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scGNN is a novel graph neural network framework
for single-cell RNA-Seq analyses
Juexin Wang 1,4, Anjun Ma 2,4, Yuzhou Chang2, Jianting Gong 1, Yuexu Jiang1, Ren Qi2, Cankun Wang 2,

Hongjun Fu 3, Qin Ma 2✉ & Dong Xu 1✉

Single-cell RNA-sequencing (scRNA-Seq) is widely used to reveal the heterogeneity and

dynamics of tissues, organisms, and complex diseases, but its analyses still suffer from

multiple grand challenges, including the sequencing sparsity and complex differential patterns

in gene expression. We introduce the scGNN (single-cell graph neural network) to provide a

hypothesis-free deep learning framework for scRNA-Seq analyses. This framework for-

mulates and aggregates cell–cell relationships with graph neural networks and models het-

erogeneous gene expression patterns using a left-truncated mixture Gaussian model. scGNN

integrates three iterative multi-modal autoencoders and outperforms existing tools for gene

imputation and cell clustering on four benchmark scRNA-Seq datasets. In an Alzheimer’s

disease study with 13,214 single nuclei from postmortem brain tissues, scGNN successfully

illustrated disease-related neural development and the differential mechanism. scGNN pro-

vides an effective representation of gene expression and cell–cell relationships. It is also a

powerful framework that can be applied to general scRNA-Seq analyses.
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S ingle-cell RNA-sequencing (scRNA-seq) techniques enable
transcriptome-wide gene expression measurement in indi-
vidual cells, which are essential for identifying cell-type

clusters, inferring the arrangement of cell populations according
to trajectory topologies, and highlighting somatic clonal struc-
tures while characterizing cellular heterogeneity in complex
diseases1,2. scRNA-seq analysis for biological inference remains
challenging due to its complex and un-determined data dis-
tribution, which has a large volume and high rate of dropout
events. Some pioneer methodologies, e.g., Phenograph3,
MAGIC4, and Seurat5 use a k-nearest-neighbor (KNN) graph to
model the relationships between cells. However, such a graph
representation may over-simplify the complex cell and gene
relationships of the global cell population. Recently, the emerging
graph neural network (GNN) has deconvoluted node relation-
ships in a graph through neighbor information propagation in a
deep learning architecture6–8. Compared with other autoencoders
used in the scRNA-Seq analysis9–12 for revealing an effective
representation of scRNA-Seq data via recreating its own input,
the unique feature of graph autoencoder is in being able to learn a
low-dimensional representation of the graph topology and train
node relationships in a global view of the whole graph13.

We introduce a multi-modal framework scGNN (single-cell
graph neural network) for modeling heterogeneous cell–cell
relationships and their underlying complex gene expression pat-
terns from scRNA-Seq. scGNN trains low-dimensional feature
vectors (i.e., embedding) to represent relationships among cells
through topological abstraction based on both gene expression
and transcriptional regulation information. There are three
unique features in scGNN: (i) scGNN utilizes GNN with multi-
modal autoencoders to formulate and aggregate cell–cell rela-
tionships, providing a hypothesis-free framework to derive bio-
logically meaningful relationships. The framework does not need
to assume any statistical distribution or relationships for gene
expression data or dropout events. (ii) Cell-type-specific reg-
ulatory signals are modeled in building a cell graph, equipped
with a left-truncated mixture Gaussian (LTMG) model for
scRNA-Seq data14. This can improve the signal-to-noise ratio in
terms of embedding biologically meaningful information. (iii)
Bottom-up cell relationships are formulated from a dynamically
pruned GNN cell graph. The entire graph can be represented by
pooling on learned graph embedding of all nodes in the graph.
The graph embedding can be used as low-dimensional features
with tolerance to noises for the preservation of topological rela-
tionships in the cell graph. The derived cell–cell relationships are
adopted as regularizers in the autoencoder training to recover
gene expression values.

scGNN has great potential in capturing biological cell–cell
relationships in terms of cell-type clustering, cell trajectory
inference, cell lineages formation, and cells transitioning between
states. In this paper, we mainly focus on discovering its appli-
cative power in two fundamental aspects from scRNA-Seq data,
i.e., gene imputation and cell clustering. Gene imputation aims to
solve the dropout issue which commonly exists in scRNA-Seq
data where the expressions of a large number of active genes are
marked as zeros15–17. The excess of zero values often needs to be
recovered or handled to avoid the exaggeration of the dropout
events in many downstream biological analyses and interpreta-
tions. Existing imputation methods18, such as MAGIC4 and
SAVER19, have an issue in generating biased estimates of gene
expression and tend to induce false-positive and biased gene
correlations that could possibly eliminate some meaningful bio-
logical variations20,21. On the other hand, many studies, including
Seurat5 and Phenograph3, have explored the cell–cell relation-
ships using raw scRNA-seq data, and built cell graphs with
reduced data dimensions and detected cell clusters by applying

the Louvain modularity optimization. Accurate cell–cell rela-
tionships obey the rule that cells are more homogeneous within a
cell type and more heterogeneous among different cell types22,
The scGNN model provides a global perspective in exploring cell
relationships by integrating cell neighbors on the whole
population.

scGNN achieves promising performance in gene imputation
and cell cluster prediction on four scRNA-Seq data sets with gold-
standard cell labels23–26, compared to nine existing imputation
and four clustering tools (Supplementary Table 1). We believe
that the superior performance in gene imputation and cell cluster
prediction benefits from (i) our integrative autoencoder frame-
work, which synergistically determines cell clusters based on a
bottom-up integration of detailed pairwise cell–cell relationships
and the convergence of predicted clusters, and (ii) the integration
of both gene regulatory signals and cell network representations
in hidden layers as regularizers of our autoencoders. To further
demonstrate the power of scGNN in complex disease studies, we
applied it to an Alzheimer’s disease (AD) data set containing
13,214 single nuclei, which elucidated its application power on
cell-type identification and recovering gene expression values27.
We claim that such a GNN-based framework is powerful and
flexible enough to have great potential in integrating scMulti-
Omics data.

Results
The architecture of scGNN comprises stacked autoencoders.
The main architecture of scGNN is used to seek effective repre-
sentations of cells and genes that are useful for performing
different tasks in scRNA-Seq data analyses (Fig. 1 and Supple-
mentary Fig. 1). It has three comprehensive computational
components in an iteration process, including gene regulation
integration in a feature autoencoder, cell graph representation in
a graph autoencoder, gene expression updating in a set of parallel
cell-type-specific cluster autoencoders, as well as the final gene
expression recovery in an imputation autoencoder (Fig. 1).

The feature autoencoder intakes the pre-processed gene
expression matrix after the removal of low-quality cells and
genes, normalization, and variable gene ranking (Fig. 2a). First,
the LTMG model14,28 is adopted to the top 2,000 variable genes
to quantify gene regulatory signals encoded among diverse cell
states in scRNA-Seq data (see “Methods” section and Supple-
mentary Fig. 2). This model was built based on the kinetic
relationships between the transcriptional regulatory inputs and
mRNA metabolism and abundance, which can infer the
expression of multi-modalities across single cells. The captured
signals have a better signal-to-noise ratio to be used as a high-
order restraint to regularize the feature autoencoder. The aim of
this regularization is to treat each gene differently based on their
individual regulation status through a penalty in the loss function.
The feature autoencoder learns a low-dimensional embedding by
the gene expression reconstruction together with the regulariza-
tion. A cell–cell graph is generated from the learned embedding
via the KNN graph, where nodes represent individual cells and
the edges represent neighborhood relations among these
cells29,30. Then, the cell graph is pruned from selecting an
adaptive number of neighbors for each node on the KNN graph
by removing the noisy edges3.

Taking the pruned cell graph as input, the encoder of the graph
autoencoder uses GNN to learn a low-dimensional embedding of
each node and then regenerates the whole graph structure
through the decoder of the graph autoencoder (Fig. 2b). Based on
the topological properties of the cell graph, the graph autoencoder
abstracts intrinsic high-order cell–cell relationships propagated
on the global graph. The low-dimensional graph embedding
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integrates the essential pairwise cell–cell relationships and the
global cell–cell graph topology using a graph formulation by
regenerating the topological structure of the input cell graph.
Then the k-means clustering method is used to cluster cells on the
learned graph embedding31, where the number of clusters is
determined by the Louvain algorithm31 on the cell graph.

The expression matrix in each cell cluster from the feature
autoencoder is reconstructed through the cluster autoencoder.
Using the inferred cell-type information from the graph auto-
encoder, the cluster autoencoder treats different cell types
specifically and regenerates expression in the same cell cluster
(Fig. 2c). The cluster autoencoder helps discover cell-type-specific
information for each cell type in its individualized learning.
Accompanied by the feature autoencoder, the cluster autoencoder
leverages the inferences between global and cell-type-specific
representation learning. Iteratively, the reconstructed matrix is fed
back into the feature autoencoder. The iteration process stops until
it converges with no change in cell clustering and this cell clustering
result is recognized as the final results of cell-type prediction.

After the iteration stops, this imputation autoencoder takes the
original gene expression matrix as input and is trained with the
additional L1 regularizer of the inferred cell–cell relationships.
The regularizers (see “Methods” section) are generated based on
edges in the learned cell graph in the last iteration and their co-
occurrences in the same predicted cell type. Besides, the L1
penalty term is applied to increase the model generalization by
squeezing more zeroes into the autoencoder model weights. The
sparsity brought by the L1 term benefits the expression
imputation in dropout effects. Finally, the reconstructed gene
expression values are used as the final imputation output.

scGNN can effectively impute scRNA-Seq data and accurately
predict cell clusters. To assess the imputation and cell clustering
performance of scGNN, four scRNA data sets (i.e., Chung26,
Kolodziejczy23, Klein24, and Zeisel25) with gold-standard cell-
type labels are chosen as the benchmarks (more performance
evaluation on other data sets can be found in Supplementary
Data 1–2). We simulated the dropout effects by randomly flip-
ping a number of the non-zero entries to zeros. The synthetic
dropout simulation was based on the same leave-one-out strategy
used in scVI32 (Supplementary Fig. 3). Median L1 distance,
cosine similarity, and root-mean-square-deviation (RMSE) scores
between the original data set and the imputed values for these
synthetic entries were calculated to compare scGNN with
MAGIC4, SAUCIE10, SAVER19, scImpute33, scVI32, DCA11,
DeepImpute34, scIGANs35, and netNMF-sc36 (see “Methods”
section). scGNN achieves the best results in recovering gene
expressions in terms of median L1 distance, and RMSE at the 10
and 30% synthetic dropout rate, respectively. While the cosine
similarity score of scGNN ranks at the top place for 10% rate and
the third place for 30% rate. (Fig. 3a and Supplementary Data 1).
Furthermore, scGNN can recover the underlying gene–gene
relationships missed in the raw expression data due to the sparsity
of scRNA-Seq. For example, two pluripotency epiblast gene pairs,
Ccnd3 versus Pou5f1 and Nanog versus Trim28, are lowly cor-
related in the original raw data but show strong correlations
relations, which are differentiated by time points after scGNN
imputation and, therefore, perform with a consistency leading to
the desired results sought in the original paper24 (Fig. 3b). The
recovered relations of four more gene pairs are also showcased in
Supplementary Figure 4. scGNN amplifies differentially expressed

Fig. 1 The architecture of scGNN. It takes the gene expression matrix generated from scRNA-Seq as the input. LTMG can translate the input gene
expression data into a discretized regulatory signal as the regularizer for the feature autoencoder. The feature autoencoder learns a dimensional
representation of the input as embedding, upon which a cell graph is constructed and pruned. The graph autoencoder learns a topological graph embedding
of the cell graph, which is used for cell-type clustering. The cells in each cell type have an individual cluster autoencoder to reconstruct gene expression
values. The framework treats the reconstructed expression as a new input iteratively until converging. Finally, the imputed gene expression values are
obtained by the feature autoencoder regularized by the cell–cell relationships in the learned cell graph on the original pre-processed raw expression matrix
through the imputation autoencoder. LTMG is abbreviated for the left-truncated mixed Gaussian model.
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genes (DEGs) signals with a higher fold change than the original,
using an imputed matrix to confidently depict the cluster het-
erogeneity (Fig. 3c). We also compared the DEG signal changes
before and after imputation using other imputation tools. As an
example, 744 DEGs (logFC > 0.25) identified in Microglia
(benchmark cell label) of Zeisel data were compared logFC value
change before and after imputation (Supplementary Fig. 5). The
result turned out that scGNN is the only tool that increases all
most all DEG signals in Microglia with the strongest Pearson’s
correlation coefficient to the original data. Other tools showed
weaker coefficients and signals in some of the genes were
decreased, indicating imputation bias in these tools. Our results
indicate that scGNN can accurately restore expression values,
capture true gene–gene relations, and increase DEG signals,
without inducing additional noises.

Besides the artificial dropout benchmarks, we continued to
evaluate the clustering performance of scGNN and the nine
imputation tools on the same two data sets. The predicted cell
labels were systematically evaluated using 10 criteria including
an adjusted Rand index (ARI)37, Silhouette38, and eight other
criteria (Fig. 4a and Supplementary Data 2). By visualizing cell
clustering results on UMAPs39, one can observe more apparent
closeness of cells within the same cluster and separation among
different clusters when using scGNN embeddings compared to
the other nine imputation tools (Fig. 4b). We also observed that
compared to the tSNE40 and PHATE41 visualization methods,
UMAP showed better display results with closer inner-group
distance and larger between-group distances (Supplementary
Fig. 6). The expression patterns show heterogeneity along with

embryonic stem cell development. In the case of Klein’s time-
series data, scGNN recovered a complex structure that was not
well represented by the raw data, showing a well-aligned
trajectory path of cell development from Day 1 to Day 7
(Fig. 4c). Moreover, scGNN showed significant enhancement in
cell clustering compared to the existing scRNA-Seq analytical
framework (e.g., Seurat using the Louvain method) when using
the raw data (Supplementary Fig. 7). We hypothesized that the
cell–cell graph constructed from scGNN can reflect cell–cell
communications based on ligand–receptor pairs. Using
CellChat42 and curated receptor–ligand pairs, we proved that
aggregated interaction probability of cell pairs defined in an
scGNN cell–cell graph is significantly higher than randomly
selected cell pairs, which strongly indicates the capability of
scGNN in capturing the real cell–cell communications and
interactions (Supplementary Fig. 8).

On top of that, to address the significance of using the graph
autoencoder and cluster autoencoder in scGNN, we performed
ablation tests to bypass each autoencoder and compare the ARI
results on the Klein data set (Fig. 4d and Supplementary Fig. 9).
The results showed that removing either of these two auto-
encoders dramatically decreased the performance of scGNN in
terms of cell clustering accuracy. Another test using all genes
rather than the top 2,000 variable genes also showed poor
performance in the results and doubled the runtime of scGNN,
indicating that those low variable genes may reduce the signal-to-
noise ratio and negatively affect the accuracy of scGNN. The
design and comprehensive results of the ablation studies on both
clustering and imputation are detailed in Supplementary

Fig. 2 The architecture of scGNN Autoencoders. a The feature autoencoder takes the expression matrix as the input, regularized by LTMG signals. The
dimensions of the encoder and decoder layers are 512 × 128 and 128 × 512, respectively. The feature autoencoder is trained by minimizing the difference
between the input matrix and the output matrix. b The graph autoencoder takes the adjacency matrix of the pruned graph as the input. The encoder
consists of two layers of GNNs. In each layer, each node of the graph aggregates information from its neighbors. The encoder learns a low-dimensional
presentation (i.e., graph embedding) of the pruned cell graph. The decoder reconstructs the adjacency matrix of the graph by dot products of the learned
graph embedding followed by a sigmoid activation function. The graph autoencoder is trained by minimizing the cross-entropy loss between the input and
the reconstructed graph. Cell clusters are obtained by applying k-means and Louvain on the graph embedding. c The cluster autoencoder takes a
reconstructed expression matrix from the feature autoencoder as the input. An individual encoder is built on the cells in each of the identified clusters, and
each autoencoder is trained individually. The concatenation of the results from all clusters is treated as the reconstructed matrix.
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Fig. 3 Comparison of the imputation performance. a Comparison of the cosine similarity, median L1 distance, and RMSE scores between scGNN and other
nine imputation tools under 10 and 30% synthetic dropout rate. Darker color indicates better performances. The highest score in each column is
highlighted with the yellow box. RMSE scores were scaled by multiplying by 100. b Co-expression patterns can be addressed more explicitly after applying
scGNN on the Klein data. No clear gene pair relationship of Ccnd3 versus Pou5f1 (upper panel) and Nanog versus Trim28 (lower panel) is observed in the
raw data (left) compared to the observation of unambiguous correlations within each cell type after scGNN imputation (right). c Comparison of DEG logFC
scores using the original expression value (x axis) and the scGNN imputed expression values (y axis) identified in day 1 cells of the Klein data (up) and
microglial cells of the Zeisel data (bottom). The differentiation signals are amplified after imputation.
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Fig. 4 Cell clustering and trajectory evaluations. a Comparison of ARI and Silhouette scores among scGNN and nine tools using Klein and Zeisel data sets.
b Comparison of UMAP visualizations on the same two data sets, indicating that when scGNN embeddings are utilized, cells are more closely grouped
within the same cluster but when other tools are used, cells are more separated between clusters. Cells were clustered via the Louvain method and
visualized using UMAP. c Pseudotime analysis using the raw expression matrix and scGNN imputed matrix of the Klein data set via Monocle. d Justification
of using the graph autoencoder, the cluster autoencoder, and the top 2000 variable genes on the Klein data set in the scGNN framework, in terms of ARI.
scGNN CA- shows the results of the graph autoencoder’s ablation, CA- shows the results of the cluster autoencoder’s ablation, and AG shows the results
after using all genes in the framework.
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Methods 1–4, Supplementary Table 2, and Supplementary Data 3–
8. We also extensively studied the parameter selection in
Supplementary Data 9–12.

scGNN illustrates AD-related neural development and the
underlying regulatory mechanism. To further demonstrate the
applicative power of scGNN, we applied it to a scRNA-Seq data

set (GEO accession number GSE138852) containing 13,214 single
nuclei collected from six AD and six control brains27. scGNN
identifies 10 cell clusters, including microglia, neurons, oligo-
dendrocyte progenitor cells (OPCs), astrocytes, and six sub-
clusters of oligodendrocytes (Fig. 5a). Specifically, the proportions
of these six oligodendrocyte sub-clusters differ between AD
patients (Oligos 2, 3, and 4) and healthy controls (Oligos 1, 5, and

Fig. 5 Alzheimer’s disease data set (GSE138852) analysis based on scGNN. a Cell clustering UMAP. Labeled with scGNN clusters (left) and AD/control
samples (right). b Comparison of cell proportions in AD/control samples (left) and each cluster (right). c Heatmap of DEGs (logFC > 0.25) in each cluster.
Six oligodendrocyte sub-clusters are merged as one to compare with other cell types. Marker genes identified in DEGs are listed on the right. d Selected
AD-related enrichment pathways in each cell type in the comparison between AD and control cells. e Underlying TFs are responsible for the cell-type-
specific gene regulations identified by IRIS3.
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6) (Fig. 5b). Moreover, the difference between AD and the control
in the proportion of astrocyte and OPCs is observed, indicating
the change of cell population in AD patients compared to healthy
controls (Fig. 5b). We then combined these six oligodendrocyte
sub-clusters into one to discover DEGs. Since scGNN can sig-
nificantly increase true signals in the raw data set, DEG patterns
are more explicit (Supplementary Fig. 10). Among all DEGs, we
confirmed 22 genes as cell-type-specific markers for astrocytes,
OPCs, oligodendrocytes, and neurons, in that order43 (Fig. 5c). A
biological pathway enrichment analysis shows several highly
positive enrichments in AD cells compared to control cells among
all five cell types. These enrichments include oxidative phos-
phorylation and pathways associated with AD, Parkinson’s dis-
ease, and Huntington disease44 (Fig. 5d and Supplementary
Fig. 11). Interestingly, we observed a strong negative enrichment
of the MAPK (mitogen-activated protein kinase) signaling path-
way in the microglia cells, suggesting a relatively low MAPK
regulation in microglia than other cells.

In order to investigate the regulatory mechanisms underlying
the AD-related neural development, we applied the imputed
matrix of scGNN to IRIS3 (an integrated cell-type-specific
regulon inference server from single-cell RNA-Seq) and identified
21 cell-type-specific regulons (CTSR) in five cell types45 (Fig. 5e
and Supplementary Data 13; IRIS3 job ID: 20200626160833). Not
surprisingly, we identified several AD-related transcription
factors (TFs) and target genes that have been reported to be
involved in the development of AD. SP2 is a common TF
identified in both oligodendrocytes and astrocytes. It has been
shown to regulate the ABCA7 gene, which is an IGAP
(International Genomics of Alzheimer’s Project) gene that is
highly associated with late-onset AD46. We also observed an SP2
CTSR in astrocytes that regulate APOE, AQP4, SLC1A2, GJA1,
and FGFR3. All of these five targeted genes are marker genes of
astrocytes, which have been reported to be associated with
AD47,48. In addition, the SP3 TF, which can regulate the synaptic
function in neurons is identified in all cell clusters, and it is highly
activated in AD49,50. We identified CTSRs regulated by SP3 in
OPCs, astrocytes, and neurons suggesting significant SP3-related
regulation shifts in these three clusters. We observed 26, 60, and
22 genes that were uniquely regulated in OPCs, astrocytes, and
neurons, as well as 60 genes shared among the three clusters
(Supplementary Data 14). Such findings provide a direction for
the discovery of SP3 function in AD studies.

Discussion
It is still a fundamental challenge to explore cellular heterogeneity
in high-volume, high-sparsity, and noisy scRNA-Seq data, where
the high-order topological relationships of the whole-cell graph
are still not well explored and formulated. The key innovations of
scGNN are incorporating global propagated topological features
of the cells through GNNs, together with integrating gene reg-
ulatory signals in an iterative process for scRNA-Seq data ana-
lysis. The benefits of GNN are its intrinsic learnable properties of
propagating and aggregating attributes to capture relationships
across the whole cell–cell graph. Hence, the learned graph
embedding can be treated as the high-order representations of
cell–cell relationships in scRNA-Seq data in the context of graph
topology. Unlike the previous autoencoder applications in
scRNA-Seq data analysis, which only captures the top-down
distributions of the overall cells, scGNN can effectively aggregate
detailed relationships between similar cells using a bottom-up
approach. We also observed that the imputation of scGNN can
decrease batch effects introduced by different sequencing tech-
nologies (Supplementary Fig. 12), which makes scGNN a good
choice for data imputation prior to multiple scRNA-Seq data

integration51. Furthermore, scGNN integrates gene regulatory
signals efficiently by representing them discretely in LTMG in the
feature autoencoder regularization. These gene regulatory signals
can help identify biologically meaningful gene–gene relationships
as they apply to our framework and eventually, they are proven
capable of enhancing performance. Technically, scGNN adopts
multi-modal autoencoders in an iterative manner to recover gene
expression values and cell-type prediction simultaneously. Nota-
bly, scGNN is a hypothesis-free deep learning framework on a
data-driven cell graph model, and it is flexible to incorporate
different statistical models (e.g., LTMG) to analyze complex
scRNA-Seq data sets.

Some limitations can still be found in scGNN. (i) It is prone to
achieve better results with large data sets, compared to relatively
small data sets (e.g., <1000 cells), as it is designed to learn better
representations with many cells from scRNA-Seq data, as shown
in the benchmark results, and (ii) Compared with statistical
model-based methods, the iterative autoencoder framework needs
more computational resources, which is more time-consuming
(Supplementary Data 15). In the future, we will investigate
creating a more efficient scGNN model with a lighter and more
compressed architecture.

In the future, we will continue to enhance scGNN by imple-
menting heterogeneous graphs to support the integration of
single-cell multi-omics data (e.g., the intra-modality of Smart-
Seq2 and Droplet scRNA-Seq data; and the inter-modality inte-
gration of scRNA-Seq and scATAC-Seq data). We will also
incorporate attention mechanisms and graph transformer
models52 to make the analyses more explainable. Specifically, by
allowing the integration of scRNA-Seq and scATAC-Seq data,
scGNN has the potential to elucidate cell-type-specific gene reg-
ulatory mechanisms53. On the other hand, T cell receptor
repertoires are considered as unique identifiers of T cell ancestries
that can improve both the accuracy and robustness of predictions
regarding cell–cell interactions54. scGNN can also facilitate batch
effects and build connections across diverse sequencing technol-
ogies, experiments, and modalities. Moreover, scGNN can be
applied to analyze spatial transcription data sets regarding spatial
coordinates as additional regularizers to infer the cell neighbor-
hood representation and better prune the cell graph. We plan to
develop a more user-friendly software system from our scGNN
model, together with modularized analytical functions in support
of standardizing the data format, quality control, data integration,
multi-functional scMulti-seq analyses, performance evaluations,
and interactive visualizations.

Methods
Data set preprocessing. scGNN takes the scRNA-Seq gene expression profile as
the input. Data filtering and quality control are the first steps of data preprocessing.
Due to the high dropout rate of scRNA-seq expression data, only genes expressed
as non-zero in more than 1% of cells, and cells expressed as non-zero in more than
1% of genes are kept. Then, genes are ranked by standard deviation, i.e., the top
2000 genes in variances are used for the study. All the data are log-transformed.

Left-truncated mixed Gaussian (LTMG) modeling. A mixed Gaussian model
with left truncation assumption is used to explore the regulatory signals from gene
expression14. The normalized expression values of gene X over N cells are denoted
as X = {x1,…xN}, where xj ∈ X is assumed to follow a mixture of k Gaussian
distributions, corresponding to k possible gene regulatory signals (TRSs). The
density function of X is:

p X;Θð Þ ¼
YN
j¼1

pðxj;ΘÞ ¼
YN
j¼1

∑
k

i¼1
αip xj; θi

� �
¼

YN
j¼1

∑
k

i¼1
αi

1ffiffiffiffiffi
2π

p
σ i
e
� xj�μið Þ2

2σ2
i ¼ L Θ;Xð Þ

ð1Þ
where αi is the mixing weight, μi and σi are the mean and standard deviation of the

ith Gaussian distribution, which can be estimated by: Θ* ¼ argmax LðΘ;XÞ
Θ

to

model the errors at zero and the low expression values. With the left truncation
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assumption, the gene expression profile is split into M, which is a truly measured
expression of values, and N − M representing left-censored gene expressions for N
conditions. The parameter Θ maximizes the likelihood function and can be esti-
mated by an expectation-maximization algorithm. The number of Gaussian
components is selected by the Bayesian Information Criterion; then, the original
gene expression values are labeled to the most likely distribution under each cell. In
detail, the probability that xj belongs to distribution i is formulated by:

p xj 2 TRS ijK;Θ*
� �

/ αiffiffiffiffiffiffiffiffiffiffi
2πσ2j

q e
� xj�μið Þ2

2σ2
i ð2Þ

where xj is labeled by TRS i if

p xj 2 TRS ijK;Θ*
� �

¼ maxi¼1;¼ ;K ðp xj 2 TRS ijK;Θ*
� �

Þ. Thus, the discrete
values (1,2, …, K) for each gene are generated.

Feature autoencoder. The feature autoencoder is proposed to learn the repre-
sentative embedding of the scRNA expression through stacked two layers of dense
networks in both the encoder and decoder. The encoder constructs the low-
dimensional embedding of X′ from the input gene expression X, and the encoder
reconstructs the expression X̂ from the embedding; thus, X; X̂ 2 RN ´M and X
′2 RN ´M0

, where M is the number of input genes, M′ is the dimension of the
learned embedding, and M′ < M. The objective of training the feature autoencoder
is to achieve a maximum similarity between the original and reconstructed through

minimizing the loss function, in which ∑ X � X̂
� �2

is the main term serving as the
mean squared error (MSE) between the original and the reconstructed expressions.

Regularization. Regularization is adopted to integrate gene regulation information
during the feature autoencoder training process. The aim of this regularization is to
treat each gene differently based on their individual gene regulation role through
penalizing it in the loss function. The MSE is defined as:

α∑ X � X̂
� �2�TRS� �

ð3Þ

where TRS 2 RN ´M ; α is a parameter used to control the strength of gene reg-
ulation regularization; α ∈ [0,1]. ∘ denotes element-wise multiplication. Thus, the
loss function of the feature autoencoder is shown as Eq.(4).

Loss ¼ ð1� αÞ∑ X � X̂
� �2 þ α∑ X � X̂

� �2�TRS� �
ð4Þ

In the encoder, the output dimensions of the first and second layers are set as 512
and 128, respectively. Each layer is followed by the ReLU activation function. In the
decoder, the output dimensions of the first and second layers are 128 and 512,
respectively. Each layer is followed by a sigmoid activation function. The learning
rate is set as 0.001. The cluster autoencoder has the same architecture as the feature
autoencoder, but without gene regulation regularization in the loss function.

Cell graph and pruning. The cell graph formulates the cell–cell relationships using
embedding learned from the feature autoencoder. As done in the previous
works4,55, the cell graph is built from a KNN graph, where nodes are individual
single cells, and the edges are relationships between cells. K is the predefined
parameter used to control the scale of the captured interaction between cells. Each
node finds its neighbors within the K shortest distances and creates edges between
them and itself. Euclidian distance is calculated as the weights of the edges on the
learned embedding vectors. The pruning process selects an adaptive number of
neighbors for each node on the original KNN graph and keeps a more biologically
meaningful cell graph. Here, Isolation Forest is applied to prune the graph to detect
the outliner in the K-neighbors of each node56. Isolation Forest builds individual
random forest to check distances from the node to all K-neighbors and only
disconnects the outliners.

Graph autoencoder. The graph autoencoder learns to embed and represent the
topological information from the pruned cell graph. For the input pruned cell
graph, G = (V, E) with N = |V| nodes denoting the cells and E representing the
edges. A is its adjacency matrix and D is its degree matrix. The node feature matrix
of the graph autoencoder is the learned embedding X′ from the feature
autoencoder.

The graph convolution network (GCN) is defined as
GCN X0;Að Þ ¼ ReLUð~AX0WÞ, and W is a weight matrix learned from the
training. ~A ¼ D�1=2AD�1=2 is the symmetrically normalized adjacency matrix
and activation function ReLU(∙) = max(0, ∙). The encoder of the graph
autoencoder is composed of two layers of GCN, and Z is the graph embedding
learned through the encoder in Eq.(5). W1 and W2 are learned weight matrices
in the first and second layers, and the output dimensions of the first and second
layers are set at 32 and 16, respectively. The learning rate is set at 0.001.

Z ¼ ReLUð~AReLU ~AX0W1

� �
W2Þ ð5Þ

The decoder of the graph autoencoder is defined as an inner product between
the embedding:

Â ¼ sigmoidðZZT Þ ð6Þ

where Â is the reconstructed adjacency matrix of A. sigmoid(∙) = 1/(1 + e−∙) is the
sigmoid activation function.

The goal of learning the graph autoencoder is to minimize the cross-entropy L
between the input adjacency matrix A and the reconstructed matrix Â:

L A; Â
� � ¼ � 1

N ´N
∑
N

i¼1
∑
N

j¼1
ðaij � log âij

� �
þ 1� aij
� �

� logð1� âijÞÞ ð7Þ

where aij and âij are the elements of the adjacency matrix A and Â in the ith row
and the jth column. As there are N nodes as the cell number in the graph, N × N is
the total number of elements in the adjacency matrix.

Iterative process. The iterative process aims to build the single-cell graph itera-
tively until converging. The iterative process of the cell graph can be defined as:

~A ¼ λL0 þ 1� λð Þ Aij

∑j Aij
ð8Þ

where L0 is the normalized adjacency matrix of the initial pruned graph, and

L0 ¼ D�1=2
0 A0D

�1=2
0 , where D0 is the degree matrix. λ is the parameter to control

the converging speed, λ ∈ [0,1]. Each time in iteration t, two criteria are checked to
determine whether to stop the iteration: (1) that is, to determine whether the
adjacency matrix converges, i.e., ~At � ~At�1<γ1~A0; or (2) whether the inferred cell
types are similar enough, i.e., ARI < γ2. ARI is the similarity measurement, which is
detailed in the next section. In our setting, λ = 0.5 and γ1, γ2 = 0.99. The cell-type
clustering results obtained in the last iteration are chosen as the final cell-type
results.

Imputation autoencoder. After the iterative process stops, the imputation auto-
encoder imputes and denoises the raw expression matrix within the inferred
cell–cell relationship. The imputation autoencoder shares the same architecture as
the feature autoencoder, but it also uses three additional regularizers from the cell
graph in Eq. (9), cell types in Eq. (10), and the L1 regularizer in Eq. (11):

γ1∑ðA � ðX � X̂Þ2Þ ð9Þ

where A 2 RN ´N is the adjacency matrix from the pruned cell graph in the last
iteration. ∙ denotes dot product. Cells within an edge in the pruned graph will be
penalized in the training:

γ2∑ðB � ðX � X̂Þ2Þ

Bij ¼
1 where i and j in same cell type

0 else

� ð10Þ

where B 2 RN ´N is the relationship matrix between cells, and two cells in the same
cell type have a Bij value of 1. Cells within the same inferred cell type will be
penalized in the training. γ1, γ2 are the intensities of the regularizers and γ1, γ2 ∈
[0,1]. The L1 regularizer is defined as

β∑ wj j ð11Þ
which brings sparsity and increases the generalization performance of the auto-
encoder by reducing the number of non-zero w terms in ∑|w|, where β is a hyper-
parameter controlling the intensity of the L1 term (β ∈ [0,1]). Therefore, the loss
function of the imputation autoencoder is

Loss ¼ 1� αð Þ∑ X � X̂
� �2 þ α∑ X � X̂

� �2�TRS� �
þ β∑ wj j þ γ1∑ A � X � X̂

� �2� �
þ γ2∑ðB � ðX � X̂Þ2Þ

ð12Þ

Benchmark evaluation compared to existing tools
Imputation evaluation. For benchmarking imputation performance, we performed
synthetic dropout simulation to randomly flip 10% of the non-zero entries to zeros.
These synthetic dropouts still follow the zero-inflated negative binomial (ZINB)
distribution with details shown in Supplementary Method 5 and Data 16. We
evaluated median L1 distance, cosine similarity, and root-mean-squared error
(RMSE) between the original data set and the imputed values for these corrupted
entries. For all the flipped entries, x is the row vector of the original expression, and
y is its corresponding row vector of the imputed expression. The L1 distance is the
absolute deviation between the value of the original and imputed expression. A
lower L1 distance means a higher similarity.

L1 distance ¼ x � yj j; L1 distance 2 ½0;þ1Þ ð13Þ
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The cosine similarity computes the dot products between original and imputed
expression.

Cosine similarity x; yð Þ ¼ xyT

xk k yk k ; Cosine similarity 2 ½0; 1� ð14Þ

The RMSE computes the squared root of the quadratic mean of differences
between original and imputed expression.

RMSE x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xi � yið Þ2
N

s
; RMSE 2 0;þ1½ Þ ð15Þ

The process is repeated three times, and the mean and standard deviation were
selected as a comparison. The scores are compared between scGNN and nine
imputation tools (i.e., MAGIC4, SAUCIE10, SAVER19, scImpute33, scVI32, DCA11,
DeepImpute34, scIGANs35, and netNMF-sc36), using the default parameters.

Clustering evaluation. We compared the cell clustering results of scGNN, the same
nine imputation tools, and four scRNA-Seq analytical frameworks, in terms of ten
clustering evaluation scores. Noted that, we considered the default cell clustering
method (i.e., Louvain method31 in Seurat5, Ward.D257 method in CIDR58, Louvain
method in Monocle59, and k-means60 method in RaceID61) in each of the analy-
tical frameworks to compare the cell clustering performance with scGNN. The
default parameters are applied in all test tools. ARI37 is used to compute similarities
by considering all pairs of the samples that are assigned in clusters in the current
and previous clustering adjusted by random permutation:

ARI ¼ RI� E RI½ �
maxðRIÞ � E½RI� ð16Þ

where the unadjusted rand index (RI) is defined as:

RI ¼ aþ b
C2
n

ð17Þ

where a is the number of pairs correctly labeled in the same sets, and b is the
number of pairs correctly labeled as not in the same data set. C2

n is the total number
of possible pairs. E[RI] is the expected RI of random labeling.

Different from ARI which requires known ground truth labels, the Silhouette
coefficient score38 defines how similar an object is to its own cluster compared to
other clusters. It is defined as:

Silhouette ¼ b� a
max a; bð Þ ð18Þ

where a is the mean distance between a sample and all other points in the same
class, b is the mean distance between a sample and all other points in the next
nearest cluster. Silhouette ∈ [−1,1], where 1 indicates the best clustering results
and −1 indicates the worst. We calculated the average Silhouette score of all cells in
each data set to compare the cell clustering results. More quantitative
measurements are also used in Supplementary Method 4.

Statistical validation of cell–cell graph topology based on LRPs. We used
CellChat42 to predict potential interaction probability scores (ranging from 0 to 1; a
higher score indicates the two cells are more likely to interact with each other) of
ligand–receptor pairs (LRP) between any two cells. We built a fully connected
cell–cell background graph (using all the cells) based on Pearson’s correlation of
the raw expression matrix and compared it with the cell–cell graph generated from
scGNN. CellChat calculates an aggregated interaction probability for each linked
cell pair based on the expression level of LRPs. For all linked cell pairs in the
background graph and scGNN cell–cell graph, we performed a Wilcoxon test to
evaluate the statistical significance between the corresponding aggregated interac-
tion probability. Five scRNA-Seq data sets (i.e., Klein, Zeisel, Kolo, Chung, and
AD) were used in this analysis.

Case study of the AD database. We applied scGNN on public Alzheimer’s
disease (AD) scRNA-Seq data with 13,214 cells27. The resolution of scGNN was set
to 1.0, KI was set to 20, and the remaining parameters were kept as default. The AD
patient and control labels were provided by the original paper and used to color the
cells on the same UMAP coordinates generated from scGNN. We simply combined
cells in six oligodendrocyte subpopulations into one cluster, referred to as merged
oligo. The DEGs were identified in each cell cluster via the Wilcoxon rank-sum test
implemented in the Seurat package along with adjusted p-values using the
Benjamini-Hochberg procedure with a nominal level of 0.05. DEGs with logFC >
0.25 or <−0.25 were finally selected. We further identified the DEGs between AD
and control cells in each cluster using the same strategy and applied GSEA for
pathway enrichment analysis62. The imputed matrix, which resulted from scGNN
was then sent to IRIS3 for CTSR prediction, using the predicted cell clustering
labels with merged oligodendrocytes45. The default parameters were served in
regulatory analysis in IRIS3.

Software implementation. Tools and packages used in this paper include: Python
version 3.7.6, numpy version 1.18.1, torch version 1.4.0, networkx version 2.4,

pandas version 0.25.3, rpy2 version 3.2.4, matplotlib version 3.1.2, seaborn version
0.9.0, umap-learn version 0.3.10, munkres version 1.1.2, R version 3.6.1, and igraph
version 1.2.5. The IRIS3 website is at https://bmbl.bmi.osumc.edu/iris3/index.php.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq data sets analyzed during the current study are publicly available. Three
benchmark and AD case data sets can be downloaded from Gene Expression Omnibus
(GEO) databases with accession numbers of GSE75688 (the Chung data); GSE65525 (the
Klein data); GSE60361 (the Zeisel data); and GSE138852 (the AD case). The Kolodziejczy
data can be accessed from EMBL-EBI with an accession number of E-MTAB-2600.

Code availability
Our tool is open source and publicly available at GitHub and Zenodo (https://github.
com/juexinwang/scGNN)63.
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