Deep transfer learning for single-cell drug response prediction

Anjun Ma, PhD Assistant Professor

Department of Biomedical Informatics Pelotonia Institute of Immuno-Oncology The Ohio State University 7/19/2023

Background: drug response prediction at the bulk level

Genomics of Drug Sensitivity in Cancer <u>Drug Combinations</u>

As referenced for the independation of drug combination data generated at the Welcome Sanger Institute.

Examples of computational tools for bulk data:

deepDR (Zeng, Xiangxiang, et al. "deepDR: a network-based deep learning approach to in silico drug repositioning." Bioinformatics 35.24 (2019): 5191-5198.) Dr. Zhongming Zhao

VAEN (Jia, Peilin, et al. "Deep generative neural network for accurate drug response imputation." Nature Communications 12.1 (2021): 1740.) Dr. Zhongming Zhao

DeepDR (Chiu, Yu-Chiao, et al. "Predicting drug response of tumors from integrated genomic profiles by deep neural networks." BMC Medical Genomics 12.1 (2019): 143-155.) Dr. Yidong Chen

DeepDep (Chiu, Yu-Chiao, et al. "Predicting and characterizing a cancer dependency map of tumors with deep learning." Science Advances 7.34 (2021): eabh1275.) Dr. Yidong Chen

Challenges in predicting drug response at the single-cell level

How to predict single-cell level drug response?

- High heterogeneity -- cannot directly apply tools designed for bulk data
- Not enough single-cell data with drug response labels for model training/validation

scDEAL: deep transfer learning for single-cell drug response prediction

Deep transfer learning

- Train a model that can learn gene expression-drug response relation at the bulk level;
- Transfer the trained model to predict single-cell drug response

nature communications

6

Article

https://doi.org/10.1038/s41467-022-34277-7

Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data

Received: 6 August 2021

Accepted: 19 October 2022

Published online: 30 October 2022

Junyi Chen^{1,6}, Xiaoying Wang^{2,6}, Anjun Ma ^{1,3} ⊠, Qi-En Wang⁴, Bingqiang Liu², Lang Li¹, Dong Xu ⁵ & Qin Ma ^{1,3} ⊠

Prof. Qin Ma

Recently published tools

Wang, Yin-Ying, et al. Nucleic acids research 50.D1 (2022): D1164-D1171.

Data availability and preprocessing

Genomics of Drug Sensitivity in Cancer

Drug Combinations

	# cell lines	# drugs	# genes
GDSC	804	192	17,419
CCLE	476	1,448	19,177
GDSC+CCLE	1,280	1,557	15,962

	Drug	GEO access	Cells	Cancer type
Data 1	Cisplatin	GSE117872	548	Oral squamous
Data 2	Cispiatifi		568	cell carcinomas
Data 3	Gefitinib	GSE112274	507	Lung cancer
Data 4	Docetaxel	GSE140440	324	Prostate Cancer
Data 5	Erlotinib	GSE149383	1,496	Lung cancer
Data 6	I-BET-762	GSE110894	1,419	Acute myeloid leukemia

The design of the scDEAL framework

- The prediction is for one drug at a time
- scDEAL is label free no cell cluster or experimental labels required

Benchmark evaluation and model validation

Define single-cell drug response labels based on sample information, e.g.:

- Without treatment/DMSO all sensitive
- Treatment after a short time all sensitive
- Treatment after a long time all resistant

scDEAL accurately predicted Cisplatin response in OSCC and identify critical genes related to drug response

Sample: Oral squamous cell carcinoma (OSCC) (Data 1; 548 cells)

Treatment: Cisplatin

scDEAL predicted drug response align with treatment dosage

Sample: Acute myeloid leukemia (1,419 cells)

Treatment: BET inhibitor (I-BET)

Response probability

Chen, Junyi, et al. Nature Communications 13.1 (2022): 6494.

Summary and discussion

What did we do?

- We developed scDEAL, adapting a deep transfer learning model, for single-cell drug response prediction.
- scDEAL can accurately predict drug responses on different scRNA-seq data and identify critical genes responsible for drug response.

What's next?

- Optimization for cross-patient and cross-species prediction
- Include more single-cell modalities (e.g., DNA mutation and metabolites)
- Predict combinatory drug responses
- and more...

Acknowledgement

BMBL @ OSU

Prof. Qin Ma

Dr. Junyi Chen

Dr. Xiaoying Wang

Dr. Ren Qi

Mr. Zhenyu Wu

Collaborators @ OSU

Prof. Lang Li

Prof. Qi-En Wang

Collaborators @ U Missouri

Prof. Dong Xu and lab

Prof. Fei He

Collaborators @ SDU

Prof. Bingqiang Liu

