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Highlights
The gut and intratumoral microbiota
significantly affect cancer development
and progression by interacting with the
host's immune system, that is, the
immuno–oncology–microbiome (IOM).

Available microbial data in IOM studies
are mined from existing host bulk
sequencing and single-cell sequencing
datasets to provide unprecedented
opportunities for investigating IOM in
various cancer types.
The human microbiome is intimately related to cancer biology and plays a vital
role in the efficacy of cancer treatments, including immunotherapy. Extraordi-
nary evidence has revealed that several microbes influence tumor development
through interaction with the host immune system, that is, immuno–oncology–
microbiome (IOM). This review focuses on the intratumoral microbiome in IOM
and describes the available data and computational methods for discovering
biological insights of microbial profiling from host bulk, single-cell, and spatial
sequencing data. Critical challenges in data analysis and integration are dis-
cussed. Specifically, the microorganisms associated with cancer and cancer
treatment in the context of IOM are collected and integrated from the literature.
Lastly, we provide our perspectives for future directions in IOM research.
The development of rigorous computa-
tional methods for characterizing and
elucidating IOM is urgently needed to
guide researchers to unravel new bio-
logical insights and develop precision
cancer therapeutics.

A reliable benchmarking system is
needed to model IOM interactions,
analyze IOM data, and evaluate compu-
tational predictions.

In-depth functional analyses of IOM
mechanisms are necessary to develop
novel therapeutic strategies targeting
microbiota to improve cancer treatment
outcomes.
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Significance of exploring the immuno–oncology–microbiome
The humanmicrobiome is the collection of all the microorganisms, which are non-negligible com-
ponents of the human body, residing on or within human tissues and biofluids, such as the skin,
oral mucosa, lung, and gastrointestinal tract [1]. Human microbes are believed to play a broad
role in cancer diagnosis, pathogenesis, and treatment by interacting with the host immune
system [2]. The immune-mediated interactions among immune cells, tumors, and microbes in
the tumor microenvironment (TME) (see Glossary) are defined as the immuno–oncology–
microbiome (IOM) [2]. In the context of the IOM, the interactions between the host microbiome
and tumor mainly include two categories [2,3] (Figure 1, Key figure): (i) interactions involving gut
microbes, which affect both local and distant tumor growth and survival by impacting host immune
system, and (ii) interactions involving intratumoral microbes, which either reside in the TME or
tumor/immune cells to influence tumor progression and antitumor immunity. As polymorphic
microbes become new cancer hallmarks, research into the intricate relationship in the IOM is
receiving increasing attention [4].

The gut microbes can manipulate and infiltrate the gut epithelial barrier, relocate to other tissues
and organs through the blood, and influence the host immune context [2]. They exhibit broad
effects on primary lymphoid organs [5,6], the TME [2,7,8], adaptive immune responses [9,10],
and inflammatory responses in the intestines and other organs [11]. Existing computational
analyses of gut microbes mainly investigate the associations between the gut microbial diversity/
composition and cancer types/immune responses [12–14] through 16S ribosomal RNA sequencing,
metagenomic shotgun sequencing, flow cytometry, immunohistochemistry, and cytokine assays
from host stool samples. With decades of development, the analyses of gut microbes are now
becoming more mature [15,16], and projects have been created for archiving gut microbiome data
related to cancer, such as the Human Microbiome Project [17] and MetaHIT [18].

Conversely, intratumoral microbes have been observed in multiple cancer types, such as colorec-
tal [19], pancreatic [20], breast [21,22], and lung cancer [23–25]. They not only reside in tumor
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Glossary
Bulk sequencing: examines the
sequence information of bulk samples,
usually containing multiple cells.
Deep learning: a type of machine-
learning algorithm that uses multiple
layers to extract higher-level features
from the raw input progressively.
Graph neural network (GNN): a class
of neural networks for processing data
best represented by graph data
structures. They were popularized by
their use in supervised learning on the
properties of various molecules.
Metagenomic shotgun sequencing:
a method in which nucleic acid from a
sample is sequenced to identify and
characterize microorganisms present in
the sample; it is being evaluated and
used with increasing frequency for
clinical microbiology diagnostics.
Single-cell RNA sequencing
(scRNA-seq): examines the expression
profiles of individual cells with optimized
next-generation sequencing
technologies, providing a higher
resolution of cellular diversity.
Spatially resolved transcriptomics
(SRT): an overarching term for a range
of methods designed for assigning cell
types (identified by the mRNA readouts)
to their locations in the histological
sections. This method can also be used
to determine the subcellular localization
of mRNA molecules.
TheCancerGenomeAtlas (TCGA): a
landmark cancer genomics program
which has molecularly characterized
over 20 000 primary cancer and
matched normal samples spanning 33
cancer types.
Tumormicroenvironment (TME): the
environment around a tumor, including
the surrounding blood vessels, immune
cells, fibroblasts, signaling molecules,
and the extracellular matrix (ECM).
Whole-exome sequencing (WES):
also known as exome sequencing, a
genomic technique for sequencing all of
the protein-coding regions of genes in a
genome (known as the exome).
Whole-genome sequencing (WGS):
also known as full genome sequencing,
complete genome sequencing, or entire
genome sequencing, is the process of
determining the entirety, or nearly the
entirety, of the DNA sequence of an
organism's genome at a single time.
Whole-transcriptome sequencing
(RNA-seq): a sequencing technique
that uses next-generation sequencing
(NGS) to reveal the presence and
cells, contributing to tumor progression, metastasis, oncogenesis, and drug resistance, but also
interact with immune cells in the TME to promote or inhibit immune responses and activities
[2,25,26]. The role and functions of intratumoral microbes have been confirmed to be largely
tumor-specific [24,27,28], yet the intratumoral microbiome's direct causal roles and underlying
mechanisms remain unclear [29]. As such, attention should be focused on analyzing data directly
derived from TME: (i) microbial profiling extracted from host whole-genome sequencing
(WGS), whole-exome sequencing (WES), and whole-transcriptome sequencing (RNA-
seq), known as ‘microbial profiling derived from bulk sequencing’, (ii) microbial profiling
extracted from host single-cell RNA sequencing (scRNA-seq) data, known as ‘microbial
profiling derived from single-cell sequencing’, and (iii) microbial profiling extracted from host
spatially resolved transcriptomics (SRT) data, known as ‘microbial profiling derived from
spatial sequencing’. Specific challenges and limitations lead to an increasing need for computa-
tional methods development to discover novel insight into modes of action, functionalities, and
causal relations of intratumor microbes to specific cancer types, as well as for the successful
prediction and diagnosis of cancers. Here, we provide a timely review of computational methods
for the intratumoral microbiome in IOM, alongside the challenges and future perspectives.

Analysis of intratumoral microbial profiling derived from bulk sequencing
To leverage the large databases of clinically annotated samples with bulk data, such as The
Cancer Genome Atlas (TCGA), computational tools and pipelines have been developed to
analyze the IOM involving intratumoral microbes [23,30–32]. The preprocessing for deriving
microbial profiling from host bulk sequencing data involves four steps. (i) Identify microbial
reads from WGS, WES, or RNA-seq data of tumor/normal tissues. This step aligns sequencing
reads to host reference genomes using a short-read aligner Mapping and Assembly with Quality
(MAQ) [33] or the ultrafast RNA-seq aligner Spliced Transcripts Alignment to a Reference (STAR)
[34]. The unmapped reads are considered candidate microbial reads. (ii) Characterize microbial
taxonomic profiles. Metagenomic analysis is performed for the taxonomic profiling of microbes
by mapping candidate microbial reads from the previous step to all known microbial genomes
using Kraken2 [35], Metagenomic Phylogenetic Analysis (MetaPhlAn2) [36], or SHallow
shOtGUN profiler (SHOGUN) [37]. The remaining unmapped reads can be assembled as novel
microbial genomes using MetaVelvet [38] or MEGAHIT [39]. An existing bioinformatics tool,
PathSeq [40], can provide an integrative analysis of the first two steps. (iii) Remove contaminants.
Due to the low microbial biomass in host sequencing samples [32], contamination in the labora-
tory environment and the sequencing process significantly impacts downstream analysis. The
contaminants can be removed using decontam [41] or SourceTracker [42]. (iv) Normalize
decontaminated microbial data. The decontaminated microbial data are renormalized, alleviating
batch effects while preserving biological signals. Commonly used normalization methods include
log-ratio transformation, log upper quartile, cumulative sum scaling, and variance stabilization
[43,44]. Similar pipelines can also be applied for microbiome profiling from single-cell and spatial
data.

Several studies have been conducted using the abovemethods to investigate the effect of tumor-
associated microbes on host tumors. For example, Poore et al. analyzed microbial profiling from
4831 WGS and 13 285 RNA-seq datasets across 10 481 patients and 33 cancer types from the
TCGA compendium [30]. The read counts at the genus taxonomic level of each dataset were
accessible. These bulk sequencing-derived microbial profiles were used to discover tumor-
type-specific microbial signatures [30]. Pan-cancer analyses showed that Fusobacterium was
overabundant in gastrointestinal (GI) cancers compared with non-GI cancers in both primary
tumor tissue and adjacent solid-tissue normal samples. In addition, Dohlman et al. extracted
microbial reads by retrieving raw WGS and WES sequencing data of different cancer types
708 Trends in Microbiology, July 2023, Vol. 31, No. 7

CellPress logo


Trends in Microbiology

quantity of RNA in a biological sample at
a given moment.
Wilcoxon rank-sum test: a
nonparametric test of the null hypothesis
that, for randomly selected values X and
Y from two populations, the probability
of X being greater than Y is equal to the
probability of Y being greater than X.
from the TCGA database [32]. Combined with the matched host mRNA expression data, they in-
vestigated host genes whose transcriptional patterns highly correlated with the abundance of
identified tumor-associated microbial species [32]. They found that pathways significantly and
consistently enriched by these genes were related to immune system activation, such as antigen
presentation and natural killer (NK) cell-mediated cytotoxicity [32]. They also showcased
that microbes that are equally prevalent across cancer types and blood samples are generally
contaminants [32].

The qualitative comparison of existing computational methods used to analyze microbial profiling
derived from host data have been summarized in Table 1. Nevertheless, microbiome profiling and
analysis from host bulk samples are still facing challenges. First, the selection of a microbial
reference genome is critical, which may cause significant differences in sequence mapping as
the species/strains and the version of microbial genomes included in the reference varies.
Secondly, the existing pipeline is designed for microbiota mapping suitable for discovery-driven
questions, for example, what are the signature microbes involved in cancer tissue? While for
Key figure

Schematic overview of computational studies of immuno–oncology–microbiome (IOM)
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Figure 1. To analyze the effects of gut microbiota on host tumors, researchers can acquire the gut microbial composition using the 16S ribosomal RNA (rRNA) data,
metagenomic data, or metatranscriptomic data from stool samples. Correlation analysis between gut microbial composition and cancer patients undergoing
immunotherapy can help researchers to understand clinical response heterogeneity. For host tumor tissues, microbial profiling can be derived from existing host
sequencing data, including bulk sequencing, single-cell sequencing, and spatial transcriptome data. The computational analyses of these data can enable researchers
to obtain the tissue-specific, cell-type-specific, or spatial-specific microbial signatures for further IOM studies and clinical applications. Abbreviation: NK, natural killer.
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Table 1. The qualitative comparison of different computational methods used to analyze microbial profiling derived from host data

Tools Description Strength Limitation Code Refs

STAR An RNA-seq aligner based on
sequential maximum mappable
seed search in suffix arrays

Fast mapping speed; high
alignment precision and
sensitivity; good default
performance

Memory intensive C++ [34,72,73]

MAQ A short-read aligner based on
hash table and mapping quality
scores

Accurate and feature-rich short
reads alignment

Unsuitable for the alignment of
longer reads where indels may
occur frequently; single-threaded
software; slow running speed

C++ [33,74,75]

Kraken2 A taxon binning tool based on
the exact alignment of k-mers

High accuracy at genus and
species level; fast running speed

Unsuitable for running in the
personal computer environment due
to the RAM limitation

C++ [35,76]

MetaPhlAn2 A taxon profiling tool based on
the alignment of unique
taxonomic marker genes

High accuracy at genus and
species level; efficient memory
usage

Limited identification of microbial
eukaryotes

Python [36,76–78]

SHOGUN A microbiome quantification
framework including
contaminating read filtering and
relative abundance profiling

A modular, accurate, and
scalable pipeline; data analysis
and transformation steps can
be run individually or together in
an automated workflow

Computationally intensive taxonomy
assignments

Python [30,37]

MetaVelvet A short-read de novo assembler
for metagenomic data based on
the de Bruijn graph

High sensitivity for sequence
diversity

Low assembly length statistics C++ [38,79]

MEGAHIT An NGS de novo assembler for
large and complex metagenomic
data based on succinct de Bruijn
graph

Efficient memory usage and
fast running speed

Suboptimal assembly of genomes of
high abundance population members
on very large datasets

C++ [39,76,79,80]

decontam Simple statistical methods to
identify and remove contaminant
sequences in marker-gene and
metagenomic data

Easy integration with existing
metagenomic sequencing
workflows

Auxiliary data from DNA quantitation
and negative control data are required

R [41,81]

Source
Tracker

A Bayesian approach to estimate
the proportion of contaminants in
a given community

Directly estimate source
proportions; model the
uncertainty of known and
unknown source environments

Limited for discerning sources with
similar bacterial communities; high
running time, only applicable to
datasets between small and
medium in size with few sources

R [42,82,83]

Shortread A Bioconductor package for
input, quality assessment and
exploration of high-throughput
sequence data

Suitable for removing low-
complexity reads, low-quality
reads, and PCR duplicates
tagged with the same unique
molecular identifier (UMI) and
cellular barcode

Lack of sophisticated and flexible
programming frameworks

R [84,85]

Trimmomatic A flexible trimmer for Illumina
sequence data

A more flexible and efficient
preprocessing tool, which could
correctly handle paired-end data

Relatively slow and overly
time-consuming

Java [86,87]

UMI-tools A software package modeling
sequencing errors in UMIs

Easily be integrated into existing
pipelines for analysis of
sequencing techniques utilizing
UMIs

High UMI preprocessing runtime
cost

Python [86,88]

Wilcoxon
rank-sum test

A nonparametric method used
to test the differences between
two populations

It can be used for the
comparison of a non-normally
distributed, but at least ordinally
scaled, parameter in two
unpaired samples

The correlation obtained by
statistical tests is typically a
‘spurious correlation’

R/Python [45,46,52,89,90]

Spearman
correlation

A method used to test whether
there is a monotonous
relationship between two
variables

It is preferable when variables
feature heavy-tailed distributions
or when outliers are present

R/Python [46,52,90,91]
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individual species/strain mapping, the pipeline needs to be optimized with a more flexible
sequence alignment threshold due to the extremely short reference genome. Such adjustment
may bring more false positives in quantifying the species/strain’s abundance. Lastly, reliable
and systematic benchmarking standards and protocols for evaluating and comparing results
from different sequencing technologies and protocols are still lacking.

Analysis of intratumoral microbial profiling derived from single-cell sequencing
The primary advantage of microbial profiling analysis from single-cell sequencing compared to
bulk data analyses is the ability of cell barcodes to pair microbes with corresponding somatic
cells. Deriving the sequencing reads of microbial profiling from the host single-cell sequencing
data can help researchers uncover cell-type-specific microbial signatures and infer crosstalk
between microbes, immune cells, and tumor cells [45,46].

Currently, studies using host single-cell data to discover the heterogeneity of microbial diversities
and abundances in different cancer types are limited. Robinson et al. developed cell-type-
specific intracellular microbes to extract microbial reads from 21 human scRNA-seq datasets of
cancer patients across three cancer types (i.e., Merkel cell carcinoma, colorectal carcinoma, and
non-small-cell lung carcinoma) and produced a list of candidate cell-type-specific intracellular
microbial taxa (from class-level to species-level) [45]. A Wilcoxon rank-sum test on the cell-
type-specificmicrobial taxa abundance revealed that tumor samples from patients receiving immu-
notherapy exhibited more abundant bacterial taxa in the immune cells than in tumor cells [45].
Then, Ghaddar et al. developed a single-cell analysis of host–microbiome interactions (SAHMI) to
extract microbial reads from human scRNA-seq data for two pancreatic cancer cohorts, including
41 pancreatic ductal adenocarcinomas (PDA) tumor samples and 14 normal pancreatic tissues
samples [46]. They identified host-cell-associated bacteria in a subset of tumors by examining
microbial reads paired with host somatic cell barcodes. In addition, by investigating differentially
expressed genes (DEGs) in cells associated with bacteria, the strongest bacteria-associated
DEGs are linked to PDA or microbiome-related inflammation, indicating that microbes can be
involved in growth and inflammatory processes in PDA [46]. Specifically, Table 2 presents the
host sequencing datasets that have been used for mining microbial profiling.

IOM analysis of microbial profiling derived from single-cell sequencing faces similar limitations and
difficulties as the bulk data, such as the direct mapping of human papillomavirus (HPV) from the
host scRNA-seq data [47]. Choosing the viral reference genome and annotation files wisely and
optimizing tool parameters are crucial to the mapping results, considering the much lower virus
read depths involved in single cells than in bulk samples. Additional inherent limitations of data
at the single-cell level include the following. (i) It is difficult to determine the condition and cellular
localization of microbes extracted from host sequencing data. For example, we cannot determine
whether detected microbial nucleic acids come from living, lysed, intracellular, or extracellular
microorganisms [30,46]. (ii) The decontamination step remains challenging in analyzing microbial
profiling derived from host data. Removal of contaminants in silico cannot replace gold-standard
wet experiments, such as sterile processing, sterile-certified reagents, and negative blanks of
reagents [46]. Many technical operations in decontamination limit the analysis of individual-
specific, region-specific, low-abundance, or difficult-to-detect microbes [30,46]. (iii) The low-
biomass microorganisms mined from host data will also impact the subsequent analysis,
especially for single-cell data. Pan-cancer analysis of intratumoral microbiome abundance
estimation showed only one bacterial cell per 147 tumor cells in the TME [4]. The low microbial
biomass issue will significantly impact the capture of microbial profiling for a specific species
mining from host tissue samples infected by microbes, requiring additional reliability validation
for data mining. (iv) The mechanisms for capturing microbial nucleic acids in scRNA-seq data
Trends in Microbiology, July 2023, Vol. 31, No. 7 711
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Table 2. Overview of host sequencing datasets that have been used for mining microbial profiling

Cancer typea Sample
counts

Cancer
stage

Survival
time

Sex Source Refs

Bulk sequencing data

COAD 1006 Yes Yes Yes

TCGA (https://portal.gdc.cancer.gov/) –

READ 372 Yes Yes Yes

KIRC 1140 Yes Yes Yes

THCA 880 Yes Yes Yes

STAD 1091 Yes Yes Yes

BRCA 1497 Yes Yes Yes

HNSC 907 Yes Yes Yes

LUAD 951 Yes Yes Yes

Single-cell sequencing data

Pancreatic ductal
adenocarcinomas

24 Yes NA Yes
Genome Sequence Archive under
project CRA001160

[92]

Merkel cell
carcinoma

2 Yes NA Yes
NCBI BioProject PRJNA483959 (patient
2586-4), PRJNA484204 (patient 9245-3)

[93]

Colorectal
carcinoma

6 Yes NA Yes ArrayExpress EMTAB-8410 [94]

Non-small-cell
lung carcinoma

13 Yes NA Yes NCBI BioProject PRJNA591860 [95]

aCancer type of different samples. BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; HNSC, head and neck
squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LUAD, lung adenocarcinoma; READ, rectum adenocar-
cinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma.
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are still debatable. Several explanations have been discussed, including more polyadenylation
than previously believed in prokaryotic transcripts and L-form switching in microbes [46]. More
efforts are needed to investigate the origin of microbial acids in host sequencing techniques.

Analysis of intratumoral microbial profiling derived from spatial sequencing
The emerging SRT provides the spatial information that bulk and single-cell RNA-sequencing
approaches cannot deliver [48]. Particularly, SRT defines the organization of tissue functional
niches and crosstalk that modulate cellular function in human tumor studies [48,49]. For example,
Shi et al. found that antibiotic treatment can disrupt the spatial networks in the gut microbiome of
mice [50]. They reported an altered spatial association with the most significant fold change
between Oscillibacter and Veillonella, which has been linked to altered inflammatory responses
and metabolic activities in the host [50]. Another study developed a novel spatial meta-
transcriptomic analysis method that captures intratumoral microbes and host transcriptomic
data with spatial coordinates [51]. By examining tumor tissue samples from 12 patients with
early-stage lung cancer, they found that specific species or strains are significantly enriched in
tumor cells compared with other cell types, and the bacterial burden is strongly positively associated
with the expression of oncogenic β-catenin [51]. Therefore, mining microbial nucleic acids from SRT
data of host tissue samples is a promising research aspect for tumor–immune–microbiome crosstalk
in the TME with direct evidence of locations that it can provide.

So far, mature and popularized computational tools have yet to be established for host spatial
microbiome data analysis. As the SRT data analysis is still in its infancy, deriving microbiome
profiling from host SRT becomes more challenging in building connections between microbes
and functional spatially variable genes in the context of tissue architecture. Moreover, current
712 Trends in Microbiology, July 2023, Vol. 31, No. 7
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computational tools in IOM studies, including bulk, single-cell, and spatial data, mainly rely on
basic statistical tests for exploring host–microbiome interactions, such as the Wilcoxon rank-
sum test [45]. Yet, the correlation between microbial signatures and host tissue type or cell
type obtained by statistical tests could be a ‘spurious correlation’ [52]. This spurious correlation
between microorganisms and the host is typically not caused by the intrinsic biological associa-
tion between them but is generated from the involvement of confounding factors (a coincidence
or the presence of a certain third, unseen factor). As an emerging method for investigating the
scRNA-seq [53], STR data [54], as well as host-microbiome data [55], deep learning, such as
graph neural network (GNN), shows great potential in representing host gene and microbial
signatures and building their relations, simultaneously. It is an ideal way to identify reliable
tumor-associated immuno-microbiome interactions by examining genes or pathways associated
with immunity and metabolism.

Integrated analysis of IOM data
Unlike conventional microbial analysis that investigates the different diversity and composition of
gut microbes between healthy and diseased individuals, IOM studies provide a more systematic
andmechanistic way to explore the intricate interactions betweenmicrobes and cancer hallmarks
(Figure 2). Computational mining of microbiome from host bulk, single-cell, and SRT data of host
tissue samples can help researchers investigate the identity and spatial distribution of the cell-/
cancer-associated microbes, the host cell types with which they interact, and the specific host
genes that can be regulated by intracellular microbes. Hence, computational analyses that
leverage complementary information of different kinds of data will provide great opportunities
for studying intracellular and extracellular microbe–microbe interactions, as well as microbe–
host interactions. In addition, analysis of host antitumor response is a critical aspect in IOM studies,
which is also not involved in conventional microbial analysis. The integrated analysis of various
host and microbial data types is a trend that can bring unique features to solve IOM problems.
Specifically, three categories of data integration can be expected, as follows.

(i) Integration of different microbial sequencing data. Newsome et al. collected fecal samples
from 65 non-small-cell lung cancer (NSCLC) patients (undergoing immune checkpoint inhibitor/
inhibition therapy). These fecal samples were investigated in terms of microbial composition and
their transcriptome activities using 16S rRNA gene amplicon sequencing and metatranscriptomic
sequencing [56]. They revealed that the genus Ruminococcus is the strongest associated taxa in
responders, and the responders’ enriched microbial pathways are carbon-fixation pathways in
the prokaryotes [56].

(ii) Integration of microbiome data with host data. As the 16S rRNA gene amplicon sequencing
identifies the composition of intratumoral microbes, the resulting microbial composition can
guide the size of chosen microbial reference genomes when computationally mining microbial
profiling from host SRT data, enabling a less time-consuming and precise alignment. In a recent
study, spatial transcriptomics and scRNA-seq were modified to capture microbial rRNA with
spatial coordinates in host SRT data and microbial 16S rRNA with host cell barcodes at the
single-cell level from oral squamous cell carcinoma (OSCC) and colorectal cancer (CRC) patients
[57]. The results showed that bacteria are enriched in the TME niches with immune and epithelial
cell functions and promote tumor growth rather than being distributed randomly in the TME. In
addition, they found that cell-associated bacteria affect the expression of host genes involved
in inflammation, metastasis, cell dormancy, and DNA repair pathways [57].

(iii) Integration of gut and intratumoral microbiome and host data. Coanalyzing data from
multiple sequencing technologies on both fecal and tumor tissue samples enables us to
Trends in Microbiology, July 2023, Vol. 31, No. 7 713
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Figure 2. Roadmap for computationally studying immuno–oncology–microbiome (IOM). The tasks in IOM studies are to investigate tumor type-specific and
clinical response-specific microbial signatures as well as cellular interactions and systematic mechanisms of IOM. By using various sequencing technologies on host fecal
and tissue samples, researchers can obtain data interpretation of IOM, including microbial profiling, host–microbe interactions, and host immune profiling. Computational
methods, such as statistical tests and deep learning, reveal the associations between microbes and tumor-type/clinical response or host antitumor immune response by
using the collected data interpretation. The processes highlighted in red arrows represent the microbial profiling mining of IOM analysis involving intratumoral microbes,
which fills in the missing part of current IOM studies (i.e., the effect of the intratumoral microbiota in the TME). Abbreviations: IHC, immunohistochemistry; MAQ, mapping
and assembly with quality; SRT, spatially resolved transcriptomics; STAR, spliced transcripts alignment to a reference; WES, whole-exome sequencing; WGS, whole-genome
sequencing.

Trends in Microbiology
explore the TME–intestinal transmission of microbes and metabolites and reveals the sys-
tematic interactions of the IOM [9]. Uribe-Herranz et al. analyzed 16S rRNA gene amplicon
sequencing and mass spectrometry data from fecal and tumor tissue samples of mice with
714 Trends in Microbiology, July 2023, Vol. 31, No. 7

Image of &INS id=
CellPress logo


Trends in Microbiology
melanoma and lung/cervical cancer [9]. They revealed that vancomycin treatment could
eliminate Gram-positive bacteria and decrease short-chain fatty acid (SCFA) concentrations
in the gut, enhancing the host's antitumor immune response. Additionally, by applying
immunohistochemistry (IHC), flow cytometry, and cytokine assays, researchers can examine
the microbe-associated immune cell types, the density of immune cells and markers of
antigen processing and presentation in the TME, and the frequency of immune cells in the
host systemic circulation to reveal the modulation role of microorganisms on the antitumor
immune response.

Integrating different types of microbiome and host data not only inherits the challenges
in bulk, single-cell, and spatial data mentioned above but more for data harmonization.
The proper alignment of data types from multiple samples requires the careful removal of
sample bias. The sequencing and modality bias still exist even for data profiled from the
same data. More importantly, how to align microbial profiling in spatial spots and single
cells is still unclear, as the microbiome obtained from scRNA-seq data is intracellular only
while SRT can capture microbes residing in the TME. All these things make the challenge
for integrated analysis squared.

Clinical application of IOM studies
Designing robust computational methods in IOM studies enables the identification of tumor-
associated microbial signatures and reveals more undiscovered IOM. These outcomes can
aid the understanding of the underlying mechanisms of tumor development and progression,
as well as the heterogeneity in the clinical response of patients. For example, the microbiota
can promote lung cancer development via γδ T cell [24] (Figure 3A), and the commensal
microbiome, such as Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus
faecium, may have a mechanistic impact on antitumor immunity in metastatic melanoma patients
[12] (Figure 3B). Moreover, the modulation of pulmonary microbiota using antibiotic treatment
can promote immunosurveillance against lung metastases, shedding light on new precise
treatment designs for cancer prevention [25] (Figure 3C). Studies have showcased that fecal
microbiota transplantation (FMT) promotes the immunotherapy response in refractory mela-
noma patients by modulating the gut microbiome [58,59]. Enterococcus gallinarum MRx0518
treatment can cause the upregulation of genes and metagenes associated with antitumor
activity in solid tumors [60], showing potent immunostimulatory activity and antitumorigenic
efficacy in a clinical trial (NCT03934827). Another clinical trial (NCT03829111) suggested
that CBM588, a bifidogenic live bacterial product, appears to improve the overall survival of
patients with metastatic renal cell carcinoma who were receiving nivolumab plus ipilimumab
[61]. Microbial modulation in immunotherapy can be further reinforced by investigating the
mechanism of action, long-term efficacy, and stability of gut microbiome modulation in the
cancer treatment [62].

Given that current cancer treatments cannot address refractory metastatic cancers, drug-resistant
cancers, and cancers that evade immune clearance, ‘bugs as drugs’ (such as microbial therapies)
may provide solutions to these unresolvable clinical needs [2,63]. Microbial therapies, including
oncolytic viral therapy and bacterial antitumor therapy, treat cancer by exploiting tumor-specific
infectious microbes [2,63]. For oncolytic viral treatment, talimogene laherparepvec (T-VEC), a
modified herpesvirus, is used to treat advancedmelanoma by destroying tumor cells and triggering
tumor-specific immune responses [64] (Figure 3D). For bacterial antitumor therapy, attenuated
recombinant Listeria monocytogenes bacteria have been proven to induce long-lasting tumor-
specific cytolytic T lymphocyte (CTL) responses by efficiently delivering recombinantly expressed
tumor antigens [63].
Trends in Microbiology, July 2023, Vol. 31, No. 7 715

CellPress logo


TrendsTrends inin MicrobiologyMicrobiology

Figure 3. Clinical application of immuno–oncology–microbiome (IOM) studies. Outcomes from computational
methods in IOM studies help researchers to understand the IOM and guide more precise cancer treatments. (A) IOM can
help researchers understand the mechanisms of tumor development. For example, the dysregulation of local microbiota
can promote lung cancer development via γδ T cells [24]. (B) Microbes may contribute to the heterogeneity in the clinical
response of cancer patients receiving the same treatments. For example, the differential composition of the commensal
microbiome of metastatic melanoma patients may affect the effect of the immunotherapy [12]. (C) IOM can guide cancer
treatment. An example is the modulation of pulmonary microbiota by antibiotic treatment, which promotes
immunosurveillance against melanoma metastases to the lung [25]. (D) Microbial therapies provide a new opportunity for
treating cancers. For example, tumor cell lysis triggered by oncolytic T-VEC releases TDA, GM-CSF, and new viral
particles, which can enhance the activation of dendritic cells and initiate a systemic antitumor adaptive immune response
in advanced melanoma patients [64]. Abbreviations: Areg, amphiregulin; GM-CSF, granulocyte-macrophage colony-
stimulating factor; NK, natural killer; T-VEC, talimogene laherparepvec; TDA, tumor-derived antigens.
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Outstanding questions
How should computational methods for
better profiling microbial communities
and investigating the IOM at a higher
level of taxonomic resolution (such as
at the strain level) be developed?

What advanced computational tools
should be generated to effectively
mine microbes from the spatially
resolved transcriptomics data to
investigate IOM interactions?

What is the best practice for revealing
undiscovered IOM mechanisms by
integrating microbial data from bulk
sequencing, single-cell sequencing,
and spatially resolved transcriptomics
data of host samples?

How should more sophisticated
computational methods be designed
for elucidating and interpreting the
intrinsic biological associations among
microorganisms, the host immune
system, and transformed cells?

What is the sensitive and reliable
method to apply scMulti-omics se-
quencing technologies to single-cell
microbes to support IOM research?
Recently, researchers have engineered genetically attenuated, auxotrophic, and inducible
versions of Escherichia, Bifidobacterium, Listeria, Shigella, Clostridium, Lactococcus, Vibrio,
and Salmonella species, which exhibited antitumor efficacy in preclinical models [65]. For example,
attenuated Salmonella expressing aquatic flagellin has been demonstrated to destroy tumor cells
by activating the human immune system [65]. Bifidobacterium bifidum strains can induce an
antitumor host immune response, thus improving the efficacy of checkpoint inhibitors in mice
[66]. Moreover, Clostridium bacteria can lyse tumor cells growing in hypoxic environments,
and Clostridium novyi spores have been used to treat patients with solid tumors [67]. These
known bacterial–host interactions can be valuable resources for evaluating computational
predictions from bulk and single-cell data. Thus, we summarized a list of microorganisms
linked to cancer and cancer treatment in the context of the IOM according to published literature
(Table 3). These gathered microorganisms contribute to overcoming the lack of valid benchmark
standards for evaluating and comparing results from different sequencing technologies and
computational approaches.

Concluding remarks
Microorganisms in the GI tract and TME niches contribute to tumor development and progression
by interacting with the host’s immune system. Although it has been deeply investigated and
developed, the gut microbiome only measures microbiome cohort and indirect connections to
cancers, which is insufficient to characterize IOM computationally. With the development of
sequencing techniques, investigating the intratumoral microbiome from host samples is receiving
more attention. Current analyses of host bulk, single-cell, and spatial intratumoral microbial
profiling provide a collection of decontaminated microbial compositions of tumor tissues.
Microbial profiling mined from host intratumoral samples shows two strengths: (i) it can identify
cell-type-specific intracellular microbes that match with host data in the same tissue, providing
new insights into the investigation of the multi-omic IOM in host tissue samples, and (ii) it is easier
to obtain these data than it is to obtain clinical biopsies.

Yet, computational methods and tools are critically needed to conquer issues in intratumoral
microbiome prediction. Several questions are to be answered using computational strategies
in elucidating IOM (see Outstanding questions). It is also worth noting that new sequencing
technologies, such as microbial single-cell DNA sequencing [68], microbial single-cell RNA
sequencing [69], and microbial SRT sequencing [70], provide a different perspective on data for
investigating IOM. When these technologies are applied to patient fecal samples, individual-
microbe scale data provided by them help researchers to elucidate the mechanistic interactions
of IOM. Similar to the single-cell multimodal omics (scMulti-omics) technologies used in the host
somatic cells [71], microbial scMulti-omics technologies can measure multiple molecular types
from a single microbe (e.g., genomics, transcriptomics, and proteomics), thus enabling researchers
to explore the links between microbial transcriptional regulatory mechanisms, tumor, and the host
immune system. Although these technologies still need to be developed for general use in microbio-
logical analyses or IOM research, we anticipate that more experimental data will be generated
for in-depth functional analysis soon.

Moreover, the promising trends for studying the cellular interactions and systematic mechanisms
of IOMmainly include three aspects: (i) the analysis of microbial profiling from host single-cell and
spatial sequencing data, (ii) the coanalysis of data from multiple sequencing technologies on
different samples, and (iii) the utilization of deep learning methods to investigate biological asso-
ciations of IOM. Overall, the computational analysis of IOM using high-throughput sequencing
data is paving the way to a better understanding of host–microbiome relationships and
interactions and how microbes are involved in the TME and cancer treatment.
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Table 3. A list of microorganisms linked with cancer and cancer treatment in the context of the IOM based on published literature

Cancer type Microbes associated with cancer Microbes associated with cancer treatment Refs

Microbe Taxa Type Microbe Taxa Type

Stomach cancer, gastric mucosa-associated
lymphoid tissue (MALT) lymphoma, and cancer
of the esophagus

Helicobacter pyloria s Bacteria [96,97]

Lung cancer Prevotella g Bacteria Clostridia c Bacteria [9,24,
98–100]

Veillonella g Bacteria Enterococcus hiraeb s Bacteria

Haemophilus g Bacteria Firmicutes p Bacteria

Streptococcus g Bacteria

Leuconostocaceae f Bacteria

Sphingomonadaceae f Bacteria

Alphaproteobacteria c Bacteria

Herbaspirillum g Bacteria

Staphylococcus g Bacteria

Delftia g Bacteria

Burkholderiales o Bacteria

Proteobacteria p Bacteria

Gastrointestinal tumor Fusobacterium g Bacteria – [23,30]

Candida g Fungi

Liver hepatocellular carcinoma (LIHC) Orthohepadnavirus g Viruses – [30]

Hepatotoxic
microcystis

g Bacteria

Pancreatic adenocarcinoma (PDAC) Sachharopolyspora g Bacteria Sachharopolyspora g Bacteria [20,101]

Pseudoxanthomonas g Bacteria Pseudoxanthomonas g Bacteria

Streptomyces g Bacteria Streptomyces g Bacteria

Bacillus clausii s Bacteria Bacillus clausii s Bacteria

Malassezia g Fungi

Pancreatic ductal adenocarcinoma (PDA) Proteobacteria p Bacteria Malassezia g Fungi [20,26,27]

Actinobacteria p Bacteria Gammaproteobacteriaa c Bacteria

Fusobacteria p Bacteria

Verrucomicrobia p Bacteria

Malassezia g Fungi

Breast cancer Fusobacterium
nucleatum

s Bacteria – [21]

Colorectal cancer (CRC) Fusobacterium
nucleatum

s Bacteria E. colia s Bacteria [8,19,30,
102–111]

Faecalibacterium g Bacteria Comamonasa g Bacteria

Fusobacterium
nucleatum

s Bacteria Fusobacterium
nucleatum

s Bacteria

Bacteroides g Bacteria Bifidobacterium
pseudolongum

s Bacteria

Enterotoxigenic
B. fragilis

s Bacteria Lactobacillus johnsonii s Bacteria

Campylobacter jejuni s Bacteria Olsenella g Bacteria

Genotoxic pks+ E. coli s Bacteria Bacteroides vulgatusa s Bacteria

Clostridium ramosuma s Bacteria
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Table 3. (continued)

Cancer type Microbes associated with cancer Microbes associated with cancer treatment Refs

Microbe Taxa Type Microbe Taxa Type

Melanoma Bifidobacteria g Bacteria Bifidobacterium
pseudolongum

s Bacteria [7,8,12,
112–115]

Bifidobacterium
longum

s Bacteria Bifidobacteria g Bacteria

Enterococcus faecium s Bacteria Akkermansia muciniphila s Bacteria

Collinsella aerofaciens s Bacteria Collinsella aerofaciens s Bacteria

Bacteroides g Bacteria Enterococcus faecium s Bacteria

Parabacteroides g Bacteria Olsenella g Bacteria

Lactobacillus johnsonii s Bacteria

Bifidobacterium longum s Bacteria

Bacteroidesa g Bacteria

Burkholderialesa o Bacteria

Bifidobacteriuma g Bacteria

Cancer at anogenital sites, cancer of the upper
aerodigestive tract, and cancer of the skin

Human
papillomavirusa

s Viruses – – [97]

Cervical cancer Human
papillomavirusa

s Viruses Clostridia c Bacteria [9,97,116]

Firmicutes p Bacteria

Cervical squamous cell carcinoma (CESC) Alphapapillomavirus g Viruses – [30]

Burkitt lymphoma, immunosuppression-related
non-Hodgkin lymphoma, extranodal NK/T-cell
lymphoma, Hodgkin lymphoma, and
nasopharyngeal carcinoma

Epstein–Barr virusa s Viruses – [97]

Hepatocellular carcinoma, cholangiocarcinoma,
and non-Hodgkin lymphoma

Hepatitis B virusa s Viruses – [97]

Hepatocellular carcinoma, lymphoid malignancies,
leukemias, and cancer of the thyroid

Hepatitis C virusa s Viruses – [97]

Kaposi sarcoma, primary effusion lymphoma,
and multiple myeloma

Kaposi sarcoma
herpesvirusa

s Viruses – [97]

Kaposi sarcoma, non-Hodgkin lymphoma,
Hodgkin lymphoma, cervical and anogenital
cancers, cancer of the skin, cancer of the
conjunctiva, cancer of the lung, and cancer of
the liver

Human
immunodeficiency
virus Ia

s Viruses – [97]

T-cell malignancies, cutaneous T-cell
lymphoma, B- and T-cell lymphomas, and
non-lymphomatous tumors

Human T-cell
leukemia virus type Ia

– Viruses – [97]

Cancer of the urinary bladder and cancers of
the female genital tract

Schistosoma
haematobiuma

s Eukaryota – [90]

Cholangiocarcinoma and hepatocellular
carcinoma

Opisthorchis viverrinia s Eukaryota – [90]

Clonorchis sinensisa s Eukaryota

Bladder cancer
–

Bifidobacterium
pseudolongum

s Bacteria [8]

Lactobacillus johnsonii s Bacteria

Olsenella g Bacteria

Liver cancer – Clostridium scindens s Bacteria [117]

(continued on next page)
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Table 3. (continued)

Cancer type Microbes associated with cancer Microbes associated with cancer treatment Refs

Microbe Taxa Type Microbe Taxa Type

Epithelial tumor – Akkermansia
muciniphilaa

s Bacteria [118]

Prostate cancer – Akkermansia
muciniphila

s Bacteria [119]

Sarcoma – Enterococcus hiraea s Bacteria [99,100]

aMicroorganisms labeled as human carcinogens (‘oncomicrobes’) by the International Association for Cancer Registries (IACR).
bMicroorganisms associated with cancer drug treatment. p, phylum; c, class; o, order; f, family; g, genus; s, species.
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Code availability
We provided a pipeline for analyzing microbial profiling mined from host single-cell sequencing
datasets on GitHub at https://github.com/OSU-BMBL/IOM.
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