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Single-cell biological network inference
using a heterogeneous graph transformer

Anjun Ma 1,2,7, Xiaoying Wang3,7, Jingxian Li3, Cankun Wang 1, Tong Xiao2,
Yuntao Liu3, HaoCheng1, JuexinWang 4,5, Yang Li1, Yuzhou Chang1,2, Jinpu Li5,6,
Duolin Wang 4,5, Yuexu Jiang4,5, Li Su5,6, Gang Xin2, Shaopeng Gu1, Zihai Li 2,
Bingqiang Liu 3,8 , Dong Xu 4,5,6,8 & Qin Ma 1,2,8

Single-cell multi-omics (scMulti-omics) allows the quantification of multiple
modalities simultaneously to capture the intricacy of complex molecular
mechanisms and cellular heterogeneity. Existing tools cannot effectively infer
the active biological networks in diverse cell types and the response of these
networks to external stimuli. Here we present DeepMAPS for biological net-
work inference from scMulti-omics. It models scMulti-omics in a hetero-
geneous graph and learns relations among cells and genes within both local
and global contexts in a robust manner using a multi-head graph transformer.
Benchmarking results indicate DeepMAPS performs better than existing tools
in cell clustering and biological network construction. It also showcases
competitive capability in deriving cell-type-specific biological networks in lung
tumor leukocyte CITE-seq data and matched diffuse small lymphocytic lym-
phoma scRNA-seq and scATAC-seq data. In addition, we deploy a DeepMAPS
webserver equipped with multiple functionalities and visualizations to
improve the usability and reproducibility of scMulti-omics data analysis.

Single-cell sequencing, such as single-cell RNA sequencing
(scRNA-seq) and single-cell ATAC sequencing (scATAC-seq),
reshapes the investigation of cellular heterogeneity and yields
insights in neuroscience, cancer biology, immuno-oncology, and
therapeutic responsiveness1,2. However, an individual single-cell
modality only reflects a snapshot of genetic features and partially
depicts the peculiarity of cells, leading to characterization biases
in complex biological systems2,3. Single-cell multi-omics (scMulti-
omics) allows the quantification of multiple modalities simulta-
neously to fully capture the intricacy of complex molecular
mechanisms and cellular heterogeneity. Such analyses advance
various biological studies when paired with robust computational
analysis methods4.

The existing tools for integrative analyses of scMulti-omics data,
e.g., Seurat5, MOFA+6, Harmony7, and totalVI8, reliably predict cell
types and states, remove batch effects, and reveal relationships or
alignments among multiple modalities. However, most existing
methods do not explicitly consider the topological information shar-
ing among cells and modalities. Hence, they cannot effectively infer
the active biological networks of diverse cell types simultaneouslywith
cell clustering and have limited power to elucidate the response of
these complex networks to external stimuli in specific cell types.

Recently, graph neural networks (GNN) have shown strength in
learning low-dimensional representations of individual cells by pro-
pagating neighbor cell features and constructing cell-cell relations in a
global cell graph9,10. For example, our in-house tool scGNN, a GNN
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model, has demonstrated superior cell clustering and gene imputation
performance based on large-scale scRNA-seq data11. Furthermore, a
heterogeneous graphwith different types of nodes and edges hasbeen
widely used to model a multi-relational knowledge graph12. It provides
a natural representation framework for integrating scMulti-omics data
and learning the underlying cell-type-specific biological networks.
Moreover, a recent development in the attention mechanism for
modeling and integrating heterogeneous relationships has made deep
learning models explainable and enabled the inference of cell-type-
specific biological networks12,13.

In this work, we developed DeepMAPS (Deep learning-based
Multi-omics Analysis Platform for Single-cell data), a heterogeneous
graph transformer framework for cell-type-specific biological network
inference from scMulti-omics data. This framework uses an advanced
GNN model, i.e., heterogeneous graph transformer (HGT), which has
the following advantages: (i) It formulates an all-in-one heterogeneous
graph that includes cells and genes as nodes, and the relations among
them as edges. (ii) The model captures both neighbor and global
topological features among cells and genes to construct cell-cell rela-
tions and gene-gene relations simultaneously9,14–16. (iii) The attention
mechanism in this HGT model enables the estimation of the impor-
tance of genes to specific cells, which can be used to discriminate gene
contributions and enhances biological interpretability. (iv) This model
is hypothesis-free and does not rely on the constraints of gene co-
expressions, thus potentially inferring gene regulatory relations that
other tools usually cannot find. It is noteworthy that DeepMAPS is
implemented into a code-free, interactive, and non-programmatic
interface, along with a Docker, to lessen the programming burden for
scMulti-omics data.

Results
Overview of DeepMAPS
Overall, DeepMAPS is an end-to-end and hypotheses-free framework
to infer cell-type-specific biological networks from scMulti-omics data.
There are five major steps in the DeepMAPS framework (Fig. 1 and
Methods). (i) Data are preprocessed by removing low-quality cells and
lowly-expressed genes, and then different normalization methods are
applied according to the specific data types. An integrated cell-gene
matrix is generated to represent the combined activity of each gene in
each cell. Different data integration methods are applied for different
scMulti-omics data types5–8. (ii) A heterogeneous graph is built from
the integrated matrix, including cells and genes as nodes and the
existence of genes in cells as edges. (iii) AnHGTmodel is built to jointly
learn the low-dimensional embedding for cells and genes and generate
an attention score to indicate the importance of a gene to a cell. (iv)
Cell clustering and functional gene modules are predicted based on
HGT-learned embeddings and attention scores. (v) Diverse biological
networks, e.g., gene regulatory networks (GRN) and gene association
networks, are inferred in each cell type.

To learn joint representations of cells and genes, we first generate
a cell-gene matrix integrating the information of the input scMulti-
omics data. A heterogeneous graph with cell nodes and gene nodes is
then constructed, wherein an unweighted cell-gene edge represents
the existence of gene activity of a gene in a cell, and the initial
embedding of each node is learned from the gene-cell integrated
matrix via two-layer GNN graph autoencoders (Methods). Such a het-
erogeneous graph offers an opportunity to clearly represent and
organically integrate scMulti-omics data so that biologically mean-
ingful features can be learned synergistically. The entire hetero-
geneous graph is then sent to a graph autoencoder to learn the
relations between the cells and genes and update the embedding of
each node. Here, DeepMAPS adopts a heterogeneous multi-head
attention mechanism to model the overall topological information
(global relationships) and neighbor message passing (local relation-
ships) on the heterogeneous graph. The heterogeneous graph

representation learning provides a way to enable the embedding of
cells and genes simultaneously using the transformer in DeepMAPS.
The initial graph determines the path of message passing and how the
attention scores can be calculated in DeepMAPS.

In eachHGT layer, eachnode (either a cell or a gene) is considered
a target, and its 1-hop neighbors as sources. DeepMAPS evaluates the
importance of its neighbor nodes and the amount of information that
can be passed to the target based on the synergy of node embedding
(i.e., attention scores). As a result, cells and genes with highly positive
correlated embeddings are more likely to pass messages within each
other, thus maximizing the similarity and disagreement of the
embeddings. To make the unsupervised training process feasible on a
large heterogeneous graph, DeepMAPS is performed on 50 subgraphs
sampled from the heterogeneous graph, covering a minimum of 30%
of cells and genes to train for the shared parameters between different
nodes, information which is later used for testing of the whole graph.
As an important training outcome, an attention score is given to
represent the importance of a gene to a cell. A high attention score for
a gene to a cell implies that the gene is relatively important for defining
cell identity and characterizing cell heterogeneity. This discrimination
allows for the construction of reliable gene association networks in
each cell cluster as the final output of DeepMAPS. We then build a
Steiner Forest Problem (SFP) model17 to identify genes with higher
attention scores and similar embedding features to a cell cluster. The
gene-gene and gene-cell relations in the optimized solution of the SFP
model mirror the embedding similarity of genes and the attention
importance of genes to each cell cluster. A gene association network
can be established by genes with the highest importance in char-
acterizing the identity of that cell cluster based on their attention
scores and embedding similarities, and these genes are considered to
be cell-type-active.

DeepMAPS achieves superior performances in cell clustering
and biological network inference from scMulti-omics data
Webenchmarked the cell clustering performanceof DeepMAPS on ten
scMulti-omics datasets, including three multiple scRNA-seq datasets
(R-bench-1, 2, and 3), three CITE-seq datasets (C-bench-1, 2, and 3), and
four matched scRNA-seq and scATAC-seq (scRNA-ATAC-seq) datasets
measured from the same cell (A-bench-1, 2, 3, and 4) (Supplementary
Data 1). Specifically, the six R-bench and C-bench datasets have
benchmark annotations provided in their original manuscripts, while
the four A-bench datasets do not. These datasets cover the number of
cells ranging from 3,009 to 32,029; an average read depth (consider-
ing scRNA-seq data only) ranging from 2,885 to 11,127; and a zero-
expression rate (considering scRNA-seq data only) from 82 to 96%
(Supplementary Data 1).

We compared DeepMAPS with four benchmarking tools (Seurat
v3 and v45,18, MOFA+ 6, TotalVI8, Harmony7, and GLUE19 (Methods)) in
terms of the Average Silhouette Width (ASW), Calinski-Harabasz (CH),
Davies-Bouldin Index (DBI), and Adjusted Rand Index (ARI) to evaluate
cell clustering performance. For each dataset, we trained DeepMAPS
on 36 parameter combinations, including the number of heads,
learning rate, and the number of training epochs. To ensure fairness,
each benchmarking tool was also tuned with different parameter
combinations (Methods). DeepMAPS achieves the best performance
comparing all benchmark tools in all test datasets in terms of ARI (for
R-benches and C-benches) and ASW (for A-benches) (Fig. 2a, Supple-
mentary Figs. 1–3, and Source Data 1-3). We also noticed that Seurat
was the second-best performed tool, with small variances for different
parameter selections in all benchmark datasets. We selected the
default parameter per data type based on the performance of para-
meter combinations on the grid-search benchmarking. The parameter
combination with the highest median ARI/ASW scores averaged in all
benchmark datasets was considered as the default parameters for the
corresponding data type.
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Additional benchmarking experiments were carried out to justify
the selection of different integration methods in DeepMAPS. Specifi-
cally, for the analysis of scRNA-ATAC-seq data, we designed an inte-
grationmethodusing gene velocity to balance theweight between gene
expressions andchromatin accessibilities in characterizingcell activities
and states (Methods). This integration process can ensure harmonizing
datasets (especially for multiple scRNA-seq data) and generate an

integratedmatrix (with genes as rows and cells as columns) as the input
for HGT. Our results showed that, for benchmark data 1 and 2 (A-bench-
1 and −2), the velocity-based approach showed significantly (p-value
<0.05) higher ASW scores than the weighted nearest neighbor (WNN)
approach in Seurat v 4.0 on all grid-search parameter combinations
(Supplementary Fig. 4 and Source Data 4). We reason that with the
inclusion of velocity information, the modality weight between gene
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expression and chromatin accessibility that contribute to recognize cell
types are better balanced (Supplementary Fig. 5). The comparison of
modality weight of scATAC-seq in different cell clusters by using or
without using the velocity-weighted balance method. In addition, we
compared different clusteringmethods (i.e., Leiden, Louvain, and SLM)
in DeepMAPS and compared the impact of clustering resolutions (i.e.,
0.4, 0.8, 1.2, and 1.6) to cell clustering results. We found no significant

differences among these clustering methods, and Louvain showed
slightly better performance than the other two (Supplementary Fig. 6
and Source Data 5). Lastly, DeepMAPS achieved higher scores than
other tools when selecting the same clustering resolution. We also
found that, in most cases, higher resolution lower cell clustering pre-
diction scores; therefore, we selected resolution at 0.4 as the default
parameter in DeepMAPS (Supplementary Fig. 7 and Source Data 6–8).

Fig. 1 | The workflow of DeepMAPS and HGT illustration. a The overall frame-
work of DeepMAPS. Five main steps were included in carrying out cell clustering
and biological gene network inference from the input scMulti-omics data. b The
graph autoencoderwas insertedwith aHGTmodel. The integrated cell-genematrix
was used to build a heterogeneous graph include all cells (green) and genes (pur-
ple) as nodes. TheHGTmodel is trainedonmultiple subgraphs (50 subgraphs as an
example) that cover nodes in thewhole graph asmany aspossible. Each subgraph is
used to train the model with 100 epochs; thus, the whole training process iterates
5,000 times. The trained model is then applied to the whole graph to learn and

update the embeddings of each node. c An illustration of embedding update
process of the target node in a single HGT layer. The red circle in the upper panel
indicates the target node and the black circle indicates the source nodes. Arrows
represents for the connection between a target node and source nodes. Colored
rectangles represent for embeddings of different nodes. The zoom in detailed
process in the bottom panel shows the massage passing process and attention
mechanism. The final output of one HGT layer is an update of node embedding for
all nodes. HGT heterogeneous graph transformer.
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Fig. 2 | Benchmarking ofDeepMAPS in terms of cell clustering. aBenchmark cell
clustering results of ten datasets in ARI for the three multiple scRNA-seq data and
the three CITE-seq data with benchmark labels, and ASW for the four scRNA-ATAC-
seq data without benchmark labels. Each box showcases the minimum, first quar-
tile, median, third quartile, and maximum ARI or AWS results of a tool using dif-
ferent parameter settings (DeepMAPS: n = 96, Seurat: n = 16 for RNA-RNA andCITE-
seq and 36 for RNA-ATAC, Harmony: n = 36, MOFA+ : n = 36, TotalVI: n = 48, and
GLUE: n = 72). Dots represent outliers. b Results comparison on five independent
datasets. No repeated experiment was conducted. c Robustness test of DeepMAPS

using the cell cluster leave-outmethod for the three independent test datasets with
benchmarking cell labels.p-valueswere calculatedbasedon two-tail t.test. Eachbox
showcases the minimum, first quartile, median, third quartile, and maximum ARI
results of a tool performed on different data subsets (R-test: n = 5, C-test: n = 20,
and A-test-1: n = 5). Dots represent outliers. d–fUMAP comparison of R-test, C-test,
and A-test-1 datasets between DeepMAPS and other tools using the original cell
labels. Source data are provided as a Source Data file. ASW average Silhouette
width, ARI adjusted rand index.
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We further independently tested our default parameter selection
on five independent datasets, namedR-test, C-test, A-test-1, −2, and −3,
by comparing our results with the same benchmarking tools using
their default parameters. For the three test datasets with benchmark-
ing cell labels, DeepMAPS performs the best in terms of ARI score,
while for the two scRNA-ATAC-seq datasets without cell labels, the
benchmarking tools in the comparison achieve similar performance
(Fig. 2b and Source Data 9). In order to evaluate the robustness of
DeepMAPS, a leave-one-out test was performed on the three inde-
pendent test datasets with benchmark labels (Fig. 2c and Source
Data 10).Wefirst removed all cells in a cell cluster basedonbenchmark
labels and then applied DeepMAPS and other tools on the remaining
cells. For each dataset, the leave-one-out results of DeepMAPS were
better than the other tools with higher ARI scores, indicating that the
message passing and attention mechanism used in DeepMAPS main-
tains cell-cell relations in a robust manner.

The cell clustering UMAP on the three independent datasets with
benchmarking labels showcased that the latent representations
obtained in DeepMAPS can better preserve the heterogeneity of
scRNA-seq data (Fig. 2d–f). For the R-test dataset, all tools showed the

ability to separate mesenchymal, leukocyte, and endothelial cells, but
failed to separate urothelium basal cells and bladder cells. However,
cells on the DeepMAPSUMAP aremore compact, and the bladder cells
(reddots) are groupedbetter thanMOFA + and Seurat (Fig. 2d). For the
C-test dataset, cells in the same cluster aremore ordered and compact
(e.g., the B cell cluster and NK cell cluster), while cells from different
clusters are more apart from each other on DeepMAPS UMAP (e.g.,
CD8 cell clusters and CD4 cell clusters). (Fig. 2e). For the A-test-1
dataset, DeepMAPS was the only tool that accurately separated each
cell type. In contrast, Seurat and MOFA+mistakenly divided the PDX1
or PDX2 population into two clusters and included more mis-
matches (Fig. 2f).

DeepMAPS can infer statistically significant and biologically
meaningful gene association networks from scMulti-omics data
Weevaluated the two kinds of biological networks that DeepMAPS can
infer, gene association network and GRN, in terms of centrality scores
and functional enrichment. For the R-test dataset (Fig. 3a) and C-test
dataset (Fig. 3b), we used two centrality scores, closeness centrality
(CC) and eigenvector centrality (EC), that have been used in previous
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Fig. 3 | Evaluation and comparison of gene association network inference of
DeepMAPS. a, b Closeness centrality (CC) and eigenvector centrality (EC) were
used to indicate the compactness and importance of genes to the network. We
compared our results with IRIS3 and a background network using all genes for the
R-test dataset (n = 5) a and C-test dataset (n = 14)b. p-valueswere calculated using a
two-tail t-test. c Comparison of the number of unique TFs in GRNs that showed
significantly enriched biological functions in three public databases. Each box
contains the results of six scRNA-ATAC-seq datasets (n = 6). d Comparison of the
number of cell-type-specific regulons in GRNs significantly enriched in only one

biological function/pathway in the three public databases (n = 6). e The F1 score
comparisons of regulons enriched to only one function/pathway using three
databases (n = 6). The mean value of precision and recall scores of the selected six
scRNA-ATAC-seq datasets were max-min scaled and shown in the heatmap with
darker blue indicating high values and lighter blue indicating low values. Source
data are provided as a Source Data file. Each box in Fig. 3 showcases the minimum,
first quartile, median, third quartile, and maximum score of the corresponding
criteria. CC closeness centrality, EC eigenvector centrality, CTSR cell-type-specific
regulon.
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single-cell gene association network evaluations20, to compare the
identified gene association networks from all the tools in this com-
parison. CC reflects the average connectivity of a node to all others in a
network, and EC reflects the importance of a node based on its con-
nected nodes. Both CC and EC can interpret node’s influence in iden-
tifying genes that may play more critical roles in the network. A gene
association network with higher node centrality indicates that the
detected genes aremore likely to be involved in critical and functional
biological systems. We also constructed gene co-expression networks
as a background using all genes in a dataset by calculating Pearson’s
correlation coefficients of gene expression in a cell cluster. p-value =
0.05 was set as the edge cutoff. We compared cell-type-active gene
association networks generated in DeepMAPS with those generated in
IRIS315 and the background co-expression networks. The average CC
and EC of networks constructed by DeepMAPS in R-test and C-test
datasets showed significantly higher scores than IRIS3 and the back-
ground co-expression networks (Source Data 11). We reason that the
gene association network generated in DeepMAPS is not only co-
expressed but alsoof great attention impact on cells; thus, genes in the
network tend to be more important to the cell type.

To evaluate whether DeepMAPS can identify biologically mean-
ingful GRNs in specific cell types, we performed enrichment tests on
basic gene regulatory modules (i.e., regulons14), with three public
functional databases, Reactome21, DoRothEA22, and TRRUST v223. To
avoid any bias in comparison, we compared cell-type-specific GRNs
inferred fromDeepMAPS with (i) IRIS3 and SCENIC14 on the scRNA-seq
matrix, (ii) IRIS3 and SCENIC on a gene-cell matrix recording the gene
activity scores (GAS) calculated in DeepMAPS based on the velocity-
based integrationmethod, (iii)MAESTRO24 on scATAC-seqmatrix, and
(iv) MAESTRO on original scRNA-seq and scATAC-seq matrix. The six
datasets collected fromhuman tissuewere used (i.e., A-test-1, A-bench-
2, A-bench-3, A-bench-4, A-test-1, A-test-2). We first showcased that the
GRNs identified in DeepMAPS included more unique transcription
factor (TF) regulations than the other tools, except for the enrichment
to the DoRothEA database (Fig. 3c and Source Data 12).We considered
that a highly cell-type-specific regulon (CTSR) might represent only
one significant enriched functionality; alternatively, a generic regulon
might improperly contain genes involved in several pathways.
Therefore, we compared the number of CTSRs enriched to one func-
tion/pathway across different tools. DeepMAPS outperformed
(p-value<0.05)other tools onmostof the six scRNA-ATAC-seqdatasets
in terms of the number of regulons that enrich only one function/
pathway and the enrichment F1 scores (Fig. 3d, e and Source Data 12).
For the F1 score of the enrichment test to the TRRUST v2 database,
DeepMAPS (median F1 score is 0.026) was slightly lower than IRIS3
using the GAS matrix (median F1 score is 0.031). We also noticed that
all tools did not achieve good enrichments in the TRRUST v2 database
mainly due to the small number of genes (on average, 10 genes are
regulatedbyoneTF; 795 TFs in total). SCENICalso showedcompetitive
scaled precision scores (scaled mean: 0.47 for Reactome, 0.66 for
DoRothEA, and 0.61 for TRRUST v2), while achieving lower scaled
recall scores, making the F1 scores smaller than DeepMAPS for most
datasets. IRIS3 and SCENIC performed on the GAS matrix showed
better enrichment results than using scRNA-seq data only, indicating
that integrating information from scRNA-ATAC-seq data ismore useful
for GRN inference than using scRNA-seq data alone.

DeepMAPS accurately identifies cell types and infers cell-cell
communication in PBMC and lung tumor immune CITE-seq data
We present a case study that applies DeepMAPS to a published mixed
peripheral blood mononuclear cells (PBMC) and lung tumor leuko-
cytes CITE-seq dataset (10× Genomics online resource, Supplementary
Data 1) to demonstrate capacity in modeling scMulti-omics in char-
acterizing cell identities. The dataset includes RNAs and proteins
measured on 3485 cells. DeepMAPS identified 13 cell clusters,

including four CD4+ T cell groups (naive, central memory (CM), tissue-
resident memory (TRM), and regulatory (Treg)), two CD8+ T cell
groups (CM and TRM), a natural killer cell group, a memory B cell
group, a plasma cell group, two monocyte groups, one tumor-
associated macrophage (TAM) group, and a dendritic cell (DC)
group. We annotated each cluster by visualizing the expression levels
of curated maker genes and proteins (Fig. 4a, b and Supplementary
Data 2). Compared to cell types identified using only proteins or RNA,
we isolated or accurately annotated cell populations that could not be
characterized using the individual modality analysis. For example, the
DCclusterwas only successfully identifiedusing the integratedprotein
and RNA. By combining signals captured from both RNA and proteins,
DeepMAPS successfully identified biologically reasonable and mean-
ingful cell types in the CITE-seq data.

We then compared the modality correlation between the two cell
types. We used the top differentially expressed genes and proteins
between memory B cells and plasma cells, and performed hierarchical
clustering of the correlation matrix. The result clearly stratified these
features into two anticorrelatedmodules: one associatedwithmemory
B cells and the otherwith plasma cells (Fig. 4c). Furthermore, we found
that the features in the two modules significantly correlated with the
axis of maturation captured by our HGT embeddings (Supplementary
Fig. 8 and Supplementary Data 3). For example, one HGT embedding
(the 51st) showed distinctive differences between plasma cells and
memory B cells (Fig. 4d, e). Similar findings were also observed when
comparing EM CD8+ T cells with TRM CD8+ T cells (Fig. 4f). Never-
theless, it is possible to identify a representativeHGT embedding (56th)
that maintains embedding signals for a defined separation of the two
groups (Fig. 4g, h). These results point to any two cell clusters con-
sisting of coordinated activation and repression ofmultiple genes and
proteins, leading to a gradual transition in cell state that can be cap-
tured by a specific dimension of the DeepMAPS latent HGT space. On
theother hand,wegenerated the gene-associated networkswith genes
showing high attention scores for EM CD8+ T cells, TRM CD8+ T cells,
memory B cells, and plasma cells and observed diverse patterns
(Supplementary Fig. 9).

Based on the cell types and raw data of gene and protein
expressions, we inferred cell–cell communications and constructed
communication networks among different cell types within multiple
signaling pathways usingCellChat25 (Fig. 4i). For example, we observed
a CD6-ALCAM signaling pathway existing between DC (source) and
TRM CD4+ T cells (target) in the lung cancer tumor microenvironment
(TME). Previous studies have shown that ALCAM on antigen-
presenting DCs interacts with CD6 on the T cell surface and con-
tributes to T cell activation and proliferation26–28. As another example,
we identified the involvement of the NECTIN-TIGIT signaling pathway
during the interactionbetween theTAM (source) andTRMCD8+ T cells
(target), which is supported by a previous report that NECTIN (CD155)
expressed on TAM could be immunosuppressive when interacting
with surface receptors, TIGIT, on CD8+ T cells in the lung cancer
TME29,30.

DeepMAPS identifies specific GRNs in diffuse small lymphocytic
lymphoma scRNA-seq and scATAC-seq data
To further extend thepower of DeepMAPS toGRN inference,we used
a single-cell Multiome ATAC+Gene expression dataset available on
the 10× Genomics website (10× Genomics online resource). The raw
data is derived from 14,566 cells of flash-frozen intra-abdominal
lymph node tumor from a patient diagnosed with diffuse small
lymphocytic lymphoma (DSLL) of the lymph node lymph. We inte-
grate gene expression and chromatin accessibility by balancing the
weight of each modality of a gene in a cell based on RNA velocity
(Fig. 5a and Method). To build TF-gene linkages, we considered gene
expression, gene accessibility, TF-motif binding affinity, peak-to-
gene distance, and TF-coding gene expression. Genes found to be
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regulated by the same TF in a cell cluster are grouped as a regulon.
We considered regulons with higher centrality scores to have more
significant influences on the characterization of the cell cluster.
Regulons regulated by the same TF across different cell clusters are
compared for differential regulon activities. Those with significantly

higher regulon activity scores (RAS) are considered as the cell-type-
specific regulons in the cell cluster.

DeepMAPS identified 11 cell clusters in the DSLL data. All clusters
were manually annotated based on curated gene markers (Fig. 5b and
Supplementary Data 4). Two DSLL-like cell clusters (DSLL state-1 and
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and an unfilled circle (target cluster with highly expressed receptor coding genes)
indicates the potential cell-cell communicationof a signaling pathway. Circle colors
represent different cell clusters, and the size represents the number of cells. The
two monocyte groups were merged. TRM tissue-resident memory, CM central
memory, TAM tumor-associated macrophage, HGT heterogeneous graph
transformer.
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state-2) were observed. The RNA velocity-based pseudotime analysis
performed on the three B cell clusters (normal B cell and two DSLL
states) assumed that the two DSLL states were derived from normal B
cells, and state-1 was derived earlier than state-2, although the two
states seemed to be partially mixed (Fig. 5c). We further selected the
top 20 TFs with the highest regulon centrality scores in each of the

three cell clusters (Fig. 5d and Source Data 13). Interestingly, these TFs
showed distinctions between the normal and the two DSLL states and
inferred variant regulatory patterns within the two DSLL states. For
regulons shared by all three B cell clusters, EGR1,MEF2B, and FOSwere
transcriptionally active in both normal B and DSLL cells and respon-
sible for regulating B cell development, proliferation, and germinal
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Fig. 5 | DeepMAPS identifies specific GRNs in DSLL subnetworks. a Conceptual
illustration of DeepMAPS analysis of scRNA-ATAC-seq data. Modalities are first
integrated based on a velocity-weighted balance. The integrated GAS matrix was
then used to build a heterogeneous graph as input into the HGT framework. The
cell cluster and gene modules with high attention scores were then used for
building TF-gene linkages and determining regulons in each cell cluster. b The
UMAP shows the clustering results of DeepMAPS. Cell clusters were manually
annotated based on curatedmarker genes. cThe observed and extrapolated future
states (arrows) based on the RNA velocity of the normal B cell and the two DSLL
states are shown (top panel). Velocity-based trajectory analysis shows the pseu-
dotime from the top to thebottom right (bottompanel).d Selected20TF ineachof
the three clusters, representing the top 20 regulons with the highest centrality
scores. Colors represent regulons uniquely identified in each cluster or shared

between different clusters. e Regulons in DSLL state-1 showed a significant differ-
ence in regulon activity compared to the other clusters. Motif shape and number of
regulated genes are also shown. f Violin plots of regulon activities of the four
regulons compared between the three clusters. gThe downstream-regulatedgenes
of JUN (the most differentially active regulon in DSLL state-1) in the three clusters.
h An illustration of the BAFF signaling pathway identified from GAS-based cell-cell
communication prediction using CellChat. The BAFF signaling pathway was found
to exist between macrophage and both DSLL states. It further activates the JUN
regulon and enables the transcription of genes like CDK6. Figure created with
BioRender.com. iTheATACpeak, RNAexpression, andGAS level ofTNFRSF13B (the
coding gene of TACI, the receptor in the BAFF signaling pathway). Source data are
provided as a Source Data file.
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center formation31–34. E2F6, ELF3, and KLF16 were identified as shared
only in the two DSLL states, with reported roles in tumorigenesis35–40.
Further, JUN, MAFK, and MAFG, which encode the compartments of
the activating protein-1 (AP-1),34,41,42 were found to be active in DSLL
state-1 while NFKB1, coding for a subunit of the NF-κB protein
complex43,44, was found to be active in DSLL state-2.

We constructed a GRN consisting of the four cell-type-specific
regulons (JUN, KLF16, GATA1, and FOS) (Fig. 5e and Supplementary
Fig. 10) inDSLL state-1 with RAS that is significantly higher than normal
B cells and DSLL state-2 (Fig. 5f). KLF16 reportedly promotes the pro-
liferation of both prostate39 and gastric cancer cells40. FOS and JUN are
transcription factors in the AP-1 family, regulating the oncogenesis of
multiple types of lymphomas34,41,42,45, and GATA1 is essential for
hematopoiesis, the dysregulation implicated in multiple hematologic
disorders, andmalignancies46,47. Distinct regulatory patterns were also
observed when we zoomed in on a single regulon (Fig. 5g and Sup-
plementary Figs. 11-12). As the most active regulon in DSLL state-1, JUN
was found to regulate five unique downstream genes and 12 genes
shared with DSLL state-2. Downstream genes, including CDK633,34,
IGF2R48, and RUNX149, are critical for cell proliferation, survival, and
development functions in DSLL.

Moreover, we further built connections between upstream cell-
cell communication signaling pathways and downstream regulatory
mechanisms in DSLL cells. We identified a cell-cell communication
between macrophage and the two DSLL states via the B cell activation
factor (BAFF) signaling pathway, based on the integrated GAS matrix
using CellChat25, which includes BAFF as the ligand on macrophage
cells and TACI (transmembrane activator and calcium-modulator and
cyclophilin ligand interactor) as the receptor on DSLL cells (Fig. 5h).
BAFF signaling is critical to the survival and maturation of normal B
cells50,51, while aberrations contribute to the resistance of malignant B
cells to apoptosis52,53. We observed that the expression of the TACI
coding gene, TNFRSF13B, was explicitly higher in the two DSLL states,
while the corresponding chromatin accessibility maintained high
peaks in state-1 (Fig. 5i). Upon engagement with its ligand, TACI has
been reported to transduce the signal and eventually activate the AP-
154,55 andNF-κB56,57 transcriptional complexes for downstream signaling
in B cells. JUN (a subunit of AP-1) was identified as themost specific and
key regulator in state-1 responsible for cell proliferation and regulating
downstream oncogenes, such as CDK6, that has been reported to
promote the proliferation of cancer cells in multiple types of DSLLs as
well as other hematological malignancies58–60. It is clear that BAFF
signaling first appears in DSLL state-1 and triggers the activation of the
JUN regulatory mechanism, leading to a high regulon activity of JUN.
The JUN regulon accelerates the proliferation and oncogenesis expli-
citly in DSLL, leading to a more terminal differential stage of DSLL
(state-2). As a result, state-1 includes cells undergoing rapid cell pro-
liferation and differentiation, transitioning from normal B cells to
matured DSLL. In short, DeepMAPS can construct GRNs and identify
cell-type-specific regulatory patterns tooffer a better understandingof
cell states and developmental orders in diseased subpopulations.

DeepMAPS provides a multi-functional and user-friendly web
portal for analyzing scMulti-omics data
Due to the complexity of single-cell sequencing data,morewebservers
and dockers have been developed in the past three years61–73 (Sup-
plementary Data 5). However, most of these tools only provide mini-
mal functions such as cell clustering and differential gene analysis.
They do not support the joint analysis of scMulti-omics data and
especially lack sufficient support for biological network inference. On
the other hand, we recorded the running time of DeepMAPS and
benchmark tools on different datasets with cell numbers ranging from
1000 to 160,000 (Supplementary Data 6). The deep learning models
(DeepMAPS and TotalVI) have longer running time than Seurat and
MOFA + . To these ends, we provided a code-free, interactive, and

non-programmatic interface to lessen the programming burden for
scMulti-omics data (Fig. 6a). The webserver supports the analysis of
multiple RNA-seq data, CITE-seq data, and scRNA-ATAC-seq data using
DeepMAPS (Fig. 6b). Some other methods, e.g., Seurat, are also
incorporated as an alternative approach for the users’ convenience.
Threemajor steps—data preprocessing, cell clustering and annotation,
and network construction—are included in the server. In addition, the
DeepMAPS server supports real-time computing and interactive graph
representations. Users may register for an account to have their own
workspace to store and share analytical results. Other than the
advances mentioned, the DeepMAPS webserver highlights an addi-
tional function for the elucidation of complex networks in response to
external stimuli in specific cell types. The user can upload a metadata
file with phenotype information (e.g., cells with treatment and without
treatment), select, and re-label the corresponding cells (e.g., CD8+
T cellswith treatment andCD8+T cellswithout treatment). In thisway,
DeepMAPSwill predict the treatment-related networks in CD8+T cells.
Examples are given in the online tutorial at https://bmblx.bmi.osumc.
edu/tutorial.

Discussion
DeepMAPS is a deep-learning framework that implements hetero-
geneous graph representation learning and a graph transformer in
studying biological networks from scMulti-omics data. By building a
heterogeneous graph containing both cells and genes, DeepMAPS
identifies their joint embedding simultaneously and enables the
inference of cell-type-specific biological networks alongwith cell types
in an intact framework. Furthermore, the application of a hetero-
geneous graph transformer models the cell-gene relation in an inter-
pretable uniform multi-relation. In such a way, the training and
learning process in a graph can be largely shortened to consider cell
impacts from a further distance.

By jointly analyzing gene expression and protein abundance,
DeepMAPS accurately identified and annotated 13 cell types in amixed
CITE-seq data of PBMC and lung tumor leukocytes based on curated
markers that cannot be fully elucidated using a single modality. We
have also proved that the embedding features identified in DeepMAPS
capture statistically significant signals and amplify them when the
original signals are noisy. Additionally, we identified biologically
meaningful cell-cell communication pathways between DC and TRM
CD4+ T cells based on the gene association network inferred in the two
clusters. For scRNA-ATAC-seq, we employed an RNA velocity-based
method to dynamically integrate gene expressions and chromatin
accessibility that enhanced the prediction of cell clusters. Using this
method, we identified distinct gene regulatory patterns among normal
B cells and two DSLL development states. We further elucidated the
deep biological connections between cell-cell communications and
the downstream GRNs, which helped characterize and define DSLL
states. The identified TFs and genes can be potential markers for fur-
ther validation and immuno-therapeutical targets in DSLL treatment.

While there are advantages and improved performances for ana-
lyzing scMulti-omics data, there is still room to improve the power of
DeepMAPS further. First, the computational efficiency for super-large
datasets (e.g., more than 1 million cells) might be a practical issue
considering the complexity of the heterogeneous graph representation
(which may contain billions of edges). Moreover, DeepMAPS is
recommended tobe run onGPUs, which leads to a potential problemof
reproducibility. Different GPU models have different floating-point
numbers that may influence the precision of loss functions during the
training process. For different GPU models, DeepMAPS may generate
slightly different cell clustering and network results. Lastly, the current
version of DeepMAPS is based on a bipartite heterogeneous graph with
genes and cells. Separate preprocessing and integration steps are
required to transfer different modalities to genes for integration into
a cell-gene matrix. To fully achieve an end-to-end framework for
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scMulti-omics analysis, the bipartite graph can be extended to a mul-
tipartite graph, where different modalities can be included as disjoint
node types (e.g., genes, proteins, or peak regions). Such a multipartite
heterogeneous graph can also include knowledge-based biological
information, such as known molecular regulations and more than two
modalities in one graph. However, by including more node types, the
computational burdenwill be increased geometrically, which requires a
dedicateddiscoveryofmodel andparameter optimization in the future.

In summary, we evaluated DeepMAPS as a pioneer study for the
integrative analysis of scMulti-omics data and cell-type-specific bio-
logical network inference. It will likely provide different visions of
deep learning deployment in single-cell biology. With the develop-
ment and maintenance of the DeepMAPS webserver, our long-term
goal is to create a deep learning-based eco-community for archiving,
analyzing, visualizing, and disseminating AI-ready scMulti-
omics data.
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Fig. 6 | The organization of the DeepMAPS web portal. a Software-engineering diagram of DeepMAPS and an overview of the framework. b Pipeline illustration of the
server, including major steps (left; colors indicate different steps), detailed analyses (middle), and featured figures and tables (right).
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Methods
Data description
We included ten public datasets (i.e., R-bench-1-3, C-bench-1-3, and A-
bench-1-4) for grid-test benchmarking among DeepMAPS and existing
tools and additional five datasets (i.e., R-test-1, C-test-1, and A-test-1-3)
for independent test with optimized parameters. The human PBMCand
lung tumor leukocyte CITE-seq data and 10× lymph node scRNA-seq &
scATAC-seq data were used for the two case studies, respectively. All
data are publicly available (Supplementary Data 1 andData Availability).

Data preprocessing and integration
The analysis of DeepMAPS takes the raw counts matrices of multiple
scRNA-seq (multiple gene expression matrices), CITE-seq (gene and
surface protein expressions matrices), and scRNA-ATAC-seq (gene
expression and chromatin accessibility matrices) data as input. For
each data matrix, we define modality representations as rows (genes,
proteins, or peak regions) and cells as columns across the paper unless
exceptions are mentioned. In each data matrix, a row or a column is
removed if it contains less than 0.1% non-zero values. The data quality
control is carried out by Seurat v3, including but not limited to total
read counts, mitochondrial gene ratio, and blacklist ratio. Additional
data preprocessing and integration methods are showcased below.

Multiple scRNA-seq data. Gene expression matrices are log-normal-
ized, and the top 2000 highly variable genes are selected using Seurat
v318 from each matrix. If there are less than 2000 genes in the matrix,
all of them will be selected for integration. We then apply the widely-
used canonical correlation analysis (CCA) in Seurat to align these
matrices and harmonize scRNA-seq data, leading to a matrix
X = fxij ∣i= 1,2, . . . ,I; j = 1,2, . . . , JÞ for I genes in J cells.

CITE-seq data. Gene and surface protein expression matrices are log-
normalized. The top I1 highly variable genes (I1 = 2000) and I2 proteins
(I2 is the total number of proteins in the matrix) are selected. The two
matrices are then concatenated vertically, leading to a matrix
X = ðxij ∣i= 1,2, . . . ,ðI1 + I2Þ; j = 1,2, . . . , JÞ for I1 genes and I2 proteins in J
cells (can be treated as I1 + I2 = I genes in J cells). A centered log-ratio
(CLR) transformation is performed on X as follows:

CLRðxijÞ= log 1 +
xij

exp

P
i2Zj

log 1 + xijð Þ
∣Zj ∣

0@ 1A

0BBBBBB@

1CCCCCCA

0BBBBBBB@

1CCCCCCCA ð1Þ

where Zj represents the set of indices for non-zero genes in cell j,
and |∙| means the number of elements in the set.

scRNA-ATAC-seq data. The gene expression matrix
XR = fxR

ij ∣i= 1,2, . . . ,I; j = 1,2, . . . , Jg with I genes and J cells is log-
normalized. Then a left-truncated mixture Gaussian (LTMG) model is
used to provide a qualitative representation of each gene over all cells,
through the modeling of how underlying regulatory signals control
gene expressions in a cell population74. Specifically, if gene i can be
represented by Gi Gaussian distributions over all J cells, that means
there arepotentiallyGi regulatory signals regulating this gene. Amatrix
XR’ = fxR’

ij g with the same dimension as XR can be generated, where the
gene expressions are labeled by discrete values of xR’ij = 1,2, . . .Gi.

The chromatin accessibility matrix is represented as
XA = fxA

kj ∣k = 1,2, . . . ,K ; j = 1,2, . . . , Jg for K peak regions in J cells. We
annotate peak regions in XA into corresponding genes based on the
method described in MAESTRO24. Specifically, a regulatory potential
weightwik for peak k to gene i is calculated conditional to the distance

of peak k to gene i in the genome:

wik =

0,dik > 150kborpeakk located in anynearby genes
1

LengthðexonÞ , peakk located at the exon regions of the gene j

2�
dik
d0 , else

8>><>>:
ð2Þ

where dik is the distance between the center of peak k and the tran-
scription start site of gene i, andd0 is thehalf-decay of thedistance (set
to be 10 kb). The regulatory potential weight wik of peak k to gene j is

normally calculated by 2�
dik
d0 . For peaks with dik > 150kb,wik will be less

than 0.0005, and thus we set it to 0 for convenience. In MAESTRO, for
peaks located in the exon region, d0 is 0, so that wik should be 1
according to the formula, and wik is normalized by the total exon
length of gene i. The reason is that, in bulk ATAC-seq data, it is
observed that many highly expressed genes will also have ATAC-seq
peaks in the exon regions, mainly due to the temporal PolII and other
transcriptional machinery bindings. Based on that observation, to
better fit themodel with gene expression,MAESTRO added the signals
from the exon regions. However, as reads tend to be located in longer
exons more easily than shorter exons, to normalize the possibility of
background reads, it normalizes the total reads on exons by the total
exon length for each gene. Eventually, a regulatory potential score of
peak k to gene i in cell j can be calculated as rik∣j =wik × x

A
kj . The

scATAC-seqmatrix XA can then be transformed into a gene regulatory
potential matrix by summing up the regulatory potential scores of
peaks that regulate the same gene:

xA0
ij =0+

X
k

rik∣j , ð3Þ

giving rise to the regulatory potential matrix XA0
= fxA0

ij ∣i=
1,2, . . . ,I; j = 1,2, . . . , Jg for same I genes in J cells with XR.

We assume that the activity of a gene in a cell is determined by
gene expression and gene regulatory activity with different contribu-
tions. Unlike the contribution weights determined directly based on
the expression and chromatin accessibility values in Seurat v4
(weighted nearest neighbor)5, we hypothesize that the relative con-
tribution of the expression and chromatin accessibility of a gene to a
cell is dynamic rather than static and not accurately determined with a
snapshot of the cell. RNA velocity is determined by the abundance of
unspliced and spliced mRNA in a cell. The amount of unspliced mRNA
is determined by gene regulation and gene transcription rate, and the
amount of spliced mRNA is determined by the difference between
unslicedmRNA and degradedmRNA.We reasoned that for genes with
positive RNA velocities in a cell, there are higher potentials to drive
gene transcription. Thus, their regulatory activity related to chromatin
accessibility has a greater influence than the gene expression in
defining the overall transcriptional activity in the cell of the current
snapshot. For genes with negative velocities, the transcription rate
tends to be decelerated; hence chromatin accessibility has less influ-
ence on transcriptional activity than gene expression.

A velocity matrix XV = fxV
ij ∣i= 1, 2, . . . I; j = 1, 2, . . . , Jg is generated

using scVelo with the default parameters75. Considering that some
genes may fail to obtain valid velocity or regulatory potential values,

we simultaneously remove the genes that have all-zero rows in XA’ or

XV from the four matrices XR,XR’,XA’,XV : Without loss of generality,
we still use I and J represent the size of these new matrices. Further-
more, considering the potential bias when interpreting the velocity of

a gene in a cell, we use the LTMG representations xR’ij 2 f1,2, . . . ,Gig to
discretize xVij . For gene i, let J g be the cell set where gene i has the
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same LTMGsignalg 2 f1, 2, . . . ,Gig. For the cells inJ g , we use themean
velocity of gene i in these cells to replace the original velocities. To
calculate a velocity weight β of gene i in cell j, we first extract

XV
i = ðxVi1, xV

i2, . . . x
V
iJ Þ for the velocity of gene i in all cells and

XV
j = ðxV1j , xV

2j, . . . x
V
I2 j
Þ for the velocity of all genes in cell j. Then, for XV

i ,

let XV +
i = fxV

ij ∣x
V
ij >0,j = 1, 2, . . . ,Jg for all cells with positive velocities

of gene i and XV�
i = fxVij ∣xV

ij <0,j = 1,2, . . . ,Jg for all cells with negative

velocities of gene i. Similarly, for XV
j , let XV +

j = fxV
ij ∣x

V
ij >0; i= 1,2, . . . Ig

for all genes with positive velocities in cell i and XV�
j = fxVij ∣xVij <0;

i= 1,2, . . . Ig for all genes with negative velocities in cell i. For xVij >0,

rank XV +
i and XV +

j from high to low based on velocity values with the

ranking starting from 1 and calculate the velocity weight as:

β+ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∣XV +

i ∣� a� 1Þ2 + ∣XV +
j ∣� b� 1

� �2
r

ð4Þ

where a is the rank of xV
ij in XV +

i , b is the rank of xV
ij in XV +

j .
Similarly, for xV

ij <0, rankXV�
i andXV�

j from high to low based on
absolute value of velocities with ranking starting from 0 and calculate
the velocity weight as:

β� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XV�

j ∣� a� 1Þ2 + ∣XV�
j ∣� b� 1

� �2
r

ð5Þ

where a is the rank of xV
ij in XV�

i and b is the rank of xVij in XV�
j .

We now generate a gene activity matrix XG = fxGij g, integrating
gene expression and chromatin accessibility based on the velocity
weight. xG

ij is the gene activity score (GAS) of gene i in cell j:

xG
ij =

xRij + 1 + β+� �
xA’
ij , for x

V
ij >0

xR
ij + 1� β�ð ÞxA’ij , for xV

ij <0

xR
ij + x

A’
ij , for x

V
ij =0

8>>><>>>: ð6Þ

Construction of gene-cell heterogeneous graph
To simplify notations, we now redefine any integrative matrix gener-
ated in the previous section as X = fxij ∣i= 1, 2, . . . , I; j = 1,2, . . . ,Jg with I
genes and J cells. xij represents either normalized expressions (for
multiple scRNA-seq and CITE-seq) or GAS (for scRNA-ATAC-seq) of
gene i in cell j. We calculate initial embeddings for genes and cells via
two autoencoders. We used two autoencoders to generate the initial
embeddings for cells and genes, respectively. The cell autoencoder
reduces gene dimensions for each cell from I dimensions to 512
dimensions and eventually to 256 dimensions; a gene autoencoder
reduces cell dimensions for each gene from J dimensions to 512 and
256 dimensions. So that, each cell and gene have the same initial
embedding of 256 dimensions. The number of lower dimensions is
optimized as a hyperparameter that differs for each dataset. The out-
put layer is a reconstructed matrix X̂ with the same dimension as X .
The loss function of cell autoencoder is the mean squared error (MSE)
of X and X̂ :

loss =MSEðX , X̂ Þ=
X
i

ðX � X̂ Þ2 ð7Þ

The gene autoencoder learns low dimensional features of genes
fromall cells,which has anencoder, latent space, and adecoder similar
to the cell autoencoder, while the input XT is the transposedmatrix of
X . The loss function of gene autoencoder is

loss =MSE XT , ^XT
� �

=
X
j

XT � ^XT
� �2

, ð8Þ

where ^XT is the reconstructedmatrix in the output layer with the same
dimensions as XT .

Definition 1 (Heterogeneous graph): A heterogeneous graph is a
graph withmultiple types of nodes and/ormultiple types of edges. We
denote a heterogeneous graph as G= ðV , E,A,RÞ, where V represents
nodes, E represents edges, A represents the node type union, and R
represents the edge type union.

Definition 2 (Node type and edge type mapping function): We
define τ vð Þ : V ! A andϕ eð Þ : E ! R as themapping function for node
types and edge types, respectively.

Definition 3 (Node meta relation): For a node pair of v1 and v2
linked by an edge e1,2, the meta relation between vi and vj is denoted
as langleτðviÞ ,ϕðei,jÞ,τðvjÞi.

Giving the integrated matrix X , we construct a bipartite gene-cell
heterogeneous graph G with two node types (cell and gene) and one
edge type (gene-cell edge). V=VC ∪VG, where VG = vGi ∣i= 1, 2, . . . ,I

� �
denotes all genes, andVC =

�
vCj ∣ j = 1, 2, . . . ,J

�
denotes all cells. E =

�
ei,j

�
represents the edge between vGi and vCj . For xij >0, the weight of the
corresponding edge ωðei,jÞ= 1, otherwise, ωðei,jÞ=0.

Joint embedding via a heterogeneous graph transformer
We propose an unsupervised HGT framework12,13 to learn graph
embeddings of all the nodes and mine relationships between genes
and cells. The input of HGT is the integratedmatrix X , and the outputs
are the embeddings of cells and genes and attention scores repre-
senting the importance of genes to cells.

Definition 4 (Target node and source node): A node in V is con-
sidered as a target node, represented as vt , when performing HGT to
aggregate information and update embeddings of this node. A node is
considered as a source node, represented as vs,vs ≠ vt , if there is an
edge between vs and vt in E, denoted as es,t for convenience.

Definition 5 (Neighborhood graph of target node): A neigh-
borhood graph of a target node vt is induced from G and denoted
as G′ = (V′, E′, A′, R′), where V0 = fvtg∪N vt

� �
, N vt

� �
is the com-

plete set of neighbors of vt , E
0 = fei,j 2 E∣vi,vj 2 V ’g, A′ marks the

target and source node types, and R′ represents the target-source
edge. es,t ∈ E′ represents the edge between vs and vt . As only
one edge type is included in G, the node meta relation of vs and vt
is denoted as τ vs

� �
,ϕ es,t
� �

,τ vt
� �	 


.
1. Multi-head attention mechanism and linear mapping of vectors.

LetHl denotes the embedding of the lth HGT layer (l = 1,2, . . . ,L).
The embedding of vt and vs on the lth layer is denoted as Hl½vt�
and Hl½vs�. A multi-head mechanism is applied to equally divide
both Hl½vt� and Hl½vs� into H heads. Multi-head attention allows
the model to jointly attend to information from different
embedding subspaces, and each head can run through an
attention mechanism in parallel to reduce computational time.
For the hth head in the lth HGT layer, the Hl½vt� is updated from
Hl�1½vt� and Hl�1½vs�. The H0½vt� and H0½vs� are the initial
embedding of vt and vs, respectively. Three linear projection
functions are applied to map node embeddings into the hth

vector. Specifically, the Q linearhτ vtð Þ functionmaps vt into the hth

query vector Qh vt

� �
, with dimension Rd ! R

d
H , where d is the

dimension of Hl�1½vt� and d
H is the vector dimension per head.

Similarly, the K linearhτ vsð Þ and V linearhτ vsð Þ function map the

source node vs into the hth key vector Kh vs

� �
and the hth value

vector Vh vs
� �

.

Qh vt
� �

=Qlinear
h
τ vtð Þ H l�1ð Þ vt

� �� �
ð9Þ

Kh vs
� �

=K linearhτ vsð Þ H l�1ð Þ vs
� �� �

ð10Þ
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Vh vs
� �

=V linearhτ vsð Þ H l�1ð Þ vs
� �� �

ð11Þ

Each type of node has a unique linear projection to maximally
model the distribution differences.

2. Heterogeneous mutual attention
To calculate the mutual attention between vt and vs , we intro-
duce the Attention operator which estimates the importance of
each vs to vt :

Attention vs, es, t , vt
� �

= Softmax
8v2N vtð Þ

k
H

ATT headh vs, es, t , vt
� �� �
 �

ð12Þ
The attention function can be described as mapping a
query vector and a set of key-value pairs to an output for
each node pair e= ðvs, vtÞ. The overall attention of vt and vs is the
concatenation of the attention weights in all heads, followed by a

softmax function. ∣∣
H
ð�Þ is the concatenation function. The

ATT_headh vs, es, t , vt
� �

term is the hth head attention weight
between the vt and vs, which can be calculated by:

ATTheadh vs, es, t , vt
� �

= Kh vs
� �

WATT
ϕ es,tð ÞQ

h vt
� �T� �

�μ τ vs
� �

,ϕ es, t
� �

, τ vt
� �	 
ffiffiffi

d
p ,

ð13Þ

The similarity between the queries and keys was measured
where WATT

ϕ es,tð Þ 2 R
d
H × d

H is a transformation matrix to capture
meta-relation features. ð�ÞT is the transposal function and μ is a
prior tensor to denote the significance for each the node meta
relation τ vs

� �
,ϕ es,t

� �
, τ vt
� �	 


, serving as an adaptive scaling to
the attention. The concatenation of attention heads results in
the attention coefficients between vs and vt , followed by a
Softmax function in Eq. 12.

3. Heterogeneous message passing
A Message operator is used to extract the message of vs that can
be passed to vt . The multi-head Message is defined by:

Message vs , es, t , vt
� �

= k
H

MSGheadh vs, es, t , vt
� �� �

ð14Þ

The hth head message MSG_headh vs , es, t , vt
� �

for each edge
vs ,vt
� �

is defined as:

MSGheadh vs, es, t , vt
� �

=Vh vs
� �

WMSG
ϕ es,tð Þ ð15Þ

where each source node vs in the head h was mapped into a message
vector by a linear projectionVh vs

� �
: Rd ! ×R

d
H .WMSG

ϕ eð Þ 2 R
d
H ×

d
H is also

a transformation matrix similar to WATT
ϕ es,tð Þ.

4. Target specific aggregation
To update the embedding of vt , the final step in the lth HGT layer
is to Aggregate the neighbor information obtained in this layerfHl vt

� �
into the target node embedding Hl�1 vt

� �
.

fHl vt
� �

= Aggregate
8vs2N vtð Þ

Attention vs, es, t , vt
� � �Message vs, es, t , vt

� �� �
ð16Þ

Hl vt
� �

=θ ReLUðfHl vt
� �Þ
 �

+ θ� 1ð ÞHl�1 vt
� �

, ð17Þ

where θ is a trainable parameter and ReLU is the activation function.
The final embedding of vt is obtained by stacking information via all L
HGT layers, and L is set to be 2 in DeepMAPS.

5. Determination of gene to cell attention
We call out thefinal attention scoreai,j of gene i to cell j in the last
HGT layer after the completion of the HGT process:

ai,j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
h

ATT headh i, jð Þ2
s

ð18Þ

HGT training on subgraphs
To improve the efficiency and capability of the HGT model on a giant
heterogeneous graph (tens of thousands of nodes and millions of
edges), we deploy a modified HGSampling method for subgraph
selection and HGT training onmultiple mini-batches12. For the graphG
with I genes and J cells, the union of subgraphs should cover a% (set to
be 30%) nodes of gene and cell nodes to ensure the training power. As
such, the sampler constructs a number of small subgraphs (50 in
DeepMAPS) from the given heterogeneous graph G, and feeds the
subgraphs into the HGT model in different batches using multiple
GPUs. Each graph should include a%× I=50 genes, and a%× J=50 cells.
Take a cell j as a target node vt and its neighbor vs2N vt

� �
, corre-

sponding to gene i, as source nodes, we calculate the probability on
the edge es,t as:

Prob es,t
� �

=
xðvs, vtÞP

v2N vtð Þxðv, vtÞ
, ð19Þ

where xðvs,vtÞ= xij refers to the expression orGAS valueof the gene i in
cell j in the integrated matrix X . Thus, for each target node vt , we

randomly select a%× I=50
a%× J=50 neighbor genes for vt based on sampling

probabilityProb es,t
� �

. HGT hyperparameters, such asWATT
ϕ es,tð Þ,W

MSG
ϕ es,tð Þ,

and θ, will be trained and inherited sequentially fromsubgraphs 1 to 50
in one epoch. The subgraph training is performed in an unsupervised
way with a graph autoencoder (GAE). The HGT is the encoder layer,
and the inner product of embeddings is the decoder layer. We calcu-
late the loss function of the GAE as the Kullback-Leibler divergence

(KL) of reconstructed matrix X̂ and the integrated matrix X :

loss =KL softmaxðX̂ Þ, softmaxðX Þ
� �

ð20Þ

The subgraph trainingwill be completed if the loss is restrained or
reaches 100 epochs, whichever happens first.

Determination of active genes module in cell clusters
Predict cell clusters. We deploy a Louvain clustering (Seurat v3) to
predict cell clusters cell embeddings HL vc

� �
generated from the final

HGT layer. The resolution of Louvain clustering is determined by a
grid-search test of multiple HGT hyperparameter combinations, and
we set the clustering resolution of 0.4 as the default.

Identify cell cluster-active gene association network. We used an
SFP model17 to select genes that highly contribute to cell cluster
characterization and construct cell cluster-active gene association

networks. Define a new heterogeneous graph eG= V , eE� �
,

V 2 VG ∪VC ,eE 2 eE1
∪ eE2

, where eE1
represents the gene-gene relations,

and eE2
represents the gene-cell relations. The weight of the corre-

sponding edge ωðee1i1 ,i2 Þ of vGi1 2 VG and vGi 2 VG is the Pearson’s corre-

lation of the HGT embeddings between vGj1 and vGj2 . The weight of

the corresponding edge ω ee2i,j� �
of vGi 2 VG and vGj 2 VC is the

final attention score ai,j . Only edges with ω ee1i1 ,i2� �
>0:5 and
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ω ee2i,j� �
>μ ai,j

� �
+ sdðai,jÞ, where μ() represents the mean and sdðÞ

represents the standard deviation of ai,j, will be kept within a cell
cluster. The weight of the remaining edges will then be max-min nor-
malized to ensure an edge with the largest weight being rescaled to be
0 and an edge with the smallest weight being rescaled to be 1.

Let Z be the number of clusters predicted via Louvain clustering,
and VC z½ � = fvC½z�g be the node set corresponding with the cell set in
cluster label of z = 1,2, . . . ,Z . We then formulate this problem using a
combinatorial optimization model defined below

mineEL
�eE1

∪eE2

X
e2eEL

ω eð Þ

s.t.

L vCi1 , v
C
i2

� �
= 1, 8vCi1 , v

C
i2
2 VC z½ �, z = 1,2, . . . ,Z ð21Þ

whereLðvCj1 ,vCj2 Þ is a binary indicator function representingwhether two

cell nodes,vCj1 and vCj2 , can be connected (1) or not (0) in eG via aeEL
j1 ,j2

= fee2i1 ,j1 ,ee1i1 ,i2 ,ee1i2,i3 . . . ,ee1it�1 ,it
,ee2it ,j2 g path. Denote eEL

= feEL
j1 ,j2

g as the

complete collection of eEL
j1 ,j2

connecting vCj1 and vCj2 . The combinatorial

optimization model aims to identify the path connecting vCj1 and vCj2
with the minimum summed edge weight. We consider the gene net-
works remained in an SFP result of cluster z as the cluster-active gene
association networks.

Construct GRNs from scRNA-ATAC-seq data
For genes in a cell cluster-active gene association network resulting
from SFP, a set of TFs q= 1,2, . . . ,Q can then be assigned to genes. The
TF-peak relations are retrieved by finding alignments between the TF
binding sites with peak regions in the scATAC-seq data, and the peak-
gene relations are establishedpreviouslywhen calculating thepotential
regulation scores rik∣j (Eq. 3).We design a regulatory intensity (RI) score
si,j,q to quantify the intensity of TF q in regulating gene i in the cell j:

sij∣q =
X
k

bA
qk � rik∣j ð22Þ

where bA
qk is the binding affinity score of TF q to peak k. The binding

affinity score is calculated by three steps: (a) We retrieved the genome
browser trackfile from JASPAR,which stores all knownTFbinding sites
of each TF. A p-value scorewas calculated as -log10 (p) × 100 in JASPAR,
where 0 corresponds to a p-value of 1 and 1,000 corresponds to a p-
value <10−10. We removed TF binding sites with p-value scores smaller
than 500. (b) If a TF binding site overlaps with any peak regions in the
scATAC-seq profile, it will be kept, otherwise, it will be removed. (c)
Divide the corresponding p-value score by 100. We claim that a gene
set regulated by the same TF is a regulon.

We calculate a regulon activity score (RAS) r q,zð Þ of a regulonwith
genes regulated by TF q in cell cluster z as:

r q, zð Þ=

P
i2Iq

P
j2C z½ �

xij � sij∣q

I � J
ð23Þ

where Iq denotes genes regulated by TF q in cell cluster z. We used the
Wilcoxon rank-sum test to identify differentially active regulons in a
cluster based on RAS. If the BH-adjusted p-value is less than 0.05
betweendifferent cell clusters and the log fold change larger than0.10,
we consider the regulon to be differentially active in this cluster, and it
is defined as a cell-type-specific regulon (CTSR).

A GRN in a cell cluster is constructed bymerging regulons in a cell
cluster. The eigenvector centrality (cv) of a TF node v in GRN was
defined as:

cv =αmax vð Þ ð24Þ

where αmax is the eigenvector corresponding to the largest eigenvalue
of the weighted adjacency matrix of a GRN. TFs with higher cv ranks
were regarded as master TFs (top 10 by default).

Benchmarking quantification and statistics
Grid-search parameter test for cell clustering on benchmark data.
To determine the default parameters of HGT on different data types,
we performed a grid-search test onHGTparameters, including the pair
of number of embeddings and number of heads (91/13, 104/13, 112/16,
and 128/16), learning rate (0.0001, 0.001, and 0.01), and training
epochs (50, 75, and 100). Altogether, 36 parameter combinations were
tested. For each of the three data types, the HGT parameter training
were performed on three benchmark data, and the default parameter
combination was selected based on the highest median score (ARI for
multiple scRNA-seq data and CITE-seq data with benchmark labels and
AWS for scRNA-ATAC-seq data without benchmark labels) of the three
datasets.

To assess the performance of DeepMAPS alongside other pro-
posed scMulti-omics benchmark tools, we compared DeepMAPS with
Seurat (v3.2.3 and v4.0, https://github.com/satijalab/seurat), MOFA +
(v1.0.0, https://github.com/bioFAM/MOFA2), Harmony (v0.1, https://
github.com/immunogenomics/harmony), TotalVI (v0.10.0, https://
github.com/YosefLab/scvi-tools), and GLUE (v0.3.2, https://github.
com/gao-lab/GLUE). Because of the integration capability for differ-
ent data types, DeepMAPS was compared with Seurat v 3.2.3 and
Harmony onmultiple scRNA-seq data, with Seurat v4.0.0, MOFA+, and
TotalVI onCITE-seq data, andwith Seurat v4.0.0,MOFA+, andGLUEon
scRNA-ATAC-seq data. For each benchmarking tool, grid-search tests
were also applied to a combination of parameters, such as the number
of dimensions for cell clustering and clustering resolution.

The default HGT parameter combination selected for each data
type was then applied to additional datasets (one multiple scRNA-seq,
one CITE-seq, and three scRNA-ATAC-seq data) for independent tests.
All benchmarking tools use their default parameters.

To showcase the rationale for selecting integrative methods
and cell clustering methods in DeepMAPS, we evaluated the cell
clustering performances by replacing the methods with several
others. Specifically, for data integration, we replaced the CCA
method with Harmony integration (multiple scRNA-seq), replaced
the CLR method with Seurat weighted nearest neighbor method
(CITE-seq), and replaced the velocity-weightedmethod with Seurat
weighted nearest neighbor method and without using velocity
(scRNA-ATAC-seq). For the cell clustering method, we replaced
Louvain clustering with Leiden and the smart local moving (SLM)
method. We also compared the influence of clustering resolution
(use 0.4, 0.8, 1.2, and 1.6) to the cell clustering results in Deep-
MAPS. Each comparison was performed on all 36 parameter com-
binations as used in the grid-search test. For DeepMAPS without
velocity, we simply add up the gene expressionmatrix from scRNA-
seq data and the gene potential activity matrix derived from
scATAC-seq data, considering the balance weight introduced by
velocity for gene j in cell i as 1.

Adjusted rand index (ARI). ARI is used to compute similarities by
considering all pairs of the samples assigned in clusters in the current
and previous clustering adjusted by random permutation. A con-
tingency table is built to summarize the overlaps between the two cell
label lists with b elements (cells) to calculate the ARI. Each entry
denotes the number of objects in common between the two label lists.
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The ARI can be calculated as:

ARI =

Ja + Jb
C2
n

� E Ja + Jb
C2
n

h i
max Ja + Jb

C2
n

� �
� E Ja + Jb

C2
n

h i ð25Þ

Where E :½ � is the expectation, Ja is the number of cells assigned to the
same cell cluster as benchmark labels; Jb is the number of cells assigned
to different cell clusters as benchmark labels; C2

n is the combination of
selecting two cells from the total of n cells in the cluster.

Average Silhouette Width (ASW). Unlike ARI, which requires known
ground truth labels, a silhouette score refers to a method of inter-
pretation and validation of consistency within clusters of data. The
silhouette weight indicates how similar an object is to its cluster
(cohesion) compared to other clusters (separation). The silhouette
width ranges from−1 to +1, where a high value indicates that the object
is well-matched to its cluster. The silhouette score sil(j) can be calcu-
lated by:

sil jð Þ= ∣n jð Þ �m jð Þ∣
max m jð Þ,n jð Þ� � ð26Þ

wheremðjÞ is the average distance between a cell j and all other cells in
the same cluster, and n jð Þ is the average distance of i to all cells in the
nearest cluster to which j does not belong. We calculated the mean
silhouette score of all cells as theASW to represent the silhouette score
of the dataset.

Calinski-Harabasz index. The CH index calculates the ratio of the sum
of between-clusters dispersion and inter-cluster dispersion for all
clusters. A higher CH index indicates a better performance. For a set of
data E of size nE with k clusters, the CH index is defined as:

CH =
t Bk

� �
t Wk

� � ×
nE � k
k � 1

ð27Þ

Wk =
Xk
q= 1

X
x2Cq

x � cq
� �

ðx � cqÞT ð28Þ

Bk =
Xk
q= 1

nqðcq � cE Þðcq � cqÞT ð29Þ

where t Bk

� �
is the trace of the between group dispersion matrix, and

t Wk

� �
is the trace of the within-cluster dispersion matrix. Cq is the set

of points in cluster q, cq is the center of cluster q, cE is the center of E,
and nq is the number of points in cluster q. T refers to the matrix
transformation.

Davies-Bouldin index. The DB index signifies the average ‘similarity’
between clusters, where the similarity is a measure that compares the
distance between clusters with the size of the clusters themselves. A
lower DB index relates to a model with better separation between the
clusters. For data with k clusters, i 2 k and j 2 k, the DB index is
defined as:

DB=
1
k

Xk
i= 1

max
i≠j

Rij ð30Þ

Rij =
si + sj
dij

ð31Þ

where si and sj are the average distance between each point within the
cluster to the cluster centroid. dij is the distance of cluster centroids of
i and j.

Gene association network evaluations. We evaluated the perfor-
mance of the gene association network identified in DeepMAPS by
comparing it with IRIS315 and a normal gene co-expression network
inference using all genes. We calculated the closeness centrality and
eigenvector centrality for the network generated in each tool. The
formulations are given below.

Closeness centrality (CC). The closeness centrality (CC)76 of a vertex
u is defined by the inverse of the sum length of the shortest paths to all
the other vertices v in the undirectedweighted graph. The formulation
is defined as:

CC uð Þ= 1P
v2V

dw u,vð Þ ð32Þ

wheredw u, vð Þ is the shortestweighted path between u and v. If there is
no path between vertex u and v, the total number of vertices is used in
the formula instead of the path length. A higher CC indicates a node is
more centralized in the network, reflecting a more important role of
this gene in the network. The CC is calculated using igraph R package
with function igraph::betweenness. We take the average CC of all
nodes in a network to represent the network CC.

Eigenvector centrality (EC). Eigenvector centrality (EC)77 scores cor-
respond to the values of the first eigenvector of the graph adjacency
matrix. The EC score of u is defined as:

EC uð Þ= λ
X
v2G

auvxv ð33Þ

where λ is inverse of the eigenvalue of eigenvector x = ðx1,x2, . . . ,xnÞ,
auv is the adjacent weighted matrix of undirect graph G. A node with a
high eigenvector centrality score means that it is connected to many
nodes which themselves have high scores. The EC is calculated using
igraph R package with function igraph::evcent. We take the average EC
of all nodes in a network to represent the network EC.

Evaluations on GRN. For scRNA-ATAC-seq data, we compared cell-
type-specific GRNs inferred fromDeepMAPS with (i) IRIS3 and SCENIC
on the scRNA-seq matrix, (ii) IRIS3 and SCENIC on GAS matrix, (iii)
MAESTRO on scATAC-seq matrix, and (iv) MAESTRO on original
scRNA-seq and scATAC-seq matrix. For each dataset comparison, we
set the cell clusters used in the benchmarking tool the same as gen-
erated in DeepMAPS to ensure fairness. GRNs generated from each
tool were compared with three public functional databases, including
Reactome21, DoRothEA22, and TRRUST v223. Only human sample data-
sets were used for comparison as these databases are all human-
related. We performed hypergeometric tests for GRN resulting in each
tool to each database and compared the precision, recall, and F1 score
of enriched GRNs and functional terminologies.

Cell cluster leave-out test
For a benchmark datasetwith a real cell type label, we removed all cells
in one cell type and ran DeepMAPS. Then, we traversed all cell types
(one at a time) to evaluate the robustness of ARI. We removed cells in
predicted cell clusters fromDeepMAPS and other benchmark tools for
data without benchmark labels.

DeepMAPS server construction
DeepMAPS is hosted on an HPE XL675d RHEL system with 2 × 128-
core AMD EPYC 7H12 CPU, 64GB RAM, and 2×NVIDIA A100 40GB
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GPU. The backend server is written in TypeScript using the NestJs
framework. Auth0 is used as an independent module to provide
user authentication and authorization services. Redis houses a
queue of all pending analysis jobs. There are two types of jobs in
DeepMAPS: The stateful jobs are handled by the Plumber R pack-
age to provide real-time interactive analysis; and the stateless jobs,
such as CPU-bound bioinformatics pipelines and GPU training
tasks that could take a very long time, are constructed
using Nextflow. All running jobs are orchestrated using Nomad,
allowing each job to be assigned with proper cores and storage and
keeping jobs scalable based on the server load. The job results are
deposited into a MySQL database. The front-end is built with
NUXT, Vuetify as the UI library, Apache ECharts, and Cytoscape.js
for data visualization. The frontend server and backend server are
communicated using REST API.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are from public domain. The raw data are
downloaded from the GEO database with the accession numbers for:
human pancreatic islets scRNA-seq data GSE84133 and healthy bone
marrow mononuclear cell CITE-seq data: GSE194122. The following
datasets were obtained from figshare: the human pancreas scRNA-seq
data [https://figshare.com/articles/dataset/Benchmarking_atlas-level_
data_integration_in_single-cell_genomics_-_integration_task_datasets_
Immune_and_pancreas_/12420968/8], the mouse bladder from the
Tabula Muris scRNA-seq data [https://doi.org/10.6084/m9.figshare.
5968960.v1], and the human lung adenocarcinoma PBMC CITE-seq
data [https://doi.org/10.6084/m9.figshare.c.5018987.v1]. The follow-
ingpaired scRNA-seq and scATAC-seqdatasetswereobtained from the
10X Genomics website: 3k healthy PBMC data [https://www.
10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-
no-cell-sorting-3-k-1-standard-2-0-0], 10k healthy PBMC data [https://
www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-
donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-2-
0-0], frozen human healthy brain data [https://www.10xgenomics.
com/resources/datasets/frozen-human-healthy-brain-tissue-3-k-1-
standard-2-0-0], 10k human PBMC data [https://www.10xgenomics.
com/resources/datasets/10-k-human-pbm-cs-multiome-v-1-0-
chromium-x-1-standard-2-0-0], healthy PBMC data [https://www.
10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-
granulocytes-removed-through-cell-sorting-3-k-1-standard-2-0-0],
fresh embryonic data [https://www.10xgenomics.com/resources/
datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-standard-2-0-0], and
lymph node data [https://www.10xgenomics.com/resources/datasets/
fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-
standard-2-0-0]. The scRNA-seq and scATAC-seq cancer cell line data
was downloaded from CNGB Nucleotide Sequence Archive with an
accession code of CNP0000213. All datasets are publicly available
without restrictions. Details of data information can be found in Sup-
plementary Data 1. Source data are provided with this paper.

Code availability
The python source code of DeepMAPS Docker is freely available at
https://github.com/OSU-BMBL/deepmaps and the DeepMAPS web-
server is freely available at https://bmblx.bmi.osumc.edu/. The source
code is also available on Zenodo78.
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