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Spatial omics feature representation 
using graph Fourier transform

Background:
• Spatial omics (e.g., spatial transcriptome, proteome, epigenome, and histology)

are transforming our understanding of cell or tissue biology in health and disease.
• Cell-centric analysis enables us to investigate the organization of spatial domain,

relations of the cell-neighborhood, cell-cell communication, etc.
• Gene-centric analysis enables the discovery of spatially variable features, such

as spatial variable genes (SVG).
• However, a quantitative and qualitative representation method of organized

spatial pattern presented by diverse spatial omics features is still a gap for further
gene-centric analysis.
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Figure. 1| The SpaGFT conceptual schema. A spatially organized molecule is a smooth signal and can be represented as the
linear combination of k low-frequency Fourier mode (FMs), where a low-frequency FM contributes to a slow and smooth graph
signal variation. Fourier coefficient (FC) can measure FMs contribution.

Introduction

Results-SVG identification performance

Figure. 2| a. The SVG prediction evaluation was compared to five benchmarking tools. The running time (log transformation
seconds) of each tool is represented as red lines. b. After parameter selection (three high-quality datasets), the SVG prediction
performance of SpaGFT on additional 28 independent datasets was compared to those of the five benchmark tools. Conclusion:
SpaGFT identifies SVG more accurately and faster.

Results – graph signal representation and process 

Figure. 3| a. SVGs identified by SpaGFT were distinguishably separated from non-SVGs on the FM-based UMAP with a clear
boundary, whereas SVGs were irregularly distributed on the PC-based gene UMAP. b. SpaGFT can enhance and remove noise
and outperformed other gene enhancement tools. c. SpaGFT enhanced signal and removed the noisy background for spatial
omics platforms. Conclusion: (1) FC is a transformed simple but informative topological features for representing
complex structures with irregular topologies. (2) The FCs of low-frequency FMs will be enhanced and those of high-
frequency FMs will be diminished.
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(ii) An adjacent binary matrix 𝑨𝑨 = 𝑎𝑎𝑖𝑖𝑖𝑖 with rows and
columns as 𝑛𝑛 spots is defined as:

(iii) A diagonal matrix 𝑫𝑫 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛) , where
𝑑𝑑𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖 represents the degree of 𝑣𝑣𝑖𝑖

Step 1: K-nearest neighbor (KNN) Graph construction 

(i) Define an undirected graph and adjacency matrix. 
𝐺𝐺 = 𝑉𝑉,𝐸𝐸

where 𝑉𝑉 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 is the node set referring to 𝑛𝑛
spots; 𝐸𝐸 is the edge set defined by KNN.

Graph signal transform

Step 2: Fourier mode calculation
(i) Using matrices 𝑨𝑨 and 𝑫𝑫, a Laplacian matrix 𝑳𝑳 can be
obtained by

𝑳𝑳 = 𝑫𝑫− 𝑨𝑨
(ii) The Laplacian matrix 𝑳𝑳 can be decomposed using
spectral decomposition

𝑳𝑳 = 𝑼𝑼𝑼𝑼𝑼𝑼𝐓𝐓

𝜦𝜦 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛), 
𝑼𝑼 = 𝝁𝝁1,𝝁𝝁2, … ,𝝁𝝁𝑛𝑛 ,

where the diagonal elements of 𝜦𝜦 are the eigenvalues of
𝑳𝑳 with 𝜆𝜆1 ≤ 𝜆𝜆2 ≤ ⋯ ≤ 𝜆𝜆𝑛𝑛, where 𝜆𝜆1 is always equal to 0
regardless of graph topology.

Step 3: Graph Fourier transform
The graph signal of a gene 𝑑𝑑 is defined as 𝒇𝒇𝑔𝑔 =
𝑓𝑓𝑔𝑔1,𝑓𝑓𝑔𝑔2, … ,𝑓𝑓𝑔𝑔𝑛𝑛 ∈ ℝ𝑛𝑛, which is a 𝑛𝑛-dimensional vector

and represents the gene expression values across 𝑛𝑛
spots. The graph signal 𝒇𝒇𝑔𝑔 is transformed into a Fourier
coefficient �𝒇𝒇𝑔𝑔 by

�𝒇𝒇𝑔𝑔 = 𝑼𝑼𝑻𝑻𝒇𝒇𝑔𝑔, �𝒇𝒇𝑔𝑔= 𝑓𝑓𝑔𝑔1, 𝑓𝑓𝑔𝑔2, … , 𝑓𝑓𝑔𝑔𝑛𝑛

𝑓𝑓𝑔𝑔𝑘𝑘 is the projection of 𝒇𝒇𝑔𝑔 on FM 𝝁𝝁𝑘𝑘, representing the
contribution of FM 𝝁𝝁𝑘𝑘 to graph signal 𝒇𝒇𝑔𝑔, 𝑘𝑘 is the index
of 𝒇𝒇𝑔𝑔 (e.g., 𝑘𝑘 = 1, 2, … ,𝑛𝑛 ). This Fourier transform
harmonizes gene expression and its spatial distribution
to represent gene 𝑑𝑑 in the frequency domain.

Discussion

• Transformed signals (FCs) compressed graph topology
and graph signal (e.g., gene expression).

• Low-frequency FCs represent features’ spatial smooth
pattern, leading to a new method for SVG identification.

• A low-pass filter enhances signal and removes noise.
• FCs can be used for other downstream tasks (e.g.,

SVG clustering to identify functional niches).
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Solution: A hypothesis-free graph Fourier transform framework, Spatial Graph Fourier Transform (SpaGFT), for spatial omics data
feature representation.

Challenge:
• The complexity of construction due to

multiple spatial omics platforms.
• Interpretability of representation

embeddings.
• Scalability issue due to the pixel-level

platform (e.g., Stereo-seq and CODEX).
• Non-trivial aggregation method of

embedding graph topological structure and
graph signal (e.g., gene expression).
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