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Today’s presentation

* Typology of models for multilevel discrete count data
* Event counts: 0, 1, 2, etc.

* Adaptations for rates or densities (counts per area, time,
etc.)

* Tutorial based on several models used most often in
educational and social sciences
* Topics include equidispersion, over-dispersion, zero-
inflation, sampling vs. structural zeros
¢ lllustrations: Generalized Linear Mixed Models (GLMM) for
Poisson (MLP), Negative Binomial (MLNB) and Generalized

Poisson (MLGP), and Multilevel ZIP, ZINB, and Hurdle
models

* Guidance for researchers on selection and use of
these models

Additional details on multilevel counts in general: O’Connell, Bhaktha & Zhang (2022). Chapter 8: Single and multilevel models for count
outcomes. In Multilevel Modeling Methods with Introductory and Advanced Applications (O’Connell, McCoach & Bell (Eds.)) IAP ’
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M3 presentation, data and R code are at:

A p p roac h https://go.osu.edu/aoconnell website

* Intro: Working with count data and count regression

* Typology

* Data sources for our examples

* Generalized Linear Mixed-Models (GLMMs) for Counts

* Impact of clustering on count data GLMMs
) | . We’re focusing on 5 models
Interpreting model and parameter estimates in the Typology:
* Comparing multilevel models and model-fit Multilevel P, NB, GP, Zl and H

¢ Information criteria or likelihood ratio tests

* Summary and Guidance for Researchers

Intro: Working with Count Data
and Count Regression




Special nature of count data

* Numbers or rates of events typically vary across
individuals or cases in a sample
* Non-negative integers: 0, 1, 2, ...

* Distribution of counts is often skewed/reverse J-shaped
* Lots of people with no occurrence of the event (zeros)
* Several people with one or more occurrences
* A few people with a very high number of occurrences

* Events may occur within a specific range, time span, or
geographic area (i.e., “exposure” opportunities, which
also may vary across cases)

* Rates of events

..................

Number of teachers’
inferential-type questions

D1 v coded o3, 1,1 5 30

£ ‘

Wo.of snzures
Number of patient seizures at
baseline in an RCT

5

Poisson Distribution

* Most common initial distribution used to describe count

data, Y

* Poisson process counts the number of times that an event occurs

* Probability mass function describes probability of observing

specific count responses: y 2
PY =y)=

y!

fory=0,1,2,...

* Assumption: Data following a true Poisson distribution have a

variance that is equal to their mean

the variability!

One parameter, the mean A or
* “equidispersion” E(Y)=Var(Y)= A As the mean increases, so does
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Probability functions for selected values of lambda

Poisson Distributions

© |
= * |lambda 0.5
— * lambda 1
lambda 2
S - * lambda 5
o i lambda 10
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= T T T T T T
0 2 4 6 8 10

ycounts

* As Aincreases, the probability
of zeros decreases, and
variability in the counts also
increases

* A can be any positive value (not
necessarily an integer, since it’s
an average)

* |tis the mean, or the “rate
parameter”

* Average number of events
(counts) that occurs in the
Identified observation
period

* If “exposure” time varies for
each case — can be adjusted
for as an “offset” in prediction
models

7

Poisson Regression Model (single-level)

* In the regression model, the number of events is assumed to follow a Poisson
distribution with a conditional mean based on each individual’s characteristics:

A

(]

A e

P(yi|xi):i—

|

i*

‘Condition\;il\ mean ‘ > ﬂ’i = E(yl | Xi) = eXp(Xl.B) variance is equal to

.

\\\

No random error
term in the
regression model,
since we already
assume that the

the mean

log(4,) = By + Bixy + Bryxiy + Bixis + ”'ﬂp'xip

through maximum likelihood estimation

A generalized linear model (GLM), for which the parameter estimates are found
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GLM for Counts

* Poisson Regression is a Generalized Linear Model
* Random component: Y; ~ Poisson(A,)
» Systematic component: regression function is linear (additive) in the parameters
* Uses log link for the linear predictor

n, =log(X,) =By +Byx; +B,x,, +B3x5 + "'Bpxip

4

}\4[ = E(yl | Xl-) =CXp (XiB) Log transformation used to
model the non-linear form
between A, and X, and assures

that A, will be > 0, while regr
Transformation for the expected value of the counts ‘ coeffs can still range +/- oo

Example: Relationship between Y and X

Simple simulation:

Imagine counting the number of child-related 30
outbursts in classrooms within a year or month,
etc., across a sample n = 100 principals

Assume X is rating on discipline severity of the
principal, we’ll assume Uniform ranging from 0 to
10 on this scale.

Y~P(n=10()’}\‘i:eXp(BO+BlX1)) . . .

BO = 15 u.‘u. 25 5.‘01 75 100
=.2

P Curveis A, | X

X, ~ Unif (n =100, min = 0, max =10)

10

10
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Relationship between E(Y|X) and X

A, =exp(b, +bx,)

* Mean function (A,) by X, with plausible range for Y E‘l’:_lz'g

o ]
=

Dotted lines indicate the range of
plausible values (95%) for Y

o
©

o
]

exp(Pg+B1x)

Regression is heteroscedastic
* As Xincreases, lambda increases,
and so does the variability in the

10

counts!
X | hi=exp(by+ E(Y|X=x) | Var(Y|X=x) | 95% Plausible Range for Y Count Range
b.X) A +2-JVar(Y)
0 4.48 4.48 4.48 (0.25, 8.71) 8.46 pts
B) 12.18 4.48 4.48 (5.20, 19.16) 13.96
10 33.12 4.48 4.48 (21.61, 44.62) 23.01 .
11
Distributions at selected values for X
Histogram of y_x0 Histogram of y_x5 Histogram of y_x10
I S e ]
0 18 y_x10
Y =4.50 and 6% = 4.60 Y =12.22 and 6% =12.24 Y =33.12 and 6° =32.99
* 10,000 random values generated at each X Q: How to investigate
* Each distribution exhibits equi-dispersion the assumption of
. . . equi-dispersion for the
* But across the regression line (as X increases), we see Poisson rearession?
the heteroscedasticity g -
12
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Model residuals

* One way to investigate equidispersion when using Poisson Regression is
to consider the distribution of model residuals (adjusted for variability of
the counts)

* Pearson Residuals * Deviance Residuals (s, = sign of y,-%,)
- .
]/m:—ym = m, m:lM di:Si 2 yi'ln & —(yl-—%)
A A,

M = number of unique covariate patterns

G’ = z d’ = Residual Deviance
X =7 = —2[LL, ., ~LL

‘model saturated ]

13

13

“M3_clean_sim2023.r”

Simple code (snippets) in R - Poisson

102 ml_poisson <=- glm(y ~ x1,

103 family="poisson", data = simldat)
104
105 ml_poisson
106 summary(ml_poisson) ## Tor coeffs se and z-test
107

...... 196 . 4

...... 127

128 - ##

118 ctpreds <- fitted.values(ml_poisson) 129
119 rawresids <- y - ctpreds 130 presids <- residuals(ml_poisson, type="pearson”) ## model
e o i = : . S

143 dresids <- residuals(ml_poisson, type="deviance") ## model
14

14
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From our generated data... W, =1.45+.20x,

> ml_poisson
call: glm(formula = y ~ x1, family = "poisson”, data = simldat)

coefficients:
(Intercept) x1
1.4584 0.2029

Degrees of Freedom: 9% Total (i.e. Null):; 98 Residual
Null Deviance: 476.9

Residual peviance: 73.853 AIC: 313.5

> summary(ml_poisson) ## for coeffs se and z-test

call:

e Residuals information

= sumipresidsaZ
[1] 72.19203

n-2df

< [1] 72.19203

gim{formula = y ~ x1, family = "poisson”, data = simldat)

Coefficients:
Estimate std. Error z value Pr(>|z|)

- sum{dresidsaz)
[1] 73.84911

(Intercept) 1.43839 0.07591  19.21  <2e-16 *¥*
x1 0.20289 0.01080 19.13  <Z2e-16 *¥*¥
;‘_i;m'if. codes: O '#¢®7 0,001 f¢¥’ 0.01 ‘¥’ Q.05 ‘.7 0.1 F 71 ® Slnce 72.19/98 = -74’ there IS no

(Dispersion parameter for poisson family taken to be 1)

suggestion of overdispersion

* Poisson seems to be a reasonable
model for the data

Null deviance: 476.898 on 99 degrees of freedom
Residual deviance: 73.84%9 on 98 degrees of freedom
AIC: 513.47

Number of Fi

> presids =<- residuals(ml_poisson, type="pearson™) ## model
sum(presidss2) ## This is statistic called x-sguared

15

15

Interpretation — coeffs in the simple model

n, =1.45+.20x,

* We said Y = number of classroom outbursts, X = discipline severity of principal,
range from 0 to 10

* For a non-harsh principal (0 on this scale) 1.45 is expected log(number of
classroom outbursts)

* This is prediction on the link or log scale

* Exp(1.45) = 4.26 = expected count on the Y scale, for principal of very low
discipline severity

* As ratings for principals increase by 1 unit, predicted log(number of outbursts)
tends to increase by .20 points

* Exp(.20) is referred to as a Rate Ratio

16

16
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More on coefficients and Rate Ratios

* In our example exp(.20) = 1.22 ﬁl. =145+ .20)61.l
* Expected increase in counts as X increase by 1 unit

* Log(prediction | X=2)=1.85 :}» . . . N . -
« Log(prediction | X = 3) = 2.05 Difference in log(predictions) = 2.05-1.85 =.20

* As a Rate Ratio:

_exp(2.05) _7.77 _,
exp(1.85) 6.36

Y
RR, =22

YX:2
* As percent change: Use 100*(exp(b)—1)

* 100*(exp(.20) — 1) = 100*(1.22 — 1) = 22% increase in number of outbursts, as X
increases by 1 unit

17

17

Coefficient Interpretation (general)

* Each estimated coefficient, B,- =b, , represents the expected change in the
natural log of counts given a one-unit change in the predictor, holding
other predictors constant

* Coefficients can be exponentiated to represent change in actual counts
(rather than change in the log-counts) to yield the rate ratio (RR) or
incidence rate ratio (IRR)

* exp(b)) =RR
* Each RR explicitly compares the rates of two values of the predictor as it

increases by one unit

* For each one-unit increase in the predictor, the expected count will
multiplicatively increase (or decrease, if the parameter is negative) by the value of
the RR, holding other predictors constant

18
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More on equi- versus over-dispersion

Poisson, Mean = 0.5, Var = 0.5 Poisson, Mean =1, Var =

M A=1.0 Poisson Distribution will

] A=.50
.| N always have this property
i P 8 of equi-dispersion
. o) Actual data for counts often
e g HT, : - don’t meet this assumption
= = Poisson Density:
T L=2.0 A=5.0 .
Ae
@ E foIn="5
B 2
L=G"=A
Hﬂm i HH Hﬂn One-parameter distribution
) 19
19
Contributions to Overdispersion
* Overdispersion:
* A property of the data relative to the model/distribution we choose
* Occurs when the conditional variances of the observed counts are greater than the
conditional means
» Standard errors for parameter estimates are underestimated — predictors may appear to
be statistically significant when they are not!
* Many factors can contribute to overdispersion
* Unaccounted for clustering in the data (multilevel designs)
* Missing covariates or interaction terms (poor specification)
* Unreliable data collection
* We often don’t know the distribution of the extra dispersion
* Need to make assumptions about how it’s distributed
* The data aren’t wrong, but our model choice or methods might be!
20
20
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Add some additional variability to the Poisson mean
Example: A =2 and n = 1000

A, rosson, wean=2

250
0

200
©
<o
Il
ST
[}
o]
a0

150
y

100

B.  Poisson with sight overdispersion, Mea

y=205 Sampled n = 1000 observations
2

random error added
* B exp(N(1000, 0, .25))

T
0 2

(@]
P
=
g
32
S
F
7
i
M
@
=
800

~<I|
Il
N
)
)
00

400

200

* C exp(N(1000, 0, .50))
* D exp(N(1000, 0, 1.0))

y=3242 Ratio of Var to Mean for each sample?

5, =19.59 + 15t: 1.05 variance 5% larger than mean
e 2nd: 1,18 variance 18% larger

S—i:6 04 e 3rd: 1,70 variance 70% larger

y e 4th: 6.04 variance 504% larger!

A: data sampled from a Poisson, with A = 2
B, C & D are Poisson with A = 2 but with

20 40

21

21

Gamma: A more reasonable distribution for extra-

dispersion

* Has some skew, and is not
symmetrical

* A common Poisson-Gamma
mixture for overdispersed counts
is the Negative Binomial
distribution

* Gamma has two parameters:
shape and scale

* Gamma mean: shape*scale

* Gamma variance: shape*scale?

* | generated Gamma dispersion to
have a mean of 2

Histogram of ypoisson

Poisson(n =1000,A = 2)
7 =2.07
s =1.93

200 300

100

Gamma(n =1000, shape = 2,scale =1)

Histogram of ygamma

300

200

Frequency

Mean and variance are

0 50 100

equal when scale = 1 S S A

ygamma

22
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Other Gamma Examples

Gamma mean: shape*scale
Gamma variance: shape*scale?

Histogram of ygamma

Shape =2
Scale=1

y=1.99
s2=2.19

0 50 100 150 2000 250 300

Histogram of ygamma
Shape =1
Scale =2

¥ =207

s‘2 =478

0 100 200 300 400 500 600

0 50 100 150 200 250 300

100 150 200

50

0

Histogram of ygamma

Shape =2
Scale =2

T T T 1
5 10 15 20 25

Histogram of ygamma

Shape =4
Scale =.5
5=197

5. =1.03

ygamma

In general, the shape
parameter affects the
distribution of counts;
the scale (or location)
increases the possible
range or spread, and
thus the mean

Histogram of ygamma

700

Shape =.5
Scale =2

7=186
2
52 =17.63

500

300

0 100

23

Now adding some extra Gamma dispersion to the
Poisson counts (Poisson A = 2) and (n = 1000)
using ['(shape, scale)
P with I'(2,1) ~ Pwith['(4,.5) P with T°(.5,4)
y 2201 y=1.96 y=2.12
s, =3.77 s, =3.08 s, =11.21
2 2 2
5188 157 2 _509
y y y
24

12



Fundamental questions

* What count model may be most appropriate for the data
* Equi-dispersion? Overdispersion?

* Are all zeros coming from the same population or process?
* Zero-inflation versus Hurdle models?

 Can variation in counts or rates be explained by one or more predictors,
across one or more levels of the data? (multilevel)

Histogram Histogram

Freque
Frequency

IIIIIIIIIII.I--I-..._-
© o BT »

s17T0T

N
E) E
NinthGrAbs

NLSY79 n=4677 9t grade absences SSP_2017 n=5171 students, aggression past 30 days 25

25
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Approaches

* Qverdispersion can also contribute to “extra” zeros in a count variable
* i.e., beyond the expected number of zeros (or other counts) governed by a Poisson
(P) distribution
* Some accommodations include models that estimate an additional dispersion
parameter, to account for the “extra” variability

* Zero-inflation (ZI) models
* Some counts may have more Q’s than expected through P or NB
* Mixture models: ZIP or ZINB — overall distribution captured by a mix of 2 processes
or distributions Sampling zeros: occurring based on the distribution for the counts
e Hurdle (H) models Structural zeros: perhaps some 0’s are not “at risk” for the event!

* Two-part models rather than a mixture (HP, HNB)
* All zeros treated as structural zeros; positive counts modeled through a truncated
P or NB model

26

26
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Structural versus Sampling zeros

* Example: Y = number of delinquent behaviors in 30-day period

» Zeros occur because students with a history of delinquent behaviors (“at risk”) did
not engage in (or report) any of the behaviors in prior 30 days (sampling zeros)

* OR
* A student has never engaged in the behavior (not “at risk”) (excess or structural

zeros)
Sampling zeros Structural zeros
* Students who are “at risk” * students with O are not “at risk”
* history of behavior but did not report * also called excess zeros

or experience the event during the
study period

* Some zero counts are expected based
on study design, variable being
measured, etc.

* subpopulation of subjects who cannot
or won’t experience the event

* Distinguishable from students with
positive counts

27

27
Why are these distinctions important?
* Rarely do counts “in the wild” follow a true Poisson distribution
* Typically we see over- or extra-dispersion in the data (more variability than the
Poisson would suggest)
* There are many kinds of models to accommodate count distributions that
deviate from a Poisson distribution
* Negative Binomial; over-dispersed NB; overdispersed or quasi-Poisson; generalized
Poisson
* ZIP, ZINB, HP, HNB
* And others
* The ZI and H models are approaches for intentionally focusing on the zero
counts when estimating the model, even if there may be extra-dispersion
in the counts
28

6/27/2023
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Typology

* https://go.osu.edu/aoconnell website

* Brief description of 13 different models
that

* Our goal for today is to help you make
sense of when/why to use these different
models

* Focus on clustered data/multilevel models
for counts: GLMMs for P, NB,GP, ZIP, ZINB,
HP, HNB

* Provide code and resources for fitting
these basic multilevel models in the
typology

* Code at my web page above

29

29

Data — available on

https://go.osu.edu/aoconnell website

my website

30

30

6/27/2023
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Data

* O’Connell, Bhaktha & Zhang (2022) for Multilevel P, NB, GP
* Modeled after ECLS-K data
* J =720 schools, n = 11,301 Kindergarten students
* DV = counts representing proficiency on early numeracy/literacy items
* COVs = both child/family- and school-level predictors of proficiency

* Bowen et al., (2017, 2022) for Zero-inflation and Hurdle
* SSP = School Success Profile data
* J =17 schools, n = 5171 students, grades 6 -9

* DV = count of aggression/microaggression issues experienced by
students at school

* COVs = school/teacher/adult(parent) items, student association with
deviant peers gender, etc. | chose 6 preds. 2 are school level

* Contact: Dr. Natasha Bowen, OSU, Bowen.355@osu.edu

: flevel” ...,
- - Mac gMgmgd 4

With Intiedlctory. ¢
> ‘andAdvanced #\|

pplications—— 1

D. Betsy McCoach
Bethany A. Bell

School Success Profile

31

31

GLMMs for Counts

32

32
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Some recent (multilevel) examples in the literature

* Ames, et al., (2016). Food insecurity and educational achievement: A multi-level

generalization of Poisson regression. International Journal of Food and Agricultural
Economics, 4(1), 21-34

* Barth & Schmitz (2021). Interviewers’ and respondents’ joint production of response quality in

open-ended questions: A multilevel negative-binomial regression approach. methods, data,
analysis, 15(1), 43-76.

* Chambers & Erausquin (2018). Race, sex, and discrimination in school settings: A multilevel

analysis of associations with delinquency. Journal of School Health, 88(2), 159-166.

* Fenta, S. M., & Fenta, H. M. (2020). Risk factors of child mortality in Ethiopia: application of

multilevel two-part model. PloS one, 15(8), €0237640.

* Fenta, et al. (2020). The best statistical model to estimate predictors of under-five mortality in

Ethiopia. Journal of Big Data, 7:63.

* Geremew, et al. (2020). Factors affectin? under-five mortality in Ethiopia: A multilevel
t

negative binomial model. Pediatric Health, Medicine and Therapeutics, 11, 525-534.

* LARRC, Lo & Xu (2022). Impacts of the Let’s Know curriculum on the language and

comprehension related skills of PK and K children. Journal of Educational Psychology.

33

33

Multilevel P, NB, GP

34

6/27/2023
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Demonstration Example 1 — Multilevel P, NB, GP

. . Datafile is
 Data modeled after proficiency counts from the ECLS-K “M3_n11301_profcounts.sav”

* Baseline data from 1998 — 99, followed up through 1% grade, 3" grade, 5t
grade, 8th grade

* Students sampled from both public and private schools

* Modified/simulated for demonstration purposes (not meant to be
representative of the ECLS-K original sample)

* ¥, = proficiency counts (profcount) were collected for a sample of n = 11,301
Kindergarten children sampled from within J = 720 early-grade schools.
* Scored based on the number of correct responses to a set of twelve early reading
and early math skills items, with the total possible count ranging from 0to 12 (X =
2.05 items, S=1.85, $? =3.44).

35

35
Proficiency Count Distribution — Kindergarten
Statistics
Histogram profeount sum prof read and ma
' N valid 11301
Missing 0
g ) Mean
Median 2.0000
‘ Made 1.00 var > mean
Std. Deviation 1.85431
: var
sum prof read and math Variance = 167
Range T0.00 mean
(Not adjusted for clustering by school) Minirmum oo
Maximum 10.00
36
36
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Descriptive Statistics — Student Level (n = 11301)

Statistics
c_momed
maomed centerad
mom's mom's foodinsec 0
male child highest level highest level 'none'1 food
Sex of education of education ingecure’
il Valid 11301 11301 11301 11301
Missing 0 0 0 0
Mean B017 4.45 .0ooo 0760
Median 1.0000 5.00 5506 .0ooo
Mode 1.00 3 -1.45 0o
Std. Deviation so0o2 1.714 1.71383 26503
Range 1.00 g 8.00 1.00
Minirmum .00 1 -3.45 0o
Maximum 1.00 9 4.65 1.00

* 50% male
* 8% food insecure
* Median Mom’s Ed

is 5 — at least
some college

* Mean Mom’s Ed is

4.45, so

vocational/tech, 2
r college or at
east some college

37

37
Descriptive Statistics — School Level (J = 720)
Statistics
public nkhoodprobs * 78% pUblIC schools
: :T::mg ?22 ?22 * Nbhoodprobs represents degree
Mean 2750 6.9944 of crime/conflict issues in
Median 1.0000 5.0000 vicinity of school (crime, trash,
Mode 100 400 vacant buildings, drug-use, etc.),
Std. Deviation 41787 3.38564 .
E— 1 00 18.00 possible range from 0 to 21:
Minimum .00 3.00 * Mean =6.29
Maximum 1.00 21.00 e Std dev =3.39
38

6/27/2023
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Poisson or Negative Binomial or Generalized Poisson?

* Poisson Regression models the conditional distribution of Y, that is, the
(count) distribution that occurs when Y is conditional on the values of the
predictors

* However, the Poisson (P) model makes a very strong assumption that the
variance of the distribution is equal to the mean:

* E(Y) =Var(Y) =LA known as “Equidispersion”

* The Negative Binomial (NB) model adjusts for and includes an additional

parameter that captures the extra variation present in the data
* Mixture of Poisson and Gamma distributions

* The Generalized Poisson (GP) estimates a scale parameter that adjusts

both the variance and the mean
* Mixture of Poisson and Poisson distributions

39

39

Negative Binomial Regression Model (single-level)

* Includes a distinct source of dispersion over the assumed equidispersion
Poisson variance
But: How to

log(ki) = Bo + ﬁlxil + Bzxz’Z + B3xi3 +"'Bpxip + 8i characterize

5‘[ =exp(x,B)-exp(e;) = A, -exp(g;) =4, -0, * T [tedmewl)
* Allows for count estimation models where the variance can be different from
(greater than) the mean
» Rates may vary across individuals with the same collection of predictors

» Randomly perturbed or vary by g,

* Interpretation of fixed model parameters and RR same as in the P regression
+ To identify the NB regression model, we make an assumption, E(3,) = 1.0
» Expected counts then are the same as they were in the P regression:

E(X,) = E(xzsz) = klE(Sl) = 7\‘1'

40

40

6/27/2023

20



NB Dispersion Parameter

* The distribution of P(y, | x,, 5,) is still Poisson, but we can’t solve this equation without
specifying the form of pdf for the §,. (Cameron & Trivedi, 2013, p. 115-119; Long, 1997,p.
231-232; Long & Freese, 2014, p. 507-508; Stroup, 2013, p. 352-354)

* (note these refs do not always use the same symbols OR parameterization when presenting their
equations)

* The most commonly used distribution for the extra dispersion represented by §, is the
Gamma distribution.

* This form of NB model is a mixed Gamma-Poisson model (NB2 or quadratic form)
* The Gamma distribution in general has two parameters: one governing scale or location
and one for shape (0).
* With E(8) = 1.0 for identification, we are interested in the shape parameter, 6

* Degree of overdispersion in the conditional means is governed by 6, and thus the
variance of the NB distribution is a function of both the Poisson and Gamma variances

41

41

Variance of NB (NB2) as the Poisson-Gamma Mixture

* A distribution that is Gamma(A, 0) has variance A2/0 [ Gamma(scale, fg’r'::‘c’)';;z ;eguced

* The variance for the mixture is: V(Y) = A + A2/0 shape) mixture, thus

. T . . . . allowing for nested
* This represents an indirect relationship between 6 and dispersion compargisons of the

* As 0 tends to infinity, the extra dispersion component tends to 0 models

* To capture a direct association, the NB model is often parameterized so that
o = 1/6 represents the extra dispersion: V(Y) = A + aA?
* As qa increases, so does the extra variance component

* As o tends to 0, less extra dispersion is added, and the variance of the mixture converges
to that of the Poisson

* Under this parameterization, o is referred to as the heterogeneity or NB
dispersion parameter.

* There are other ways to express an NB model, but this representation is
referred to as the NB2 or simply the NB model

42
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NOTE: dispersion parameter is defined for each family of

G e n e ra | | Zed PO | SSO n distribution; the same symbols do not necessarily refer to

same quantity or parameter

e Alternative to the NB: Mixture of Poisson with Poisson = Generalized
Poisson (Consul, 1998; Joe & Zhu, 2005; Harris, Yang & Hardin, 2012; SAS, 2022)

f(yi’x‘i’e) = 7\'1'(7\‘1' +eyi)yi71 e—x‘—eyi /y|
for A, >0, and [max(—1, —A,/4)]<0<1 (NOTE: 6 <1)
* The mean and variance of Y under GP distribution are:

A, When 0 = 0 there is equidispersion, and GP = Poi
E(Y)=n, i en 0 ere is equidispersion, an oisson

- 1— When 0 > 0 we have over-dispersion
A 1 When 0 < 0 we have under-dispersion
Var(¥)) = —-

(1-6) (-6
* GP Regression Model: 1og(f—iej =By +Bx;; +B,ox, +Byxs +..8,x,

E(Y)=E(Y)
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Clustering, and some additional issues
* Presence of clustering in the data can contribute to overdispersion
* Random intercepts and slopes can be added, similar to standard HLM models
* NB and GP include random effects at the lower-level (dispersion parameters)
even after adjusting for clustering
* Some notes between R (glmmTMB) and SAS (Proc Glimmix)
* NB (slide 41)
* R estimates what we’ve called 6
* SAS estimates what we’ve called a, which is 1/0
* GP (slide 42)
* R estimates what we’ve called ¢? (and calls it “sigma”), where ¢? = 1/(1 - 0)?
* SAS estimates 0, and labels as the “scale” parameter
44
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Assessing the ICC for Example Data

* |CC estimation for mixed-effects count models established by Leckie et al.
(2020) and Austin et al. (2018)

* For our example data (Y = profcounts of K children assessed within schools), we
have:

* Normal approximation (for crude comparison)
* ICC = .24 (24%)

Summary: Once clustering is accounted for,
* Multilevel Poisson the NB model indicates somewhat smaller
« ICC = .37 (37%) estimated correlation between students from
the same school, but 28% of the (marginal)
* Multilevel NB variance in profcounts can be attributed to
* ICC = .28 (28%) systematic difference between schools.

45
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Comparison of Competing Models

* Several ways to choose between competing models

* Deviance statistics represent badness of fit or discrepancy between a model
and the actual data

* Most common is through the Likelihood Ratio Test

* As with other generalized and mixed linear models, a likelihood ratio test can
be constructed to compare the difference -2LL between two nested models

* Difference will have df equal to the difference in number of parameters
between the models being compared

* Information criteria (AIC or BIC)
* Others: observed to predicted counts, graphical comparison, etc.

* Goal for today is to illustrate how these models work, clarify
interpretation, provide for general comparison between them

46
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“Full” Model — Random Intercepts Poisson

n; =By, +v,(male)+vy,(c_momed)+v,( foodinsec) +

v, (public) +vy,(nbhoodprobs)

NB and GP are
modifications of the P

BOJ’ =Yo TUy, model

mim_PZ_tmb =- glmmTME(profcount ~ male + c_momed +foodinsec
+ public + nbhoodprobs
+ (1 schoolid),
family = poisson(link = "log"),
data=myctdata)
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glmmTMB code for the NB and GP models

mim_MB2_tmb <- glmmTMB(profcount - male + c_momed + foodinsec
+ public + nbhoodprobs Gl ) - L

+ (1 schoolid),
family = nbinom2(1ink = "log"),
data=myctdata)

mim_GPl_tmb <- glmmTME(profcount ~ male + c_momed + foodinsec GLMM - GP
+ public + nbhoodprobs + (1 schoolid), 3

family = genpois(link = "Tog"),
data=myctdata)

48
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Table 1. Parameter estimates (standard errors) for proficiency count data using two-level
random-intercept Poisson, Negative Binonual (NB2), and Generalized Poisson Models: Results

in R usmng glmmTMB. GP:
Random Intercepts Models
Parameter/Statistic | Random-Intercepts Random-Intercepts Random-Intercepts As Mom’s education
Poisson Negative Binomial Generalized Poisson increases by 1 unit,

You=Intercept 112 (04)° L12 (093 114 (04° In(counts) increases by
Y10=male —0.09 (.01)* —0.09 (02)* —0.10(.02)* 0.12 (sig), holding all else
Yo = C_momed 0.12 (004)° 0.12 (01)° 0.12 (.003)® SR,
Y30 = foodinsec —0.20(.03)° 021 (07 021 (04)°
yor = public —0.29 (.04)° —0.28 (04)® —0.29(.04)* The In(counts) decreases
Yor = nbhoodprobs —0.04 (.005)° —0.04 (.005)° —0.04 (.005)* by .29 for students in
To0 = school 0.13 (01)*® 0.12 (01)** 012 (01)** public school, holding all
intercept variance else equal.
Disp Param (R) 8.7 (.009)*=
Disp Param (SAS) 12 (009)* _ _ For random effects, | used
gﬁ iiﬁ E]:LS j : :)';’; L%:)a:c confint(model) to look at

. _ £=0.13 (008) 7 95% Cl for the standard
JLL 40182 80 30055.28 3980172 O dev of the variance
Pearson y*/df 1.19 008 0.92
AIC 40196.89 30071.28 C 3081772 D CEIFEET

1p < 0001 ®pvalues for random effects from SAS or in R used confint{model)
“ pval in SAS or in R used confint{model, parm="sigma™); GP param in R rel to SAS = 1/(1-.13)
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Rate Ratios (RR) = exp(fixed effects)

Table 2. * Intercept: yo, = 1.14 (sig)

Rate Ratios for the GP Model . EXp(114) =3.11
f;:ij:fz;f GP R"‘le‘;“;"f;;e) . Exp((je.ctted profi(c)iency count when all

predictors are

iﬂjﬁmd T?; E:g;; * Given random effects of 0
Va0 = foodinsec 0.81 (.03) * Dispersion estimate doesn’t affect parameter
a1 = public 0.75 (.03) interpretation, just tells us about unaccounted
102 = nbhoodprobs 096 (01) for variation around our estimates

Slope: ¢ momed, v,,=0.12 (sig): Exp(0.12) = IRR =1.13

As momed increases by 1 unit (i.e., from 5 = some college to 6 = Bach. Degree), the expected
proficiency counts increase 1.13 times

* Controlling for other predictors in the model, and for a “typical” participant (random effects of 0)

* Represents a percentage change of 100(1.13 — 1) = 13% increase
50
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AlIC comparison

* We used the bbmle package to compare AICs for the set of Level-1 random
intercept models and Level-1 and Level-2 random intercept models

* Results show the lower AIC for the GP models, but it is not a very strong
difference (biggest jump is between the NB Level-1 only and Level-1 and 2
models, compared to GP2)

= #install. packages("bbmle")
= 1ibrary(bbmle)

= ALCtab{mim_Pl_tmb, mIm_PZ_tmb, mim_Nel_tmb, mim_NBZ_tmb, mim_cPl_tmb, mim_cr2_tmb)

darc df
mlm_GP2_tmh 0.0 8
mlm_gPl_tmb 140.
mlm_NB2_tmb 153

— GP1, NB1, P1 are level-1 only random-intercept
n1m:h51_tmb 285

models

mlm_pr2_tmb 379
mlm_pl_tmb 513.

GP2, NB2, P2 are level-1 and level-2 random-
intercept models

(= I oS B o R Ve ]
e = N

w
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Summary for Multilevel P, NB, GP

* Multilevel GP is a reasonable alternative to the NB
* Easy to fit and interpret
* Also appropriate for under-dispersion (while the NB is not)

* However, in our example the difference wasn’t too dramatic

* Software parameterizations are not consistent across platforms, so
some caution is needed when interpreting

* Next steps: Can we fit a better model by examining possible zero-
inflation in the data?

52
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Next consideration: Zero-Inflation

* In some situations, count data may exhibit extra numbers of zeros, even
beyond what might be expected through overdispersion.

* In ZI models, a mixture of two distributions is used to model two kinds of
zeros as well as the counts

* The excess zeros may arise if the population consists of two subgroups of
individuals

* Sampling zeros — Usually based on Poisson or NB for the count
distribution, and these zeros are believed to occur by chance (according
to that distribution

* Structural zeros — These arise from the other part of the mixture, for
which subjects always produce zero counts.

53
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/Zero Inflation Models

54
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General Form of the ZI model

* The general probability function for the ZI mixture is:

ni+(1_ni)p(yizo|ui) foryi:()

i :yi):{(l—ﬂi)p(yi 1) fory, >0

* The parameter 7 is the proportion of individuals who would always return
a zero (structural zeros or “extra” zeros)

* Then 1 - t represents the proportion who could be called “at risk” for the
event. The count distribution selected for the ZI model governs the
distribution of all these counts 0, 1, 2, ... (sampling zeros)

55
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Zero-inflated Poisson (ZIP)
* We may have a collection of predictors governing either component of the
mixture
* For example, if Poisson is used to govern distribution of the counts (0,1, 2,
...) then:
* Y =0 with probability 7t(z)
* Y ~ Poisson(u(x)) with probability 1 —n(z)
* In the ZIP model:
* Assume a logistic model for m(z) loglt(n(z)) = YO + YIZI + y222 + ...yrZr
* Assume the Poisson log link is used for counts including O Predictors do not have to be
the same for either component
log(n(x)) =By +PBx, +B,x, +..5,x,
56
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ZINB

* A similar structure is obtained when the NB model is used to govern the
counts

* Replace the log(p(x)) with the usual NB regression model

* A challenge with ZI models is that there are many different ways to
include predictors within each component

* For GLMMs, we could also include or exclude random components

* MANY different variations

* A simplifying approach is to fit the ZI model allowing for a single zero-inflation
parameter that is independent of predictors (no “z” predictors as on previous
slide!)

* Qverall goal is to find a well-fitting model that explains the “extra” zeros
as well as the distribution of all counts (including zeros on the count side)

57
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Example 2 Data: School Success Profiles
* The SSP was developed by a team of researchers at UNC as part of a
district-wide effort for data-informed approaches to address student
needs.
* For these data, n = 5171 students from grades 6 —9 in 17 schools
completed the SSP.
* DV = counts of aggression/microaggression events reported by
students at the school in the past 30 days
Data file: SSP2017_M3_subset.sav
58
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SSP — Counts of Aggression/Microaggression Events

1,200

1,000

800

600

Frequency

400

200

Histogram

o0 10.00 2000

DV = count of agression experiences

(Not adjusted for clustering by school)
Proportion of zeros is 19.6%

Mean =559
Std. Dev. = 5805
N=5120

3000

Statistics
s17T0T (s1770T)
N Valid 5120
Missing 51
Mean
Median 40000
Mode .00
Std. Deviation 580514 var > mean
Yariance
Range 26.00 var
Minimum oo =6.03
Maximum 26.00 mean
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Student-level Predictors (n =5171)

Statistics

lgdevpeers  Lang01oth  famsupp  boylgrid

[+ Walid 5073 5149 5064 5143
Missing 98 22 107 23

Mean 2621 08493 2.5606 A002
Median 2007 .0ooo 27143 1.0000
Mode 00 .00 3.00 1.00
Std. Deviation 27407 28526 B1637 50005
Variance 075 081 267 250
Range 110 1.00 2.00 1.00
Minirmum .00 .00 1.00 .ao
Maximum 1.10 1.00 3.00 1.00

* For Igdevpeers, we used
log(number of friends
engaging in
deviant/aggressive
behaviors)

* Almost 9% of students
spoke language other
than English at home

* Family support is a
multi-item scale with
ratings on strength of
support (3 = high
perceived support)

* 50% male (boy1grl0)

60
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School-level Predictors (J = 17)

Statistics * L2_schlsupp: Average

| 2_Schisupp | MSOHS1 student ratings on perceived
& ;?;'zmg 1; 1; support from
Msan IR 3520 school/teachers
Median 31206 0000 * |tems were rated from 1 to 4;
Mode 2 g3 o0 4 indicates greater perceived
Std. Deviation 18394 49259 support
Variance 034 243 * MSOHS1: About 35% of the
e 87 1.00 schools were High Schools
Minirmurm 2.83 00 (grades 9 — 12); 65% were
Maximum 369 1.00

Middle Schools (grades 6 — 8)

a. Mulliple modes exist. The smallest
value is shown
61
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R Code for the ZI models

Equation 1:
24 ### random intercept Poisson ZIP (Poissonl)
25 egl =- s177T0T ~ (lgdevpeers + Langlloth + famsupp + boylgrl1d + (1 | schipz))
26
Equation 2:
64 ### with two level-2 predictors (Poisson2)
65 eq2 <- s17T0T ~ (L2_schlsupp + MSOHS1 + lgdevpeers + Lang0loth + famsupp + boylgrl0 + (1 schip2))
66
’ Full Model GLMM ZIP Full Model GLMM ZINB
73 zpoissond <- glmmTMB(eq2, 105 znbmod4 <- glmmTMB(eqg2,
7 data=myctdata, 106 data=myctdata,
75 na. action=na.exclude, 107 na.action=na.exclude,
7 ziformula=-1, 108 ziformula=-1,
77 family = poisson) 109 family = nbinom2)
78 summary(zpoisson3) 110 summary(znbmod4)
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glmmTMB.

Results — Multilevel ZIP and ZINB

Table 2. Parameter estimates (standard errors) for SSP count data using two-level random-intercept ZIP and ZINB: Results in R using

Random Intercepts Models

Random Intercepts Models

Parameter/Statistic Poisson | ZIP NB ZINB
Conditional Model

Intercept 3.06 (4N 3.06 (307 3.07(53)7 3.14 (0™
L2 sechisupp -0.31 (.15)" 028 (10)7 -0.32(.16) -0.320.14)"
MSO0HS1 -0.25 (.04)™" -0.20 (.04)™" -0.23 (.06)™"" -0.22 (05)™"
ledevpeers 0.86 (.02)™ 0.63(.02)™ 0.93 (.06)™ 0.83(06)™
Lang0loth -0.05 (.02)" -0.02 (.02) -0.08 (.06) -0.06 (.05)
Sfamsupp -0.26 (01" -0.19(.01)™" -0.27(.03)"" -0.25(.03)"""
boyigri0 0.14 (01" 0.16 (O™ 0.15(.03)™" 0.17(03)™
Too = school 0.01 0.003 0.006 0.003
intercept variance

Zero-Inflation Model

Intercept L4403 ] 22201007
Model Info

NB disp Param 1.02 148
Pearson X2/df 26841.33/4991 = 5.38 4548.116/4990 = 91

-2LL 39845.0 34170.5 27552.5 27450.0
AIC 39861.0 34188.50 27570.5 27476.1

For ZI Interpretation

Estimated mean
function is in the
“conditional model”
section

Estimated P(excess 0) is
in “ZI model” section

Prob: Odds/(1+0dds)

For ZIPoisson:
P(excess 0) = 19.26%

For ZINB:
P(excess 0) =9.78%

Actual P(0) = 19.6%

63

Interpretation/Summary

e Ziformul
e Ziformul
e Ziformul

a=~0
a="1
a=".

ZINB has smallest deviance of these 4 models

Estimated mean function for the counts is in the “Conditional Model” section

Patterns are similar among all 4 models although variable significance is
affected by choice of model

* Poisson does a poor job of predicting counts, given the large proportion of
“excess” zeros predicted by the model

Remember — there are MANY ways to modify either/both parts of this model!

* Or can specify directly in this statement (or through setting previous equation)

64

64

6/27/2023

32



Hurdle Models

65

6/27/2023

65
Hurdle Models
* Assumes that all zeros are structural zeros Counts 1,2, 3, etc., are predicted
only if the case “crosses the
* One model estimates proportion of structural zeros | hurdie”
* Typically a logit model as with ZI
* Second model estimates counts starting with 1, 2, 3, etc (no zeros!)
* Truncated count distribution, typically P or NB
* General Structure: _ -
; is the probability of a case
T fory, =0 belonging to the zero component
P, =y)= (1-7) Py, [1,) for y, > 0 P(y; | m,) corresponds to the
1-P(y,=0]|p, probability function for either P
or NB counts
66
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Results —

Hurdle Models

Table 3. Parameter estimates (standard errors) for SSP count data using two-level random-intercept Hurdle models.

Results in R using glmmTMB, using ziformula = ~1

Random Intercepts Models Random Intercepts Models
Parameter/Statistic Poisson | Hurdle Poisson NB Hurdle NB * Note zero-
Conditional Model
Intercept 3.06 (A1) 3.03 (3D 3.07(53)7° 2.90 (04H)™ amnponent
L2 _schisupp -0.31 (.15)" -0.27 (.10)" -0.32(.16) -0.25(11) (|Oglt) are the
MSOHSI -0.25 (04" -0.19 (.03)™ -0.23 (.06)"" -0.19 (04 same, as all
Igdevpeers 0.86 (.02)*** 0.62(.02)* 0.93 (.06) ™ 0.70 (.05)**

g —om Zeros are

Lang0loth -0.05 (.02) -0.02 (.02) ~0.08 (.06) ~0.03 (.05)
Jamsupp 026 (01) 02000 027(03) -022(03) treated as
bovigrl0 0.14 (.01)™ 0.16 (.01)™" 0.15 (.03)™" 0.19 (.03)™ structu ra|
Too = school 0.01 0.003 0.006 0.0005
oo T senoot zeros
mtercept varance
Zero-Inflation Model ° Th e H u rd | e NB
Intercept 1420 ] -1.42(10) 7
S does not have
NB disp Param 1.02 1.57 the |OWESt AIC
Pearson X%/df 26841.33/4991 =538 4548.116/4990 = 91 h ere
=2LL 39845.0 34183.8 27552.5 27565.5
AIC 39861.0 34201.8 27570.5 27585.5
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Compari

ng AlC across ZIP and Hurdle models

= ATICtab(poissond, zpoissond, hpoissond, nbmod4, znbmod4, hnbmod4, hnbmods)

dATC
hnbmod3 Q.
znbmod4 133.
nbmodd 227.
hnbmod4 242,

zpoissond G845,
hpoissond 6859.
poissond 12518.

d
017
2%+ Hereladded a model that used the same equation
5o (eq2) for the zero-inflation component (see results
09 next page)
2 B
* Hurdle for this new model has best fit criteria based
on the AIC
* There are so many options for how to fit both
components!
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Hurdle with ziformula =~. (eq2)

> summary (hnbmod3)

Family: truncated_nbinom2z ( log )

Formula: s17TOT ~ (L2_schlsupp + MSOHS1 + lgdevpeers + Lang0loth + famsupp +
boylgrl0 + (1 | schipz2))

Zero inflation: —

Data: myctdata

AIC BIC TogLik deviance df.resid
273428 27453.5 -13654.4 27308.8 4982

random effects:

conditional model:

Groups Name variance s5td.Dev.
schip? (Intercept) 0.0005259 0.02293
Number of obs: 4999, groups: schip2, 17

zZero-inflation model:

Groups Name variance std.Dev.
schip2 (Intercept) 0.06853 0.2618
Number of obs: 4999, groups: 5Schibpz, 17

Dispersion parameter for truncated_nbinomz family (): 1.57

69
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Hurdle with ziformula =~. (eq2) [sectonz_|
Conditional model:
Estimate std. Error z value Pr(=|z|)
(Intercept) 2.90017 0.36250 8.000 1.248-15 %% Same pattern of effect for the
L2_schlsupp -0.25040 0.11262 -2.223  0.0262 * mean structure (conditional
MSOHS1 -0.19302 0.03900 -4.950 7.44e-07 %w% model)
Tgdevpeers 0.70381 0.05428 12.967 < 2e-16 **«
Langdloth  -0.02600 0.05313 -0.489 0.6245
famsupp -0.21842 0.02805 -7.788 6.8le-13 ¥ NOTE: Zero-inflation
boylgrla 0.18663 0.02877 6.488 8.73e-11 %% component is predicting P(0)
signif. codes: @ ‘¥%%' 0,001 ‘**' 0.01 **' .05 ‘.’ 0.1 ¢ ' 1
Students’ exposure to peers
Zero-inflation model: engaging in deviant behavior
Estimate std. Error z value Pr(=|z|) . o
(Intercept) -2.86218 1.49112 -1.919  0.0549 . vields lower probability of
L2_schlsupp 0.16675 0.47386 0.352 0.7249 count=0
MSOHS1 0.26312 0.17259 1.525 0.1274
Tgdevpeers -1.91513 0.17538 -10.920 =< 2e-16 ##« Higher family support yields
Lang0loth 0.24342 0.12577 1.935  0.0529 . hich bability of t=0
famsupp 0.44734  0.08233 5,368 7.95e-08 wux higher probability of count =
boylgrla 0.10716 0.07352 1.458  0.1449
signif. codes: © ‘¥¥=' 0,001 ‘**' 0.01 ‘*' @.05 ‘.’ 0.1 ° ' 1
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Guidance for Researchers

* Distinction between zeros —important

* Typology — there are other possibilities (too many) and MANY variations on the
models presented here

* Residuals — complex form for GLMM for ZI and Hurdle
* More research needed in this area

* Graphical methods not easily adapted for GLMM because of random effects, may
want to focus on population-averaged versions (marginal effects) for these models

* Need large sample size for mixed models — particularly true for counts or limited
dependent variables

* GLMMTMB and GLMMAdaptive — both work well, steeper learning curve than GLM
packages or other mixed model packages

* Challenges with convergence (not for us but we know of many — especially with
smaller sample sizes or complex models, interactions terms, random slopes, etc. )
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Thank youl!
* Please visit my website for data and code
M3 presentation, data and R code are at:
https://go.osu.edu/aoconnell_website
Ann A. O’Connell
Oconnell.87@osu.edu
‘ References follow ...
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