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Abstract
High throughput spatial transcriptomics (HST) is a rapidly emerging class of
experimental technologies that allow for profiling gene expression in tissue sam-
ples at or near single-cell resolution while retaining the spatial location of each
sequencing unit within the tissue sample. Through analyzing HST data, we seek
to identify sub-populations of cells within a tissue sample that may inform bio-
logical phenomena. Existing computational methods either ignore the spatial
heterogeneity in gene expression profiles, fail to account for important statisti-
cal features such as skewness, or are heuristic-based network clusteringmethods
that lack the inferential benefits of statistical modeling. To address this gap, we
develop SPRUCE: a Bayesian spatial multivariate finite mixture model based on
multivariate skew-normal distributions, which is capable of identifying distinct
cellular sub-populations inHSTdata.We further implement a novel combination
of Pólya–Gamma data augmentation and spatial random effects to infer spa-
tially correlated mixture component membership probabilities without relying
on approximate inference techniques. Via a simulation study, we demonstrate
the detrimental inferential effects of ignoring skewness or spatial correlation in
HST data. Using publicly available human brainHST data, SPRUCE outperforms
existingmethods in recovering expertly annotated brain layers. Finally, our appli-
cation of SPRUCE to human breast cancer HST data indicates that SPRUCE
can distinguish distinct cell populations within the tumor microenvironment.
An R package spruce for fitting the proposed models is available through The
Comprehensive R Archive Network.
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1 INTRODUCTION

High throughput spatial transcriptomics (HST) is a devel-
oping class of experimental technologies that has proven
invaluable to studying a wide range of biological pro-
cesses in both diseased (Chen et al., 2020) and healthy
(Baccin et al., 2020) tissues. The advantage of HST over
existing sequencing tools like single-cell RNA-sequencing
(scRNA-seq) is that HST preserves the spatial location of
cells within a tissue sample, while scRNA-seq decouples
gene expression information from cell locations (Burgess,
2019). However, since spatial proximity has been shown to
be a principal source of heterogeneity in tissues (Moncada
et al., 2018), it is critical to properly weigh both the spatial
location of cells and their gene expression profiles when
analyzing HST data.
Since the advent of HST technologies, a few computa-

tional and statisticalmethods have beenproposed to jointly
analyze gene expression and spatial location data to infer
biologically distinct sub-populations of cells within a tis-
sue sample. Dries et al. (2021) introduced Giotto, which
first clusters cells solely based on gene expression and
then spatially refines cell cluster assignments using a hid-
den Markov random field model. Similarly, in a recent
version of the popular scRNA-seq analysis package Seu-
rat, Hao et al. (2021) included the ability to incorporate
spatial information into cell clustering using a spatially
weighted similarity matrix. Pham et al. (2020) proposed
stLearn, which clusters cells by applying the Louvain or
K-means algorithm to a spatially perturbed dimension
reduction of the gene expression space, then infers spa-
tial sub-clusters using the DBSCAN algorithm. Although
these methods offer the ability to introduce spatial infor-
mation into standard cell clustering routines, they each
adopt network-based approaches that depend heavily on
tuning parameters like the number of neighbors and cell
clustering resolution, and lack the inferential benefits of
statistical modeling, such as uncertainty quantification
and optimization of parameters using model fit criteria.
Zhao et al. (2021) improved on these works by develop-

ing BayesSpace, a Bayesian multivariate-𝑡 mixture model
that induces spatial correlation in mixture component
weights via the use of Potts model prior. However, BayesS-
pace is limited in that (i) it models principal components
of gene expression features instead of directly modeling
gene expression; (ii) BayesSpace assumes symmetric mul-
tivariate outcome distributions, which makes its direct
application to gene expression features difficult to justify,
due to the inherent skewness of gene expression across a
tissue sample as shown in Figure S1; and (iii) BayesSpace
uses a global spatial smoothing parameter (i.e., common
across all cell sub-populations) that must be chosen a pri-
ori to induce spatial correlation, thus ignoring important

local heterogeneities in spatial patterns across a tissue
sample.
To address these gaps, we developed SPRUCE (SPatial

Random effects-based clUstering of single CEll data) for
identification of cell type sub-populations using HST data.
Our proposed model draws upon some of our previous
developments for Bayesian mixture models with challeng-
ing within-component densities (Allen et al., 2021) and
spatial dependence (Neelon et al., 2014) to improve the
current methodology for HST data analysis in a num-
ber of important ways. First, SPRUCE allows for direct
modeling of a set of normalized gene features, thus facil-
itating a more natural interpretation of mixture compo-
nents as sub-groups of cells with distinct gene expression
profiles. Next, SPRUCEdirectly accounts for spatial depen-
dence in both gene expression outcomes and cell-type
membership probabilities. This model design allows for
spatially correlated local gene expression patterns while
simultaneously smoothing mixture components across
a tissue sample. We also accommodate skewed gene
expression distributions—a feature that we have found
to be ubiquitous to normalized gene expression features
in HST data. Finally, SPRUCE relies on a robust and
efficient Gibbs sampling algorithm written using Rcpp
(Eddelbuettel & François, 2011) with built-in protection
against label switching and is implemented in a general-
ized R package available through CRAN.

2 DATA

HST technologies such as the 10X Genomics Visium plat-
form are widely used due to their ability to the sequence
entire transcriptome. These technologies divide the tissue
sample into a contiguous array of “spots,” each roughly 55
𝜇m in diameter and containing a small number (often< 5)
of spatially close cells (Maniatis et al., 2021). In situ barcod-
ing of spots is then used to correlate spatial centroids with
the expression levels of thousands of RNAs in each spot.
Although the number of genes sequenced by HST plat-
forms can exceed 30,000, most analyses focus on a small
subset of spatially variable genes (SVGs) that are identified
either by pre-existing feature selection methods (Edsgärd
et al., 2018) or by focusing on known marker genes for
certain tissue settings.
To avoid confounding from technical artifacts such

as heterogeneous sequencing depth (i.e., the number
of unique genes sequenced at each spot), count data
are converted into continuous normalized features using
approaches such as sctransform (Hafemeister & Satija,
2019). This normalization method adopts a negative bino-
mial regression model-based approach with sequencing
depth as a covariate to remove this technical artifact
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F IGURE 1 Graphical illustration of the key data structures obtained by HST data. Tissue samples are processed to derive (1) an 𝑛 × 2 cell
spot coordinate matrix and (2) an 𝑛 × 𝑔 expression matrix where columns are spatially variable genes (SVGs) and rows are cell spots

while avoiding overfitting. Although an additional layer
of error is introduced through analyzing these model-
derived normalized features instead of raw counts, the
added error is outweighed by the correction for techni-
cal artifacts that would likely confound our inferred cell
spot sub-populations.
As shown in Figure 1, after standard pre-processing

steps, including normalization, we obtain two primary
data structures: (1) a 2-dimensional coordinate matrix
locating the centroid of each cell spot, and (2) a
𝑔-dimensional matrix of gene expression profiles for each
cell spot. As an example, in Figure 1 we plot the spatial
expression patterns and densities of a set of SVGs within
a human brain tissue sample (Maynard et al., 2021). In
Section 5.1, we explore this particular data set in more
detail using the expert annotations of brain layers by May-
nard et al. (2021) as reference to benchmark our proposed
statistical model relative to existing tools. To quantify the
spatial autocorrelation of gene expression throughout the
human brain tissue sample, we computedMoran’s 𝐼 statis-
tic (Gittleman & Kot, 1990; Paradis & Schliep, 2019) and
associated𝑝-value for three SVGs identified using standard
approaches (Edsgärd et al., 2018), namely PCP4,MBP, and
MTCO1. Moran’s 𝐼 statistic values near zero are suggestive
of little to no spatial correlation in gene expression between
neighboring tissue samples, while positive values indicate
stronger spatial dependence.

As seen in Figure 1, the expression of certain genes
across a tissue sample can exhibit high spatial variability,
hence the need for robust statistical models that account
for spatial correlation in gene expression.
In addition to spatial correlation, skewness of nor-

malized gene expression features is a characteristic of
HST data. In fact, skewness occurs in almost all normal-
ized gene expression features as an artifact of converting
overdispersed count data to normalized data. To illustrate
this, we collected a corpus of 32 publicly available HST
data sets spanning a range of species (human, mouse, and
chicken) and organs (brain, breast, and kidney). In each
sample, we normalized gene expression features using
standard approaches (Hafemeister & Satija, 2019) and cal-
culated sample skewness (Joanes & Gill, 1998) for the
top 3000 SVGs. The results, shown in Figure S1 of Web
Appendix C, demonstrate clear and systematic positive
skewness of SVGs. As discussed in Section 4, ignoring
skewness in ourmodel developmentmay degrade the qual-
ity of our tissue architecture identification. Thus, a robust
statistical model for HST data analysis should allow for
nonsymmetric gene expression distributions.

3 MODEL

In Section 3, we present a Bayesian spatial mixture model
capable of addressing the challenges presented by HST
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data described in Section 2. Our approach extends existing
spatial Bayesian finite mixture models, in particular Allen
et al. (2021) and Neelon et al. (2014) to this challenging
setting. In Section 3.1, we develop the general multivariate
mixture model framework that is capable of clustering
cells while accounting for spatial correlation, gene–gene
correlation, and skewness of gene expression features.
Although Allen et al. (2021) and others have dealt with
skewed within-component densities; and while Neelon
et al. (2014) and others have utilized random effects to
accomodate spatial dependence among observations
within mixture components, these approaches have yet
to be combined to account for both spatial correlation
and skewness in multivariate outcomes within mixture
components. In Section 3.2, we improve upon previous
approaches for analyzing HST data by implementing a
novel sub-population membership model that combines
Pólya–Gamma data augmentation with spatially corre-
lated CAR priors to induce spatial dependence among
neighboring cells and allow for robust interpretation
of mixture components. Neither Allen et al. (2021) nor
Neelon et al. (2014) utilized Pólya–Gamma data aug-
mentation to explain mixture component membership
in the presence of spatially correlated random effects
that directly induce spatial dependence into mixture
component assignments.

3.1 General mixture model

Our proposed model is relevant for sequencing-based HST
platforms such as 10X Visium, which divide the tissue
sample into a regular lattice of cell spots. We let 𝐲𝑖 =
(𝑦𝑖1, … , 𝑦𝑖𝑔)

𝑇 be the length 𝑔 vector of gene expression fea-
tures for spot 𝑖 (𝑖 = 1, … , 𝑛). To identify sub-populations
within a tissue sample, we adopt a finite mixture model
of the form

𝑓(𝐲𝑖|𝜽1, … , 𝜽𝐾, 𝜋𝑖1, … , 𝜋𝑖𝐾) = 𝐾∑
𝑘=1

𝜋𝑖𝑘𝑓(𝐲𝑖|𝜽𝑘), (1)

where 𝜽𝑘 is the set of parameters specific to component 𝑘
(𝑘 = 1,… , 𝐾) and 𝜋𝑖𝑘 is a cell spot-specific mixing weight
that measures the probability of spot 𝑖 belonging to cell
sub-population 𝑘. In Section 3.2, we develop a model to
allow for spatial locations to inform 𝜋𝑖𝑘. The number of
cell sub-populations 𝐾 may be specified based on biologi-
cal knowledge, or may be identified entirely from the data,
as described in Section 3.3.2.
To facilitate Bayesian inference, we introduce latent

sub-population indicator variables 𝑧1, … , 𝑧𝑛, where 𝑧𝑖 ∈
{1, … , 𝐾} indicates the mixture component assignment for
cell spot 𝑖. Given 𝑧𝑖 = 𝑘, we assume that the gene expres-

sion features for spot 𝑖 follow a 𝑔-dimensional multivariate
skew normal (MSN) distribution (Azzalini & Valle, 1996)

𝐲𝑖|(𝑧𝑖 = 𝑘) ∼ MSN𝑔(𝜼𝑖𝑘, 𝜶𝑘,𝛀𝑘), with density (2)

𝑓(𝐲𝑖|𝑧𝑖 = 𝑘) = 2𝑓𝑔(𝐲𝑖; 𝜼𝑖𝑘, 𝛀𝑘)𝐹{𝜶𝑇𝑘 (𝐲𝑖 − 𝜼𝑖𝑘)},
where, given 𝑧𝑖 = 𝑘, 𝜼𝑖𝑘 is the length 𝑔 mean vector for
spot 𝑖, 𝜶𝑘 is a length 𝑔 vector of feature-specific skew-
ness parameters for mixture component 𝑘, 𝛀𝑘 is a 𝑔 × 𝑔
scale matrix that captures association among the gene
expression features in mixture component 𝑘,
𝑓𝑔(𝐲𝑖; 𝜼𝑖𝑘, 𝛀𝑘) is the density function of a 𝑔-dimensional
normal distribution with mean 𝜼𝑖𝑘 and variance–
covariance matrix 𝛀𝑘 evaluated at 𝐲𝑖 , and 𝐹 is the
CDF of a scalar standard normal random variable.
We may represent the MSN distribution using a con-

venient conditional representation in terms of the MVN
distribution and a spot-level standard normal random vari-
able truncated below by zero 𝑡𝑖 ∼ N[0,∞)(0, 1) (Frühwirth-
Schnatter & Pyne, 2010). To implement this conditional
MSN representation and incorporate spatial variability
across the tissue sample into the gene expression model,
we let

𝐲𝑖|(𝑧𝑖 = 𝑘, 𝑡𝑖, 𝝓𝑖) = 𝝁𝑘 + 𝝓𝑖 + 𝑡𝑖𝝃𝑘 + 𝝐𝑖, (3)

where 𝝁𝑘 is the length 𝑔 gene expression mean vector for
mixture component 𝑘, 𝝓𝑖 is a length 𝑔 spatial effect that
allows for spatially correlated departure from 𝝁𝑘 in spot
𝑖, 𝝃𝑘 controls the mixture component-specific skewness
of each gene expression feature in the conditional MSN
representation, and 𝝐𝑖 ∼ N𝑔(𝟎, 𝚺𝑘). In Web Appendix B,
we describe how the original MSN parameters 𝜼𝑖𝑘, 𝜶𝑘,
and 𝛀𝑘 can be obtained through back-transformations as
functions of the parameters in Equation (3).
To accommodate spatial dependence among cell spots

in the tissue sample, we adopt a multivariate intrinsic con-
ditionally autoregressive (CAR) prior (Besag, 1974) for 𝝓𝑖:

𝝓𝑖|𝝓−𝑖, 𝚲 ∼ N𝑔

(
1

𝑚𝑖

∑
𝑙∈𝛿𝑖

𝝓𝑙,
1

𝑚𝑖
𝚲

)
, (4)

where 𝝓−𝑖 denotes the spatial random effects for all spots
except spot 𝑖, 𝚲 is a 𝑔 × 𝑔 variance-covariance matrix for
the elements of 𝝓𝑖 ,𝑚𝑖 is the number of neighbors of spot 𝑖,
and 𝛿𝑖 is the set of all neighboring spots to cell spot 𝑖. To aid
in separability between𝚲 and𝚺𝑘, we assume the variance–
covariance of the spatial random effects𝚲 is shared across
mixture components, while 𝚺𝑘, the conditional variance–
covariance of 𝐲𝑖 is mixture component-specific.We further
discuss separability and the competing variance problem
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in Section 6. As described in Banerjee et al. (2014), we
ensure a proper posterior distribution for each𝝓𝑖 by enforc-
ing a sum-to-zero constraint on the elements of each 𝝓𝑖 for
𝑖 = 1, … , 𝑛. In Section 3.3.1, we complete the fully Bayesian
model specification by assigning conjugate priors to all
remaining model parameters, thus leading to closed-form
full conditional distributions for all model parameters and
allowing for an efficientGibbs sampling algorithmdetailed
in Web Appendix B.

3.2 Spatial Pólya–Gammamultinomial
logit regression component membership
models

Thus far, we have assumed that spatial dependence enters
only into the model for gene expression distributions,
where each spot is allowed to vary with respect to its
mixture component-specific mean through the use of spa-
tially correlated multivariate random effects. However, in
many cases, we may wish to allow the mixture weights
to vary spatially as well. In doing so, we ensure that
the cellular sub-populations identified by the model are
informed by the spatial variability across tissue samples,
where neighboring tissue spots have increased probabil-
ity of belonging to the same mixture component relative
to models that do not feature spatially correlated random
effects in themixtureweightmodel. First, we extendmodel
(1) by letting

𝜋𝑖𝑘 =
exp(𝐰𝑇

𝑖
𝝆𝑘 + 𝜓𝑖𝑘)∑𝐾

ℎ=1 exp(𝐰
𝑇
𝑖
𝝆ℎ + 𝜓𝑖ℎ)

for 𝑘 = 1,… , 𝐾, (5)

where 𝐰𝑖 is a length 𝑝 vector of covariates relevant to
cluster membership, 𝝆𝑘 is an associated length 𝑝 vector
of fixed-effects, and 𝜓𝑖𝑘 is a spatial random effect allow-
ing spatially correlated variation with respect to𝐰𝑇

𝑖
𝝆𝑘. For

identifiability purposes,we choosemixture component 1 as
the reference category and set 𝝆1 = 𝟎𝑝×1 and 𝜓𝑖1 = 0 for all
𝑖 = 1, … , 𝑛. To introduce spatial association into the com-
ponentmembershipmodel,we assumeunivariate intrinsic
CAR priors for 𝜓𝑖𝑘:

𝜓𝑖𝑘|𝜓−𝑖𝑘, 𝜈2𝑘 ∼ N

(
1

𝑚𝑖

∑
𝑙∈𝛿𝑖

𝜓𝑙𝑘,
𝜈2
𝑘

𝑚𝑖

)
, for 𝑘 = 2,… , 𝐾, (6)

where 𝜈2
𝑘
is a mixture component-specific variance for 𝜓𝑖𝑘.

We ensure closed-form full conditional distributions of
the multinomial logit regression parameters by adopting a
Pólya–Gammadata-augmentation approach as introduced
by Polson et al. (2013). A randomvariable𝑤 is said to follow
a Pólya–Gamma distribution with parameters 𝑏 > 0 and

𝑐 ∈ ℝ if

𝑓(𝑤|𝑏, 𝑐) = 1

2𝜋2

∞∑
𝑠=1

𝑔𝑠
(𝑠 − 1∕2)2 + 𝑐2∕(4𝜋2)

, (7)

where 𝑔𝑠
𝑖𝑖𝑑
∼ Gamma(𝑏, 1) for 𝑠 = 1,… ,∞. In the context

of Bayesian logistic regression, Polson et al. demonstrate
that the inverse-logit function can be expressed as a
scale-normal mixture of Pólya–Gamma densities:

(𝑒𝜂)𝑎

(1 + 𝑒𝜂)𝑏
⏟⎴⏟⎴⏟

Inverse logit form

= 2−𝑏𝑒𝜅𝜂 ∫
∞

0

Normal kernel
⏞ ⏞ ⏞

𝑒−𝜔𝜂
2∕2 𝑝(𝜔|𝑏, 0)

⏟⎴⏟⎴⏟
Polya–Gamma

𝑑𝜔,

(8)
where 𝜔 ∼ PG(𝑏, 0) and PG(𝑏, 0) denotes the Pólya–
Gamma distribution with shape parameter 𝑏 and tilting
parameter 𝑐 = 0. As a result, the likelihood of the logis-
tic model can in turn be written as a scale-mixture of
normal densities, allowing for closed-form conditional dis-
tributions of all model parameters. These results imply
that if we can write the likelihood model for 𝜋𝑖𝑘 in the
inverse logit form shown in Equation (8), then using conju-
gate priors for all other model parameters we can conduct
exact inference (i.e., Gibbs sampling) using only Normal
and Pólya–Gamma distributions. Although previous mod-
els (Allen et al., 2021) have applied these results for use
in multinomial logit mixture weight regression models,
the Pólya–Gamma data augmentation approach has yet to
be used in conjunction with CAR priors in the context of
modeling mixing weights in spatial finite mixture models.
In Proposition 1, we state the result that Pólya–Gamma
data augmentation allows for closed-form full conditional
distributions of 𝜓𝑖𝑘 in this novel setting.

Proposition 1. Let 𝜋𝑖𝑘 follow the multinomial logit model
defined in Equation (6), and let 𝜓𝑖𝑘 have a univariate
intrinsic CAR prior as defined in equation (7). Under
Pólya–Gamma data augmentation, the full conditional
distribution of 𝜓𝑖𝑘 is N(𝑚𝑖𝑘, 𝑉𝑖𝑘), where

𝑚𝑖𝑘 =

1

𝑚𝑖

∑
𝑙∈𝛿𝑖

𝜓𝑙𝑘 + 𝑈
∗
𝑖𝑘

𝑚2
𝑖

𝜈2
𝑘

+
1

𝜔2
𝑖𝑘

, and 𝑉𝑖𝑘 =
1

𝑚2
𝑖

𝜈2
𝑘

+
1

𝜔2
𝑖𝑘

, (9)

where 𝑈∗
𝑖𝑘
=
𝑈𝑖𝑘−1∕2

𝜔𝑖𝑘
+ 𝑐𝑖𝑘 − 𝐰

𝑇
𝑖
𝝆𝑘 , 𝑈𝑖𝑘 is an indi-

cator equal to 1 if 𝑧𝑖 = 𝑘 and 0 otherwise, 𝑐𝑖𝑘 =
log{

∑𝐾

ℎ≠𝑘 exp(𝐰𝑇
𝑖
𝝆ℎ + 𝜓𝑖ℎ)}, and 𝜔𝑖𝑘 ∼ PG(1, 0).

The proof is provided inWebAppendix A and the resultant
Gibbs sampler is detailed in Web Appendix B.
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3.3 Bayesian inference

3.3.1 Priors and posterior computation

We complete a fully Bayesian specification of the
SPRUCE model by assigning prior distributions to
all remaining model parameters. For 𝑘 = 1,… , 𝐾, we
assign sub-population-specific priors 𝝁𝑘 ∼ N𝑔(𝝁0𝑘, 𝐕0𝑘),
𝝃𝑘 ∼ N𝑔(𝝃0𝑘, 𝐗0𝑘), and 𝚺𝑘 ∼ IW(𝜈0𝑘, 𝐒0𝑘). By default, we
opt for weakly informative priors (Gelman et al., 2013)
by choosing 𝝁0𝑘 = 𝝃0𝑘 = 𝟎𝑔×1, 𝐕0𝑘 = 𝐗0𝑘 = 𝐒0𝑘 = 𝐈𝑔×𝑔,
and 𝜈0𝑘 = 𝑔 + 2, which gives 𝐸(𝚺𝑘) = 𝐈𝑔×𝑔. In Web
Appendix E, we provide a sensitivity analysis to choices
of inverse-Wishart prior parameters 𝐒0𝑘 and 𝜈0𝑘. We
found that estimated cell spot labels were highly robust
to specification of 𝐒0𝑘 and 𝜈0𝑘. We further assume
𝚲 ∼ IW(𝜆0, 𝐃0). Weakly informative priors result from
setting 𝜆0 = 𝜆0𝑘 = 𝑔 + 2 and 𝐃0 = 𝐃0𝑘 = 𝐈𝑔×𝑔. Finally,
for 𝑘 = 2,… , 𝐾, we assume 𝝆𝑘 ∼ N𝑝(𝝆0𝑘, 𝐑0𝑘) and
𝜈2
𝑘
∼ IG(𝑢1𝑘, 𝑢2𝑘), where we obtain weakly informa-

tive priors by choosing 𝝆0𝑘 = 𝟎𝑝×1, 𝐑0𝑘 = 𝐈𝑝×𝑝, and
𝑢1𝑘 = 𝑢2𝑘 = 0.001. Posterior inference is conducted via
Gibbs sampling for all model parameters. We provide
a detailed description of our proposed Gibbs sampling
algorithm in Web Appendix B, which is implemented in
the freely available R package spruce. In Table S2 of Web
Appendix D, we provide benchmark run times for analysis
of the sagittal mouse brain data discussed in Section 4.

3.3.2 Model selection

The choice of 𝐾, that is, the number of mixture compo-
nents used in the SPRUCE model, is a critical step in
the analysis of HST data. In some situations, it may be
appropriate to specify 𝐾 based on strong biological knowl-
edge of the cell sub-populations that will be present in a
tissue sample, or the desire to investigate a known num-
ber of “cell states” within a more homogeneous tissue
sample. In other cases, however, such prior information
might be unavailable and the choice of 𝐾 can be made
entirely based on the data. Indeed, one distinct advan-
tage of statistical models for identifying sub-populations
in HST data is the availability of numerous model fit
criteria that may be used to compare models of differ-
ent dimension. Celeux et al. (2019) define the concept
of entropy for Bayesian mixture models. Entropy ranges
between 0 and 𝑛log(𝐾), with lower values indicating more
highly separated mixture components. Zhao et al. (2021)
use the negative log-likelihood of the model to identify
best fittingmodel variants, despite this criterion not featur-
ing any terms to penalize model complexity. The Akaike

information criterion (AIC) (Akaike, 1974) and Bayesian
information criterion (BIC) (Schwarz, 1978) are two well-
known criteria that penalize model complexity, where
the penalization is more severe in the latter (Stoica &
Selen, 2004). The deviance information criterion (DIC)
(Spiegelhalter et al., 2002) and its related variant DIC3 pro-
posed by Celeux et al. (2006) for use with finite mixture
models is instead based on the posterior predictive density
of 𝐲1, … , 𝐲𝑛. To identify the optimal value of𝐾 in our appli-
cations, we make use of the widely applicable information
criterion (WAIC) (Watanabe, 2010) defined as

WAIC = −2

[
𝑛∑
𝑖=1

log

(
1

𝑆

𝑆∑
𝑠=1

𝑝(𝐲𝑖|𝜽(𝑠))
)

−

𝑛∑
𝑖=1

Var𝑠=1,…,𝑆
{
log

(
𝑝(𝐲𝑖|𝜽(𝑠)))}

]
, (10)

where 𝑠 = 1,… , 𝑆 indexes the post-burn-in iterations of
the Gibbs sampler detailed in Web Appendix B, and 𝜽(𝑠)
represents the current values of all parameters at itera-
tion 𝑠. Models with smaller WAIC values are preferred.
We provide a comparison of the above model fit crite-
ria across three simulated data sets in Web Appendix F,
and found generally reliable performance of each criterion
across simulation settings. Thus, while we utilize WAIC
in our real data analyses, we do not rule out use of other
model fit criteria for HST data analysis.

4 SIMULATION STUDIES

To investigate the performance of SPRUCE and validate
our proposed Gibbs sampling estimation algorithm, we
generated simulated HST data mimicking a publicly avail-
able sagittal mouse brain data set sequenced with the 10X
Visium platform and made available by 10X Genomics
(10X Genomics, 2019a). To ensure our simulation study is
reflective of real HST data sets, we first allocated the 𝑛 =
2696 cell spots in the original sagittal mouse brain data set
into one of 𝐾 = 4 simulated ground truth tissue segments
that resemble distinct mouse brain layers (Figure 2A). We
then simulated spatially variable multivariate gene expres-
sion features of dimension 𝑝 = 16 according to model (3).
Parameters were chosen to result in weakly separated mix-
ture components, as is shown by the overlapping between
mixture components in the Uniform Manifold Approx-
imation and Projection (UMAP) (McInnes et al., 2018)
dimension reduction in Figure 2B. Next, we fit threemodel
variants: (i) an MVN mixture model without spatial ran-
dom effects; (ii) an MSN mixture model without spatial
random effects; and (iii) an MSN mixture model with
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F IGURE 2 Sagittal mouse brain tissue sample manually segmented into four regions. (A) True simulated sub-population labels.
(B) UMAP dimension reduction of simulated gene expression matrix. Points correspond to tissue spots in the sagittal mouse brain. Points are
colored according to ground truth sub-population labels and are positioned in the 2-dimensional UMAP space according to their similarity in
gene expression. (C)–(E) Model estimated sub-population labels with classification accuracy measured by the adjusted Rand index (ARI),
where values closest to 1 indicate more optimal performance. (F)–(H) WAIC model selection curves

spot-level multivariate CAR spatial random intercepts in
the gene expression model. This set of models allows us to
demonstrate how accounting for skewness and spatial cor-
relation in gene expression outcomesmay lead to improved
parameter estimates relative to ground truth. Each model
was run for 10,000 MCMC iterations, with the first
1000 iterations discarded as burn-in, and priors were cho-
sen to be weakly informative as described in Section 3.3.1.
Convergence for a selection of mean and variance param-
eters for the full spatial MSN model are provided in
Figure S2 of Web Appendix C.

In Figures 2C–E, we show the estimated mixture com-
ponent labels for each of the three model variants. We
quantified the ability of each model to recover ground
truth simulated sub-population labels using the adjusted
Rand index (ARI) (Hubert & Arabie, 1985), where higher
values of ARI imply more accurate recovery of ground
truth labels. Finally, in Figures 2F–H, we plot model fit
as measured by WAIC for each of the three model vari-
ants fit across a range of 𝐾 = 2,… , 6 to assess the ability
of each model variant to recover the true sub-population
labels.
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In Figures 2C through 2E, we see that accounting for
skewness and spatial correlation among spots allows for
more accurate recovery of true mixture component labels
in terms of ARI. In Figures 2F through 2H, we see that the
minimumWAICvalue occurs at the correct value𝐾 = 4 for
the two MSN models, but occurs at the incorrect value of
𝐾 = 3 for theMVN nonspatial model attributing to the rel-
atively poor ARI of theMVN nonspatial model. Relative to
the MSN nonspatial model, the MSN spatial model more
accurately classified sub-populations 1 and 2, accounting
for the increased ARI of 0.92 in the MSN spatial model
compared to 0.75 in the MSN nonspatial model. In short,
the MSN spatial model featured the lowest misclassifi-
cation rate of spots, suggesting the need for accounting
for both nonnormality and spatial correlation when ana-
lyzing HST data. Finally, Table S1 of Web Appendix D
displays posterior means and 95% CrIs for a selection of
model parameters inmixture component 1 for eachmodel.
The MSN spatial model was able to most accurately esti-
mate the truemodel parameters, while theMVN andMSN
nonspatial models suffered from decreased accuracy in
parameter estimates.

5 APPLICATIONS

5.1 Analysis of 10X visium human brain
data

To assess the performance of SPRUCE relative to expert
annotations and existing methods for clustering HST data,
we analyzed the human dorsolateral prefrontal cortex
brain data recently published by Maynard et al. (2021),
which consist of 33,538 genes sequenced in 3085 spots
across the tissue sample. We compared SPRUCE to four
existing methods, namely BayesSpace (Zhao et al., 2021),
stLearn (Pham et al., 2020), Seurat (Hao et al., 2021), and
Giotto (Dries et al., 2021). Due to the highly organized
spatial structure of human brain tissue samples and the
presence of knownmarker genes that can be used to delin-
eate distinct layers of the brain, these data can serve as
an important benchmark for SPRUCE and existing meth-
ods. In this application, we treat the expert annotations
from Maynard et al. (2021) as ground truth and use ARI
to quantify the agreement between these gold standard
annotation and those obtained by SPRUCE and existing
tools.
We first implemented the standard Seurat preprocess-

ing pipeline for 10X Visium data (Hao et al., 2021), which
includes discarding low quality features, normalizing and
scaling gene expression, and computing dimension reduc-
tions. For the normalization step, we adopted sctrans-
form, a model-based variance stabilization transformation

approach proposed by Hafemeister and Satija (2019). For
the dimension reduction step, we used principal compo-
nent analysis to find the first 128 principal components,
then implemented the UMAP dimension reduction algo-
rithm on this set of principal components to facilitate
visualization. We used the top 16 SVGs as features for
SPRUCE, many of which were found to be layer character-
izing genes by Maynard et al. (2021). The number of SVGs
was chosen to result in a parsimonious subset of genes,
whose expression collectively spanned the spatial domain
of the tissue sample. We ran the SPRUCE model MCMC
estimation for 10,000 iterations with a burn-in of 1000.
The estimated sub-population labels from SPRUCE were
taken as the MAP estimate across all saved MCMC sam-
ples. Finally, we used default parameter settings for each
of the four existing tools.
Figure 3 shows the estimated tissue layer labels from

SPRUCE and the four existing HST tools relative to
expert annotations. SPRUCE achieved the highest ARI of
0.75 relative to manual annotations, followed by BayesS-
pace (ARI = 0.55) that struggled discerning layers 4 and 5.
The explicit use of layer-specific spatially variable features
with SPRUCE as opposed to BayesSpace’s use of princi-
pal components computed from all genes may explain the
improved performance, as principal components can be
affected by low-quality/noise genes. Additionally, BayesS-
pace’s use of a constant and user-specified smoothing rate
across the entire tissue sample is not as flexible as the
MCAR and CARmodels in SPRUCE, which allow for esti-
mation of smoothing parameters 𝚲 and 𝜈2

𝑘
from the data.

The three network-based approaches stLearn, Seurat, and
Giotto each performed poorly relative to the manually
annotated ground truth labels (ARI = 0.33, 0.29, and 0.24,
respectively).

5.2 Analysis of 10X visium breast cancer
data

To demonstrate the application of our proposed method to
the case of unlabeled data, we analyzed a publicly avail-
able human Invasive Ductal Carcinoma breast tissue (10X
Genomics, 2020a) sequenced with the 10X Visium plat-
form. We applied the standard preprocessing pipeline and
sctransform normalization approach as in Section 5.1. In
Figure 4A, we plot the expression of the top 16 most spa-
tially variable features across the tissue sample. These
features display substantial spatial heterogeneity in gene
expression, with clear sub-regions existing within the tis-
sue sample. We fit model (3), where the 16 top SVGs in
Figure 4A were used as features. We identified a subset
of best fitting models using WAIC and DIC, as shown in
Figure S5 of Web Appendix C. In Figure 4, we display
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F IGURE 3 Human brain tissue sample sequenced with the 10X Genomics Visium platform. Expert annotations of brain layers (cell spot
sub-populations) are shown as ground truth labels. ARI measures performance of HST data analysis methods relative to ground truth labels.
Color labels are to be interpreted within each set of results and are not meant to be compared across results

results from the model fit using 𝐾 = 5, and additional
results for the 𝐾 = 6 model are provided in Figure S6 of
Web Appendix C. We ran 10,000 MCMC iterations with a
burn-in of 1000 for each model. Convergence for a selec-
tion of mean and variance parameters are provided in
Figure S3 of Web Appendix C.
Figure 4B shows the MAP estimate of the mixture com-

ponent labels across the tissue space, which we use to
infer distinct sub-populationswithin the breast tissue sam-
ple. To characterize each sub-population biologically, we
show the posterior mean expression of each gene in each
sub-population via the heatmap in Figure 4C. This plot
shows clearly distinct expression patterns between sub-
populations. Sub-population 1 spanned a large portion of
the tissue sample and was characterized bymedium to low
expression of all markers exceptMALAT1. Sub-population
2 was more localized in the bottom right region of the
tissue sample and was marked by very high expression
of 9 of the 16 genes. This set of 9 genes, as shown in
the gene–gene correlation heatmap in Figure 4D, demon-
strated highly correlated expression, suggesting a possible
pathway function of these genes. Sub-population 3 fea-
tured high expression of CRISP3 and SLITRK6, but low
to moderate expression of all other genes. Similarly, sub-
populations 4 and 5 were characterized by high expression
of a single pair of genes, namely COX6C and CPB1 in sub-
population 4, and ALB and MGP in sub-population 5. In
Figure S4 ofWebAppendix C, we extended this analysis by
computing the top 5 most differentially expressed marker
genes for each sub-populations across the 3000 most spa-
tially variable genes using the Wilcoxon Rank-Sum test.

We find a clear block structure in the expression heatmap
of these markers genes, indicating transcriptionally dis-
tinct sub-populations.
These results generated by the SPRUCE model may

be suggestive of important biological functions related to
breast cancer. For instance, expression of MALAT1 has
been associated with suppression of breast cancer metas-
tasis (Kim et al., 2018), suggesting sub-population 1 may
be a region of relatively low tumor expansion within
the tissue sample. Meanwhile, sub-population 2 expresses
tumor-associated antigens (TAAs), that is, substances pro-
duced by tumor cells, such as GFRA1 (Bosco et al., 2018)
suggesting sub-population 2 as a highly tumor invasive
region of the tissue sample. Relatedly, sub-population
2 expresses high levels of AGR2, which has been associ-
ated with poor breast cancer survival (Ann et al., 2018).
Taken together, these results point to an interesting inter-
action taking place in this breast tissue sample between
tumor resistant cells in sub-population 1 and cancerous
cells in sub-population 2. Such findings are illustrative of
how SPRUCE may elucidate promising targets for future
study across a wide range of disease domains.

6 DISCUSSION

We have developed SPRUCE, a fully Bayesian model-
ing framework for analysis of HST data, which accounts
for important features such as skewness and spatial cor-
relation across the tissue sample. Our model improves
upon existing approaches including (Allen et al., 2021)
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F IGURE 4 Human invasive ductal carcinoma breast tissue sample sequenced with the 10X Genomics Visium platform. (A) Expression
intensity of the top 16 top SVGs is shown across the tissue (brighter color implies higher expression). (B) Inferred sub-population labels from
SPRUCE. (C) Heatmap of mean gene expression profiles within sub-populations. (D) Heatmap of gene–gene correlations

and Neelon et al. (2014) by allowing for a wide range of
spatial gene expression patterns via the use of spatially
correlated random effects and additional parameters that
induce skewness into the model. We showed how Pólya–
Gamma data augmentation can be used to allow for Gibbs
sampling of random intercepts modeled with CAR pri-
ors in the context of mixing weights—something that has
yet to be done by previous works. We also established

a robust Gibbs sampling algorithm that protects against
label switching by re-mapping mixture component labels
to a canonical sub-space, improving on both existing HST
methods (Zhao et al., 2021) and other relevant Bayesian
models (Allen et al., 2021; Neelon et al., 2014).
Through a simulation study based on publicly avail-

able 10X Genomics Visium data, we showed how ignor-
ing gene expression features like skewness and spatial
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correlation can result in poor recovery of true mixture
component labels, and bias mixture component-specific
parameter estimates. Conversely, when tissue spots are not
clearly separated in standard dimension reductions of gene
expression features like UMAP, spatial information can be
used to help separate distinct sub-populations within the
tissue sample. We also showed howmodel fit criteria such
asWAICmay be used to identify the best fitting number of
mixture components, which improves uponmany existing
clustering tools.
We applied SPRUCE to two publicly available 10X

Genomics Visium data sets. The first application was con-
cerned with assessing the ability of SPRUCE to recover
expert annotations of human brain layers. We found that
SPRUCE was best able to discern human brain layers
compared to existing methods. Notably, the Bayesian mix-
ture model-based methods (SPRUCE and BayesSpace)
performed considerably better than the network-based
methods (stLearn, Seurat, and Giotto). We attribute the
improved performance of SPRUCE over BayesSpace to the
fact that (i) SPRUCE allows for nonsymmetry in gene
expression features, (ii) SPRUCE models the most spa-
tially variable gene expression features instead of principal
components of all genes, and (iii) SPRUCE allows for
more flexible mixture component-specific spatial correla-
tion patterns compared to the global smoothing approach
implemented by BayesSpace.
Finally, we applied SPRUCE to an un-annotated breast

cancer sample sequenced with the 10X Visium platform.
Using a set of the 16 top SVGs across the tissue sam-
ple, we discovered five unique cell sub-populations within
the tissue sample. These sub-populations were marked by
unique gene expression profiles that allowed us to charac-
terize the biological function of each sub-population using
existing literature. We discovered an interesting interac-
tions between a sub-population of tumor resistant cells and
a sub-population of highly cancerous cells—an interplay
that may have important implications for understand-
ing the dynamics of the tumor microenvironment in the
context of breast cancer.
Although SPRUCE has demonstrated state of the art

performance in identifying tissue architecture in HST
data, the methodology still features certain limitations.
First, as withmany fully Bayesianmethods, computational
demand is high relative to heuristic-based clusteringmeth-
ods. However, for all real HST data analyzed in this paper,
models were able to be run well past the point of suit-
able convergence on a personal computer in under 10
minutes. Detailed run time benchmark data is provided
in Table S2. Another limitation is the competing vari-
ance problem, for example, the possibility of the model
being unable to separate the variability attributed to the
spatial random effects 𝝍1, …𝝍𝑛 (i.e., 𝚲) and the variabil-

ity attributed to the residual error terms 𝝐1, … , 𝝐𝑛 (i.e.,
𝚺1, … , 𝚺𝐾). To protect against this, we structured themodel
so that 𝚲 is shared across all cell spots, while 𝚺1, … , 𝚺𝐾
are mixture component-specific. In the future, as HST
technologies advance to higher resolution platforms, we
may additionally protect against this by having several
observations 𝐲𝑖 at each cell spot. A related limitation intro-
duced by the resolution issue is the detection of rare cell
types. Given the current state of HST platforms, we focus
SPRUCE on the identification of major features of tissue
architecture. To detect rare cell types, we suggest incorpo-
ration of higher resolution data sources such as scRNA-seq.
Finally, SPRUCE is designed for direct modeling of a small
subset of SVGs. Thismeans that sub-populations identified
by SPRUCE will be sensitive to the choice of SVGs, and
interpretations of sub-populations should be relative to the
choice of SVGs. To discover more global structure in the
data, one may wish to derive a low-dimensional embed-
ding (e.g., PCA) based on a large set of genes, and then use
the embedding dimensions as input to SPRUCE.
This work may be extended in a number of promis-

ing ways. Although we presented a general framework
for accommodating a variety of spatial patterns using spa-
tially correlated random effects, one might encode more
specific biological hypotheses into the spatial component
of the model through alternative prior distributions on
the mixture component labels. Finally, while we devel-
oped SPRUCE for the quickly developing field of spa-
tial transcriptomics, the model is generally applicable to
multivariate data that feature spatial correlation across
areal units.
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12 ALLEN et al.

invasive ductal carcinoma (10X Genomics, 2020a), triple
negative breast cancer (TNBC) (Wu et al., 2021), and estro-
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