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Synopsis 

 

The cancer research field is finally starting to unravel the mystery behind why males have a higher incidence 

and mortality rate than females for nearly all cancer types of the non-reproductive systems. Here, we explain 

how sex – specifically sex chromosomes and sex hormones – drive differential adaptive immunity across 

immune-related disease states including cancer, and why males are consequently more predisposed to tumor 

development. We highlight emerging data on the roles of cell-intrinsic androgen receptor in driving CD8+ 

T cell dysfunction or exhaustion in the tumor microenvironment and summarize on-going clinical efforts 

to determine the impact of androgen blockade on cancer immunotherapy. Finally, we outline a framework 

of future research in cancer biology and immuno-oncology, underscoring the importance of a holistic 

research approach to understand the mechanisms of sex dimorphisms in cancer, so sex will be considered 

as an imperative factor for guiding treatment decisions in the future. 
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Introduction 

 

Sexual dimorphisms are most apparent in reproductive organ development and overall male versus female 

physical attributes, such as height, physical stature, and muscle mass. However, epidemiological and 

molecular studies demonstrate differences in sex can also present through disease manifestation (Ober et 

al., 2008, (Clocchiatti et al., 2016). Females exhibit a more responsive innate and adaptive immune response 

compared to males when faced with foreign pathogens (bacteria, viruses, parasites, and fungi) (Markle and 

Fish, 2014) and as such, generate an increased amount of inflammation, antibody production, T cell 

responses, and consequently, more effective pathogen clearance (Klein et al., 2010). Females also have a 

greater immune response to vaccines, and therefore, are less susceptible to infection – a prime example 

being the fewer hospitalizations and lower mortality as a result of SARS-CoV-2 infection compared to 

males (Bunders and Altfeld, 2020, (Sette and Crotty, 2021). While females have a more responsive immune 

system, they are also more susceptible to excessive inflammation and autoimmune diseases, such as lupus 

and rheumatoid arthritis (Klein and Flanagan, 2016).  

 

Given the vital role of the immune system in monitoring healthy cell function and regulating tumorigenesis, 

a less effective immune system present in males also means therein lies a higher risk and worse prognosis 

to a large range of non-reproductive-related cancer cell types, such as cancers of the bladder, colon, 

esophagus, head and neck, skin, lung, and liver (Sung et al., 2021). A notable exception is thyroid cancer, 

where the incidence rate for females is substantially higher (Zhu et al., 2019, (Sung et al., 2021). While the 

increased risk for cancer in the male population was previously attributed to environmental or behavioral 

factors, such as a greater exposure to environmental carcinogens (Bertin et al., 2018) and/or a greater 

propensity for risk behaviors such as smoking or alcohol consumption (Zang and Wynder, 1996), recent 

advances in omics technologies and analytical methods have allowed for deeper, more molecular 

investigations into how human health and disease differ between males and females.  

 

Several genetic postulates have been proposed to explain the sexual dimorphisms observed in cancer 

development, including the impact of evolution and heritable traits, biological effects from sex hormones 

and sex chromosomes, and the development of genetic insults from environmental carcinogens 

(Khramtsova et al., 2019). While all models contribute to tumorigenesis, through either independent or 

compounded measures, the contribution of sex chromosomes and sex hormones (estrogens and androgens) 

to male versus female immune cell responses in driving tumor progression has not been well studied. 

Imperfect systems and inadequate experimental tools have also led to much confusion. Hence, clarifying 

the roles of sex bias in adaptive immunity against cancer is one of the main focuses of this Review. While 
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estrogens (higher in females) have been shown to increase production of survival cytokines, induce 

excretion of immunoglobulins, and modulate T cell activity, androgens (higher in males) stimulate anti-

inflammatory cytokines, reduce antibody production, and decrease T cell proliferation (Irelli et al., 2020, 

(Ben-Batalla et al., 2020). The primary biological actions of androgens involve binding to the androgen 

receptor (AR), a ligand-dependent nuclear transcription factor, that is highly expressed in the male 

reproductive system, such as prostate tissue, but is also widely expressed in a variety of innate and adaptive 

immune cells including, but not limited to, neutrophils, monocytes, macrophages, immature B cells, and T 

cells (Ben-Batalla et al., 2020, (Gubbels Bupp and Jorgensen, 2018, (Benten et al., 2002, (Walecki et al., 

2015, (Viselli et al., 1997).  

 

While mechanisms by which androgens mediate immune suppression are incompletely understood, 

targeting AR in combination with other immunotherapeutic approaches, such as immune checkpoint 

blockade (ICB), remains of great interest for treating prostate and non-prostate malignancies. This Review 

aims to highlight the decades of evidence on how immune-related gene and protein expression between 

sexes translates into differential disease progression – and to emphasize the need to study how host adaptive 

immunity contributes to sex-biased cancer outcomes – for eventual translation of knowledge into better 

management of cancers for both sexes.   

 

Overview of sex dimorphism in physiologic immune response 

 

The immune system is a complex network of cells, tissues, and organs that function to distinguish pathogens 

and dysplastic cells from healthy tissue and to defend the body from disease development. The innate 

immune system is one of the first lines of defense against foreign pathogens initiated by pattern recognition 

receptors (PRR) [e.g., Toll-like receptors (TLRs)], which generate rapid non-specific inflammatory 

responses to control the proliferation and spread of invading organisms. While the innate and adaptive 

immune systems have separate, distinct roles in controlling the spread of disease, members of the innate 

immune system, particularly antigen presenting cells (APCs), such as macrophages and dendritic cells 

(DCs), communicate with and instruct the adaptive immune system to amplify immune responses and 

initiate longer term memory towards a given pathogen. Before discussing contributing factors to differing 

immune profiles between sexes and how they relate to disease manifestation, we will first briefly review 

baseline differences in innate APCs and the adaptive immune system between healthy males and females. 

 

Most of the work on this topic in humans has been descriptive, focusing on understanding sex difference in 

composition and function of peripheral blood mononuclear cells (PBMCs). In line with females having a 
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more responsive immune system compared to males, growing evidence indicates that APCs in females are 

more functional in terms of proinflammation and antigen presentation, potentially due to higher expression 

of MHC-II and cell surface co-stimulatory molecules (Figure 1) (Weinstein et al., 1984, (Gubbels Bupp, 

2015, (Gubbels Bupp et al., 2008, (Togno-Peirce et al., 2013). Female PBMCs and DCs also produce 70% 

higher amounts of interferon-α (IFNα) upon TLR7 ligand stimulation, resulting in a stronger inflammatory 

immune response (Berghöfer et al., 2006, (Griesbeck et al., 2015, (Seillet et al., 2012). At baseline, healthy 

adult females have higher macrophage and CD4+ T cell counts, a higher CD4+/CD8+ ratio, and a lower 

number of regulatory T cells (Tregs) compared to males (Figure 1) (Abdullah et al., 2012, (Lee et al., 1996, 

(Ahnstedt et al., 2018, (Scotland et al., 2011). Using mouse models, it is important to point out that very 

few differentially expressed genes are seen between male and female immune cells except in macrophages, 

especially after interferon stimulation (Gal-Oz et al., 2019). In general, CD8+ T cells from healthy females 

are more activated, produce higher levels of effector molecules, such as IFN-γ, TNF-α, and granzyme 

B, and express more inflammatory genes upon repeat stimulation ex vivo (Ahnstedt et al., 2018, (Huang et 

al., 2021). As for humoral immunity, females are consistently found to possess a greater number of B cells 

(Abdullah et al., 2012), higher basal levels of immune globulin M (IgM) (Butterworth et al., 1967), and a 

stronger antibody response upon vaccination than males (Figure 1) (Furman et al., 2014, (Huang et al., 

2021). By examining 172 normal subjects longitudinally, males had a greater age-related decline of naïve 

T and B cells (Márquez et al., 2020). Collectively, females demonstrate enhanced pro-inflammatory 

cytokine production, antigen presentation, T cell activation, and B cell response compared to males. The 

real questions that remain are – what contributes to differing immune cell profiles, how do they relate to 

differing disease pathologies, and how can we use this information to improve clinical care of patients? 

 

 

Evidence of sex-biased immune regulation in human disease and vaccine 

response  

 

In terms of pathogenesis, prevalence, and severity of infection, substantial evidence details how males are 

more susceptible to infection by bacteria [e.g., Vibrio vulnificus (McClelland and Smith, 2011), 

Mycobacterium marinum (Yamamoto et al., 1991), and tuberculosis (TB) (Guerra-Silveira and Abad-

Franch, 2013)], viruses [e.g., human immunodeficiency virus (HIV) (Sabra L. Klein, 2015) and hepatitis C 

virus (HCV) (Grebely et al., 2014)], fungi (e.g., Cryptococcus neoformans and Paracoccidioides 

brasiliensis (McClelland and Smith, 2011)), and parasites (e.g., Schistosoma manosoni, Plasmodium 

falciparum, Entamoeba histolytica, Wuchereria bancrofti, and Necator americanus (Sabra L. Klein, 2015)) 
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than females (Figure 2). Sex differences remain regardless of route of transmission. Detailed further below, 

while females exhibit a greater degree of immunity against disease, they may also present with more severe 

symptoms, and these inflammatory side effects of fighting infection can in turn lead to increased rates of 

mortality. To emphasize differences in immunity between males and females and how these differences 

relate to cancer development and progression, we will provide an overview of immunologic differences 

between sexes for infectious and inflammatory diseases, as well as vaccine responsiveness.  

 

Bacterial infections 

Several noteworthy studies found that altered levels of systemic sex hormones provide potential 

mechanistic rationale for differences between sexes in susceptibility and mortality from bacterial infection. 

Using a rat model that recapitulates the male-biased (85%) Vibrio vulnificus-mediated sepsis observed in 

humans, Merkel and colleagues demonstrated that oophorectomy resulted in lower estrogen levels, which 

correlated with decreased survival when subjected to Vibrio vulnificus lipopolysaccharide (LPS). Further, 

estrogen replacement ameliorated disease severity and increased survival when given to both males and 

females after gonadectomy (Merkel et al., 2001). Another study evaluating Mycobacterium marinum 

infection in male mice demonstrated how fertile males exhibited more severe disease pathologies compared 

to surgically castrated males, which could be reversed by continuous testosterone treatment. Similarly, 

susceptibility of female mice to infection increased with exogenous testosterone (Yamamoto et al., 1991). 

Notably, a greater number of macrophages were found at the site of infection in females than males, and 

by performing T cell depletion and adoptive T cell transfer experiments, sex differences were found to be 

mediated by sex hormones as well as intrinsic sex-specific T cell function (Yamamoto et al., 1991).  

 

Globally, TB, an infectious disease caused by Mycobacterium tuberculosis, is more common among males 

than females. A retrospective analysis of females who had undergone oophorectomy due to salpingitis 

found the mortality rate increased to 7% compared to 0.7% in the general female population (Svanberg, 

1981). In another study, conducted in 1969, males who had been castrated died from TB at a rate of 8.1% 

compared to normal males at 20.6% (Hamilton and Mestler, 1969). Overall, few studies have been 

conducted to evaluate sex hormones in the context of TB susceptibility. More recently, Hertz and colleagues 

discovered the presence of smaller B cell follicle formation in the lungs of male TB-infected mice compared 

to females (Hertz et al., 2020). Contrary to the above reports, Mycobacterium avium complex (MAC) 

pulmonary disease is an infection occurring at an increased frequency in females versus males. However, 

MAC tends to manifest in postmenopausal females where estrogen levels have substantially decreased (Han 

et al., 2005). After performing bilateral oophorectomy on female mice, the burden of MAC bacilli in the 
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lungs increased, which was rescued to normal levels in the presence of exogenous estradiol treatment 

(Tsuyuguchi et al., 2001). 

  

Viral infections 

The prevalence of viral infections, such as SARS-CoV-2, HIV, HCV, and Hepatitis B Virus (HBV), is also 

higher in males than females, but disease outcomes vary between infection types. While females tend to 

have decreased plasma viral loads, >40% less circulating HIV RNA, higher CD4+ T cell counts, and greater 

CD8+ T cell activation compared to males, they also have a higher risk of progressing to AIDS (Collazos 

et al., 2007, (Sabra L. Klein, 2015). As mentioned, persistent chronic inflammation in females can have 

adverse effects and in turn, damage the immune system and contribute to the pathology. When females are 

exposed to HIV-1, TLR7 ligands in DCs become hyperactivated, high levels of TNF- are produced, and 

stronger CD8+ T cell activation occurs compared to males – this inflammatory state is thought to account 

for the female-biased disease progression (Meier et al., 2009). In contrast, males have a higher frequency 

of serum HBV antigens and viral DNA, and are more likely to develop hepatocellular carcinoma than 

females (vom Steeg and Klein, 2016). Similarly, females are more likely to spontaneously clear HCV, and 

males have a higher risk of developing cirrhosis after chronic HCV infection (Grebely et al., 2014, 

(Rodríguez-Torres et al., 2006). Importantly, sex differences in cirrhosis and fibrotic progression are 

attenuated after menopause, and severity of disease can be ameliorated by estrogen hormone replacement 

therapy (Di Martino et al., 2004).  

 

Vaccine response 

Of note, differential immune response between sexes also occurs after vaccination, with females reporting 

more severe local and systemic reactions (e.g., redness, muscle pain, headache, fever, and fatigue) to 

bacterial and viral vaccines (Cook, 2008). While these observations could be attributed to reporting bias, 

corresponding antibody production in females also reflects differing responses to vaccination (Potluri et al., 

2019, (Cook, 2008). The elevated antibody response is primarily observed in younger reproductive females. 

Epidemiologic studies indicate that similar to the increase in non-responsiveness observed in males to HBV 

vaccination, females tend to lose much of their immune privilege after menopause (Vermeiren et al., 2013, 

(Potluri et al., 2019). Estradiol has been shown to increase the efficacy of genital herpes simplex virus 2 

vaccinations (Pennock et al., 2009, (Bhavanam et al., 2008), and when combined with influenza 

vaccination, estradiol was able to rescue antibody titer levels in a post-menopausal mouse model (Nguyen 

et al., 2011). Giefing-Kroll and colleagues demonstrated that lower infection rates and higher antibody titers 

to vaccination for Hepatitis A, Hepatitis B, and Pneumococcus among females become equivalent to those 

of males in the elderly (post-menopause). Conversely, in male-biased vaccine responses, as seen with 
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Tetanus and Diphtheria, antibody titers either remain higher in males or equivalent to females with age 

(Giefing-Kröll et al., 2015). Additional studies are needed to determine which contributing factors (e.g., 

environmental, genetic, or hormonal), or combination thereof, result in the described differential infection 

and vaccine responses between sexes. 

 

Autoimmune diseases 

Given the apparent intensified immune system present in females, females present with a much higher 

frequency of inflammatory diseases and autoimmunity. Females account for nearly 80% of all autoimmune 

cases in the United States (Jacobson et al., 1997), presenting more commonly with Sjogren’s syndrome, 

system lupus erythematosus (SLE), rheumatoid arthritis, multiple sclerosis, and myasthenia gravis 

(Whitacre, 2001). Animal models that have helped to elucidate hormonal and immunological sex 

differences in disease progression include the nonobese diabetic (NOD) mouse model of spontaneous type 

1 diabetes and the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Several 

studies demonstrate that, in part, androgens exhibit protective effects. Both animal models have lower 

disease incidence and severity in male compared to female mice that increases after castration (Harbuz et 

al., 1995, (Fitzpatrick et al., 1991, (Ahmed and Penhale, 1982, (Fox, 1992). Testosterone levels are lower 

during EAE relapse (Bebo et al., 1998), and if testosterone is given as a topical treatment for multiple 

sclerosis, brain atrophy is slowed and peripheral immune responses change: CD4+ T cell number and IL-2 

production from PBMCs decrease, whereas NK cells and TGF- production from PBMCs increase (Gold 

et al., 2008). Collectively, these results further demonstrate the immunosuppressive effects of endogenous 

androgens - that also appear to play a role in tumor development and progression.         

 

Malignancies 

A well-known aspect of tumor biology is the interplay between tumor and immune cells, in conjunction 

with other cell types in the TME. Generally speaking, the immune system has an innate ability to defend 

the body from pathogens as well as to identify and destroy nascent malignant cells. It does so by providing 

protection against viral infections prone to induce tumorigenesis, resolving inflammatory states that induce 

a tumorigenic environment, and recognizing tumor-specific antigens and cell stress-induced molecules 

(Swann and Smyth, 2007). In line with the differential responses to infection and other immune-related 

pathologies described above, the differing rates of tumor incidence and cancer-related deaths between sexes 

are due, in part, to differing immune cell numbers, phenotypes, and anti-tumor cytotoxicities. 

 

With the primary exception of thyroid cancer, males have a greater risk of cancer development and mortality 

compared to females for the vast majority of non-reproductive tract-related cancers (Sung et al., 2021, (Zhu 
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et al., 2019). Cancers with the highest male-biased incidence rate ratios include urinary bladder, esophagus, 

larynx, pharynx, and liver/intrahepatic bile duct (Siegel et al., 2019, (Sung et al., 2021, (Zhu et al., 2019). 

Throughout this Review, we will be highlighting studies using in vitro and in vivo bladder cancer models 

given that bladder cancer is also one of the leading causes of cancer-related deaths in males worldwide and 

has been studied extensively as a cancer type with an unmet medical need (Sung et al., 2021). Explained 

further below, male-biased disease etiologies still persist after accounting for established risk factors, such 

as carcinogenic environmental exposures and unhealthy behavioral practices. In the coming sections, we 

will detail the leading known contributing paradigms that provide mechanistic explanations for why males 

tend to have increased incidence and an overall worse prognosis for the majority of non-reproductive 

cancers.  

 

Mechanisms of sexual dimorphisms in immunity 

 

To better understand differential immune regulation between sexes, we will explain several known sex-

related environmental and behavioral factors, as well as genetic and hormonal components that contribute 

to differing adaptive immune cell regulation and cancer incidence between males and females.  

 

Environmental and behavioral factors 

Environmental and behavioral factors – such as extent of chemical exposure, type of nutrition, and degree 

of healthcare seeking – are well known to differentially increase cancer risk between males and females 

(Figure 3). Use of tobacco products is a risk factor for the majority of cancers. A greater proportion of 

patients with cancer and a history of tobacco use are male, despite an overall decrease in prevalence over 

time (Higgins et al., 2015). Further, males reported they started smoking earlier in life and at an increased 

frequency than females (Zang and Wynder, 1996). Exposure to environmental toxins can have profound 

effects on the adaptive immune system. For example, smoking is one of the major causes of pulmonary 

inflammation (Lee et al., 2012, (Laniado-Laborín, 2009), contributes to chronic obstructive pulmonary 

disease (COPD), and is associated with an increase of pro-inflammatory T helper type 1 (Th1) and Th17 

cell subsets in both humans and mice (Harrison et al., 2008, (Vargas-Rojas et al., 2011). In addition to 

tobacco use, males have historically experienced more occupational chemical exposures by working in 

factories and other industrial work places. Sex-based analyses using the National Toxicology Program 

database demonstrated a higher incidence of tumors in male rats, with 68 chemicals inducing cancer in 

males only versus 19 chemicals inducing tumors in females only (Kadekar et al., 2012). 
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In part due to a longer life span and increased weight gain post-menopause, the overall percentage of 

females with obesity is higher than males , 2016, (Heo et al., 2021); however, males are reported as being 

less likely to select healthy food choices or exhibit an interest in self-care (Figure 3) (Wardle et al., 2004, 

(Mróz et al., 2011). Diabetes mellitus is associated with a significantly increased risk for cancer 

development and is an overall poor prognostic marker for patients with cancer (Duan et al., 2014, (Kautzky-

Willer et al., 2016). Using mouse models of diabetes to evaluate the effects of hyperglycemia on immune 

cell function and cancer cell growth, Fainsod-Levi and colleagues demonstrated hyperglycemia impairs 

neutrophil mobilization to tumors and increases metastatic seeding (Fainsod-Levi et al., 2017). Other 

studies found hyperglycemia shifted macrophages into a tumor-promoting M2-like phenotype within the 

TME (Rodrigues Mantuano et al., 2020) and impaired antigen presentation of MHC class II-restricted 

antigens to T cells (Clement et al., 2021). Of note, the role of macrophages was implicated in lung 

metastases of bladder cancer – a process driven by loss of the metastasis suppressor RhoGDI2 (Wu et al., 

2009) and C-C motif chemokine ligand 2 (CCL2) signaling through the CCR2 receptor (Said et al., 2012). 

Importantly, inhibition of CCL2 in tumors was found to enhance response to immune checkpoint inhibitors 

in animal models of bladder and other cancers (Tu et al., 2020, (Tu et al., 2019). 

 

Sex is also a very important biological factor that influences, and is influenced by, the gut microbiome in 

both humans and mice (Figure 3) (Elderman et al., 2018, (Org et al., 2016, (Dominianni et al., 2015). 

Multiple groups have found that sex modifies the associations between diet, body mass index, and microbial 

diversity (Gao et al., 2018, (Haro et al., 2016, (Bolnick et al., 2014), which in turn plays an indispensable 

role in the development, homeostasis, and functional modulation of the immune system (Zheng et al., 2020, 

(Belkaid and Hand, 2014). Imbalances here can contribute greatly to the induction and development of a 

number of immune-related diseases (Zheng et al., 2020). Studies have demonstrated that the gut microbiota 

can elevate testosterone levels, which in turn protects male mice from type 1 diabetes, an autoimmune 

disorder characterized by T cell-mediated destruction of pancreatic beta-cells. Further, transfer of male 

microbiota to females provided robust protection against type 1 diabetes (Markle et al., 2013, (Yurkovetskiy 

et al., 2013). Using 89 different inbred mice strains, Org et al. identified significant differences regarding 

the diversity and abundance of the microbiome between males and females in each strain (Org et al., 2016). 

In a comprehensive review, Taneja strongly suggests that sex hormones (predominantly estrogens) impact 

innate and adaptive immune cells and that gut microbiota may exert sex-specific effects on immune cell 

function due to the ability of microbes to metabolize and/or produce estrogen and androgen metabolites 

(Taneja, 2021). Through either a direct effect on the tumor cells or an indirect effect on the immune system, 

it is well-appreciated that the gut microbiome is capable of modulating host cancer progression and has 
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tremendous effects on responsiveness to immunotherapy, as discussed further in the last section of this 

Review. 

 

In summary, environmental and behavioral factors clearly contribute to differential cancer risks between 

males and females - through either direct oncogenic effects or modulation of the immune system. However, 

the combined global incidence and mortality rates for all cancers in aggregation is 50% and 20% higher for 

males compared to females, respectively, which far exceeds contributions from environmental and behavior 

effects (Bray et al., 2018, (Hartge et al., 1990). Thus, understanding the intrinsic biological factors that play 

a fundamental role in orchestrating the sexual dimorphism in cancer is of critical need. 

 

Sex chromosomes and genetics 

Chromosomal, genetic, and epigenetic factors have been reported to significantly contribute to sexual 

dimorphisms in immune response. Males and females vary in sex chromosome composition, with males 

carrying one paternally-inherited Y chromosome and one maternally-inherited X chromosome (XY), while 

females carry two X chromosomes (XX), one from each parent. The X and Y chromosomes evolved from 

a homologous autosome pair to become significantly different in size and gene number. In humans, the X 

chromosome is about 150 Mb in size with around 800 protein-coding genes, while the Y chromosome is 

23 Mb in size and contains 78 known protein-coding genes (Bachtrog, 2013, (Ross et al., 2005). One of the 

first steps in the sex chromosome evolution was acquisition of SRY on the Y chromosome. Individuals that 

carry the SRY gene will develop testis and become gonadal males, while non-carriers will develop ovaries 

and become females (Sinclair et al., 1990, (Gubbay et al., 1990, (Berta et al., 1990). Of relevance, several 

immune-related genes are X-linked, such as cytokine receptors interleukin 2 receptor-γ chain (IL2RG) and 

IL-13 receptor-α chain (IL13RA2), TLR7 and TLR8, and the transcription factors androgen receptor (AR) 

and forkhead box P3 (FOXP3) (Kawai and Akira, 2006, (Klein et al., 2015, (Su et al., 2009, (Lubahn et al., 

1988, (Souyris et al., 2019, (Zhao et al., 2020) (Figure 3), which when dysregulated have the potential to 

elicit dimorphic immune response between sexes. 

 

To balance and regulate homogametic (XX) and heterogametic (XY) gene expression, one X chromosome 

in female cells is transcriptionally silenced primarily through action of Xist (X-inactive specific transcript), 

a 17,000 nucleotide long non-coding RNA that physically coats the chromosome from which it is produced 

(Heard et al., 2004, (Boumil and Lee, 2001). Despite chromosome-wide silencing, about 23% of X-linked 

genes escape X chromosome inactivation (XCI), resulting in sex-biased expression patterns (Tukiainen et 

al., 2017) (Figure 3). The sex-biased expression of many immune-related genes have been found to have 

an effect on the outcome of several immune-related diseases, including autoimmunity and cancer. For 
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example, SLE, an autoimmune disease that predominantly affects females, can be partly explained by 

expression of both copies of the TLR7 gene – including one which escaped XCI in certain immune cell 

subsets, such as monocytes, DCs, and B cells (Souyris et al., 2018). B cell-intrinsic TLR7 signaling is 

crucial for autoantibody production and systemic inflammation (Jackson et al., 2014), deficiency of which 

protects mice against lupus-like diseases (Christensen et al., 2006). Similarly, overexpressing TLR7 was 

sufficient to induce acute systematic autoimmune disease in a non-lupus mouse model (Deane et al., 2007), 

overall suggesting additional copies of TLR7 may contribute to more functional adaptive immunity in 

females. Several XCI-escaped genes have also been suggested to have tumor suppressing functions 

(Clocchiatti et al., 2016, (Dunford et al., 2017). As an example, biallelic expression of KDM6A, a sex-

biasing tumor suppressor that escaped XCI in females, was found to partially explain the protection of 

females against bladder cancer (Dunford et al., 2017, (Kaneko and Li, 2018, (Ntziachristos et al., 2014). 

Additional immune-related XCI-escaped genes include CD99, TLR8, TASL, DDX3X, USP27X, CXCR3, 

LAMP2, XIAP, CD40LG, IRAK1, and IL9R (Figure 3) (Mousavi et al., 2020, (Carrel and Willard, 2005, 

(Oghumu et al., 2019, (Vermeesch et al., 1997). 

 

As mentioned, the SRY gene, located on the Y chromosome, is responsible for the formation of testes and 

therefore testosterone synthesis. The ‘four cores genotypes’ (FCG) mouse model made use of the SRY gene 

to uncouple gonadal-dependent and -independent mechanisms and evaluate the impact of sex chromosomes 

versus gonadal type (Arnold and Chen, 2009). Gonadectomy of these mice helped to unmask multiple 

immune-related functions such as susceptibility to viral infection and autoimmune diseases (Robinson et 

al., 2011, (Smith-Bouvier et al., 2008). By using this model, mice of the XX chromosome complement 

demonstrated greater susceptibility to both EAE and pristane-induced lupus, compared with XY mice with 

the same gonadal type (Smith-Bouvier et al., 2008). More recently, using this model, Kaneko and Li 

systematically investigated bladder cancer risk using the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-

induced bladder cancer model (Kaneko and Li, 2018). The hazard ratio (HR) of tumor development in mice 

with testes versus ovaries was 4.714, and between mice with XY versus XX chromosomes was 2.549. 

Importantly, the combined effects of both sex chromosomes and hormones increased the HR to 12.390, 

signifying that sex chromosomes and sex hormones are both substantial modulators that impact the sexual 

dimorphisms seen in tumor development. 

 

Sex steroid hormones  

Sex hormones, such as estrogens, progesterone, and androgens, are steroid hormones that bind and signal 

through estrogen receptors (ER), progesterone receptors (PR), and the androgen receptor (AR), 

respectively. They have important roles in both the reproductive and nonreproductive systems and are well-
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known modulators of immune function and related disease onsets (Taneja, 2018, (Bereshchenko et al., 

2018, (Moulton, 2018). By analyzing gene expression and sample-specific regulatory networks across 29 

normal human tissues using the Genotype-Tissue Expression (GTEx) project dataset, Lopes-Ramos and 

colleagues explain that the majority of genes differentially expressed between tissues were enriched for sex 

chromosome genes, including those known to escape XCI. When analyzed via gene set enrichment analyses 

(GSEA) and gene ontology (GO) terms, methylation and immune system-related processes dominated sex-

related differences across tissue types (Lopes-Ramos et al., 2020). Of note, most transcription factors (TFs), 

including estrogen receptor genes, ESR1 and ESR2, and AR, were not differentially expressed between 

males and females; instead, gene target regulatory network analyses revealed strong differential targeting 

patterns by sex hormones existed in several tissues, including whole blood, and that they were associated 

with a divergent class of genes regulated by both sex hormone receptors and other various TFs (Lopes-

Ramos et al., 2020).  

 

A similar study evaluating sex-biased gene regulation using GTEx data, but in combination with genome 

wide association studies (GWASs), found differential gene expression between sexes to be relatively 

widespread across the genome, albeit at low levels that were largely tissue-specific, with the largest 

differential expression stemming from X-chromosome genes (Oliva et al., 2020). Here, the authors 

characterize TF binding sites (TFBSs) across promoter regions of male- and female-biased genes and 

discovered enrichment of TFBSs for 92 TFs, including known hormone-related receptors [ESR1, AR, and 

glucocorticoid (NR3C1)], those that colocalize with hormone receptors, and additional TFBSs that have not 

been reported or have less of a hormone receptor association (Oliva et al., 2020). Given that these are RNA-

based analyses, differential target gene regulation is likely due to a combination of the following factors: 

differing TF protein abundance, epigenetic regulations, established TF cooperativity, and as discussed 

below, differing ligand (estrogen and androgen) levels that activate respective sex hormone activity. 

 

Estrogen and estrogen receptor signaling on immunity  

Estrogens are considered female sex hormones, given that they are primarily synthesized in female gonadal 

organs and are present at elevated levels in females compared to males. The lower quantities of estrogen 

found in males can be attributed to a smaller but significant amount of estrogen synthesized by non-gonadal 

organs, such as adipose tissue (Barakat et al., 2016, (Nelson and Bulun, 2001). Even low levels of estrogen 

make important physiological contributions to tissue- and cell-specific function across sexes – as evidenced 

by the necessity of estrogen for normal gonadal development and spermatogenesis, as well as sperm 

maturation and motility (Schulster et al., 2016). The three main physiological forms of estrogen include 

estrone (E1), estradiol (E2 or 17-estradiol), and estriol (E3), with E2 being the most potent and biologically 
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relevant molecule, especially in premenopausal females (Figure 4) (Fuentes and Silveyra, 2019, (Cui et al., 

2013). Once released into circulation, estrogens travel to both reproductive and non-reproductive estrogen-

responsive tissues. Estrogen synthesis and serum E2 levels are highest during reproductive years, especially 

during ovulation, and decline by 85-90% with menopause (Khosla et al., 1997). Estrogen primarily signals 

through two nuclear receptors, ER (ESR1) and ER (ESR2), whose genes are located on separate 

chromosomes, as well as a membrane-bound G protein-coupled estrogen receptor (GPER), which we 

discuss further below. While ER and ER colocalize in many cell types, both genes are expressed in 

distinct tissue-specific patterns and distributions throughout the body that vary over time (Khan and Ansar 

Ahmed, 2015, (Fuentes and Silveyra, 2019). Upon estrogen binding, ER and ER either homo- or 

heterodimerize, translocate to the nucleus, and in conjunction with additional transcriptional regulators, 

bind to estrogen response elements (EREs) of tissue-specific ER target genes (Figure 4).        

 

Collectively, both ER and ER are expressed in the majority of immune cells, with ER being the 

predominant isoform expressed in macrophages (Calippe et al., 2010), dendritic cells (Kovats and Carreras, 

2008), CD4+ T cells, and B cells (Phiel et al., 2005). Interestingly, estrogen and ER activity appear to 

contribute to an increased immune response through specific mechanisms – essentially, through TH1/2 

activation, CD8+ T cell effector function, and B cell-mediated antibody responses, as opposed to TH17-

mediated activity (Figure 3). While conflicting data exists, the majority of studies demonstrate estradiol 

signals through ER to inhibit TH17 cell differentiation (Chen et al., 2015a, (Khan et al., 2010, (Lélu et al., 

2011) – this occurs by forming a complex with repressor of ER activity (REA) and binding to EREs within 

the promoter region of the retinoic acid receptor (ROR)T (Chen et al., 2015a). The absence of ER results 

in increased IL-17 secretion and TH17 cell differentiation (Tyagi et al., 2012), and in post-menopausal 

females with decreased estrogen, there is an increase in plasma IL-17 levels (Molnár et al., 2014). Estrogen 

also potentiates suppressive effects by increasing CD25 and FOXP3 expression and enhancing Treg 

numbers and function, both in vitro and in vivo (Figure 4) (Prieto and Rosenstein, 2006, (Polanczyk et al., 

2004).  

 

With regards to enhanced immunity, estrogen-induced ER activation has been shown to induce DC 

development and stimulate DC-mediated pro-inflammatory effects of CD4+ T cells via CD40 and TLR9 

stimulation (Douin-Echinard et al., 2008). Using the Flt3L-induced model of DC differentiation, ER 

promotes conventional DC (cDC) and plasmacytoid DC (pDC) development with an increased propensity 

to invoke pro-inflammatory cytokine production after TLR stimulation (Seillet et al., 2013). Similar results 

have been observed in vivo in response to ER-mediated TLR-driven production of type 1 IFNs (Seillet et 
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al., 2012). Estrogen also promoted TLR4-mediated proinflammatory factors via ER in macrophages 

(Calippe et al., 2010) and increased IFN- mRNA levels in Jurkat cells using a IFN- promoter-driven 

reporter assay which contains consensus ERE binding motifs (Fox et al., 1991). When estrogen was 

administered to ovariectomized mice immunized with exogenous antigens, CD4+ T cells clonally expanded 

into antigen-specific, IFN- producing TH1 cells (Maret et al., 2003). Estrogen is well-known to influence 

B cell differentiation, proliferation, and survival, while also enhancing immunoglobulin production (Figure 

4) (Sthoeger et al., 1988, (Kanda and Tamaki, 1999, (Medina et al., 2000). While CD8+ T cells have low 

expression of both ER and ER and proliferation is not altered with estrogen exposure (Phiel et al., 2005, 

(Klein and Flanagan, 2016), estrogen can increase the CD8+ T cell response (Robinson et al., 2014), likely 

through activation of upstream mediators such as neutrophils and the immune cell subsets described above. 

 

The rapid non-genomic activation of GPER is primarily induced by estradiol and results in the upregulation 

of epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), protein kinase A 

(PKA), and phosphoinositide 3-kinase (PI3K) pathway signaling (Hsu et al., 2019). GPER is expressed in 

several types of cancer, including pancreatic, breast, endometrial, lung, ovarian, and hepatocellular cancers, 

and plays an important role in cancer cell invasion, tumor expansion, and modulation of the TME (Notas 

et al., 2020). Interestingly, androgen has been shown to inhibit GPER expression and is highly expressed 

in castration-resistant prostate cancer but not in androgen-responsive prostate cancer (Lam et al., 2014).  

GPER regulates the life span of multiple immune cell types, including neutrophils, 

monocytes/macrophages, T lymphocytes and B cells, and is overactive in immune-mediated diseases (such 

as MS and SLE) (Notas et al., 2020). GPER has been shown to play an important role in the regulation of 

cytokines and cytokine receptor expression (Notas et al., 2020). For example, in primary human and mouse 

macrophages, use of G-1, a potent and selective GPER agonist, inhibited LPS-induced TNF-α and IL-6 

secretion (Blasko et al., 2009). G-1 treatment of CD4+ T cells under Th17-polarizing conditions resulted in 

the increase of IL-10 (Brunsing and Prossnitz, 2011). In summary, GPER appears to be an important 

mediator of estrogenic action in tumor formation, progression, and metastasis and should also be considered 

when investigating hormone-related differences in immuno-oncology.   

 

Progesterone and progesterone receptor signaling on immunity 

Progesterone (P4) is an endogenous steroid sex hormone with increased secretion by the ovaries during 

menstruation and pregnancy (DeMayo et al., 2002). P4 is primarily known to regulate female reproductive 

functions by stimulating growth of blood vessel that supply the endometrium, preparing the uterine lining 

for implantation, and sustaining the endometrium during pregnancy (Raghupathy and Szekeres-Bartho, 

2022). While males and females have no substantial quantitative difference in progesterone levels at 
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baseline, P4 does have an important role in several male biological processes, including spermiogenesis 

(Oettel and Mukhopadhyay, 2004). P4 is also an intermediate metabolite for testosterone and neurosteriod 

biosynthesis and can affect the cardiovascular, respiratory, and immune systems (Oettel and 

Mukhopadhyay, 2004) – discussed below. P4 actions are mediated by two nuclear receptors, progesterone 

receptor A (PR-A) and progesterone receptor B (PR-B), which are transcribed from a single gene in 

response to estrogen (Li and O'Malley, 2003). In female mice, PR-A has been shown to regulate uterine 

functions, such as implantation and decidualization, whereas PR-B is important for mammary gland 

development (Mulac-Jericevic et al., 2000, (Mulac-Jericevic et al., 2003). PR is used as a biomarker for 

ER-α activity and breast cancer prognosis. ER-α induces PR expression, and in turn, PR modulates ER-α-

associated activity (Mohammed et al., 2015). In the presence of agonist, PR associates with ER-α to direct 

its chromatin binding, resulting in a gene expression profile associated with good clinical outcomes for 

patients with lumina A breast cancer (Mohammed et al., 2015). 

 

Female-dominant autoimmune disease symptoms tend to decrease during menstruation and pregnancy, and 

increase after menopause (Hughes, 2012, (Hughes and Choubey, 2014). PR is expressed by several immune 

cell types and is well known for its ability to suppress T cell activation during pregnancy (Shah et al., 2019, 

(Szekeres-Bartho et al., 2001, (Arruvito et al., 2008). Further, P4 has been shown to inhibit the activation 

of mouse DCs (Jones et al., 2010), macrophages (Menzies et al., 2011) and NK cells (Schumacher et al., 

2014). Administration of P4 to pregnant mice infected with Brucella abortus resulted in reduced 

inflammatory cytokines by trophoblast cells, reduced placental inflammation, and increased viability of 

embryos (Ren et al., 2021). In addition to inhibiting the production of cytokines (Butts et al., 2007, (Jones 

et al., 2008), P4 also suppresses the production of chemokines, such as macrophage inflammatory protein-

1α, macrophage inflammatory protein-1β, and RANTES by CD8+ T cells (Vassiliadou et al., 1999). 

Collectively, progesterone is considered an anti-inflammatory hormone that controls tolerance of the 

immune system during pregnancy. As such, administration of P4 to healthy pregnant women has been 

shown to reduce markers of inflammation within the maternal blood stream (Shah et al., 2019). Whether a 

meaningful interplay between estrogen/ER and P4/PR exists in immune cells of the TME has yet to be 

determined.  

 

Androgen and androgen receptor signaling on immunity 

As previously described, the observed effects from AR pathway signaling have been immuno-suppressive 

and necessary for immune tolerance. It remains to be determined how AR signaling in innate APCs and 

adaptive immune cells contributes to tumor development and progression, and how we can use this 

knowledge to activate anti-tumor immunity and improve current immunotherapeutic strategies.   
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Androgens are male sex hormones that are primarily synthesized in male gonadal organs and are present at 

elevated levels in males compared to females. Androgen secretion is first initiated through the pulsatile 

release of luteinizing hormone-releasing hormones (LHRHs) from the hypothalamus, which bind and 

stimulate the release of luteinizing (LH) and follicle-stimulating (FSH) hormones from the anterior pituitary 

gland. Through a series of enzymatic reactions, cholesterol-derived testosterone synthesis occurs when LH 

binds to LH receptors on Leydig cells in the testes (Figure 4) (Crawford et al., 2019). Testosterone then 

circulates in the blood stream, either free or bound to serum albumin or sex hormone-binding globulin 

(SHBG), until it reaches its target tissue (Figure 4). Testosterone is then converted into the more active 

metabolite dihydrotestosterone (DHT) by 5-reductase. Binding of androgens to AR results in a 

conformational change, dissociation from chaperone proteins, exposure of the nuclear localization signal 

(NLS), dimerization, and translocation to the nucleus, where it binds to androgen response elements (AREs) 

in complex with chromatin remodelers and other transcriptional coregulators (Figure 4) (Davey and 

Grossmann, 2016).   

 

In addition to male reproductive organs, AR is expressed in a diverse range of tissue types, including 

adipose tissue, muscle, and bone, as well as cells of the cardiovascular, nervous, and immune systems  

(Davey and Grossmann, 2016, (Walters et al., 2007, (Yeh et al., 2003, (Hu et al., 2004). Rare X-linked 

recessive AR loss-of-function mutations that result in decreased or a complete loss of AR expression, 

termed androgen insensitivity syndromes (AIS), have allowed us to delineate AR function in humans. Given 

that male cells only contain a single X chromosome and are more reliant on AR activity for the development 

of male gender characteristics, males have a greater propensity to develop phenotypic changes if they are 

an AR mutation carrier. Depending on the type and location of the mutation, phenotypes can range from 

mild (change in body hair patterns, body size, and/or impaired spermatogenesis) to more severe (impaired 

male genitalia development) physiological disorders (Quigley et al., 1995). Unfortunately, while 

lymphocytes can be analyzed to detect the AIS-causing AR mutations (Melo et al., 2011), few functional 

studies have been conducted to determine the impact of these mutations on lymphocyte biology. We 

summarize below the emerging roles of AR in regulating APC, T cell, and B cell function.  

 

APCs: AR expression has been reported and functionally validated across numerous immune cell types, 

including neutrophils, monocytes, macrophages, CD4+ T cells, CD8+ T cells, and B cell progenitors. 

Through use of androgen treatments and by disrupting the AR signaling pathway, investigators have begun 

to understand how AR-expressing immune cells are hormonally regulated. Macrophages are considered 

essential for mediating immune responses. Through use of a macrophage cell line, cultured primary 
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macrophages, and in vivo studies, testosterone has been shown to suppress expression of TLR4, TNF-, 

and IL-1 (Figure 4) (Rettew et al., 2008, (Corcoran et al., 2010). Consistent with the notion that androgens 

suppress macrophage inflammatory responses, males have a greater risk of succumbing to sepsis than 

females. In a hemorrhaged mouse model, administration of the anti-androgen flutamide both increased 

cytokine release by splenic macrophages and significantly decreased mortality (Angele et al., 2014). On a 

separate but similar note, castration of male mice significantly increased susceptibility to inflammation-

induced endotoxic shock from a systemic gram-negative bacterial infection; exogenous testosterone was 

able to reverse the effect (Rettew et al., 2008). As mentioned above, ER appears to be the driving hormonal 

regulator in the development of several DC lineages (Paharkova-Vatchkova et al., 2004, (Douin-Echinard 

et al., 2008, (Seillet et al., 2013). While TLR-mediated inflammatory responses in male DCs are lower than 

in females, and DCs in hypogonadal males are more immunologically responsive (Corrales et al., 2012), it 

remains unclear whether these observations are due to direct or indirect effects of androgens.  

 

T cells: It is well-known that the thymus enlarges in response to decreased androgen signaling, such as with 

castration or as a result of AR deficiency (Henderson, 1904, (Olsen et al., 1998). Decreased androgens also 

increase the thymic egression of T cells (Olsen and Kovacs, 2011). The elevated thymic output of T cells 

can be observed in healthy versus hypogonadal males before and after testosterone replacement therapy 

(Olsen and Kovacs, 2011). Thymic hypertrophy is reversed with the administration of androgens to 

castrated mice – a process that involves rapid apoptotic involution of the thymus that thereby affects the 

size, cellular composition, and degree of T cell proliferation (Olsen et al., 1998, (McMurray et al., 2001). 

As such, increased egression and peripheral T cell numbers are also reversed upon androgen replacement 

(Olsen and Kovacs, 2011). While mice carrying the AIS testicular feminization AR mutation (Tfm) also 

showed thymic enlargement, androgen treatment did not reverse the thymus phenotype caused by defective 

AR function (Olsen et al., 1998). Of note, androgen-related effects on thymic size were primarily observed 

when AR was knocked out of thymic epithelial cells (TEC) as opposed to thymocytes (Lai et al., 2013). 

Consistent with these findings, incorporation of the dysfunctional AR-Tfm gene specifically in TECs also 

caused thymus enlargement and increased T cell number (Olsen et al., 1998). While it is unclear whether 

the effects on T cells are direct or stem from indirect contributions from TECs during T cell development, 

additional studies demonstrated T cells isolated from surgically castrated mice had more proliferative 

activity in response to antigen-specific activation and upon T cell receptor (TCR)- and CD28-mediated co-

stimulation (Roden et al., 2004), and T cells isolated from medically castrated males had increased mitogen-

induced CD8+ T cell IFN expression (Page et al., 2006), further demonstrating how androgens suppress 

CD8+ T cell proliferation and activity (Figure 4). As discussed later, using multiple strategies, including a 

single cell omics platform, we recently discovered a key role for T cell-intrinsic AR in orchestrating the 
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CD8+ T cell exhaustion program in the TME, and the contribution of such to sex bias in cancer (Kwon et 

al., 2022). 

 

The distribution and activity of CD4+ T cell subsets are also regulated by sex hormones. However, 

compared to CD8+ T cells, sex disparity of CD4+ T cell phenotypes is less clear. Mouse (Elderman et al., 

2016, (Roberts et al., 2001) and human (Girón-González et al., 2000, (Zhang et al., 2012) studies report 

inconsistent data regarding TH1 or TH2 CD4+ T cell populations in males versus females. Since low versus 

high levels of estrogen can promote TH1 versus TH2 CD4+ T cell differentiation, respectively, differences 

in TH1/2 populations between sexes may be dependent on menstrual cycle, age, and/or experimental 

methods used for assessment (Straub, 2007, (Girón-González et al., 2000). However, in the presence of 

androgen, both in vitro and in vivo experiments demonstrate androgens mount an overall suppressive effect 

on Th1 CD4+ T cell differentiation and corresponding IL-12 signaling, but induce a CD4+ Th2 cell response 

characterized by enhanced production of the immunosuppressive cytokine IL-10 (Kissick et al., 2014, (Liva 

and Voskuhl, 2001). Importantly, androgen deprivation was able to enhance TH1 responses and IFN 

signaling (Kissick et al., 2014). As previously mentioned, males also have an increased proportion of IL-

17-producing CD4+ T cells compared to females. A recent study demonstrated a vital role of IL-17-

producing  T cells on local tissue immune surveillance of the testis.  T cells seeded the testis of naïve 

mice, expanded at puberty, and decreased mortality from infectious pathogens such as Listeria 

monocytogenes (Figure 4) (Wilharm et al., 2021).  

 

Depending on the site of origin and pathology involved, the ratio of Tregs between sexes differ among 

mouse studies, whereas an increased number of Tregs are more consistently reported in healthy adult males 

compared to females in human studies (Afshan et al., 2012). When males were treated with an LHRH 

antagonist, thereby decreasing androgen levels, peripheral blood Tregs cell counts were less than both 

placebo-treated males. Treatments did not affect overall CD4+/CD8+ T cell ratios (Page et al., 2006). In 

vitro stimulation of naïve T cells with testosterone has also been shown to increase Treg cell expansion 

with immunosuppressive activity (Fijak et al., 2011). Consistent with these results, androgen administration 

to treat autoimmune disorders [e.g., experimental autoimmune orchitis (EAO) and SLE] resulted in 

increased Tregs (Fijak et al., 2011, (Rutkowski et al., 2014). Of significance, AR has been shown to directly 

bind to AR binding sites upstream of FOXP3, a master regulator of Treg differentiation, and could be the 

reason for the increase in Tregs after androgen treatments (Walecki et al., 2015).   

 

B cells: As previously mentioned, males have fewer B cells and less antibody production compared to 

females. First, AR is expressed only in B cell progenitors. Earlier studies evaluating the effects of androgens 

Jo
urn

al 
Pre-

pro
of



on B cell development and function discovered that the proliferative effects on B cells after male castration 

was due to increased B cell expansion from the bone marrow (Viselli et al., 1997, (Olsen et al., 2001). 

Supplementation with DHT was able to restore B cell counts back to normal levels but not in a global AR 

knockout model, indicating that maturation of B cells is AR dependent (Figure 4) (Altuwaijri et al., 2009). 

Further, the suppressive effects of androgens were only observed in the presence of marrow stromal cells 

or supernatant collected from androgen-treated stromal cells (Olsen et al., 2001). DHT treatments increased 

stromal cell production of TGF- and TGF- neutralization reversed the suppressive effects on B cells 

(Olsen et al., 2001). These results suggest that the effects of androgens on B cell development were, at least 

in part, due to androgen sensitive stromal cell-derived TGF--mediated effects. An additional indirect 

consequence of androgens on B cells is less efficient positioning of male B cells in germinal centers (GCs) 

of secondary lymphoid organs compared to female B cells due to GPR174-mediated migration toward 

CCL21. Male B cells are therefore less likely to proliferate, mature, and elicit a strong humoral immune 

response than female cells. Castration as well as deletion of GPR174 resulted in more efficient positioning 

within the follicular center, which with testosterone administration returned to less efficient male B cell 

migratory patterns (Zhao et al., 2020).  

Sexual dimorphisms in anti-cancer immunity 

While numerous studies demonstrate females are better at defending the body from infectious diseases, few 

studies have evaluated sex differences in cancer biology and how we could harness differential immunity 

between males and females to improve cancer therapeutics. One of the most comprehensive cancer-focused 

studies in this context was recently published in 2016. Yuan and colleagues evaluated 13 cancer cell types 

from The Cancer Genome Atlas (TCGA) to determine the molecular differences between male and female 

patients (Yuan et al., 2016). Genomic assessments revealed 53% of clinically actionable genes had a sex-

biased molecular pattern, and not surprisingly, differential gene expression analyses demonstrated the vast 

majority of differentially expressed genes were sex chromosome specific. Of note, one of the sex-affected 

pathways highlighted in the study was a group of genes related to immune responses, including IL2 and 

STAT5 signaling, JAK, STAT3 signaling, IL6, inflammatory responses, IFN and IFN responses, and 

TNF- signaling and complement (Yuan et al., 2016). Given the elevated frequency of bladder cancer 

incidence in males versus females, Miyamoto and colleagues investigated the involvement of androgens 

and AR in bladder cancer development. Of significance, knocking out AR in mice prior to treatment with 

the carcinogen BBN completely prevented tumors from occurring in both male and female AR null mice, 

and castration prior to BBN exposure resulted in a 50% reduction in bladder cancer incidence (Miyamoto 

et al., 2007). While the results are quite promising, conclusions to whether fewer tumors developed due to 

the loss of AR in bladder epithelial cells or immune cell populations remains unclear.  
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In a more recent immune-focused cancer study using mouse and human cancers of various cell origins, 

including the BBN-induced bladder cancer mouse model, our group established that a male bias exists in 

the intratumoral frequency of CD8+TCF1+ progenitor exhausted T cells with poor effector function, which 

required T cell-intrinsic AR signaling. By performing surgical castrations and by disrupting AR signaling 

through both AR chemical inhibition and gene deletion, we demonstrated that AR contributes to CD8+ T 

cell dysfunction, positively regulates Tcf7 gene (encoding TCF1) expression, and when AR signaling is 

perturbed, resulted in decreased tumor growth (Kwon et al., 2022). Further, we identified a novel sex-

specific regulon in progenitor exhausted CD8+ T cells that encompasses several genes with AR-chromatin 

immunoprecipitation (ChIP)-verified AREs (Chen et al., 2015b). Consistent with our findings, another 

group investigating resistance to anti-PD-1 immunotherapy found elevated AR signaling in metastatic 

castration-resistant prostate cancer (mCRPC) from patients with a poor response to pembrolizumab, a 

monoclonal antibody that targets and blocks PD-1 activity (Guan et al., 2022). Here, AR was suggested to 

exhibit direct negative regulation of Ifng (IFN) expression. In both studies, inhibition of AR signaling 

rewired the TME to favor effector T cell differentiation and potentiated the efficacy of anti-PD-1 

immunotherapy. Collectively, these findings demonstrate a role for T cell-intrinsic AR in driving CD8+ T 

cell dysfunction and imply additional therapeutic strategies to treat tumors regardless of AR status of the 

tumors. A greater mechanistic understanding of how AR regulates the effector vs exhausted T cell programs 

will be an active area of investigation moving forward.          

 

Interestingly, CD24 and CD44, two of the most important markers for cancer stem cells and tumor 

progression, have been found to be regulated by AR. Using BBN-induced invasive and metastatic bladder 

cancer, investigators showed that Cd24a-deficient male mice developed fewer bladder tumors and less 

metastases than control mice (Overdevest et al., 2012). Knockdown and overexpression studies 

demonstrated an important role for CD24 in urothelial tumorigenesis and metastasis. Further, evaluation of 

these findings in human tumors showed that outcomes of males, but not females, were stratified by CD24 

(Overdevest et al., 2012). While AR is important in the development of both experimental and human 

bladder cancer, its role in progression is less clear, with literature indicating that more advanced stage and 

grade of disease is associated with reduced AR expression. By performing AR ChIP-seq and 

complementary transcriptomic approaches on AR-expressing human bladder cancer cells grown in vitro, 

CD44 was found to be significantly associated with androgen stimulation. CRISPR-based mutagenesis of 

putative AREs identified a novel silencer element leading to direct AR-mediated transcriptional repression 

of CD44 (Sottnik et al., 2021). AR activity in bladder cancer cells described here as well as progenitor 
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exhausted T cells described above both reveal novel mechanisms that explain, in part, the relationship 

between AR and bladder cancer tumor progression.   

 

Conforti and colleagues analyzed transcriptomic data from 2,575 early-stage non-small cell lung cancer 

(NSCLC) samples to determine s. ex-based differences in molecular mechanisms behind anti-tumor 

immune response and evasion (Conforti et al., 2021a). Use of xCell to estimate the abundance of 64 cell 

types in the TME of each tumor indicated female tumors were more inflamed with increased expression of 

inhibitory immune checkpoint molecules, a greater abundance of immune-suppressive cells [myeloid-

derived suppressor cells (MDSCs), cancer-associated fibroblasts, and Tregs], and a higher T cell 

dysfunction status compared to males (Conforti et al., 2021a). In contrast, males showed a significant 

enrichment for a T cell exclusion phenotype, likely due to a presumed impairment of neoantigen 

presentation, given the smaller TCR clonality repertoire observed. No sex differences were found in the 

activation status of TGF- or WNT/-catenin pathways, and the TME of male tumors was characterized by 

a higher degree of hypoxia and VEGF-A expression (Conforti et al., 2021a). Histological evaluations to 

confirm T cell exclusion from male samples and studies detailing the mechanisms driving differences in 

immune cell abundances warrant further investigation.  

 

As previously mentioned, AR is highly expressed in prostate tissue and functions as an oncogene to drive 

prostate cancer cell growth as well as metastatic progression, through both canonical and non-canonical 

mechanisms. In a recent study evaluating mechanisms that promote prostate cancer migration and invasion, 

Cioni and colleagues turned their eye from AR expression in prostate epithelial cells to AR expression in 

macrophages within the TME (Cioni et al., 2020). Through use of a monocyte cell line and ChIP-

sequencing, the authors conclude that AR signaling in monocytes contributes to macrophage differentiation 

and induces the expression of TREM-1 (Cioni et al., 2020), a cell surface receptor that amplifies 

inflammatory processes and is known to promote tumorigenesis and support tumor cell growth of various 

tissue types (Saurer et al., 2017). The authors conclude that while AR inhibitors are meant to block AR-

mediated proliferation of prostate tumor cells, inhibition of AR signaling in macrophages is likely a 

beneficial “off-target” effect that can synergize to reduce prostate cancer progression. 

 

On a similar note, the TME has been shown to remodel in response to androgen deprivation therapy (ADT). 

By performing RNA-sequencing on locally advanced prostate cancer pre- and post-ADT alongside 

paracancerous benign tissue, Long and colleagues found immune-related pathways were enriched post-

ADT (Long et al., 2020). ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor 

tissues using Expression data) analyses demonstrated that immune and stromal scores were also both 
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significantly elevated, expression of antigen presentation, IFN- signaling, and immune checkpoint genes 

were elevated, and tumor cell purity had decreased (Long et al., 2020). By using weighted gene co-

expression network analysis (WGCNA), the authors found five genes central to the remodeling process, 

three of which (SOCS3, ZFP36, and JUNB) were associated with an increased regression-free survival and 

a favorable prognosis for patients (Long et al., 2020). While ADT often leads to increased T cell infiltration, 

mechanisms of resistance are starting to emerge, including the accompaniment of adaptive Tregs 

(Obradovic et al., 2020). A better understanding on how ADT impacts tumor immune regulation has the 

potential to lead to novel therapeutic approaches for cancer patients.  

 

Androgen deprivation and cancer immunotherapy 

How androgens affect adaptive immunity in humans may be gleaned from studies involving patients who 

received ADT for prostate cancer. The use of medical or surgical castration for the treatment of prostate 

cancer was first described in 1941 by Huggins and Hodges, ultimately leading to a Nobel Prize in Medicine 

in 1966 (Charles Huggins, 1941). Over time, more refined medical approaches have been developed to 

modulate the hypothalamic-pituitary-gonadal axis. Surgical castration with bilateral orchiectomy has been 

largely supplanted by the use of LHRH agonists and antagonists, AR antagonists, and CYP17A1 inhibitors. 

Figure 4 depicts the normal androgen synthesis pathways and sites of action of hormone therapy drug 

classes. Currently, the mainstay of ADT for prostate cancer involves targeting of LHRH, also known as 

gonadotropin-releasing hormone (GnRH), which, as described above, is normally released from the 

hypothalamus to initiate the synthesis of testosterone in the testes. Disruption of LHRH release by either 

an LHRH agonist or antagonist will result in decreased LH and FSH, and in turn lower testosterone levels. 

Current clinical ADT regimens use an LHRH agonist (leuprolide, goserelin) or antagonist (degarelix, 

relugolix) as the backbone of therapy, to which an antiandrogen (bicalutamide, flutamide, nilutamide, 

enzalutamide, apalutamide, darolutamide) or CYP17A1 inhibitor (abiraterone acetate) may be added 

(Figure 4).  

 

Observational clinical studies have looked at the effect of medical and surgical castration on adaptive 

immunity in patients with cancer (Table 1). Most of the studies included patients with prostate cancer and, 

reflective of clinical practice patterns, used an LHRH agonist alone or in combination with an AR 

antagonist. Predominantly, studies used flow cytometry to quantify changes in immune cell subsets in 

peripheral blood. The findings are somewhat difficult to generalize due to differences in study design, ADT 

regimen, and immune cell populations analyzed. The most consistent finding was an increase in T cells 

(Giltay et al., 2000, (Johnke et al., 2005, (Madan et al., 2021, (Oliver et al., 1995, (Sutherland et al., 2005, 

(Sutherland et al., 2008), though there was some disagreement, particularly on the effect on T cell subtypes 
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(Ma et al., 2020, (Page et al., 2006, (Vuk-Pavlović et al., 2010). The number of circulating B cells appears 

to be unaffected by ADT (Sutherland et al., 2005, (Johnke et al., 2005, (Vuk-Pavlović et al., 2010, (Giltay 

et al., 2000), and there are limited studies and conflicting reports on how ADT effects the prevalence of 

MDSCs (Pal et al., 2019, (Madan et al., 2021). Another significant subset of studies looked at the effect of 

ADT on tumor-infiltrating immune cells, mostly in prostate cancer tissue, using immunohistochemistry 

(IHC). In tissue, increased infiltration of T cell subtypes is also consistently observed (Rubinow et al., 2017, 

(Obradovic et al., 2020, (Calagua et al., 2017, (Mercader et al., 2001, (Long et al., 2020, (Guinan et al., 

1997, (Gannon et al., 2009). A couple of studies also noted increased CD68+ tissue macrophages (Gannon 

et al., 2009, (Mercader et al., 2001). Overall, studies to date evaluating the effect of ADT on adaptive 

immunity in humans are heterogeneous with only small to moderate samples sizes. Definitive conclusions 

cannot be drawn from them. Future work should focus on larger, well-designed, randomized studies 

employing modern multiplex immunophenotyping, next generation sequencing, and spatial techniques. 

Ongoing randomized and observational studies registered at ClinicalTrials.gov are listed in Table 2, which 

will further elucidate the effect of ADT on adaptive immunity. 

 

Table 1. Completed studies in humans describing the effects of ADT on immunity 

ADT 

Regimen 
N Compartment 

Patient 

Population 

or Disease 

Time 

on 

ADT 

Method Findings Study 

LHRH agonist 12 Peripheral blood 
Metastatic 

prostate cancer 
28 days Flow ↑: lymphocytes 

Oliver et al. 

(1995) 

(Oliver et al., 

1995) 

LHRH agonist 16 Peripheral blood 

Node-positive 

localized prostate 

cancer initiation 

ADT prior to 

radiation 

4 months 
Flow, RT-

PCR 

↑: total lymphocytes, total T 

cells, CD4+ T cells, naïve 

CD4+ T cells, naïve CD8+ T 

cells, memory CD8+ T cells, 

NK cells, naïve 

CD4+TREC+ cells. Naïve: 

memory CD4+ T cells 

Unchanged: B cells, Ki-67 

CD4+ or CD8+ T cells 

Sutherland et 

al. (2005) 

(Sutherland et 

al., 2005) 

LHRH agonist 

with 

melanoma 

vaccine 

33 Peripheral blood 
Stage IIb-IV 

melanoma 
6 months 

Flow, RT-

PCR, 

ELISA 

Unchanged: vaccine peptide-

specific T cells, TREC, 

cytokines, or T regulatory 

cells 

Vence et al. 

(2013) 

(Vence et al., 

2013) 

LHRH agonist 

with allogeneic 

or autologous 

hematopoietic 

40 Peripheral blood 

Hematologic 

malignancies 

undergoing 

allogeneic or 

4 months 

Flow, RT-

PCR, 

ELISA, 

TCR PCR 

↑: neutrophils, lymphocytes, 

total and naïve CD4+ T cells, 

TREC+CD4+ T cells, T cell 

Sutherland et 

al. (2008) 

(Sutherland et 

al., 2008) 
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stem cell 

transplant 

(HSCT) 

autologous 

HSCT, 

investigating 

effect of ADT on 

engraftment 

receptor repertoire, 

peripheral T cell function 

Unchanged: CD8+ T cells, 

regulatory T cells, NK cells, 

gamma-delta T cells, 

cytokine production 

LHRH 

antagonist 
4 Peripheral blood 

Healthy males 

age 35-55 
28 days Flow 

↑: NK cells 

Unchanged: total 

lymphocytes, CD4+ or 

CD8+ T cells, CD4+:CD8+ 

ratio, expression of NKG2D 

or CXCR1 

↓: CD4+CD25+ T cells, 

CD8+ T cell IFN-γ 

expression 

Page et al. 

(2006) (Page 

et al., 2006) 

AR antagonist 

+/- 

orchiectomy 

61 Peripheral blood 

Localized and 

metastatic 

prostate cancer 

N/A 

NK 

activity 

assay 

Unchanged: NK cell activity 

Kastelan et 

al. (1992) 

(Kastelan et 

al., 1992) 

AR antagonist 

+/- prostate 

cancer vaccine 

38 Peripheral blood 

Non-metastatic 

(M0) prostate 

cancer with 

biochemical 

failure after 

definitive therapy 

3 months 

Flow, RT-

PCR, 

ELISA 

↑: NK cells, mature NK 

cells, Tim3+ NK cells, naïve 

T cells, TRECs 

Unchanged: VEGF 

↓: MDSCs 

Madan et al. 

(2021) 

(Madan et al., 

2021) 

AR antagonist 

with estrogen 
10 Peripheral blood 

Transgender 

male to female 
4 months 

Flow, 

ELISA 

↑: leukocytes, TH1-associated 

chemokine receptors CCR1, 

CXCR3, CCR5 

Unchanged: CD4+ T cells, 

CD8+ T cells, CD4:CD8 

ratio, total lymphocytes, B 

cells, Ig levels 

↓: NK cells 

Giltay et al. 

(2000) 

(Giltay et al., 

2000) 

AR antagonist 

or CYP17A1 

inhibitor 

44 Peripheral blood 

Metastatic 

castration 

resistant prostate 

cancer 

3 months 
Flow, 

Luminex 

Unchanged: 

polymorphonuclear myeloid-

derived suppressor cells 

Pal et al. 

(2019) (Pal et 

al., 2019) 

LHRH agonist 

+ AR 

antagonist + 

radiation 

19 Peripheral blood 
Localized 

prostate cancer 
6 weeks Flow 

↑: CD4+ and CD8+ T cells 

Unchanged: B cells, NK 

cells 

Johnke et al. 

(2005) 

(Johnke et al., 

2005) 

LHRH agonist 

plus AR 

antagonist or 

dexamethason

e 

22 Peripheral blood 

Localized 

prostate cancer 

on adjuvant ADT 

N/A Flow 

↑: CD14+HLA-DRlow/- 

monocytes, 

CD4+CD25+CD127low/- Tregs 

Unchanged: B cells, CD4 T 

cells, or CD8 T cells 

Vuk-Pavlovic 

et al. (2010) 

(Vuk-

Pavlović et 

al., 2010) 
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Bilateral 

orchiectomy 
57 Peripheral blood 

Locally advanced 

or metastatic 

prostate cancer 

1 month Flow 

↑: CD8+ T cells 

↓: CD4+ cells and 

CD4+:CD8+ ratio 

Ma et al. 

(2020) (Ma et 

al., 2020) 

LHRH 

antagonist 
15 Adipose tissue Healthy males 1 month Flow 

↑: CD3+, CD4+, and CD8+ 

T cells, CD11c+ 

macrophages 

Rubinow et 

al. (2017) 

(Rubinow et 

al., 2017) 

LHRH 

antagonist 
29 

Prostate cancer 

tissue 

Localized 

prostate cancer 
2 weeks 

IHC, 

Nanostring 
↑: CD8+ T cells and Tregs 

Obradovic et 

al. (2020) 

(Obradovic et 

al., 2020) 

CYP17A1 

inhibitor 
44 

Prostate cancer 

tissue 

Localized 

prostate cancer 
6 months IHC ↓: CD8+ T cells 

Calagua et al. 

(2017) 

(Calagua et 

al., 2017) 

LHRH agonist 

+ AR 

antagonist 

26 
Prostate cancer 

tissue 

Localized 

prostate cancer 
28 days 

IHC, TCR 

PCR 

↑: CD3 T cell, CD4 T cell, 

CD8 T cell, CD4:CD8, 

CD68 macrophage, CD83 

dendritic cell 

Mercader et 

al. (2001) 

(Mercader et 

al., 2001) 

LHRH agonist 

+ AR 

antagonist 

6 
Prostate cancer 

tissue 

Localized 

prostate cancer 
2 months 

RNAseq, 

IHC 

↑: CD8 T cells. Based on 

gene expression, increased 

immune cells infiltration and 

activity. Activation of 

antigen presentation, 

immune checkpoint and IFN-

γ signaling pathways. 

Unchanged: gene fusions 

Long et al. 

(2020) (Long 

et al., 2020) 

LHRH agonist 

+ AR 

antagonist 

14 
Prostate cancer 

tissue 

Localized 

prostate cancer 
3 months H&E ↑: lymphocytes 

Guinan et al. 

(1997) 

(Guinan et 

al., 1997) 

LHRH agonist 

+ AR 

antagonist or 

AR antagonist 

alone 

35 
Prostate cancer 

tissue 

Localized 

prostate cancer 
3 months IHC 

↑: CD3+ and CD8+ T cells, 

CD68+ macrophages 

Unchanged: CD20+ B cells, 

Foxp3+ lymphocytes, 

CD56+ NK cells 

Gannon et al. 

(2009) 

(Gannon et 

al., 2009) 

 

 

Table 2. Ongoing clinical trials to elucidate the effect of androgens and androgen blockade on 

immunity 

Trial ID Title Comment 

NCT04624828 Pilot Study of Immune Response Evaluation in 

Oligorecurrent and Oligoprogressive Prostate 

Cancer Patients Treated With Metastases-directed 

Will monitor the dynamics of innate (monocytes, 

neutrophils, NK cells) and adaptive (T cells, B cells) 
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Stereotactic Body Radiation Therapy (SBRT) With 

and Without Concomitant Androgen Deprivation 

Therapy (IOSCAR) 

immune cell subsets in the peripheral blood with flow 

cytometry before and after SBRT +/- ADT. 

NCT03654638 The Effect of a Soy Bread Diet Intervention 

on Immune Function in Men With Prostate Cancer 

Will compare effect of soy bread vs wheat bread on 

immune function when starting ADT for prostate 

cancer. Peripheral blood MDSCs, cytokines, and T-cell 

proliferation will be measured. 

NCT03344211 Immune Activation and Cellular Response From 

Enzalutamide Alone or With Radium-223 in Men 

With Metastatic Castration-Resistant Prostate 

Cancer 

One of the primary objectives is to evaluate the 

immune activation of enzalutamide +/- radium-223. 

NCT03649841 Radiation Enhancement of Local and Systemic 

Anti-Prostate Cancer Immune Responses 

A phase II trial of ADT + abiraterone +/- neutron 

radiation therapy. The primary outcome is the change 

in peripheral blood effector T cells from pre- to post-

treatment. 

NCT04384835 Analysis of Sexual Bias in Type 2 Innate Lymphoid 

Cells (ILC2) in Asthmatic Patients: Role 

of Androgens 

Will compare the proportion of ILC2 in blood between 

males and females with asthma. Plan to expand ILC2 

in vitro and expose to AR antagonist or agonist. 

 

While immune checkpoint blockers (ICBs), such as anti-CTLA-4 and anti-PD-L1, have created a paradigm 

shift in cancer treatment, only a minority of patients currently benefit with a life-altering durable survival. 

As a whole, the field of cancer immunotherapy faces many outstanding questions in the pursuit of a more 

predictable as well as higher therapeutic response. Given the previously discussed sexual dimorphism in 

immunity, there exists great interest in determining how and why the effects of ICB differ between males 

and females. Conforti and colleagues provided the first evidence of sex bias in ICB efficacy from their 

meta-analysis of pooled overall survival data from eligible randomized clinical trials (Conforti et al., 

2018b). Out of the 20 phase II/III trials, seven examined melanoma and six involved non-small cell lung 

cancer (NSCLC). Authors identified a greater magnitude of efficacy in males over females, even in sub-

group analyses based on cancer type and type of ICB treatments received (Conforti et al., 2018b). A large 

scale, individual-level analysis of >1,000 patients with various cancer types resulted in a similar conclusion 

on the prognostic role of sex on ICB response (Litchfield et al., 2021). Further, in a sub-group analysis of 

patients with PD-L1-high NSCLC, males were found to have a prolonged overall survival after treatment 

with anti-PD-L1 as opposed to those treated with chemotherapy in the control arm (Conforti et al., 2021b). 

In females, the benefit with anti-PD-L1 was not statistically significant. Interestingly, females with NSCLC 

appeared to benefit more from combining chemotherapy with anti-PD-L1 alone compared to males 

(Conforti et al., 2019). 
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Sex bias in ICB efficacy remains uncertain as interpretations and generalizability of the conclusions from 

meta-analyses are challenging, especially in the context of anti-PD-L1 and anti-CTLA4 therapies that result 

in highly heterogeneous efficacy (Carrera et al., 2018, (Claggett et al., 2018, (Kwon et al., 2018, (Liang, 

2018, (McQuade et al., 2018, (Zhang et al., 2018, (Conforti et al., 2018a). In fact, other large-scale meta 

analyses have failed to identify significant sex-associated differences in ICB efficacy (Botticelli et al., 2017, 

(Wallis et al., 2019, (Kim et al., 2020, (Lai et al., 2021). These conflicting results are in part due to inclusion 

criteria that differ between trial data meta-analyses. Upon investigating all 27 clinical trials used by Conforti 

et al. (Conforti et al., 2018b) and Wallis et al. (Wallis et al., 2019), Ye and colleagues failed to identify a 

significant pooled hazard ratio using the random-effects model (Ye et al., 2020). Interestingly, while 6 out 

of 7 clinical trials on melanoma indicated a male bias in improved overall survival, those on NSCLC were 

inconsistent, with 6 out of 11 clinical trials suggesting a male bias and the rest a female bias (Ye et al., 

2020). Other meta-analyses have similarly shown that male bias in ICB efficacy appears more evident in 

patients with melanoma versus NSCLC (Grassadonia et al., 2018, (Wu et al., 2018a). Interpretations of 

NSCLC trials with anti-PD-L1 may be further complicated by conflicting conclusions on sex-based 

differences, with a female-biased benefit in terms of overall survival as opposed to a male bias in terms of 

progression free survival (Wang et al., 2019).  

 

Given this enormous heterogeneity, meta-analyses that pool multiple cancer types cannot accurately assess 

the interaction between sex and ICB efficacy. Furthermore, meta-analyses are often limited by the usage of 

published subgroup hazard ratios and not on individual patient-level data. Finally, proposed sex differences 

may be associated instead with differences in lifestyle factors (e.g., smoking), disease comorbidities, and 

clinicopathological subtypes between males and females. The effects of sex on lesser used cancer 

immunotherapies, such as cancer vaccines or adoptive cell transfer (ACT), are not yet known. Prospective 

clinical studies of therapeutic cancer vaccines for patients with melanoma have not detected any sex-based 

differences in survival outcomes (Hsueh et al., 2002, (Morton et al., 2002, (Ramirez et al., 2015), and while 

a preclinical study by Jenq et al. suggested that ACT of female CD4+ T cells have higher anti-tumor activity 

in the TRAMP-C2 prostate cancer model than male CD4+ T cells (Jenq et al., 2012), clinical data describes 

a lower response rate to ACT for females with melanoma compared to males (Besser et al., 2013). In another 

similar study, there was no sex difference in response (Besser et al., 2013). 

 

As mentioned, clinical benefit of androgen signaling blockade in the treatment of locally advanced and 

metastatic prostate cancer has partly been attributed to its role in remodeling the tumor immune 

microenvironment in addition to its well-established direct anti-tumor effects (Ardiani et al., 2014, (Long 

et al., 2020). Furthermore, while ICB monotherapy historically showed limited efficacy in patients with 
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metastatic prostate cancer without mismatch repair deficiency or biallelic loss of CDK12 (Wu et al., 2018b, 

(Le et al., 2017, (Abida et al., 2019), several clinical studies suggest that it may synergize with androgen 

signaling blockade. Only a few studies on early-stage prostate cancer have investigated the utility of this 

combination strategy with anti-CTLA4 therapy. In a phase I trial of tremelimumab and high-dose 

bicalutamide in patients with recurrent, non-metastatic prostate cancer, limited efficacy was observed in 3 

out of 11 patients, demonstrating prolonged doubling time in prostate-specific antigen (PSA) during the 

surveillance period (McNeel et al., 2012). In a separate phase II trial involving patients with locally 

advanced prostate cancer, those on ipilimumab and ADT were more likely to result in undetectable PSA 

(55% vs. 38%) compared to ADT alone (Tollefson et al., 2010). Further study of anti-CTLA4 and androgen 

signaling blockade is required with a larger sample size and with advanced-stage prostate cancer.  

 

In contrast, the utility of anti-PD-1 therapy with androgen therapy has been mostly studied in patients with 

metastatic castration-resistant prostate cancer (mCRPC) who progressed on enzalutamide. In an early 

single-arm phase II study (Graff et al., 2016, (Graff et al., 2020b), five of 28 patients on pembrolizumab 

and enzalutamide showed a PSA decline of over 50%, with improved median overall survival of 41.7 

months as opposed to 21.9 months in all patients. These encouraging results led to further investigation in 

KEYNOTE-199 (NCT02787005; cohorts 4 and 5) and KEYNOTE-365 (NCT02861573; cohort C). In 

KEYNOTE-199, chemotherapy-naïve mCRPC patients with measurable disease per RECIST v1.1 (cohort 

4) or bone-predominant disease (cohort 5) who progressed on a standard-of-care dose of enzalutamide were 

given pembrolizumab in addition to enzalutamide (Graff et al., 2020a). The combination strategy resulted 

in modest therapeutic efficacy, with 12% objective response rate for cohort 4 and 51% disease control rate 

for both cohorts (Graff et al., 2020a). In KEYNOTE-365, chemotherapy-naïve patients with mCRPC who 

progressed or were intolerant of abiraterone acetate were given pembrolizumab and enzalutamide, which 

similarly resulted in 12% objective response rate (Mourey et al., 2020). Currently, a multicenter phase III 

KEYNOTE-641 study (NCT03834493) is evaluating the efficacy of pembrolizumab and enzalutamide 

versus enzalutamide and placebo in patients with mCRPC.  

   

Of note, current evaluations on changes in immune components of the TME in response to ADT have been 

primarily confined to studies evaluating its effects on prostate cancer, a disease intrinsically characterized 

by the same protein (AR) we hope to inhibit and properly regulate in surrounding immune cells. While 

future studies evaluating AR signaling in immune cell types should be conducted in non-prostate tissue, 

existing data will likely pave the way for more informed experimental approaches. For example, Koh and 

colleagues found that DCs were only able to fully induce primary and secondary T cell responses when 

ADT was applied after immunotherapy (Koh et al., 2009). Importantly, the recent two landmark studies 
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showed conclusively that ADT can impede the CD8+ T cell exhaustion program in the TME and improve 

effectiveness of anti-PD-1 ICB, which rekindles the hope of using ADT to routinely enhance 

immunotherapy (Kwon et al., 2022, (Guan et al., 2022). Overall, more studies are needed to identify the 

optimal agent for androgen signaling blockade in concurrent use with ICB, their dose selection, treatment 

sequence, and finally, the utility of this combination strategy in other cancers. Analysis of the tumor 

immune microenvironment, in particularly with regards to mechanisms by which androgen signaling 

blockade may potentiate T cell immunity, will be key to addressing these questions.  

 

While evidence presented in this Review would suggest that cancer patients would benefit from estrogen 

administration due to increased adaptive immune responses, the only cancer-related clinical modulation of 

ER pathway signaling has been to treat ER+ breast cancer through pathway inhibition. ER+ breast cancer, 

the most common subtype of breast cancer, is characterized by estrogen-dependent ER-mediated tumor cell 

growth and proliferation (Hanker et al., 2020). The subtype is known for its relatively low TIL infiltration, 

PD-L1 expression, and mutational burden (Goldberg et al., 2021). As such, patients with ER+ breast cancer 

do not respond well to ICB. However, clinical investigations using ER pathway inhibitors with ICB are 

currently underway to determine how best to turn this immunologically cold tumor into a more responsive 

tumor type. It is yet to be determined whether the combination of estrogens and ICB would be advantageous 

to treat non-ER+ tumors.  

 

Another rapidly emerging field with great promise on improving cancer patient care involves the 

understanding and potential modulation of the microbiome. As accumulating evidence suggests intrinsic 

sex-based differences in anti-tumor immunity and different response profiles to ICB between males and 

females, it is important to keep in mind how commensal microbiota varies between males and females. As 

previously mentioned, symbioses between sex and distinct microbiota are linked to immune cell function 

as well as dysfunction. Of significance, growing evidence shows that the gut microbiome has an effect on 

ICB efficacy. Commensal microbiota, Bifidobacterium and Bacteroidales fragilis, improved tumor control 

when combined with anti-PD-L1 and anti-CTLA-4, respectively (Vétizou et al., 2015, (Sivan et al., 2015), 

and in melanoma patients, responders to anti-PD-1 treatment had significantly higher abundance of 

Ruminococcaceae and Faecalibacterium, while non-responders had a higher abundance of Bacteroidales 

(Gopalakrishnan et al., 2018). Therefore, in future studies, it will also be essential to consider the extent to 

which commensal microbiota are associated with sex hormone-dependent differences in anti-tumor 

immunity.   

 

Concluding Remarks and Future Perspective 
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The immunological role of sex in cancer development and progression is poorly understood and severely 

understudied, despite decades of evidence demonstrating females generally have a heightened innate and 

adaptive immune system compared to males. The mission of the National Institutes of Health (NIH), the 

single largest funder of biomedical research, is to seek fundamental knowledge about the nature and 

behavior of living systems and to apply that knowledge to enhance health, lengthen life, and reduce illness 

and disability. In recognition that sex influences both health and disease across medical disciplines, they 

implemented a policy to consider sex as a biological variable (SABV) in NIH-funded research. Starting in 

1993, the NIH initiated the Revitalization Act that required clinical studies to include the appropriate 

participation of women and under-represented minorities. Since 2015, the NIH expects all applicants 

proposing studies in vertebrate animals and humans to factor SABV into research designs, analyses, and 

reporting – or to provide strong rationale to investigate only one sex. To further enhance transparency and 

accountability, the 21st Century Cures Act, an amendment of the Revitalization Act, requires valid analyses 

by sex/gender, ethnicity, and race to be reported for every Phase III clinical trial investigating biologics, 

therapeutics, or devices regulated by the FDA. To advance sex-focused analyses in preclinical research 

studies, the NIH also launched a Sex/Gender Administrative Supplement program to study the influence of 

sex and gender within the context of existing research awards. 

 

To help researchers implement these policies and others, the NIH Office of Research on Women’s Health 

(ORWH), the FDA, and the National Institutes of General Medical Sciences (NIGMS) are collaborating on 

many fronts to provide educational resources. Four interactive modules were designed to educate the next 

generation of biomedical researchers on how to incorporate SABV into their research designs and prepare 

NIH grant applications accordingly. The course, Bench-to-Bedside: Integrating Sex and Gender to Improve 

Human Health, was released in 2020 to inform bench researchers and clinicians across various disciplines, 

such as cardiovascular medicine, pulmonology, and immunology, of the influences of sex on health and 

disease and how to apply SABV when conducting research or interpreting results during clinical practice. 

And, in partnership with the NIH Institutes and Centers (ICs), the ORWH co-funded the Specialized Center 

of Research Excellence (SCORE) on Sex Differences program. The centers for excellence contain a 

disease-agnostic program designed to model how SABV could be applied to interdisciplinary medical 

efforts in order to bridge basic and clinical research on the topic of sex. Of note, several journals have 

adopted the international standard, Sex and Gender Equity in Research (SAGER) guidelines, to help authors 

and editors determine whether appropriate considerations have been given to sex and gender, as well as to 

promote its application to biomedical research disciplines (Heidari et al., 2016). In short, not only do we 

emphasize the consideration of sex in the planning, execution, and analyses of preclinical and clinical 

Jo
urn

al 
Pre-

pro
of



immuno-oncology (IO) research, but it is now a key component of future NIH-funded research applications 

and the publication process. 

 

While incorporation of sex into most preclinical biomedical research studies can be as simple as including 

both sexes into research designs and associated analyses, identifying the root causes of gender disparities 

in diseases is anything but simple – given that sex-biasing factors are often cofounding variables. Innovative 

technologies, such as the FCG mouse model, NEDD4 knockout mice, and Foxl2 null mice, are needed to 

pinpoint the independent as well as the interactive rules of each factor (Windley et al., 2022, (Uda et al., 

2004, (Arnold and Chen, 2009). An integrated approach to define “sexomics”, i.e., the impact of sex on 

transcriptomics, epigenomics, metabolomics, microbiome, etc. needs to be done to move the field forward 

in a significant way. The investigation of how sex contributes to immunological differences in cancer 

etiology also comes with several unique challenges. First, the TME is composed of a complicated network 

of structures and cells, including blood vessels, lymphatics, fibroblasts, various cells of the immune system, 

as well as cancer cells (Giraldo et al., 2019). These highly complex and heterogeneous ecosystems are 

maintained and operated through autocrine, paracrine, and endocrine signaling networks; protein and ion 

concentration gradients; and numerous dynamic cell-to-cell interactions – and are highly plastic depending 

on countless factors, such as age, size of tumor, stage of disease, type of microbiota present, and exposure 

to prior treatments. The vast majority of solid tumor IO research involves the mechanical and/or enzymatic 

disruption of tumors to isolate and evaluate cells of the TME, thereby disrupting these fragile ecosystems. 

Furthermore, to keep cells alive during processing, they are often placed into serums from foreign animal 

species that introduce exogenous growth factors and sex hormones or mimetics. Thus, investigators must 

be thoughtful in experimental design and reagent selection, to mitigate the introduction of confounding 

factors related to sex hormone signaling.   

 

The methods used to analyze distinct cell subsets from the TME pose additional challenges and limitations 

in sex-focused IO research because these populations are generally small in number and inherently 

heterogeneous in terms of biology and stage of differentiation. The leading methods to analyze immune 

cell repertoires include single cell sequencing technologies, such as single cell RNA sequencing (scRNA-

seq), cellular indexing of transcriptomes and epitopes seq (scCITE-seq), T cell repertoire seq (scTCR-seq), 

assay for transposase-accessible chromatin seq (scATAC-seq), and simultaneously profiling of gene 

expression and open chromatin from the same cell (chromium single cell multiome ATAC + gene 

expression). While these technologies have inherent limitations in terms of sequencing depth, gene 

expression dropout, and data integration from multiple modalities, information gained from these assays 

have greatly accelerated our overall understanding of tumor immune cell biology (Lähnemann et al., 2020).  
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As discussed in the ‘Sex steroid hormones’ section, sex hormone receptors ESR1, ESR2, and AR are not 

differentially expressed in normal human tissue according to analyses using bulk RNA sequencing GTEx 

datasets (Lopes-Ramos et al., 2020). However, strong gene targeting patterns by sex hormone receptors 

contributed to differential regulatory networks, indicating there are different cofactors and target genes 

between sexes. Therefore, analyses to evaluate associated binding sites in individual immune cell subsets, 

perhaps through use of scRNA-seq and scATAC-seq coupled with micro-ChIP, are needed to further 

delineate differing adaptive immune responses to cancer between sexes.  

 

It is also critical to evaluate single cell sex-biased tumor biology and IO without disruption of tissue 

architecture. Up-and-coming platforms currently leading the IO field involve the spatial assessment of 

immune cell transcripts and protein expression across tumors. Spatial transcriptomics was named the 2021 

Method of the Year by Nature Methods as it allows for the evaluation of RNA gene expression in 

association with cellular location within a given tissue (Marx, 2021). This in situ approach allows 

researchers to study the TME without disrupting the tumor biology or exposing single cells to exogenous 

stimulants. Spatial transcriptomics can be coupled with additional spatial techniques, such as multispectral 

immunofluorescence (mIF) imaging, fluorescence in situ hybridization (FISH), and co-detection by 

indexing (CODEX), allowing investigators to gain additional insights and a more comprehensive 

understanding of gene amplification, transcript levels, and protein expression across tumor sections. A final 

challenge in the described IO research includes the consideration for how differing TMEs from different 

metastatic sites can impact therapeutic response to immunotherapies. Not only are the cancer cells that 

colonize these organs different but so are the cells which infiltrate them (Smith et al., 2009, (Nicholson et 

al., 2004).   

 

In conclusion, the immune system plays a key role in monitoring healthy cell function and inhibiting 

tumorigenesis. Given that estrogens appear to further activate adaptive immune responses and androgens 

dampening them, males and females are prone to induce/resolve inflammation at differing rates and are 

therefore predisposed to handle pathogens and development diseases differently. One key objective in 

writing this Review is to drive the point that global differences in immune response and regulation between 

males and females is a substantial factor that contributes to sex differences in tumor incidence and 

progression. Thus, it is of great importance that research in the IO field focuses on the impact and underlying 

mechanisms of sex on outcomes. This line of investigation has bearing in fundamental biology as well as 

in translational medicine, which is exemplified by recent findings that T cell-intrinsic AR promotes CD8+ 

T cell exhaustion in the TME (Kwon et al., 2022). Regarding the translational significance of these findings, 

the prevalence of readily available AR inhibitors originally designed to target AR-driven prostate cancer 
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can be repurposed. Combining AR inhibitors with immunotherapy, such as ICB, cell therapy, and cytokine 

therapeutics, is just one potential therapeutic strategy to reinvigorate T cell effector function against tumor 

cells. An improved mechanistic understanding of how differential sex chromosomes and sex hormones 

regulate immune cell biology, and how these differences contribute to tumor control between sexes, has 

great potential to guide novel approaches to improve clinical care for both male and female patients with 

cancer. 
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Figure 1. Overview of sex bias in immunity. List of differential immune cell numbers and characteristics 

between males and females. Red and blue arrows indicate a female or male bias, respectively. Figure 

adapted from images created with BioRender.com. 

 

Figure 2. Sex-biased disease susceptibility and response to vaccines. Representative examples of 

female-biased (left) and male-biased (right) immune responses and disease acquisition. MS, multiple 

sclerosis. SLE, system lupus erythematosus. Hep, hepatitis. Figure adapted from images created with 

BioRender.com. 

 

Figure 3. Contributing factors including sex chromosomes to sex bias in immunity. Top, depiction of 

adaptive immune cell regulation between females and males. Red and blue arrows indicate a female or male 

bias, respectively. Middle, three major contributing factors to sex-biased immunity. Bottom, diagram of 

immune-related X-linked genes. Red lines represent X-linked genes that have the propensity to escape X-

chromosome inactivation. Figure adapted from images created with BioRender.com. 

 

Figure 4. Sex hormone pathways and their impacts on immunity. Canonical ER and AR signaling 

pathways that are more prevalent in females and males, respectively. Boxed list refers to changes in immune 

cell subsets by estrogen (magenta) or androgens (blue). Magenta and blue arrows denote positive and 

negative changes in response to estrogen or androgens, respectively. The lack of an arrow indicates there 

is either no change or it has not been evaluated. Right section includes compounds known to inhibit various 

nodes of the AR signaling pathway. LH, luteinizing hormone. FSH, follicle-stimulating hormone. LHRH, 

luteinizing hormone-releasing hormone. E, estrogen. GPER, G protein-coupled estrogen receptor. T, 

testosterone. DHT, dihydrotestosterone. HSP, heat shock protein. ERE, estrogen response element. ARE, 

androgen response element. DHEA, dehydroepiandrosterone. AD, androstenediol/androstenedione. SHBG, 

sex hormone binding globulin. Figure adapted from images created with BioRender.com. 
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