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transformer
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Fig. 1. (a) The overall framework of DeepMAPS. (b) An illustration of embedding update process of the target node
In a single HGT layer. The attention mechanism in this HGT model enables the estimation of the importance of _ _ -
genes to specific cells, which can be used to discriminate gene contributions and enhances biological interpretability. signals for the separation of specific
(c) Subgraph strategy for HGT model training in DeepMAPS. cell groups.
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