Section III, we assume that the representative investor has a logarith-
mic utility function. Consequently, with the assumed index dynamics, the inter-
est rate equals

(19) r(t = p, — orx(0) .

Equation (19) implies that the interest rate is always nonnegative only if x(¢) can-
not exceed w,/o . B must be chosen so that, when x(f) reaches its upper limit, it
is pulled back down toward 3.

Using Equation (19), the state variable x can be eliminated from Equation
amn,

(20) %’% = wdt + [(R—r()dz .

We also can write the interest rate dynamics as a function of r(#),

@h  dr() = a[(p-07B) - r(n]di - 0,0, [(B=TD)dz, .

In Section III, the index option could be priced by arbitrage since we knew
from Cox, Ingersoll, and Ross (1985b) that the rate of return of default-free
bonds is perfectly correlated with the rate of change of the state variable. This
approach cannot be used in this section because we do not have a formula for
bond prices with the state variable dynamics assumed here. However, since this
economy is the same as the one in Cox, Ingersoll, and Ross (1985a), the ex-
pected rate of return on any asset is equal to the covariance of the rate of return of
that asset with the rate of growth of the index. Consequently, the index option
with value C(,k,r,t) must satisfy the following partial differential equation

Cir + C,{a [(p,—ofﬁ)—r] + po,0, (=)}
1
@)+ 5[ (n=n) + C o}l (n=") = 2C, Ipoyo, (n—7)]
+C,—-rC =0.
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Parameter p is the correlation between dz; and dz,. Table 1 provides option
values computed by solving Equation (22) numerically for C after imposing the
appropriate boundary conditions.® The table also reports numerically computed
values for a comparable nongeneral equilibrium stochastic variance model and
for the stochastic drift and variance model of Section III. The option values are
computed with X(0) and B set at one and r(0) set at 5 percent. We assume that the
state variable is at its steady-state value so that the departures of our option prices
from Black-Scholes prices are not simply brought about by transitory departures
of the state variable from its steady-state value. The volatility parameters, corre-
lation, and initial index value are varied to produce comparative statics. The
table also includes Black-Scholes values computed using the variance parameter
o7, and the constant T-bill yield consistent with the life of the option and Equa-
tion (21).

In Table 1, option prices always increase with the volatility of the index.
However, the price increase is greatest for the Black-Scholes model when the
correlation between the index and the state variable is negative and is greatest for
the stochastic volatility model otherwise. The stochastic volatility call option
values increase as the correlation between the index and the state variable in-
creases. Finally, the effect of an increase in the volatility of the state variable also
depends on that correlation. If the correlation between the index and the state
variable is zero, a change in the volatility of x has no discernible effect on the
option values. If p is greater than zero, an increase in the volatility of x decreases
option values, while it has the opposite effect if p is smaller than zero.

Table 1 illustrates the importance of the correlation coefficient between the
state variable and the index. Since, for the state variable dynamics assumed in
this section, the interest rate is a decreasing linear function of the state variable, it
follows that, if the correlation coefficient between the state variable and the index
is positive, the correlation coefficient between the index and the rate of interest is
negative. Since a negative relation between stock returns and interest rates has
been often documented, 10 the model developed in this section leads one to expect
index option prices to have higher values than predicted by the Black-Scholes
model. For the simulations reproduced in Table 1, the magnitude of the mistake
made when using the Black-Scholes formula instead of the correct stochastic vo-
latility formula does not exceed 10 percent for the most plausible parameter
values. However, if the index volatility is high, the bias can become extremely
substantial for deep-in-the-money options, as evidenced by a bias of a third when
the index standard deviation is 0.4, the volatility of the state variable is 0.3, and
the index is 120 percent of the exercise price.

It is important to recognize that the dynamics for the index volatility as-
sumed here differ from those of earlier papers that consider the pricing of options
on assets with stochastic volatilities. Consequently, our stochastic volatility op-
tion values assuming a constant interest rate differ from those that one would
obtain using the assumptions made in earlier papers. Hull and White (1987), for
instance, assume that the volatility follows a lognormal diffusion process,

9 Numerical values are computed with the mixed explicit/implicit hopscotch method of Gourlay
and McKee (1977).
10 See Fama and Schwert (1977), for instance.
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TABLE 1

Simulated Call Option Values from Four Models?2

e

0.8
09
1.0
11
12

0.8
09
10
11
12
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09
10
1.1
12

0.8
09
10
11
12

0.8
09
1.0
1.1
1.2

0.8
09
10
11
12

08
09
10
11
12

08
09
1.0
11
12

0.8
09
10
11
12

08
0.9
1.0
11
12

08
09
10
11
12

02
02
02
02
0.2

0.2
02
02
02
02
02
02
02
02
02

03
03
0.3
03
03

03
0.3
0.3
0.3
03

0.3
03
03
0.3
03

04
04
04
04
04

0.4
04
04
0.4
0.4

04
04
04
04
04

0.3
0.3
03
0.3
03

0.3
0.3
03
03
03

pe

-05
-05
-05

-0.5

0.0
0.0
00
0.0
00
05
0.5
0.5
0.5
05

-05
-05
-05
-05
-0.5

00
0.0
00
0.0
0.0

05
05
05
0.5
05

-05
-0.5
-05
-0.5
-05

0.0
0.0
0.0
00
00

05
05
05
05
05
-05
-05
-05
-05
-05

0.0

0.0 -

00
00
0.0

General
Equilibrium
General Ordinary Stochastic

Equil- Stochastic Drift and Black-
ibriumf Variance9 Varianceh Scholes!
0.044 0.044 0.045 0.046
0084 0.084 0085 0.087
0138 0.137 0.140 0.142
0.202 0.201 0.205 0.211

0275 0.274 0280 0.289
0.045 0.045 0.045 0.045
0086 0.086 0086 0087
0.142 0.142 0142 0142
0211 0.211 0.211 0.211

0289 0289 0289 0289
0 046 0.046 0.046 0.046
0.089 0 089 0088 0.087
0.146 0147 0.145 0.142
0.221 0223 0.218 0.211

0306 0.308 0.302 0.289
0 044 0.044 0.045 0.045
0.083 0083 0.084 0.087
0.136 0135 0138 0142
0.198 0197 0.202 0.211

0.269 0.268 0.276 0.289
0045 0.045 0.045 0.045
0.086 0.086 0.086 0.087
0.141 0.141 0.142 0.142
0211 0.211 0.210 0211

0.289 0.289 0.289 0.289
0047 0.047 0046 0.045
0.091 0091 0.089 0087
0.148 0150 0.147 0142
0227 0.230 0224 0211

0.315 0.320 0313 0.289
0.043 0043 0045 0.045
0.082 0.081 0083 0.087
0.133 0.133 0.137 0.142
0194 0.194 0.199 0.210
0.265 0 264 0272 0.289
0045 0.045 0.045 0045
0.086 0.086 0.086 0.087
0140 0.141 0.141 0.142
0.211 0211 0.210 0211

0.289 0.290 0288 0.289
0047 0.048 0046 0046
0.092 0.093 0091 0.087
0152 0153 0.151 0.142
0234 0238 0235 0211

0325 0.332 0.335 0289
0.018 0.018 0.019 0.019
0.050 0.050 0.050 0.051

0103 0.103 0.102 0.104
0173 0173 0.172 0.177
0.255 0.254 0.254 0.262
0018 0.018 0.018 0.019
0.051 0051 0.051 0.051

0.104 0.104 0.104 0104
0.177 0.177 0.176 0.177
0262 0.262 0.262 0262
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TABLE 1 (Cont.)

General
Equilibrium
General Ordinary Stochastic
Equil- Stochastic Drift and Black-
/Ko af a,d pe ibriumf Varance9 Variance” Scholes'
08 02 03 05 0018 0018 0018 0019
09 02 03 05 0051 0 051 0051 0051
10 02 03 05 0106 0106 0106 0105
11 02 0.3 05 0180 0180 0.182 0177
12 02 03 05 0268 0269 0271 0262
08 04 03 -05 0070 0069 0074 0076
09 04 03 -05 0111 0110 0118 0122
10 04 03 -05 0177 0176 0178 0180
11 04 03 -05 0220 0.218 0.234 0247
12 04 03 -05 0285 0283 0.303 0322
08 04 03 0.0 0.076 0076 0076 0076
09 04 03 0.0 0123 0123 0122 0123
10 04 03 00 0179 0179 0179 0180
11 04 03 00 0248 0248 0247 0247
12 04 03 00 0323 0324 0322 0322
08 04 03 05 0088 0090 0082 0076
09 04 03 05 0146 0 151 0138 0123
10 04 03 05 0206 0215 0204 0180
11 04 03 05 0.311 0 326 0307 0248
12 04 03 05 0413 0437 0422 0322

a The initial interest rate is 5 percent, the initial value and long-run mean of the state varnable, x, are 1, the
speed of adjustment 1s 0 5, and the time to expiration 1s one year

° |Index level, /, divided by exercise price, k

¢ Volatility parameter for index dynamics

d Volatility parameter for stochastic volatility dynamics

e Correlation between noise processes of index and volatility dynamics

f General equilibrium stochastic variance model with constant drift and index volatility proportional to a
state variable, x, that follows a square-root mean reverting process

g Comparable nongeneral equilibrium stochastic variance model (1e, model with stochastic index
volatility but constant interest rate)

h General equilibrium model with index drift and variance proportional to a state variable, x, that follows a
square-root mean reverting process

' The Black-Scholes values are computed using a steady-state index volatility and a default-free interest
rate given by the model that yields Column b option values

whereas here the volatility of the state variable follows a square-root process.
The difference in the assumptions about the volatility dynamics plays a nontrivial
role in the results. With the assumption made by Hull and White (1987), the
percentage bias decreases as the option becomes more in the money, while here,
for in-the-money options, the bias increases when the state variable is positively
correlated with the index value. An important lesson from this paper is, there-
fore, that the economic relevance of stochastic volatility option models depends
nontrivially on the assumed volatility dynamics.

V. Conclusion

This paper discusses the valuation of index options in a simple general equi-
librium model. While the analysis was conducted for two different types of index
dynamics, it can be extended to other dynamics. Our analysis indicates that the
approach used here helps to explain the biases observed by empirical researchers.
Since these biases may have alternative explanations, it would be useful to test
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additional restrictions on the data implied by our model. For instance, the as-
sumed model for index volatility could be tested directly.

The general equilibrium considerations emphasized in this paper have a role
to play in the valuation of other options. For instance, the value of currency
options depends crucially on the volatility of the exchange rate and on the differ-
ence between the domestic and the foreign interest rates.!! However, the interest
rate differential is itself generally a function of both the mean and the volatility of
the exchange rate. When valuing currency options, one wants, therefore, to take
into account the relation between exchange rate volatility and the interest rate
differential.
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