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Goals for today’s presentation

* Review some applications and background for multilevel count data
* Demonstration: proficiency counts modeled after the ECLSK

* Provide theoretical background and distinctions between Multilevel
Poisson and Multilevel Negative Binomial Models

* Considerations on assessing degree of clustering for multilevel count data
* Example and comparisons ML P and NB
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GLMMs for Counts

* Multilevel Poisson * Conditional, or “cluster-specific”
models
e Multilevel Negative Binomial * Challenging for researchers to model
and interpret, or recognize conditions
s Approach: under which one (P or NB) may be
* Theoretical background of both models preferred

* Assessment of clustering

* Present guiding questions to aid researchers in model comparison and choice,
given their research questions

* Model interpretation
» Software issues and possible extensions or other analysis options

Counts are common outcomes of interest

* Used to capture frequency counts of events or behaviors (0, 1, 2, ...)
* These data are often nested within higher-level units or clusters

* Could result from experimental or non-experimental studies

* How many times a teacher uses specific instructional practices in a classroom (e.g.,
outcomes are counts, for teachers in intervention versus control schools)

* Student scores on a math proficiency assessment (number correct) between public and
private schools (outcome are counts, for students within multiple schools)

* Counts of health events (e.g., number of antenatal care visits for women in low/middle
income countries)

* Change over time for events (e.g., number of patient seizures) between treatment and
placebo groups (repeated measures design)

* Number of words recalled during an auditory exam (correlational study, if no intervention)
* Others?
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Some recent (multilevel) examples in the literature

* Geremew, et al. (2020). Factors affecting under-five mortality in Ethiopia:
A multilevel negative binomial model. Pediatric Health, Medicine and
Therapeutics, 11, 525-534.

* Barth & Schmitz (2021). Interviewers’ and respondents’ joint production
of response quality in open-ended questions: A multilevel negative-
binomial regression approach. methods, data, analysis, 15(1), 43-76.

* Chambers & Erausquin (2018). Race, sex, and discrimination in school
settings: A multilevel analysis of associations with delinquency. Journal of
School Health, 88(2), 159-166.

* LARRC, Lo & Xu (in press). Impacts of the Let’s Know curriculum on the
language and comprehension related skills of PK and K children. Journal
of Educational Psychology.

Special nature of count data

* Numbers or rates of events typically vary across individuals or cases in a
sample
* Non-negative integers: 0,1, 2, ...
* Distribution of counts is often skewed/reversed J-shaped
* Lots of people with no occurrence of the event
* Some people with one or more occurrences
* A few people with a very high number of occurrences
* May occur within a specific range, time span, or geographic area (i.e.,
“exposure” opportunities, which also may vary across cases)

=» Q: Can variation in counts or rates be explained by one or more
predictors, and across one or more levels of the data?
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Historical approaches...

average inferential

B Depending on the shape of the dependent .
variable, people have sometimes used OLS or | o
standard HLM, but: e

* Predictions may be negative or non-integer
* Typically yields heteroscedastic residuals ’ mﬂﬂ
* Negatively affects precision of regression 9w

2000

coefficients T et
» Standard errors are downwardly biased

Frequenc,

R . Distribution of number of inferential-type

* Can mask important relationships in the data interactive shared book-reading
* Larger sample won’t help with accuracy of (Binici, 2014)
regression estimates

Better approach: Multilevel Count Models

* Multilevel models for counts can adequately capture the shape and
nature of the data — and adjust for clustering

* Poisson regression most common initial model for count data
* Poisson process counts the number of times that an event occurs

* If events occur during a given time span or other index of size, models can
estimate the rate at which events occur.

* Poisson models assume that the (conditional) mean of the data is equal to its
(conditional) variance

* “equidispersion”
* Issue to watch out for: common occurrence with count data is
“overdispersion,” so need to check and adjust for this.

* Overdispersion occurs when the variance of observed counts is greater than
the mean (var > mean)
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Demonstration Example

* Data modeled after proficiency counts from the ECLS-K
* https://nces.ed.gov/ecls/kindergarten.asp

* Baseline data from 1998 — 99, followed up through 1%t grade, 3" grade, 5t

grade, 8th grade

* Students sampled from both public and private schools

* Modified/simulated for demonstration purposes (not meant to be

representative of the ECLS-K original sample)

* ¥, = proficiency counts (profcount) were collected for a sample of n = 11,301

Kindergarten children sampled from within J = 720 early-grade schools.
* Scored based on the number of correct responses to a set of twelve early reading

and early math skills items, with the total possible count ranging from 0 to 12 (X =

2.05 items, S =1.85, $? =3.44).

9
11301 Students, in 720 Schools
Alphabetic List of Variables and Attributes
# | Variable Type  Len | Format Informat | Label
L1 6  c_momed MNum 4 FB.2 centered mom's highest level of education
— — * Range of 5to 24

ID1 1| childid Mum § F8.2 child id .
Kindergarteners

L1 T | foodinsec Mum § | FOODINS. 0 'none’ 1 food insecurs’
per school

L1 4 male MNum 8 MALE. child sex

[ ]

L1 5 | momed MNum 8 MOMED. mom'’s highest level of education Avera.ge Of abOUt
16 children per

L2 9 nbhoodprobs | Mum 4 FB.2 nbhoodprobs scale
school

L1 3 | profcount MNum 4 FB.2 sum prof read and math

L2 &  public MNum 4 PUBLIC. school type pub or private

ID2 | 2 schoolid Char g 58 58. school code

L1 = student level L2 =school level "
10
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Proficiency Count Distribution — Kindergarten

3000

2000

Frequency

1,000

Histogram

sum prof read and math

Mean =205
Std.Dev. = 1.854

N=11301

900 1200

(Not adjusted for clustering by school)

Statistics
profeount sum profread and ma
I Valid 11301
Missing 0
Mean
Median 2.0000
Mode 1.00
Std. Deviation 1.85431
Variance @ var > mean
Range o.aon
Minirmum .00
Maximum 10.00

11

11
Descriptive Statistics — Student Level (n = 11301)
Statistics
c_momed
momed centered
mom's mom's foodinsec 0 o)
male child highest level highest level 'none'1 food ° SOA) male
sex of education of education insecure’ e 8% fOOd insecure
[+ Walid 11301 11301 11301 11301 ° Median |V|0m'S Ed
Missing 0 0 0 0 is 5 — at least
Mean 5017 445 0000 0760 some College
Median 1.0000 5.00 EE06 0000 . Mean Mom,s Ed iS
Mode 1.00 3 -1.45 .00 445 SO
P . 7 :
Std. Deviation 50002 1.714 1.71383 26503 Vocat|ona|/tECh, 2
Range 1.00 8 8.00 1.00 r C0||ege or at
Minimum .00 1 -3.45 .00 east some college
Maximum 1.00 9 455 1.00
12
12
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Descriptive Statistics — School Level (J = 720)

Statistics

public nbhoodprobs

* 78% public schools

I Walid T20 T20

Missing 0 0 * Nbhoodprobs represents degree
Mean 7750 6.2944 of crime/conflict issues in
Median 1.0000 5.0000 vicinity of school (crime, trash,
Mode 1.00 4.00 vacant buildings, drug-use, etc.),
Std. Deviation 41787 3.38564 possible range from 0 to 21:
Range 1.00 18.00 e Mean = 6.29
Minimum .00 3.00 . Std dev = 3'39
Maximum 1.00 21.00

13

13

Poisson or Negative Binomial?

* Poisson Regression models the conditional distribution of Y, that is, the
(count) distribution that occurs when Y is conditional on the values of the
predictors

* We are interested in modeling this conditional process

* However, the Poisson (P) model makes a very strong assumption that the

variance of the distribution is equal to the mean: E(Y) = Var(Y) =4
* “Equidispersion”

» Adaptations are needed when overdispersion is present

* Clustering is also a source of overdispersion, if ignored

* Multilevel extensions for P and NB adjust for the clustering in the data

* The Negative Binomial (NB) model adjusts for and includes an additional
parameter that captures the extra variation present in the data

14
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Choice Between NB and P

* Unfamiliarity with NB can be challenging for applied researchers

* Four Guiding Questions

1. To what degree is clustering present in the (count) data, and does accounting for
clustering improve model fit (over a single-level model)

2. After adjusting for clustering, is the assumption of equidispersion reasonable, or should
this assumption be relaxed?

3. Does inclusion of covariates improve model fit, and should any level-one predictors be
treated as random or fixed?

4. How are parameter estimates interpreted in our final model (for multilevel P or NB?)

* These questions mirror similar approaches for “standard” (continuous
outcome) multilevel models
* Added complexity given the count nature of the outcome

15

15
Brief review of Poisson
Model comparisons
Adjustments for overdispersion
% 120
§ 40 \
P E
= ’ Nur:merof(ziealhs I:y hom:kick °
Witadystaw Bortkiewicz: Author of The Law of Small B emor e o Covaly o pmcatinefmesthetts
Numbers (1898)
image from mathshistory.st-andrews.ac.uk 16
16
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Poisson distribution

* Y is a non-negative integer, and can take on response valuesy =0, 1, 2, ...

y -2
Py =y)=2C
!
* where A= E(Y) = V(Y) (property of equidispersion)
* A can be any positive value (not necessarily an integer, since it’s an
average)
* itis the mean, or the “rate parameter”
* Average number of events (counts) that occurs in the identified observation

period
* “exposure” time — if it varies for each case — can be adjusted for as an “offset”

fory=0,1,2,...

* We are interested in the probability of observing a specific count response:

17

Poisson Regression Model (single-level)

* In the regression model, the number of events is assumed to follow a Poisson
distribution with a conditional mean based on each individual’s characteristics:

2
/11. Yig No random error

P(y, | Xi) = term in the
| regression model,

;e
since we already
assume that the

/Il' = E(yl | Xl) = exp(xlﬁ) variance is equal to

the mean

log(4,) = By + Bixy + Bryxiy + Bixis + ”'ﬂp'xip

A generalized linear model, for which the parameter estimates are found through
maximum likelihood estimation

18
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Coefficient Interpretation (single-level)

* Each estimated coefficient, B,- =b, , represents the expected change in the
natural log of counts given a one-unit change in the predictor, holding
other predictors constant

* Coefficients can be exponentiated to represent change in actual counts
(rather than change in the log-counts) to yield the rate ratio (RR) or
incidence rate ratio (IRR)

* exp(b)) =RR
* Each RR explicitly compares the rates of two values of the predictor as it increases
by one unit

* For each one-unit increase in the predictor, the expected count will
multiplicatively increase (or decrease, if the parameter is negative) by the value of
the RR, holding other predictors constant

19

Negative Binomial Regression Model (single-level) (1)

* Includes a distinct source of dispersion over the assumed equidispersion
Poisson variance

~ But: How t
log(?»,.) - BO + leil + BinZ + B3xi3 +"'Bpxip + Si dl:aracct)::‘izz
v

A, =exp(x,B)-exp(s,) = A, -exp(g,) =A,-8, «  [Ned=exwl)

* Allows for count estimation models where the variance can be different from
(greater than) the mean
» Rates may vary across individuals with the same collection of predictors

» Randomly perturbed or vary by g,
* Interpretation of fixed model parameters and RR same as in the P regression
+ To identify the NB regression model, we make an assumption, E(3,) = 1.0
* Expected counts then are the same as they were in the P regression:

E(X,) = E(xzsz) = klE(Sl) = 7\‘1'

20

20
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Negative Binomial Regression Model (single-level) (2)

* The distribution of P(y; | x;, ;) is still Poisson, but we can’t solve this equation without
specifying the form of pdf for the 6,. (Cameron & Trivedi, 2013, p. 115-119; Long, 1997,p. 231-
232; Long & Freese, 2014, p. 507-508; Stroup, 2013, p. 352-354)

* (note these refs do not always use the same symbols when presenting their equations)

* The most commonly used distribution for the extra dispersion represented by 9, is the
Gamma distribution.

* This form of NB model is a mixed Gamma-Poisson model (NB2 or quadratic form)

* The Gamma distribution in general has two parameters: one for scale or location and one for
shape (0).

* With E(5) = 1.0 for identification, we are interested in the single shape parameter, 0

* Degree of overdispersion in the conditional means is governed by 6, and the variance of the
NB distribution is a function of both the Poisson and Gamma variances

21

21

Variance of NB (NB2) as the Poisson-Gamma Mixture

. . . . Poisson is a reduced
* A distribution that is Gamma(X, 0) has variance A2/0 | (Mcculiogh & form of the P-G

. . . Nelder, 1989 :
* Thus the variance for the mixture is: V(Y) = A + A2/0 elder, 1989) mixture, thus
- allowing for nested

* This represents an indirect relationship between 6 and dispersion comparisons of the
* As 0 tends to infinity, the extra dispersion component tends to 0 models

* To capture a direct association, the NB model is often parameterized so that
o = 1/6 represents the extra dispersion: V(Y) = A + aA?
* As qa increases, so does the extra variance component
* As o tends to 0, less extra dispersion is added, and the variance of the mixture converges
to that of the Poisson

* Under this parameterization, o is referred to as the heterogeneity or NB
dispersion parameter.

* There are other ways to express an NB model, but this representation is
referred to as the NB2 or simply the NB model

22

22
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Clustering and Multilevel P and NB Models

* Presence of clustering in the data can contribute to overdispersion

Multilevel Poisson * Random intercepts and slopes can be added, similar to

Yy | Ay ~ Poisson(d;) standard HLM models

In(h; ) =g+t * NB adds random effect at the student-level to capture

i, ~ N, T,) contribution of omitted variables thought to be related to
* * overdispersion

* The NB exponentiated dispersion effects, exp(g;), are
Gamma distributed.
* Only one parameter is estimated
* 1/o = scale or location
Uy; ™ N(0,74) * o =shape
* Thus the mean for the exp(g;) is 1.0, and overdispersion
(variance) parameter is o

Multilevel NB

¥, | hy ~ Poisson(h,)

ln(?uy) =Yoo Ty, T €

1
exp(e,) ~ Gamma ( < a ]

23

23

Degree of Clustering

* For data that are hierarchical, nested or clustered, one of the first steps
we pursue in a multilevel analysis is the degree to which systematic
differences between clusters is present (ICC or intracluster coefficient).

* There have been challenges until recently to accurately assess degree of
clustering for count data
* Equidispersion assumption of Poisson
* Level-1 and level-2 components of variance are measured on different scales
(count response scale at level 1, continuous scale at level 2)
* Austin et al. (2018) and Leckie et al. (2020) developed and provide code
for “exact” approach to estimating the ICC for counts

24

24
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Assessing the ICC for Example Data

* For our demonstration data (Y = profcounts of K children assessed within
schools), we have:

. . . Not recommended as an estimate
* Normal approximation (for crude comparison) of correlation among students
. - o within the same school, due to
ICC = .24 (24%) skew, J-shape of the data

. . We followed Leckie et al. (2020) & Austin et al. (2018), focusing on
* Multilevel Poisson Variance Partition Coefficients for random intercept models with no
e ICC=.37 (37%) covariates (varlance. component models), using marginal/population-
averaged model estimates.

N . Summary: Once clustering is accounted for, the NB model indicates
Mu Itl level NB somewhat smaller estimated correlation between students from the
* ICC=.28 (28%) same school, but 28% of the (marginal) variance in profcounts can be

attributed to systematic difference between schools.

‘ Calculations, next page ‘ i,

25

Based on Leckie et al. (2020)

Marginal expectation of y, (Poisson): /;I =E(y;) = exp(yoo +%]

Marginal variance (Poisson): Var(yy )= (ki’f )Z -[exp(‘too )— l] + ( }Lf )

(}L;{ )l.[exp(roo) - l]
(13 ) o[exp(rg) 1]+ (1)

ICC(Poisson) = VPC, (P) =

(127) Jexp(ree) 1]
(}Lg‘ )Z.[exp('rm) —1]+ [(lg‘ )+ (lf )2 exp(roo)a]

ICC(NB) = VPC, (NB) =

26

26
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Comparison of Competing Models

* Several ways to choose between competing models

* Most common is through the Deviance
* Sum of the squared deviance residuals
* Can compare sum of the squared Pearson residuals to df, as additional assessment of
presence of overdispersion
* Deviance statistics represent badness of fit or discrepancy between a model
and the actual data
* As with other generalized and mixed linear models, the deviance itself may
not follow the expected y?2 distribution, but the difference in deviances or
differences in the -2LL between two nested models will have df equal to the
difference in number of parameters between the models being compared

* To address our guiding questions (slide 15), we utilize (in part) the Chi-
square difference test for competing nested models.

27

27

Results — Table 1 — Random Intercepts P and NB

Table 1. Selected Analysis Results of Proficiency Counts using Two-level Random-Intercept Poisson and Negative Binomial Models.
Parameter estimates (standard errors): Results in SAS PROC GLIMMIX (Laplace estimation).

Random Intercepts Poisson Random Intercepts NB
Parameter/Statistic | Unconditional Level-1 Level-1 and 2 Unconditional Level-1 Level-1 and 2
predictors predictors predictors predictors

voo= Intercept 0.59 (.02)* 0.65(.02)* 1.12 (.04)*° 0.60 (.02)* 0.65(.02)* 1.12 (.04)*°
y10 = male —.09 (.01)* —0.09 (.01)* —0.09 (.02)* —0.09 (.02)*
20 = ¢_imomed 0.12 (.004)* 0.12 (.004)° 0.13 (.005)® 0.12(.01)*
y30 = foodinsec —0.21 (.03)* —0.20 (.03)*® -0.22 (.04)® -0.21 (.04)®
yo1 = public —0.29 (.04)* -0.28 (.04)*®
yoz = nbhoodprobs —0.04 (.005)* —0.04 (.005)°
oo = school 0.25 (.02) 0.17 (.01)* 0.13 (.01)* 0.24(.02)* 0.15(.01)* 0.12(.01)*
infercept variance

o= 0.15 (.01)* 0.12 (.009)? 0.12 (.009)*
overdispersion

-2LL 41209.50 40321.52 40182.89 40859.01 40091.42 39955.28
Pearson y*/df 1.23 1.18 1.19 0.96 0.97 0.98

AIC 41213.50 40331.52 40196.89 40865.01 40103.42 39971.28
*p<.0001

28
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Results — Table 2 — Random Coefficients NB

Table 2. Random Coefficients Results for Negative Binomial Models. Parameter estimates
(standard errors): Results in SAS PROC GLIMMIX (Laplace estimation).

Random Coefficients NB

variance

Parameter/Statistic Model A IRR Model B IRR
yoo= Intercept 0.67 (.02)* 1.95 1.05(.04)* 2.86
y10 = male —0.09 (.02)* 91 —09 (.02)* 91
y20 = ¢_momed 0.15 (.006)* 1.16 0.14 (.006)* 1.15
130 = foodinsec —0.21 (.04)* 81 —0.20 (.05 * 82
yo1 = public —0.21(.03)" 81
o2 = nbhoodprobs —0.04 (.005)* 96
Too = school intercept 0.42 (.05)* 033 (.0H*

T2 = ¢_momed slope
variance

0.0031 (.001)®

0.0025 (.001)°

o = overdispersion 0.11 (.009)® 0.11 (.009)®
Pearson y*/df 0.97 0.97
-2LL 40001.79 39896.83
AlC 40017.79 39916.83
ap < 0001
bp<.001

29
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Guiding Questions (1)

Table 1 contains results for random
intercept multilevel P and NB models

* -2LL(single-level P) = 44497.10 (genmod, null)
e -2LL(multi-level P) =41209.50 (null)

e -2LL(single-level NB) = 42569.07 (genmod, null)
e -2LL(multi-level NB) = 40859.01 (null)

* We know that the effect of clustering is salient for these data
* By design of the study/data (students clustered within schools)
* By the presence of positive ICC (P (37%) and NB (28%))

* Single-level Poisson is nested within the multilevel Poisson

* To what degree is clustering present in the data, and does accounting for
clustering improve model fit (over a single-level model)

y; =3287.50 (sig)

* Single-level NB is nested within the multilevel NB

xf =1710.06 (sig)

Summary:
systematic
differences
between schools
is present (i.e,
clustering effect),
and supports
multilevel
approach to
analysis.

For both P and
NB, chi-square
diff is sig,
supporting the
multilevel model.

30

30
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Guiding Questions (2)

* After adjusting for clustering, is the assumption of equidispersion
reasonable, or should this assumption be relaxed?

* Because the P is nested within the NB model, we can use a similar
likelihood ratio test to compare the two (null) models
e 22LL(multilevel P) =41209.50 (null) 2 .
« -2LL(multi-level NB) = 40859.01 (null) X =350.49 (sig)

* Summary: Even after adjusting for clustering (in P model), comparison
supports the need to adjust for overdispersion as in the NB model

» Additionally, for the NB dispersion parameter, oo = 0.15 (s.e. =.01).
* Wald’s test indicates that a is significantly greater than zero, .15/.01 = 15 (sig)

* Can revisit these as needed once covariates are added to the model

31

31
N . Table 2 contains random coefficients
GUIdlng QueSthﬂS (3) results for the NB models
* Does inclusion of covariates improve model fit, and should any level-one
predictors be treated as random or fixed?
* First considered adding covariates at level 1 for the NB model as fixed
* Male, c_ momed, foodinsec
* From Table 1 (NB Random Intercepts) Summary:
. _ included
-2LL(muIt!IeveI NB, null) = 40859.01 Xj =767.59 (sig) ¢ momed as
e -2LL(multi-level NB, 3 covs) = 40091.42 the only
- d
* From Table 2 (NB Random Coefficients results) _:T;p:m
* Only c_momed was included with a significant random effect
. -2LL(wﬁth 3 fixed effects for covariates) = 40091.42 Xi —89.63 (Sig)
* -2LL(with c_momed as random effect) = 40001.79
32
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Guiding Questions (3) continued

* Next, added the two school-level covariates, public and nbhoodprobs to
the NB model with the random slope for c._ momed

* This full model fit better than the NB model without level-2 predictors
. -2LL(w?thout level-2 co.variates) =40001.79 X; —104.96 (Sig)
e -2LL(with level-2 covariates) = 39896.83
* Note that the AIC is smallest for this full model (AIC = 39916.83)

* Overdispersion parameter is also statistically significant in the full NB model
«.11/.009 = 12.11 (sig)

Summary: Model to

interpret here is the model
Note that additional comparisons may be relevant, with one random slope

given one’s approach to modeling in general. (c_momed) and the two

school-level predictors.

33
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Guiding Questions (4)

* How are parameter estimates interpreted in our final model (for
multilevel P or NB?)

* Predicted outcome for the multilevel NB models, In(Y,j), is the log of the
proficiency counts (number of correct responses by Kindergartners to
early literacy and numeracy items)

* The values of the parameter estimates for covariates do not fluctuate too
much across models for these data, although the intercept does, as does
its variance in the random coefficients models

* All fixed effects are statistically significant (likely given large sample size)

» Adding predictors reduces variability; the NB dispersion does get
somewhat smaller as model complexity increases

34
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Guiding Questions (4) (cont.)

* Manner of interpretation is similar regardless of P or NB model

* Focus on Table 2, Model B (NB random coefficients with 1 random slope and 2
school-level predictors)

* Intercept: y,, = 1.05 (sig)
* IRR = Exp(1.05) = 2.86

* Expected count for female child with mom’s education at the midpoint (of at least
some college), and no presence of food insecurity, in a private school with no
indication of community problems in vicinity of the school (crime, vacant
buildings, trash, etc.)

* Given random effects of 0

» Addition of NB dispersion doesn’t affect how parameters are interpreted
¢ Just tells us about unaccounted variation around our estimates

35
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Guiding Questions (4) (cont.)

* Within Schools (using IRR = exp(b))

* Effect of c_ momed: As momed increases by 1 unit (i.e., from 5 = some
college to 6 = Bach. Degree), IRR = 1.16

* Controlling for other predictors in the model, and for a “typical” participant
(random effects of 0), the expected proficiency counts increase 1.16 times

* Represents a percentage change of 100(1.15— 1) = 15% increase

* Effect of male: (male = 0 for females, 1 for males) IRR = .91

* Controlling for other predictors, the number of expected items correct for males
(assuming random effects of 0) is estimated to be .91 times the number of items
correct for females (i.e., smaller for males)

* Represents a percentage change (decrease) of 100(.91 — 1) = 9% decrease

* Similarly: For children from families experiencing foodinsec
(dichotomous), IRR = .82, a 18% decrease

36
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Guiding Questions (4) (cont.)

* Between Schools (using IRR = exp(b))

* Effect of public: IRR = .81. Children from public schools
experience an expected 19% decrease in predicted counts,
holding all else constant (and random effects of 0).

* Effect of nbhoodprobs: IRR = .96. As the number of
neighborhood problems increases by 1 unit, expected counts in
proficiency decrease by 4%, holding all else constant (including
random effects of 0).

37
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Other considerations

* Software for NB models: ot vs 6
* Software provides either o or 0 (i.e., Ime4, gimmTMB packages provide 0 rather than o)
* Read all documentation carefully to understand the nature of dispersion in NB models

* Graphs of expected versus actual counts, and graphs demonstrating patterns of
change for different values of the covariates, can be very helpful in
understanding your final model (or comparing across models)

e Other models for counts

* While P and NB2 models seem to be most commonly used in the applied literature, they
are not the only potential approaches to consider

* Data with excess zeros could be analyzed using zero-inflated or hurdle models, depending
on your theory as to how the excess zeros

* GEE has also been recommended as an alternative method to deal with overdispersion
(Stroup, 2013)

* Bolker’s github FAQs very helpful for discussion and recommendations on
GLMMs for count models in R.

38
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Thank youl!

* You are welcome to contact me for additional information or questions

MSU presentation, data and R code are at:
? ’
Prof. Ann A. O’Connell https://u.osu.edu/oconnell.87/res-other-page/

210B Ramseyer Hall

College of Education and Human Ecology
The Ohio State University

Columbus OH 43210
Oconnell.87@osu.edu

References follow ...
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