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Introduction " Graph signal transform

Background: Challenge: Step 1: K-nearest neighbor (KNN) Graph construction
« Spatial omics (e.g., spatial transcriptome, proteome, epigenome, and histology) « The complexity of construction due to

are transforming our understanding of cell or tissue biology in health and disease. = multiple spatial omics platforms. (i) Define an undirected graph and adjacency matrix.
* Cell-centric analysis enables us to investigate the organization of spatial domain, « Interpretability of representation G = (V,E)

relations of the cell-neighborhood, cell-cell communication, etc. embeddings. where V = {v;, v, ..., v,} is the node set referring to n
» Gene-centric analysis enables the discovery of spatially variable features, such « Scalability issue due to the pixel-level spots: E is the edge set defined by KNN.

as spatial variable genes (SVG). platform (e.qg., Stereo-seq and CODEX).

 However, a quantitative and qualitative representation method of organized Non-trivial aggregation method of | (ii) An adjacent binary matrix 4 = (aij) with rows and
spatial pattern presented by diverse spatial omics features is still a gap for further embedding graph topological structure and | columns as n spots is defined as:

gene-centric analysis. graph signal (e.g., gene expression). {1, e;j €E
a. . —
Solution: A hypothesis-free graph Fourier transform framework, Spatial Graph Fourier Transform (SpaGFT), for spatial omics data o 0, else.

feature representation.

_ _ . _ (i) A diagonal matrix D = diag(d,, d,,...,d,;), where
Spatial omics Modalities Signals k-bindlimited graph signals d; = Y™, a;; represents the degree of v,

profiling i
Y

Step 2: Fourier mode calculation

(i) Using matrices 4 and D, a Laplacian matrix L can be
obtained by

L=D-A
(i) The Laplacian matrix L can be decomposed using
spectral decomposition
L =UAU"
A= diag(/ll, /12, ""A’I’l)!

U= (”1' Hr, ""”Tl)a
where the diagonal elements of A are the eigenvalues of
L with 4, <4, <.-- < A,, where A, is always equal to 0
regardless of graph topology.

Step 3: Graph Fourier transform

The graph signal of a gene g is defined as f, =
(fgl,fgz,...,fg") € R", which is a n-dimensional vector
and represents the gene expression values across n

Figure. 1] The SpaGFT conceptual schema. A spatially organized molecule is a smooth signal and can be represented as the |spots. The graph signal f 4 is transformed into a Fourier
linear combination of k low-frequency Fourier mode (FMs), where a low-frequency FM contributes to a slow and smooth graph
signal variation. Fourier coefficient (FC) can measure FMs contribution.

coefficient f, by

fo=Ufg fo=fg. 15 f3)
Results-SVG identification performance £l is the projection of f, on FM p, representing the

. . . contribution of FM u,; to graph signal f , k is the index
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* Transformed signals (FCs) compressed graph topology
and graph signal (e.g., gene expression).

« Low-frequency FCs represent features’ spatial smooth
pattern, leading to a new method for SVG identification.

* Alow-pass filter enhances signal and removes noise.

« FCs can be used for other downstream tasks (e.g.,

Figure. 2| a. The SVG prediction evaluation was compared to five benchmarking tools. The running time (log transformation
seconds) of each tool is represented as red lines. b. After parameter selection (three high-quality datasets), the SVG prediction
performance of SpaGFT on additional 28 independent datasets was compared to those of the five benchmark tools. Conclusion:
SpaGFT identifies SVG more accurately and faster.

Results — graph signal representation and process SVG clustering to identify functional niches).
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