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PREFACE 
 
The standard axiomatization of mathematics is given by the 
formal system ZFC, which is read "Zermelo Frankel set 
theory with the axiom of choice".  
 
The vast majority of mathematical proofs fit easily into 
the ZFC formalism. ZFC has stood the test of time.  
 
However, a long list of mathematically natural statements 
of an abstract set theoretic nature have been shown to be 
undecided (neither provable nor refutable) in ZFC, starting 
with the pioneering work of Kurt Gödel and Paul J. Cohen 
concerning Cantor's continuum hypothesis.  
 
Yet these statements involve general notions that are 
uncharacteristic of normal mathematical statements. The 
unprovability and unrefutability from ZFC depends on this 
uncharacteristic generality. For example, if we remove this 
uncharacteristic generality from Cantor's continuum 
hypothesis, we obtain a well known theorem of Aleksandrov 
and Hausdorff (see [Al16] and [Hau16]).   
 
Already as a student at MIT in the mid 1960s, I recognized 
the critical issue of whether ZFC suffices to prove or 
refute all concrete mathematically natural statements. Here 
concreteness refers to the lack of involvement of objects 
of a distinctly pathological nature. In particular, the 
finite, the discrete, and the continuous (on nice spaces) 
are generally considered concrete - although, generally 
speaking, only the finite is beyond reproach.  
 
From my discussions then with faculty and fellow students, 
it became clear that according to conventional wisdom, the 
Incompleteness Phenomena was confined to questions of an 
inherently set theoretic nature. The incompleteness would 
not appear if this uncharacteristic generality is removed.  
 
According to conventional wisdom, reasonably well motivated 
problems in relatively concrete standard mathematical 
settings can be settled with the usual axioms for 
mathematics (as formalized by ZFC). The difficulties 
associated with such problems are inherently mathematical 
and not "logical" or "foundational".   
 
It was already clear to me at that time that despite the 
great depth and beauty of the ongoing breakthroughs in set 
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theory regarding the continuum hypothesis and many other 
tantalizing set theoretic problems, the long range impact 
and significance of ongoing investigations in the 
foundations of mathematics is going to depend greatly on 
the extent to which the Incompleteness Phenomena touches 
normal concrete mathematics. This perception was confirmed 
in my first few years out of school at Stanford University 
with further discussions with mathematics faculty, 
including Paul J. Cohen. 
 
Yet I was confronted with a major strategic decision early 
in my career concerning how, or even whether, to 
investigate this issue of Concrete Mathematical 
Incompleteness. 
 
The famous incompleteness results of Gödel and Cohen 
involving the Axiom of Choice (over ZF) and the Continuum 
Hypothesis (over ZFC), involved problems that had 
previously been formulated. In fact, the Axiom of Choice 
and the Continuum Hypothesis were widely offered up as 
candidates for Incompleteness.  
 
Yet there were no candidates for Concrete Mathematical 
Incompleteness from ZFC being offered. In fact, to this 
day, no candidates for Concrete Mathematical Incompleteness 
have arisen from the natural course of mathematics.  
 
In fact, it still seems rather likely that all concrete 
problems that have arisen thus far from the natural course 
of mathematics can be proved or refuted within ZFC.  
 
So what can be the rationale for pursuing a search for 
Concrete Mathematical Incompleteness? 
 
We offer two rationales for pursuing Concrete Mathematical 
Incompleteness. One is the presence of Concrete 
Mathematical Incompleteness in the weaker sense of being 
independent of significant fragments of ZFC. Since the vast 
bulk of mathematical activity involves insignificant 
fragments of ZFC, examples where significant fragments of 
ZFC are required is significant from the point of view of 
the foundations of mathematics.  
 
In fact, we do have a rather convincing example of Concrete 
Mathematical Incompleteness arising from an existing - in 
fact celebrated - mathematical theorem. This is the theorem 
of J.B. Kruskal about finite trees. See the detailed 
discussion in section 0.9B of the Introduction. The story 
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continues with the also celebrated Graph Minor Theorem, as 
discussed in section 0.10B of the Introduction.  
 
Once the ice is broken with the Concrete Mathematical 
Incompleteness of existing celebrated theorems, it appears 
inevitable to consider examples of Concrete Mathematical 
Incompleteness from significant fragments of ZFC that are 
in various senses "almost existing mathematical theorems" 
or "close to existing mathematical theorems" or "simple 
modifications of existing mathematical theorems". Most of 
the Introduction is devoted to a detailed discussion of 
such examples. 
 
The second rationale for pursuing Concrete Mathematical 
Incompleteness preserves ZFC as the ambitious target. The 
idea is that normal mathematical activity up to now 
represents only an infinitesimal portion of eventual 
mathematical activity. Even if current mathematical 
activity does not give rise to Concrete Mathematical 
Incompleteness from ZFC, this is a very poor indication of 
whether this will continue to be the case, particularly far 
out into the future.  
 
These considerations give rise to the prospect of 
uncovering mathematical areas of the future, destined to 
arise along many avenues, that are replete with Concrete 
Mathematical Incompleteness from ZFC.  
 
We believe that Boolean Relation Theory is such a field 
from the future. Most of this book is devoted to Concrete 
Mathematical Incompleteness from ZFC that arises in Boolean 
Relation Theory.  
 
We anticipate that further development of BRT will uncover 
additional connections with concrete mathematical activity 
- strengthening the argument that it is a field from the 
future - as well as additional Concrete Mathematical 
Incompleteness from ZFC. 
 
While completing this book, we have continued the search 
for additional Concrete Mathematical Incompleteness that 
opens up new connections with normal mathematics. These new 
developments - which have yet to be prepared for 
publication - are discussed in sections 0.14D - 0.14I. They 
suggest a general structure theory for maximal objects 
which can, and can only be carried out with the use of 
large cardinal hypotheses (or their consistency with ZFC). 
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The extent to which these new developments invade 
mathematics remains to be seen.  
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INTRODUCTION 
CONCRETE MATHEMATICAL INCOMPLETENESS 
 
0.1. General Incompleteness. 
0.2. Some Basic Completeness.  
0.3. Abstract and Concrete Mathematical Incompleteness. 
0.4. Reverse Mathematics. 
0.5. Incompleteness in Exponential Function Arithmetic. 
0.6. Incompleteness in Primitive Recursive Arithmetic, 
Single Quantifier Arithmetic, RCA0, and WKL0. 
0.7. Incompleteness in Nested Multiply Recursive 
Arithmetic, and Two Quantifier Arithmetic. 
0.8. Incompleteness in Peano Arithmetic and ACA0. 
0.9. Incompleteness in Predicative Analysis and ATR0. 
0.10. Incompleteness in Iterated Inductive Definitions and 
Π1

1-CA0. 
0.11. Incompleteness in Second Order Arithmetic and ZFC\P. 
0.12. Incompleteness in Russell Type Theory and Zermelo Set 
Theory. 
0.13. Incompleteness in ZFC using Borel Functions. 
0.14. Incompleteness in ZFC using Discrete Structures. 
0.15. Detailed overview of book contents. 
0.16. Some Open problems. 
0.17. Concreteness in the Hilbert Problem List.  
 
This Introduction sets the stage for the new advances in 
Concrete Mathematical Incompleteness presented in this 
book.  
 
The remainder of this book can be read without relying on 
this Introduction. However, we advise the reader to peruse 
this Introduction in order to gain familiarity with the 
larger context.  
 
Readers can proceed immediately to the overview of the 
contents of the book by first reading the brief account in 
section 0.14C, and then the fully detailed overview in 
section 0.15. These are self contained and do not rely on 
the rest of the Introduction.  
 
In this Introduction, we give a general overview of what is 
known concerning Incompleteness, with particular emphasis 
on Concrete Mathematical Incompleteness. The emphasis will 
be on the discussion of examples of concrete mathematical 
theorems - in the sense discussed in section 0.3 - which 
can be proved only by using unexpectedly strong axioms.  
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The incompleteness phenomenon, in the sense understood 
today, was initiated by Kurt Gödel with his first 
incompleteness theorem, where he essentially established 
that there are sentences which cannot be proved or refuted 
using the usual axioms and rules of inference for 
mathematics, ZFC (assuming ZFC is free of contradiction). 
See [Go31], and [Go86-03], volume 1.   
 
Gödel also established in [Go31] that this gap is not 
repairable, in the sense that if ZFC is extended by 
finitely many new axioms (or axiom schemes), then the same 
gap remains (assuming the extended system is free of 
contradiction).  
 
With his second incompleteness theorem, Gödel gave a 
critical example of this incompleteness. He showed that the 
statement  
 

Con(ZFC) = "ZFC is free of contradiction" 
 
is neither provable nor refutable in ZFC (assuming ZFC is 
legitimate in the sense that it proves only true statements 
in the ring of integers). Again, see [Go31], and [Go86-03], 
volume 1. 
 
Although Con(ZFC) is a natural statement concerning the 
axiomatization of abstract set theory, it does not 
represent a natural statement in the standard subject 
matter of mathematics.  
 
While it is true that Con(ZFC) can be stated entirely in 
terms of finite strings of symbols from a finite alphabet, 
when stated in this way, it is no longer natural in any 
mathematical sense.  
 
These considerations led to the informal working 
distinction between  "mathematically natural" and 
"metamathematically natural".   
 
After the two incompleteness theorems, there remained the 
crucial question of whether there is a mathematically 
natural statement which is neither provable nor refutable 
in ZFC.  
 
This question had a potentially practical consequence. If 
the answer is no, then there is a clear sense in which 
mathematicians can forever be content to ignore the 
incompleteness phenomenon. However, if the answer is yes, 
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then there is a clear sense in which the incompleteness 
phenomenon can impact their work.  
 
Gödel addressed this question through his pioneering work 
on Cantor's Continuum Hypothesis (CH). CH states that every 
infinite set of real numbers is in one-one correspondence 
with either the integers or the real numbers.  
 
Gödel proved that ZFC does not suffice to refute CH. See 
[Go38], and [Go86-03], volume 2. That ZFC does not suffice 
to prove CH had to wait for the pioneering work of Paul J. 
Cohen, [Co63,64]. Also see [Je78,06].    
 
Thus by the mid 1960s, a mathematically natural statement - 
the continuum hypothesis - was shown to be neither provable 
nor refutable in ZFC. Mathematical Incompleteness from ZFC 
was born.  
 
Yet mathematicians generally did not feel that CH was 
relevant to their work. This feeling of irrelevance went 
much deeper than just their particular research interests. 
 
There is a fundamental alienation of "questions like CH" 
from mathematical culture. Specifically, CH fundamentally 
involves a level and kind of generality that is entirely 
uncharacteristic of important and fruitful mathematical 
questions.  
 
Mathematicians will normally use general abstract machinery 
- when convenient - in the course of treating a relatively 
concrete problem. Witness the extensive use of general 
abstract machinery in Wiles' proof of Fermat's Last 
Theorem, and how much of this machinery can be removed (see 
[Mc10]).  
 
The general abstract machinery will be tamed if it causes 
its own difficulties or ceases to be convenient for various 
reasons. But the standards for objects of primary 
investigation of major interest are quite different.  
 
Sets of real numbers that play a role in mathematics as 
objects of primary investigation, are constructed in some 
fashion that is related to clear mathematical purposes. In 
virtually all cases, sets of real numbers appearing as 
objects of primary investigation, are Borel measurable 
(i.e., lie in the σ sigma generated by the open sets), and 
usually very low in the standard hierarchy of Borel 
measurable sets.  
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For Borel measurable sets of real numbers, the continuum 
hypothesis is a theorem, even in the following strong form: 
 
every infinite Borel measurable set of reals is in one-one 

correspondence with the integers, or in Borel one-one 
correspondence with the reals. 

 
See [Al16], [Hau16], and [Ke94], p. 83.  
 
This situation is typical of so many statements involving 
sets and functions in complete separable metric spaces. The 
Borel measurable forms are theorems, and have nothing to do 
with incompleteness.  
 
Furthermore, the great generality present in so many such 
statements is rather empty from the point of view of 
mathematical culture: there are virtually no mathematically 
interesting examples beyond Borel sets.  
 
There have been subsequent examples of ZFC incompleteness 
of less generality than arbitrary sets of reals. Most 
notably, involving the projective hierarchy of sets of 
reals, which is obtained by starting with Borel sets in 
several dimensions, and applying the operations of 
projection and complementation.  
 
Yet again, we see that the statements are decided in ZFC 
for Borel sets, and there are virtually no mathematically 
interesting examples that come under this generality beyond 
Borel sets. 
 
We take the view that Concrete Mathematical Incompleteness 
begins at the level of Borel measurable sets and functions 
on complete separable metric spaces. In section 0.3, we 
refine this to  
 

Mathematical statements concerning Borel measurable sets  
and functions of finite rank in and between  

complete separable metric spaces. 
 
We take the position that once we are discussing possibly 
very discontinuous functions between complete separable 
metric spaces, the Borel sets and functions of finite rank 
are not overly general - there are sufficient 
mathematically interesting examples of such reaching out to 
at least the first few finite levels.  
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In sections 0.11 - 0.13, incompleteness ranging from 
fragments of ZFC through ZFC and more are discussed in the 
setting of finite rank Borel sets and functions. In most 
cases, the incompleteness already starts kicking in at the 
first few finite ranks of the Borel hierarchy.  
 
However, Borel measurable sets and functions in complete 
separable metric spaces - even of low finite rank - is 
still substantially beyond what is considered normal for 
significant mathematical questions in the present 
mathematical culture. 
 
Incompleteness begins to become potentially noticeable when 
the examples live in discrete structures. Here by discrete 
structures, we mean finitely generated systems such as the 
ordered ring of integers, and the ordered field of 
rationals. We work with sets in and functions between 
discrete structures.  
 
Examples of incompleteness ranging from fragments of ZFC, 
to ZFC and beyond, are discussed in sections 0.5 - 0.10, 
and section 0.14.  
 
Boolean Relation Theory, the subject of this book, involves 
sets in and functions on the nonnegative integers. There is 
a brief account in section 0.14, and a detailed account in 
section 0.15.   
 
Some new developments that push Concrete Mathematical 
Incompleteness even further into the more immediately 
accessible and perfectly natural, are presented in section 
0.14 without proof. The relevant manuscripts are under 
preparation.  
 
This Introduction concludes with a discussion of 
Concreteness in the realm of the Hilbert 1900 Problem List. 
This illustrates how the usual classification of 
mathematical statements used in mathematical logic (see the 
four displayed lists in section 0.3) relates to many 
contexts in core mathematics.  
 
The reader of this Introduction will see rather explicitly 
how the use of stronger and stronger fragments of ZFC, all 
the way through ZFC and extensions thereof by so called 
large cardinal hypotheses, supports proofs of more and more 
mathematically natural concrete statements. 
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In other words, this growing body of results shows rather 
explicitly what is to be gained by strengthening axiom 
systems for mathematics.  
 
Of course, there is an even greater loss realized by 
strengthening a consistent axiom system to an inconsistent 
one. The issue of why we believe, or why we should believe, 
that the relevant axiom systems used in this book are 
consistent - or, more strongly, that they prove only true 
arithmetic sentences - is an important one, but lies beyond 
the scope of this book. 
 
Since this Introduction is to be viewed as clarifying 
background material for the six Chapters, many of the 
proofs are briefly sketched. We also include folklore, 
results that can be easily gleaned from the literature, and 
results, without proof, that we intend to publish 
elsewhere. We provide an adequate, but by no means 
complete, list of references.  
 
We close these introductory remarks with a topic for 
specialists. 
 
We use the system EFA (exponential function arithmetic) as 
a base theory for most of the arithmetical claims. 
Sometimes SEFA (superexponential function arithmetic) is 
needed. EFA and SEFA are already presented and used in 
section 0.1 for a different purpose. 
 
A typical situation is the conservativity of IΣ1 (one 
quantifier induction) over PRA (primitive recursive 
arithmetic). Perhaps the simplest proof of this result is 
by a very natural model theoretic argument (see, e.g., 
[Si99,09], Theorem IX.3.16). SEFA arises because of the 
need for cut elimination (to which it is equivalent over 
EFA). Model theoretic proofs in such contexts are often 
simpler and well known, but cannot be formalized as given 
in SEFA, or in even stronger systems. A general method for 
augmenting the model theoretic arguments with additional 
ideas to get proofs in SEFA is given in [Fr99c]. Proof 
theoretic approaches to these results and many other such 
results are known, and originated much earlier. E.g., see 
[Min73], [Pa70], and [Tak90]. Careful formalizations of 
these proof theoretic arguments, here and in many other 
contexts, can also be made in SEFA.  
 
0.1. General Incompleteness. 
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General Incompleteness was initiated by Gödel's landmark 
First and Second Incompleteness Theorems, which apply to 
very general formal systems. The original reference is 
[Go31].  
 
Throughout this Introduction, we will use the following 
setup for logic.  
 
MSL (many sorted logic) is many sorted first order 
predicate calculus with equality. Here we have countably 
many sorts, countably infinitely many sorted constant, 
relation, and function symbols, and equality in each sort.  
 
Let T be a set of formulas in MSL. L(T) is the language of 
T, which consists of the sorts and symbols that appear in 
T. In particular, L(T) may not have equality in all of the 
sorts that appear in T.  
 
We say that ϕ is provable in T (provable from T, T implies 
ϕ), if and only if ϕ is a formula in L(T) which is provable 
from (the universal closures of elements of) T using the 
usual Hilbert style axioms and rules of inference for L(T). 
By the Gödel Completeness Theorem, this is the same as: T 
semantically implies ϕ.  
 
0.1A. Gödel's First Incompleteness Theorem. 
0.1B. Two Roles of Gödel's Second Incompleteness Theorem. 
0.1C. Sufficiency Property for Formalized Consistency. 
0.1D. Gödel's Second Incompleteness Theorem for 
Arithmetized Consistency. 
0.1E. Gödel's Second Incompleteness Theorem for Sequential 
Consistency. 
0.1F. Gödel's Second Incompleteness Theorem for Set 
Theoretic Satisfiability. 
0.1G. Gödel's Incompleteness Theorems and Interpretability. 
 
0.1A. Gödel's First Incompleteness Theorem. 
 
The powerful recursion theoretic approach to Gödel's First 
Incompleteness Theorem first appears in [Ro52] and [TMR53], 
through the use of the formal system Q. 
 
Q is a set of formulas in one sort and 0,S,+,•,≤,=. It 
consists of the following eight formulas.  
 
1. Sx ≠ 0. 
2. Sx = Sy → x = y. 
3. x ≠ 0 → (∃y)(x = Sy). 
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4. x + 0 = x. 
5. x + Sy = S(x + y). 
6. x • 0 = 0. 
7. x • Sy = (x • y) + x. 
8. x ≤ y ↔ (∃z)(z + x = y). 
 
The last axiom is purely definitional. An alternative is to 
discard axiom 8 and remove ≤ from the language. However, use 
of ≤ facilitates the statement of the following theorem.   
 
A bounded formula in L(Q) is a formula in L(Q) whose 
quantifiers are bounded, in the following way. 
 

(∀n ≤ t) 
(∃n ≤ t) 

 
where t is a term in L(Q) in which n does not appear.  
 
A Π0

1 (Σ01) formula in L(Q) is a formula in L(Q) that begins 
with zero or more universal (existential) quantifiers, 
followed by a bounded formula. 
 
The following is well known and easy to prove. 
 
THEOREM 0.1A.1. A Σ01 sentence in L(Q) is true if and only 
if it is provable in Q. Let T be a consistent extension of 
Q in MSL. Every Π0

1 sentence in L(Q) that is provable in T, 
is true. (Note that the second part follows from the 
first). 
 
THEOREM 0.1A.2. Let T be a consistent extension of Q in 
MSL. The set of all Π0

1 sentences in L(Q) that are i) 
provable in T, ii) refutable in T, iii) provable or 
refutable in T, is not recursive.  
 
Proof: This appears in [Ro52] and [TMR53]. It is proved 
using the construction of recursively inseparable 
recursively enumerable sets; e.g., {n: ϕn(n) = 0} and {n: 
ϕn(n) = 1}. QED 
 
We can obtain the following strong form of Gödel's First 
Incompleteness Theorem as an immediate corollary. 
 
THEOREM 0.1A.3. Gödel's First Incompleteness Theorem for 
Extensions of Q (strong Gödel-Rosser form in [Ross36]). Let 
T be a consistent recursively enumerable extension of Q in 
MSL. There is a true Π0

1 sentence in L(Q) that is neither 
provable nor refutable in T.  
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Proof: By Theorem 0.1A.1, we can, without loss of 
generality, remove "true". If this is false, we obtain a 
decision procedure for the Π0

1 sentences in L(Q) that are 
provable in T, by searching for proofs in T. This 
contradicts Theorem 0.1A.2. QED 
 
We can use the negative solution to Hilbert’s Tenth Problem 
in order to obtain other forms of Gödel's First 
Incompleteness Theorem that are stronger in certain 
respects, such as Theorem 0.1A.4. 
 
Hilbert's 10th problem asks for a decision procedure for 
determining whether a given polynomial with integer 
coefficients in several integer variables has a zero. 

 
The problem was solved negatively in 1970 by Y. 
Matiyasevich, building heavily on earlier work of J. 
Robinson, M. Davis, and H. Putnam. In its strong form, the 
MRDP theorem (in reverse historical order) asserts that 
every r.e. subset of Nk is Diophantine, in the sense that it 
is of the form  
 

{x ∈ Nk: (∃y ∈ Nr)(P(x,y) = 0)} 
 
where r,P depend only on k, and P is a polynomial of k+r 
variables with integer coefficients. (There are stronger 
forms of this theorem, where r is an absolute number, and 
involving only one polynomial P). See [Da73], [Mat93].  
 
The MRDP theorem has been shown to be provable in a certain 
weak fragment of arithmetic which we call EFA = exponential 
function arithmetic. See section 0.5 for the axioms of EFA. 
The proof of MRDP in EFA appears in [DG82].  
 
A Diophantine sentence in L(Q) is a sentence in L(Q) of the 
form  
 

(∀x1,...,xn)(s ≠ t) 
 
where s,t are terms in L(Q). We use the term "Diophantine" 
because (∀x1,...,xn)(s ≠ t) expresses the nonexistence in 
the nonnegative integers of a zero of the polynomial s-t.  
 
THEOREM 0.1A.4. Gödel's First Incompleteness Theorem for 
Diophantine Sentences (using [MRDP], [DG82]). Let T be a 
consistent recursively enumerable extension of EFA in MSL. 
There is a Diophantine sentence in L(Q) that is neither 
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provable nor refutable in T.  
 
Proof: Since EFA proves MRDP, we see that every Π0

1 sentence 
in L(Q) is provably equivalent to a Diophantine sentence, 
over T. Now apply Theorem 0.1A.3. QED 

 
It is not clear whether EFA can be replaced by a weaker 
system in Theorem 0.1A.4, such as Q. For then the theory T 
may not prove MRDP. 

 
An important issue is whether there is a “reasonable” 
Diophantine sentence (∀x1,...,xn)(s ≠ t) that can be used in 
Theorem 0.1A.4 for, say, T = PA or T = ZFC.  
 
We briefly jump to the use of PA = Peano Arithmetic. The 
axioms of PA are presented in section 0.5.  
 
Let us call a polynomial P a Gödel polynomial if  

 
i. P is a polynomial in several variables with integer 

coefficients. 
ii. The question of whether P has a solution in 

nonnegative integers is neither provable nor refutable in 
PA.  

 
We can also use formal systems other than PA here - for 
example, ZFC. The ZFC axioms are presented in section 0.11. 
 
A truly spectacular possibility is that there might be an 
"intellectually digestible" Gödel polynomial. 
 
However, we are many many leaps away from being able to 
address this question. For the present state of the art 
upper bound on the size of a Gödel polynomial, see [CM07].   
 
One interesting theoretical issue is whether we can 
establish any relationship between the least “size” of a 
Gödel polynomial using PA and the least “size” of a Gödel 
polynomial using ZFC.  
 
0.1B. Two Roles of Gödel's Second Incompleteness Theorem.  
 
Gödel's Second Incompleteness Theorem has played two quite 
distinct roles in mathematical logic.  
 
Firstly, it is the source of the first intelligible 
statements that are neither provable nor refutable. E.g., 
Con(PA) is neither provable nor refutable in PA, and 
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Con(ZFC) is neither provable nor refutable in ZFC. (We use 
the notation Con(T) for "T is consistent", or "T is free of 
contradiction"). 
 
Incompleteness from ZFC, involving mathematical statements 
- in the sense discussed in section 0.3 - came later. Most 
notably, the continuum hypothesis - a fundamental problem 
in set theory - was shown to be neither provable nor 
refutable in ZFC in, respectively, [Co63,64] and [Go38]. 
The Concrete Mathematical Incompleteness of ZFC came much 
later - see sections 0.13, 0.14.  
 
Secondly, the Second Incompleteness Theorem is used as a 
tool for establishing other incompleteness results. In 
fact, it is used in an essential way here in this book.  
 
Suppose we want to show that ZFC does not prove or refute a 
statement ϕ.  
 
i. First we show that ϕ is provable in an extension T of 
ZFC that we "trust". In this book, we use an extension of 
ZFC by a certain large cardinal axiom - strongly Mahlo 
cardinals of finite order. See section 0.13.  
 
ii. Then we build a model of ZFC using only ϕ and a 
fragment K of ZFC. We will assume that K implies EFA, so 
that K is strong enough to support Gödel's Second 
Incompleteness Theorem. In this book, we use K = ACA', a 
very weak fragment of ZFC, which implies EFA. See 
Definition 1.4.1. 
 
From i, we have established the consistency of ZFC + ϕ from 
the consistency of T. 
 
From ii, we have ZFC + ϕ proves Con(ZFC). So if ZFC proves 
ϕ, then ZFC proves Con(ZFC), violating Gödel's Second 
Incompleteness Theorem (assuming ZFC is consistent).  
 
Note that we have assumed that ZFC is consistent in order 
to show the unprovability of ϕ in ZFC. This is necessary, 
because if ZFC is inconsistent then ϕ (and every sentence 
in the language of ZFC) is provable in ZFC.  
 
There is a way of stating the unprovability of ϕ in a way 
that does not rely on the consistency of ZFC.   
 
THEOREM 0.1B.1. Let K be a fragment of ZFC, which is strong 
enough to support the Gödel Second Incompleteness Theorem. 
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Suppose K + ϕ proves Con(ZFC). Then ϕ is unprovable in 
every consistent fragment of ZFC that proves K. 
 
Proof: To see this, let S be a consistent fragment of ZFC 
that proves K. We can assume that S is finitely 
axiomatized. If S proves ϕ then by the hypotheses, S proves 
Con(ZFC). In particular, S proves Con(S). Since S extends 
K, S is subject to Gödel's Second Incompleteness Theorem. 
Hence S is inconsistent. This is a contradiction. QED 
 
We use the following variant of Theorem 0.1B.1 in section 
5.9. For the definition of SMAH, see section 0.13.  
 
THEOREM 0.1B.2. Suppose ACA' + ϕ proves Con(SMAH). Then ϕ 
is unprovable in every consistent fragment of SMAH that 
logically implies ACA'.  
 
Informal statements of Gödel's Second Incompleteness 
Theorem are simple and dramatic. However, current fully 
rigorous statements of the Gödel Second Incompleteness are 
complicated and awkward. This is because the actual 
construction of the consistency statement - as a formal 
sentence in the language of the theory - is rather 
complicated, and no two scholars would come up with the 
same sentence.  
 
Although this is a significant issue surrounding the first 
use of the Gödel Second Incompleteness Theorem as a 
foundationally meaningful example of incompleteness, this 
does not affect the applicability of Gödel's Second 
Incompleteness Theorem for obtaining incompleteness 
results.  
 
But the fact that we can so confidently use Gödel's Second 
Incompleteness Theorem without getting bogged down in the 
construction of actual formalizations of consistency, does 
strongly suggest that there is a robust formulation of 
Gödel's Second Incompleteness Theorem.   
 
It is possible to isolate syntactic properties of a formal 
consistency statement that are sufficient for Gödel's 
Second Incompleteness Theorem, and which are independent of 
the construction of any particular formal consistency 
statement. In this way, we can remove the ad hoc features 
in a rigorous formulation of Gödel's Second Incompleteness 
Theorem.  
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In [Fe60], [Fe82], sufficiency conditions for formalized 
consistency in predicate calculus are reached by a step by 
step analysis of the construction of the formalization. 
However, this leads to a very complicated and lengthy list 
of conditions. There may be room for future considerable 
simplification.  
 
Another approach to presenting sufficiency conditions for 
formalized consistency in predicate calculus is found in 
the Hilbert Bernays derivability conditions. See [HB34,39], 
[Fr10]. These are simpler than the conditions that arise 
from the preceding approach, although they are rather 
subtle. They also add clarity to the proof of Gödel's 
Second Incompleteness Theorem. 
 
We present a third kind of sufficiency condition for 
formalized consistency in predicate calculus. This is 
through the Gödel Completeness Theorem. The proofs of our 
results will appear elsewhere in [Fr∞].  
 
We also refer the reader to [Fr07b] and [Vi09], which are 
also concerned with novel formulations of Gödel's Second 
Incompleteness Theorem. 
 
0.1C. Adequacy Conditions for Formalized Consistency. 
 
Here is the key idea: 
 

For Gödel's Second Incompleteness Theorem,  
it is sufficient that the formalization of consistency used  

support the Gödel Completeness Theorem. 
 
We will use MSL = many sorted first order predicate 
calculus with equality. Infinitely many constant, relation, 
and function symbols are available. 
 
Let S be a set of sentences in MSL, and let σ be a sentence 
in MSL. We define the notion 
 

ϕ is an S sufficient formalization of Con(σ). 
 
Here Con(σ) refers to consistency in MSL. 
 
This means that ϕ is a sentence in L(S) such that there is 
a structure M in L(σ), whose components (domains, 
constants, relations, and functions) are given by 
definitions in L(S), such that S proves 
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ϕ → M satisfies σ. 
 
Here the consequent is a sentence of L(S) that is defined   
straightforwardly by relativization. Note that this 
definition is quite easy to make fully rigorous - by direct 
combinatorial construction, or by induction on formulas of 
MSL. The intensionality issues that plague the usual 
statements of Gödel's Second Incompleteness Theorem are not 
present here. 
 
The most natural system of arithmetic to use for S is EFA 
(see section 0.5). This system corresponds to the IΣ0(exp) 
of [HP93]. Note that the notion  
 

the usual formalizations of Con(σ) 
 
makes good sense. We can take these to mean those that have 
been constructed - or are intended - by actual 
practitioners. Note that such formalizations are rarely 
given in complete detail, and even more rarely, been 
thoroughly debugged. EFA is finitely axiomatizable (see 
[DG82] and [HP93], Theorem 5.6, p. 366). 
 
THEOREM 0.1C.1. Let σ be a sentence in MSL. Every usual 
formalization of Con(σ) in L(EFA) is an EFA sufficient 
formalization of Con(σ).  
 
Proof: Let Con(σ)* be a usual formalization of Con(σ) in 
L(EFA). We show that Con(σ)* is a sufficient formalization 
of Con(σ) in EFA.  We adapt a common proof of the Gödel 
completeness theorem to EFA. We effectively build a labeled 
0,1 tree T whose paths define models of a consistent σ. We 
then show that if T has finitely many vertices, then T can 
be converted to a proof in MSL of ¬σ. Otherwise, T has an 
infinite path, and any infinite path yields a model of σ.  
 
The conversion to a proof in MSL of ¬σ goes through in EFA. 
So assume T has infinitely many vertices. We define the 
following property P(v) on vertices v in T. P(v) if and 
only if  
 
i. There are arbitrarily high vertices extending v. 
ii. There exists n such that the following holds. There are 
at most n vertices extending any vertex to the strict left 
of v.  
 
It is clear, in EFA, that  
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iii. Any two vertices obeying P are comparable.  
iv. There is no highest vertex obeying P.  
 
If there are arbitrarily high vertices obeying P, then we 
define a model of σ as usual. Otherwise, we have a "cut" in 
T. We can use standard cut shortening, if necessary, to 
form a "cut" in T that can be used to define a model of σ. 
QED 
 
THEOREM 0.1C.2. Let σ be a sentence in MSL. Every EFA 
sufficient formalization of Con(σ) implies every usual 
formalization of Con(σ) in L(EFA), over EFA + Con(EFA). 
(Here Con(EFA) is any usual formalization of Con(EFA) in 
L(EFA).) 
 
Proof: Let ϕ be an EFA sufficient formalization of Con(σ). 
Let M witness this assumption. We argue in EFA + Con(EFA) + 
ϕ that σ is consistent in MSL. Let π be a proof of ¬σ in 
MSL. By relativizing π to M, we obtain a proof in EFA of 
¬σM. But we already have a proof in EFA of σM. Hence EFA is 
inconsistent. Therefore π does not exist. Hence σ is 
consistent. QED   
 
We remind the reader that the usual formalizations of 
Con(σ) in arithmetic involves arithmetizing finite 
sequences of nonnegative integers. Accordingly, we define 
SEFA (super exponential function arithmetic) to be  
 
EFA + "for all n, there is a sequence of integers of length 
n starting with 2, where each non initial term is the base 

2 exponential of the previous term". 
 
SEFA corresponds to the system IΣ0 + Superexp in [HP93], p. 
376. It is well known that SEFA proves the cut elimination 
(see [HP93], Theorem 5.17). From this, it is easy to show 
that SEFA proves the 1-consistency of EFA.  
 
The following combines Theorems 0.1C.1, 0.1C.2.  
 
THEOREM 0.1C.3. Let σ be a sentence in MSL. The usual 
formalizations of Con(σ) in L(EFA) are characterized, up to 
provable equivalence in SEFA, as the weakest EFA sufficient 
formalizations of Con(σ) (weakest in the sense of SEFA). We 
can replace SEFA here by EFA + Con(EFA). (Here Con(EFA) is 
any usual formalization of Con(EFA) in L(EFA).) 
 
The proofs can be refined to replace EFA, SEFA by PFA, EFA. 
Here PFA is "polynomial function arithmetic". The more 
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standard notation is "bounded arithmetic" or IΣ0. This 
extends Q, within the language of Q, by adding the 
induction scheme for all bounded formulas (i.e., formulas 
with bounded quantifiers only). See [HP93].   
 
For this purpose, we need to consider WCon(σ), or "weak 
consistency of σ in MSL". This means that there is no cut 
free proof of σ in MSL. WCon(σ) is provably equivalent, 
over SEFA, to Con(σ). However, this is not the case in EFA.  
 
THEOREM 0.1C.4. Let σ be a sentence in MSL. The expert 
formalizations of WCon(σ) in L(PFA) are characterized, up 
to provable equivalence in EFA, as the weakest PFA 
sufficient formalizations of Con(σ) (weakest in the sense 
of EFA).  
 
We do not use "usual formalizations of Con(σ) in PFA", but 
instead "expert formalizations of Con(σ) in PFA". This is 
because such formalizations in PFA are normally done only 
by experts in weak systems of arithmetic, because of the 
limited facility for finite sequence coding.  
 
We extend sufficiency to sets of sentences in MSL. Let S,T 
be  sets of sentences in MSL. We define  
 

ϕ is an S sufficient formalization of Con(T) 
 
if and only if for every conjunction σ of finitely many 
sentences in T, ϕ is an S sufficient formalization of 
Con(σ). 
 
THEOREM 0.1C.5. Let T be a set of sentences in MSL. Every 
EFA sufficient formalization of Con(T) proves, over SEFA, 
the usual formalizations of the consistency of each finite 
fragment of T. If T is recursively enumerable, then the 
usual formalizations of Con(T) in L(EFA), based on any 
algorithm for generating T, are EFA sufficient 
formalizations of Con(T). We can replace SEFA here by EFA + 
Con(EFA). (Here Con(EFA) is any usual formalization of 
Con(EFA) in L(EFA).) 
 
THEOREM 0.1C.6. Let T be a set of sentences in MSL. Every 
PFA sufficient formalization of Con(T) proves, over EFA, 
the usual formalizations of the weak consistency of each 
finite fragment of T. If T is recursively enumerable, then 
the expert formalizations of Con(T) in L(PFA), based on any 
algorithm for generating T, are PFA sufficient 
formalizations of Con(T).  
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We should mention that in many cases, the usual 
formalizations use "natural" algorithms for generating the 
elements of T, rather than arbitrary ones. This would be 
the case for systems axiomatized by finitely many schemes. 
However, this interesting issue need not concern us here.  
 
0.1D. Gödel's Second Incompleteness Theorem for 
Arithmetized Consistency. 
 
The following is obtained from Theorem 0.1C.5.  
 
THEOREM 0.1D.1. Gödel's Second Incompleteness Theorem for 
Consistency Formalized in EFA. Let T be a consistent set of 
sentences in MSL that implies SEFA. T does not prove any 
EFA sufficient formalization of Con(T). 
 
The usual statement of Gödel's Second Incompleteness 
Theorem for arithmetized consistency, is covered here by 
taking T to be recursively enumerable, using any usual 
formalization of Con(T) in EFA, and applying Theorem 
0.1C.5. 
 
The following is obtained from Theorem 0.1C.6.  
 
THEOREM 0.1D.2. Gödel's Second Incompleteness Theorem for 
Consistency Formalized in PFA. Let T be a consistent set of 
sentences in MSL that implies EFA. T does not prove any PFA 
sufficient formalization of Con(T). 
 
The usual statement of Gödel's Second Incompleteness 
Theorem for arithmetized consistency (using expert 
formalizations of consistency), is covered here by taking T 
to be recursively enumerable, using any expert 
formalization of Con(T) in PFA, and applying Theorem 
0.1C.6. 
 
0.1E. Gödel's Second Incompleteness Theorem for Sequential 
Consistency. 
 
Gödel used arithmetized consistency statements. Subsequent 
developments have revealed that it is more natural and 
direct to use sequence theoretic consistency statements.  
 
We will use a particularly natural and convenient system 
for the formalization of syntax of L. We will call it 
SEQSYN (for sequential syntax). 
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SEQSYN is a two sorted system with equality for each sort. 
It is convenient (although not necessary) to use undefined 
terms. There is a very good and standard way of dealing 
with logic with undefined terms. This is called free logic, 
and it is discussed, with references to the literature, in 
[Fr09], p. 135-138. 
 
In summary, two terms are equal (written =) if and only if 
they are both defined and have the same value. Two terms 
are partially equal (written ≅) if and only if either they 
are equal or both are undefined. If a term is defined then 
all of its subterms are defined. 
 
The two sorts in SEQSYN are Z (for integers, including 
positive and negative integers and 0), and FSEQ (for finite 
sequences of integers, including the empty sequence). We 
have variables over Z and variables over FSEQ (we use Greek 
letters). We use ring operations 0,1,+,-,•, and ≤,= between 
integers. We use lth (for length of a finite sequence, 
which returns a nonnegative integer), val(α,n) (for the  
n-th term of the finite sequence α, which may be 
undefined), and = between finite sequences. The nonlogical 
axioms of SEQSYN are 
 
i. The discrete ordered commutative ring axioms. 
ii. Every α has a largest term. 
iii. lth(α) ≥ 0. 
iv. val(α,n) is defined if and only if 1 ≤ n ≤ lth(α). 
v. α = β if and only if for all n, (val(α,n) ≅ val(β,n)). 
vi. Induction on the nonnegative integers for all bounded 
formulas. 
vii. Let n ≥ 0 be given and assume that for all 1 ≤ i ≤ n, 
there is a unique m such that ϕ(i,m). There exists a 
sequence alpha of length n such that for all 1 ≤ i ≤ n, 
val(α,i) = m ↔ ϕ(i,m). Here ϕ is a bounded formula in 
L(SEQSYN) in which α does not appear. 
 
It remains to define the bounded formulas. We require that 
the integer quantifiers be bounded in this way: 
 
(∀n)(|n| < t →  
(∃n)(|n| < t ∧ 
 
where t is an integer term in which n does not appear. Here 
| | indicates absolute value. 
 
We also require that the sequence quantifiers be bounded in 
this way: 
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(∀α)(lth(α) ≤ t ∧ (∀i)(1 ≤ i ≤ lth(α) → |val(α,i)| ≤ t) →  
(∃α)(lth(α) ≤ t ∧ (∀i)(1 ≤ i ≤ lth(α) → |val(α,i)| ≤ t) ∧ 
 
where t is an integer term in which α does not appear. 
 
Note that SEQSYN does not have exponentiation, yet SEQSYN 
clearly supports the usual sequence (string) theoretic 
formalization of consistency. 
 
THEOREM 0.1E.1. SEQSYN is mutually interpretable with Q and 
with PFA. SEQSYN is interpretable in EFA but not vice 
versa. 
 
From the above, we see that the usual sequence (string) 
theoretic formalizations of consistency carry a weaker 
commitment than the usual (not the expert) arithmetic 
formalizations of consistency (which require finite 
sequence coding in EFA). 
 
We take EXP to be the following sentence in L(SEQSYN). 
 
There exists a sequence α of length n ≥ 1 whose first term 
is 2, where every non initial term is twice the previous 
term. 
 
THEOREM 0.1E.2. Let σ be a sentence in MSL. The usual 
formalizations of WCon(σ) in L(SEQSYN) are characterized, 
up to provable equivalence in SEQSYN + EXP, as the weakest 
SEQSYN sufficient formalizations of Con(σ) (weakest in the 
sense of SEQSYN + EXP).  
 
THEOREM 0.1E.3. Let T be a set of sentences in MSL. Every 
SEQSYN sufficient formalization of Con(T) proves, over 
SEQSYN + EXP, the usual formalizations of the weak 
consistency of each finite fragment of T. If T is 
recursively enumerable, then the usual formalizations of 
Con(T) in L(SEQSYN), based on any algorithm for generating 
T, are SEQSYN sufficient formalizations of Con(T).  
 
THEOREM 0.1E.3. SEQSYN + EXP and EFA are mutually 
interpretable. They are both finitely axiomatizable. 
 
Proof: As remarked earlier, EFA is finitely axiomatizable 
(see [DG82] and [HP93], Theorem 5.6, p. 366). Now we cannot 
conclude from the mutual interpretability that SEQSYN + EXP 
is also finitely axiomatizable. As an instructive example, 
it is well known that Q and bounded arithmetic are mutually 
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interpretable ([HP93], Theorem 5.7, p. 367), but it is a 
well known open problem whether bounded arithmetic is 
finitely axiomatizable. But in this case, we have a 
synonymy of the strongest kind, and that preserves finite 
axiomatizability. QED 
 
THEOREM 0.1E.4. Gödel's Second Incompleteness Theorem for 
Consistency Formalized in SEQSYN. Let T be a consistent set 
of sentences in MSL that implies SEQSYN + EXP. T does not 
prove any SEQSYN sufficient formalization of Con(T). 
 
0.1F. Gödel's Second Incompleteness Theorem for Set 
Theoretic Satisfiability. 
 
Let T be a finite set of sentences in ∈,=. By the Set 
Theoretic Satisfiability of T, we mean the following 
sentence in set theory (∈,=): 
 

there exists D,R, where R is a set of ordered pairs  
from D, such that (D,R) satisfies each element of T. 

 
Let RST (rudimentary set theory) be the following 
convenient set theory in ∈,=. 
 
a. Extensionality. 
b. Pairing. 
c. Union. 
d. Cartesian product. 
e. Separation for bounded formulas. 
 
It can be shown that RST is finitely axiomatizable. 
 
THEOREM 0.1F.1. Gödel's Second Incompleteness Theorem for 
Set Theoretic Satisfiability. Let T be a consistent finite 
set of sentences in ∈,= which implies RST. T does not prove 
the Set Theoretic Satisfiability of T. 
 
COROLLARY. Let T be a consistent set of sentences in ∈,=, 
which implies RST. Let ϕ be a sentence in ∈,= such that T + 
ϕ proves the set theoretic satisfiability of each finite 
subset of T. Then T does not prove ϕ.  
 
It does not appear that we can obtain Gödel's Second 
Incompleteness Theorem for PA and fragments, in any 
reasonable form, readily from Gödel's Second Incompleteness 
Theorem for Set Theoretic Satisfiability. 
 
0.1G. Gödel's Incompleteness Theorems and Interpretability. 
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The notion of Interpretation between theories is due to 
Alfred Tarski in [TMR53], and has generated an extensive 
literature. See [Fr07], lecture 1 for a guide to many 
highlights. Also see [FVxx].  
 
THEOREM 0.1G.1. Let T be a consistent set of sentences in 
MSL, in which Q is interpretable. The sets of all sentences 
in MSL that are i) provable in T, ii) refutable in T, iii) 
provable or refutable in T, are not recursive.  
 
Proof: Let π be an interpretation of Q in T. Use π to 
convert the claims to a claim concerning extensions of Q. 
See Theorem 0.1A.2. This is the approach taken in [TMR53]. 
QED  
 
We can obtain the following strong form of Gödel's First 
Incompleteness Theorem as an immediate corollary. 
 
THEOREM 0.1G.2. Let T be a recursively enumerable 
consistent set of sentences in MSL, in which Q is 
interpretable. There is a sentence in L(T) that is neither 
provable nor refutable in T.  
 
Gödel's Second Incompleteness Theorem is used in an 
essential way to prove the following fundamental fact about 
interpretations, from [Fe60]. See [Fr07], lecture 1, 
Theorem 2.4, p. 7.  
 
THEOREM 0.1G.3. For every consistent sentence ϕ in MSL,  
there is a consistent sentence ψ in MSL,  such that ϕ is 
interpretable in ψ, and ψ is not interpretable in ϕ. 
 
Gödel's Second Incompleteness Theorem also is used in an 
essential way to prove the following well known fact about 
PA. 
 
THEOREM 0.1G.4. No consistent extension T of PA in L(PA) is 
interpretable in any consequence of T.  
 
We can view Theorem 0.1G.4 as a form of Gödel's Second 
Incompleteness Theorem for extensions of PA, since it 
immediately implies the following strong form of Gödel's 
Second Incompleteness Theorem for extensions of PA.  
 
THEOREM 0.1G.5. Let T be a consistent extension of PA in 
L(PA), and S be a finite fragment of T. No S sufficient 
formalization of Con(T) is provable in T.  
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0.2. Some Basic Completeness. 
 
Note that General Incompleteness depends on being able to 
interpret a certain amount of arithmetic.  
 
However, there are some significant portions of 
mathematics, which do not involve any significant amount of 
arithmetic.  
 
This opens the door to there being recursive 
axiomatizations for such significant portions of 
mathematics. This is in sharp contrast to Gödel's First 
Incompleteness Theorem.  
 
A powerful way to present such completeness theorems is to 
identify a relational structure M and give what is called 
an axiomatization of M. For judiciously chosen M, the 
assertions that hold in M generally form a significant 
portion of mathematics. 
 
Specifically, an axiomatization of M is a set T of 
sentences in L(M) (the language of M) such that  
 

For any sentence ϕ of L(M),  
ϕ is true in M if and only if  

ϕ is provable in T. 
 
We say that T is a finite (or recursive) axiomatization of 
M if and only if T is an axiomatization of M, where T is 
finite (or recursive). 
 
We frequently encounter M which are recursively 
axiomatizable but not finitely axiomatizable. The important 
intermediate notion is that of being axiomatizable by 
finitely many relational schemes.  
 
Axiom schemes arise in many fundamental axiomatizations. 
Three particularly well known examples are not 
axiomatizations of structures. These are PA (Peano 
Arithmetic), Z (Zermelo Set Theory), and ZFC (Zermelo Set 
Theory with the Axiom of Choice).   
 
We will not give a careful formal treatment of relational 
schemes here, but be content with the following semiformal 
description.  
 
To simplify the discussion, it is convenient to work 
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entirely within the first order predicate calculus with 
equality, rather than the more general MSL.  
 
Fix a language L' in first order predicate calculus with 
equality. A scheme is a formula in L' possibly augmented 
with extra relation symbols called schematic relation 
symbols. The instances of a relational scheme consists of 
the result of making any legitimate substitutions of the 
schematic relation symbols appearing by formulas of L'. One 
must treat different occurrences of the same schematic 
symbol in the same way, and put the appropriate restriction 
on the free variables of the formulas used for 
substitutions.  
 
Schemes can be generalized to include schematic function 
symbols. However, we will be using only schematic relation 
symbols here. 
 
Note that Induction in PA, Comprehension in Z, and both 
Comprehension and Replacement in ZFC, are schemes. 
Induction and Comprehension use a single unary schematic 
relation symbol, whereas Replacement uses a single binary 
schematic relation symbol. Replacement can also be 
formalized with a single unary schematic function symbol.  
 
Here we provide axiomatizations by finitely many schemes 
for each of the 21 basic structures given below.  
 
We use the method of quantifier elimination throughout. The 
quantifier elimination arguments that we use are well 
known, and we will not give details.  
 
It is typical in the use of quantifier elimination, that 
the structures at hand do not admit quantifier elimination 
themselves, but need to be expanded in order to admit 
quantifier elimination. Then the quantifier elimination for 
the expansion is used to derive conclusions about the 
original structure.  
 
An expansion of a structure is obtained by merely adding 
new relations, functions, or constants to the structure. A 
definitional expansion of a structure is an expansion whose 
new symbols have explicit definitions in the language of 
the original structure.  
 
We say that M' is the definitional expansion of M via π = 
ϕ1,...,ϕn if M' is the expansion of M whose components are 
given by the definitions in π made in the language of M.  
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A typical example is the definitional expansion (N,<,+) of 
(N,+) via the definition 
 

x < y ↔ x ≠ y ∧ (∃z)(x+z = y). 
 
Sometimes we make a definitional expansion, followed by the 
introduction of new constants. Specifically, we 
definitionally expand (Z,+) to (Z,0,+,-,2|,3|,...), and 
then introduce the constant 1 to form (Z,0,1,+,-
,2|,3|,...). Note that the constant 1 is not definable in 
(Z,+).  
 
The following easy results are quite useful when working 
with axiomatizations. They were used, essentially, by 
Tarski.  
 
THEOREM 0.2.1. Let M' be the definitional expansion of M 
via π, and M'' expand M' with constants new to M'. Let S be 
a set of sentences that hold in M. Let T be an 
axiomatization of M''. Assume that S proves the well 
definedness of π for the constant and function symbols new 
in M'. Assume S proves the result of existentially 
quantifying out the new constants in the conjunction of any 
given finite subset of T after π is used to replace the new 
symbols of T in the conjunction. Then S is an 
axiomatization of M.  
 
Proof: Let M,M',S,T be as given. Let ϕ hold in M. Then ϕ 
holds in M'', and so ϕ is provable in T. In any given proof 
of ϕ in T, let T' result from conjuncting the axioms of T 
used, replacing the new symbols of M' by their definitions 
given by π, and then existentially quantify out the new 
constants in M''. Then T' logically implies ϕ, and also S 
proves T'. Hence S proves ϕ. Also by hypothesis, S holds in 
M. QED 
 
THEOREM 0.2.2. Let M,M',M'' be as given in Theorem 0.2.1, 
where the language of M'' is finite. M is finitely 
axiomatizable if and only if all (some) axiomatizations of 
M are logically equivalent to a finite subset. M is 
finitely axiomatizable if and only if M' is finitely 
axiomatizable. If M'' is finitely axiomatizable then M is 
finitely axiomatizable.  
 
Proof: The first claim (well known), involving only M, is 
left to the reader.  
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For the third claim, the process of converting an 
axiomatization of M'' to an axiomatization of M given by 
Theorem 0.2.1, results in a finite axiomatization of M if 
the given axiomatization of M'' is finite.  
 
For the second claim, it suffices to show that if M is 
finitely axiomatizable then M' is finitely axiomatizable. 
The axiomatization of M' consists of the axiomatization of 
M together with the definitions given by the interpretation 
of M in M'. QED 
 
There has been considerable work locating basic 
mathematical structures with recursive - and usually simple 
and informative - axiomatizations. We believe that there 
are many striking cases of this that are yet to be 
discovered across mathematics.  
 
Here is the list of 21 fundamental mathematical structures 
with recursive axiomatizations. 
 
LINEAR ORDERINGS 
 
(N,<), (Z,<), (Q,<), (ℜ,<). 
 
SEMIGROUPS, GROUPS 
 
(N,+), (Z,+), (Q,+), (ℜ,+), (C,+).  
 
LINEARLY ORDERED SEMIGROUPS/GROUPS  
 
(N,<,+), (Z,<,+), (Q,<,+), (ℜ,<,+). 
 
BASE TWO EXPONENTIATION 
 
(N,+,2x). 
 
FIELDS 
 
(ℜ,+,•), (C,+,•), (RALG,+,•), (CALG,+,•). 
 
Here RALG is the subfield of real algebraic numbers. CALG 
is the subfield of complex algebraic numbers. 
 
ORDERED FIELDS 
 
(ℜ,<,+,•), (RALG,<,+,•). 
 
EUCLIDEAN GEOMETRY 
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(ℜ2,B,E). 
 
Here B is the three place relation of betweenness. I.e., 
B(x,y,z) ↔ x,y,z lie on a line and y is strictly between x 
and z. Also E is the four place relation of equidistance. 
I.e., E(x,y,z,w) ↔ d(x,y) = d(z,w).  
 
Among these 21, (N,<), (Z,<), (Q,<), (ℜ,<) are finitely 
axiomatizable. The axioms for the remaining 17 are not 
usually presented as finitely many axiom schemes, and some 
thought is required in order to put them in this form. Of 
the 17, all but (N,+,2x) are not finitely axiomatizable. We 
conjecture that (N,+,2x) is not finitely axiomatizable. 
 
Below, we freely invoke Theorems 0.2.1 and 0.2.2. 
 
THEOREM 0.2.3. (N,<) is finitely axiomatized by  
i. < is a strict linear ordering. 
ii. There is a < least element. 
iii. Every element has an immediate successor. 
iv. Every element with a predecessor has an immediate 
predecessor. 
 
Proof: i-iv clearly hold in (N,<). We use Theorem 0.2.1 
with the definitional expansion (N,<,0,S) via π, where π 
defines 0 as "the least element", and π defines S as "the 
immediate successor". (N,<,0,S) has the following well 
known axiomatization, using elimination of quantifiers. 
See, e.g., [En72], p. 184.  
 
a. < is a strict linear ordering. 
b. 0 is < least. 
c. x ≠ 0 → (∃y)(x = S(y)). 
d. x < S(y) ↔ x < y ∨ x = y. 
 
Since π is provably well defined in i-iv, and the results of 
applying π to a-d are provable in i-iv, we see that i-iv is 
an axiomatization of (N,<). QED 
 
THEOREM 0.2.4. (Z,<) is finitely axiomatized by  
i. < is a strict linear ordering. 
ii. Every element has an immediate predecessor and an 
immediate successor.  
 
Proof: i-ii clearly hold in (Z,<). We use Theorem 0.2.1 
with the definitional expansion (Z,<,S) via π, where π 
defines S as "the immediate successor". (Z,<,S) has the 
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following well known axiomatization, using elimination of 
quantifiers.  
 
a. < is a strict linear ordering. 
b. (∃y)(x = S(y)). 
c. x < S(y) ↔ x < y ∨ x = y. 
 
Since π is provably well defined in i,ii, and the results of 
applying π to a-c are provable in i,ii, we see that i,ii is 
an axiomatization of (N,<). QED 
 
THEOREM 0.2.5. (Q,<), (ℜ,<) are finitely axiomatized by  
i. < is a strict linear ordering. 
ii. There is no least and no greatest element. 
iii. Between any two elements there is a third.  
 
Proof: This is a particularly well known application of 
elimination of quantifiers, resulting in this 
axiomatization. No expansion is needed. QED 
 
THEOREM 0.2.6. (N,+) is axiomatized with a single scheme by 
i. (x+y)+z = x+(y+z), x+y = x+z → y = z. 
ii. There are unique 0 ≠ 1 such that (x+y = 0 ↔ x,y = 0) ∧ 
(x+y = 1 ↔ {x,y} = {0,1}).  
iii. Every definable set containing 0 and closed under +1 
is everything.  
(N,+) is not finitely axiomatizable. 
 
Proof: i-iii clearly hold in (N,+). We use Theorem 0.2.1 
with the definitional expansion (N,<,0,S,+,≡2,≡3,...) via π, 
where π defines  
 
< as x ≠ y ∧ (∃z)(x+z = y).  
0 as the 0 from ii. 
S(x) = x+1, where 1 is from ii.  
≡d, d ≥ 2, as x ≡d y ↔ (∃z)(x = y+dz ∨ y = x+dz). 
 
Obviously, i-iii proves π is well defined.  
 
We now use the well known elimination of quantifiers for 
(N,<,0,S,+,≡2,≡3,...) from [Pr29], [En72], p. 188. Here ≡d, d 
≥ 2, is congruence modulo d. This results in the following 
axiomatization of (N,<,0,S,+,≡2,≡3,...). 
 
a. < is a strict linear ordering. 
b. 0 is the least element. 
c. x ≠ 0 → (∃y)(x = S(y)). 
d. x < S(y) ↔ x < y ∨ x = y. 
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e. + is commutative, associative. 
f. x+0 = x. 
g. x+S(y) = S(x+y). 
h. x+z < y+z ↔ x < y. 
i. x < y ↔ (∃z)(S(x+z) = y). 
j. dx < dy ↔ x < y. 
k. x ≡d y ↔ (∃z)(x = y + dz ∨ y = x + dz).   
l. (∃y)(x ≡d y ∧ y < Sd(0)).  
 
where d ≥ 2.  
 
We prove that the results of applying π to a-l are provable 
in i-iii. 
 
This is the same as treating <,0,S,≡d as abbreviations in 1-
iii, and verifying a-l in i-iii. It is convenient to also 
use the abbreviation x ≤ y ↔ x < y ∨ x = y, in i-iii. 
 
By ii), 1+1 ≠ 0 ∧ 1+1 ≠ 1.  
 
We claim x+1 ≠ 0. Suppose x+1 = 0. Then x+(1+1) = (x+1)+1 = 
0+1 = 1. By ii), 1+1 ∈ {0,1}, which is impossible.   
 
We claim x+0 = x. Let E = {x: x+0 = x}. By ii), 0 ∈ E. Let 
x ∈ E. Then x+0 = x, and by i),ii), (x+1)+0 = x+(1+0) = 
x+1. Hence E contains 0 and is closed under +1. By iii), E 
is everything. 
 
We claim x ≠ 0 → (∃y)(x = y+1). Let E = {x: (∃y)(x = y+1)} 
∪ {0}. Then E contains 0 and is closed under +1. Hence by 
iii), E is everything. 
 
We claim 0+x = x. Let E = {x: 0+x = x}. Then 0 ∈ E. Let x ∈ 
E. Then 0+(x+1) = (0+x)+1 = x+1. Apply iii). 
 
We claim x+y = y+x. Let E = {y: x+y = y+x}. By the previous 
paragraph, 0 ∈ E. Let x ∈ E. Then x+y = y+x, x+(y+1) = 
(x+y)+1 = (y+x)+1 = y+(x+1). Apply iii). 
 
We claim x ≤ y ↔ (∃z)(x+z = y). Suppose x ≤ y. If x < y 
then we are done. If x = y then use z = 0. Now suppose x+z 
= y. If z = 0 then we are done. If z ≠ 0, write z = w+1. 
Hence z = S(w), and we are done. 
 
Obviously ≤ is reflexive. We claim ≤ is transitive. Let x+u 
= y ∧ y+v = z. Then x+u+v = z, and so x ≤ z.  
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We claim y ≤ x → y+1 ≤ x ∨ y = x. Let y ≤ x. Write y+z = x. 
If z = 0 then y = x, and we are done. Assume z ≠ 0, and 
write z = w+1. Then y+w+1 = x = y+1+w, and so y+1 ≤ x.  
 
We claim x ≤ y ∨ y ≤ x. Let E = {y: x ≤ y ∨ y ≤ x}. 
Obviously 0 ∈ E. We now show that E is closed under +1. 
Suppose y ∈ E. Then x ≤ y ∨ y ≤ x. We want x ≤ y+1 ∨ y+1 ≤ 
x.  
 
We are done if x ≤ y. So assume y ≤ x. By the previous 
claim, y+1 ≤ x ∨ y = x. In either case, we are done. 
 
We claim x ≤ y ∧ y ≤ x → x = y. Let x+z = y ∧ y+z = x. Then 
x+z+z = x = x+0, z+z = 0, z = 0, x = y. 
 
We have established that ≤ is a reflexive linear ordering. 
Hence < is a strict linear ordering. 
 
I.e., we have proved the result of applying π to a) in i-
iii. 
 
For b), suppose x < 0. Let x+y = 0. Then x,y = 0, which is 
impossible.  
 
For c), this has already been proved. 
 
For d), let x < y+1. Write y+1 = x+z+1. Then y = x+z, and 
so x ≤ y. Suppose x < y. Then x < y+1. Suppose x = y. Then x 
< y+1.  
 
For e), associativity is from i), and commutativity has 
been proved.  
 
For f), we have proved x+0 = x. 
 
For g), use associativity. 
 
For h), let x+z < y+z. Let x+z+w = y+z, w ≠ 0. By 
cancellation and commutativity, x+w = y, and so x ≤ y. If x 
= y then x+z = y+z, which is impossible. Hence x < y. Now 
let x < y. Write x+w+1 = y. Then x+z+w+1 = y+z, and so x+z 
< y+z. 
 
For i), let x < y. Write y = x+z+1. Then S(x+z) = y. Now 
let S(x+z) = y. Then y = x+z+1, and so x < y.  
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For j), let dx < dy. We want x < y, and so assume y ≤ x and 
write y+z = x. Then d(y+z) < dy. Hence dy+dz < dy+0. By h), 
dz < 0, which is impossible.  
 
For k), this is by definition. 
 
For l), let E = {x: (∃y,z)(x = dy+z ∧ z < Sd(0))}. 
Obviously, 0 ∈ E. Suppose x ∈ E. Let x = dy+z ∧ z < Sd(0). 
Then x+1 = dy+z+1 ∧ z+1 ≤ Sd(0). If z+1 < Sd(0) then x+1 ∈ 
E. Otherwise, x+1 = dy+Sd(0) = d(y+1)+0 ∧ 0 < Sd(0). In 
either case, x+1 ∈ E. Hence E contains 0 and is closed 
under +1. By iii), E is everything. Hence (∀x)(∃y)(x ≡d y ∧ 
y < Sd(0)).  
 
To show that (N,+) is not finitely axiomatizable, by 
Theorem 0.2.2 it suffices to show that any finite fragment 
of a-l has a model not satisfying all of a-l. This is 
because a-l is a definitional extension of i-iii. 
 
Let p be any prime. Let D consist of all expressions nx/m + 
t, where (n,m) = 1, n,t ∈ N, m ∈ N\{0}, and p does not 
divide m. Define the structure (D,<,0,S,+) in the obvious 
way, and extend it to (D,<,0,S,+,≡2,≡3,...) via π.   
 
Evidently, a-i hold in (D,<,0,S,+,≡2,≡3,...). Also, l) holds 
provided d ≥ 2 is not divisible by p.  
 
But l) fails for d = p. This is because we cannot write any 
of x,x-1,...,x-p+1 as a multiple of p in this structure. 
QED  
 
THEOREM 0.2.7. (Z,+) is axiomatized with two schemes by  
i. (Z,+) is an Abelian group. 
ii. Every definable subgroup of + with a definable linear 
ordering is {0}.  
iii. R,S be definable binary relations. Suppose for all x, 
{y: R(x,y)} is a subgroup of + containing x, and {y: 
S(x,y)} is a proper subgroup of +. Then (∃x)((∀y)(R(x,y) ∧ 
¬S(y,x)). 
(Z,+) is not finitely axiomatizable. 
 
Proof: Clearly i) holds in (Z,+).  
 
For iii), the proper subgroups of + are the multiples of 
some fixed d = 0,2,3,... . Hence 1 lies outside of all of 
them. Set x = 1.  
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For ii), we use the definitional expansion (Z,0,+,-
,2|,3|,...) of (Z,+) via π, where 0 is defined as the 
additive identity, +,- as addition and the additive 
inverse, and d|x as (∃y)(dy = x), d ≥ 2.  
 
We use the well known elimination of quantifiers for linear 
arithmetic adapted to the structure (Z,0,1,+,-,2|,3|,...).  
 
The quantifier elimination boils down to considering 
statements of the form  
 

(∃x)(d1|s1 ∧ ... ∧ dn|sn ∧ ¬e1|t1 ∧ ... ∧ ¬en|tn ∧  
r1 = 0 ∧ ... ∧ rn = 0 ∧ v1 ≠ 0 ∧ ... ∧ vn ≠ 0) 

 
where the di,ei are integers ≥ 2, and the si,ti,ri,vi are 
terms. We can replace negated divisibilities by 
disjunctions of divisibilities, and then rewrite the 
divisibilities as congruences, obtaining the form 
 

(∃x)(a1x ≡d_1 s1 ∧ ... ∧ anx ≡d_n sn ∧  
r1 = 0 ∧ ... ∧ rn = 0 ∧ v1 ≠ 0 ∧ ... ∧ vn ≠ 0) 

 
where the ai,di are integers, ai ≥ 1, di ≥ 2, and the 
si,ti,ri,vi are terms, and x does not appear in the si. We 
then consolidate all coefficients on x, obtaining the forms  
 

(∃x)(cx ≡d_1 s1 ∧ ... ∧ cx ≡d_n sn ∧  
cx = r1 ∧ ... ∧ cx = rn ∧ cx ≠ v1 ∧ ... ∧ cx ≠ vn) 

 
(∃x)(x ≡d_1 s1 ∧ ... ∧ x ≡d_n sn ∧  

x = r1 ∧ ... ∧ x = rn ∧ x ≠ v1 ∧ ... ∧ x ≠ vn) 
 
where the di are integers ≥ 2, and the si,ti,ri,vi are terms 
in which x does not appear. We can assume that there are no 
equations, obtaining the form  
 

(∃x)(x ≡d_1 s1 ∧ ... ∧ x ≡d_n sn ∧  
x ≠ v1 ∧ ... ∧ x ≠ vn). 

  
This is clearly equivalent to  
 

(∃x)(x ≡d_1 s1 ∧ ... ∧ x ≡d_n sn) 
 

and hence has a solution if and only if it has a solution 
among the nonnegative integers below the product of the 
d's. This results in a quantifier free formula.  
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For ii), first note that every subgroup of + is the set of 
multiples of some d ≥ 0. If the multiples of d > 0 has a 
definable linear ordering in (Z,+), then Z has a definable 
linear ordering in (Z,+), in which case N is definable in 
(Z,+). Then N is definable in (Z,0,1,+,-,|2,|3,...), and so 
N is quantifier free definable in (Z,0,1,+,-,|2,|3,...). 
This is impossible (left to the reader).  
 
We now use this quantifier elimination to complete the 
proof. In order to support the manipulations for this 
quantifier elimination, it suffices to have  
 
a. (Z,0,+,-) is an Abelian group, with inverse - and  
identity 0. 
b. d|x ↔ (∃y)(x = dy). 
c. dx = dy → x = y. 
d. dx ≠ 1. 
e. d|x ∨ d|x+1 ∨ d|x+1+1 ∨ ... ∨ d|x+1+...+1 with d 
disjuncts.  
 
where d ≥ 2.  
 
We claim that every quantifier free sentence in 0,1,+,-
,2|,3|,... is provable or refutable in a-e. This is left to 
the reader. 
 
It now follows that a-e is an axiomatization of (Z,0,1,+,-
,2|,3|,...).  
 
We now verify the condition in Theorem 0.2.1. Accordingly, 
fix a positive integer t, let K consist of a) and those 
instances of b-e based on 2 ≤ d ≤ t. Let K' be the result of 
applying π, and then existentially quantifying out the 
constant 1. 
 
We can pull out the conjuncts emanating from a)-c) since 
they do not mention 1. We claim that the result of applying 
π to a-c, is provable in i-iii. This is obvious for a),b).  
 
For c), suppose dx = dy ∧ x ≠ y. Then dz = 0, z ≠ 0, where 
z = x-y. Let G be the group {0,z,2z,...,(d-1)z} under +. 
Obviously G is definable since it has at most d elements. 
It also has a definable linear ordering since it has at 
most d elements. By ii), it is {0}, which is a 
contradiction. Hence c) has been proved in i-iii. 
 
It remains to prove  
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#) (∃x)(¬2|x ∧ ... ∧ ¬t!|x ∧  
(∀y)(t!|y ∨ t!|y+x ∨ ... ∨ t!|y+(t!-1)x)) 

 
in i-iii, after applying π. Here t ≥ 2.  
  
Let R(x,y) be  
 

t!|y ∨ t!|y+x ∨ ... ∨ t!|y+(t!-1)x. 
 

and let S(y,x) be  
 

(y = 2 ∧ 2|x) ∨ ... ∨ (y = t! ∧ t!|x) ∨  
(y ≠ 2 ∧ ... ∧ y ≠ t! ∧ x = 0). 

 
Note that i-iii proves (∀x)({y: R(x,y)} is a group under + 
containing x), and (∀y)({x: S(x,y)}) is a proper subgroup 
of +. Hence # immediately follows using iii). Therefore i-
iii is an axiomatization of (Z,+). 
 
To show that (Z,+) is not finitely axiomatizable, we give 
another axiomatization of (Z,+), and show that it is not 
logically equivalent to any finite subset, and invoke 
Theorem 0.2.2.  
 
i'. (Z,+) is an Abelian group. 
ii'. dx = dy → x = y. 
iii'. (∃x)((¬2|x ∧ ... ∧ ¬d|x) ∧ (∀y)(d|y ∨ d|y+x ∨ ... ∨  
d|y+(d-1)x)). 
 
where d ≥ 2 and d|x is the usual abbreviation. It is clear 
from the above that the existential closure of every finite 
subset of a-e is provable in i'-iii'. Therefore i'-iii' is 
a complete axiomatization of (Z,+).  
 
Let p be any prime. Let D consist of all expressions nx/m + 
t, where (n,m) = 1, n,t ∈ Z, m ∈ N\{0}, and p does not 
divide m. Define the structure (D,+) in the obvious way.   
 
Evidently, i',ii' hold in (D,+) for 2 ≤ d < p. Also iii') 
holds in (D,+) for 2 ≤ d < p with x = 1.  
 
We claim that iii') fails in (D,+) for d = p. To see this, 
let  
 

(∀y)(p|y ∨ p|y+z ∨ ... ∨ p|y+(p-1)z). 
 
Now suppose z = nx/m + t. By setting y = 1, we have  
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p|1 ∨ p|1+z ∨ ... ∨ p|1+(p-1)z). 
 
It follows that p|n ∧ p|t. Now set y = x. Then we obtain 
 

p|x ∨ p|(n+m)x/m ∨ p|(2n+m)x/m ∨ ... ∨ p|((p-1)n+m)x/m. 
 
Now (p,m) = 1, and so the numerators and denominators of 
the displayed fractions are not divisible by p. Thus we 
have a contradiction. QED 
 
THEOREM 0.2.8. (Q,+), (ℜ,+), (C,+) are axiomatized with a 
single scheme by 
i. (X,+) is an Abelian group with at least two elements. 
ii. Every definable subgroup of (X,+) with at least two 
elements is (X,+).  
(Q,+), (ℜ,+), (C,+) are not finitely axiomatizable. 
 
Proof: There is a well known quantifier elimination without 
expansion. This gives the axiomatization  
 
a. (X,+) is an Abelian group with at least two elements. 
b. dx = dy → x = y. 
c. (∃y)(dy = x). 
 
where d ≥ 2. From this we obtain that the definable subsets 
in (X,+) are finite or cofinite. Every subgroup of (X,+) is 
either infinite or {0}. Hence every subgroup of (X,+) 
definable in (X,+) is either cofinite or {0}. But if it is 
cofinite then it is obviously (X,+). This establishes that 
i,ii hold in (X,+).  
 
a) is provable in i,ii. For b), suppose dx = 0, x ≠ 0, d ≥ 
2, and form the finite subgroup {0,x,...,(d-1)x}. This 
contradicts ii).  
 
For c), let d ≥ 2 and form the subgroup of multiples of d. 
By a,b, this subgroup has at least two elements. By ii), 
this subgroup is (X,+). Hence c) holds.   
 
Let p be a prime. Let D be the rationals which, in reduced 
form, has denominator not divisible by p. Form (D,+). Then 
a,b hold, and c) holds for 2 ≤ d < p. d ≥ 2, However, c) 
fails for d = p. Hence (X,+) is not finitely axiomatizable. 
QED 
 
THEOREM 0.2.9. (N,<,+) is axiomatized with a single scheme 
by  
i. (x+y)+z = x+(y+z), x+y = x+z → y = z. 
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ii. There are unique 0 ≠ 1 such that x+y = 0 ↔ x,y = 0, and 
x+y = 1 ↔ {x,y} = {0,1}.  
iii. x < y ↔ x ≠ y ∧ (∃z)(x+z = y). 
iv. Every definable set containing 0 and closed under +1 is 
everything.  
(N,<,+) is not finitely axiomatizable. 
 
Proof: Obviously i-iv hold in (N,<,+). Let ϕ hold in 
(N,<,+). Replace all occurrences of s < t in ϕ by the 
definition according to iii). Then the resulting formula ϕ' 
holds in (N,+), and so by Theorem 0.2.6, is provable in the 
i-iii of Theorem 0.2.6. Hence ϕ' is provable in the above 
i-iv. Also ϕ ↔ ϕ' is provable in the above i-iv. Hence ϕ is 
provable in the above 1-iv. Hence ϕ is provable in the 
above i-iv.  
 
(N,<,+) is not finitely axiomatizable since (N,<,+) is a 
definitional extension of (N,<), and (N,<) is not finitely 
axiomatizable by Theorem 0.2.6. QED   
 
THEROEM 0.2.10. (Z,<,+) is axiomatized with a single scheme 
by  
i. (Z,+) is an Abelian group.  
ii. < is a strict linear ordering. 
iii. x+y < x+z → y < z.  
iv. Every definable set with an element > 0 has a least 
element > 0.  
(Z,<,+) is not finitely axiomatizable. 
 
Proof: i-iv clearly hold in (Z,<,+). We use Theorem 0.2.1 
with the definitional expansion (Z,<,0,1,+,-,2|,3|,...) via 
π, where π defines  
 
0 as the additive identity. 
1 as the immediate successor of 0. 
x-y as the additive inverse. 
d|x ↔ (∃y)(x = dy). 
 
where d ≥ 2. The well known quantifier elimination for 
(Z,<,0,1,+,-,2|,3|,...) leads to the complete 
axiomatization  
 
a. (Z,0,+,-) is an Abelian group, with inverse - and 
identity 0.  
b. < is a strict linear ordering. 
c. x+y < x+z → y < z. 
d. d|x ↔ (∃y)(x = dy). 
e. x+1 is the immediate successor of x.  
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f. x > 0 → (∃y)(0 ≤ y < d(1) ∧ d|x-y). 
 
where d ≥ 2. It is easy to see that the result of applying π 
to a-f is provable in i-iv. Hence i-iv is an axiomatiation 
of (Z,<,+).  
 
To see that (Z,<,+) is not finitely axiomatizable, we argue 
that a-f is not logically equivalent to any finite subset 
of a-f.  
 
Let p be any prime. Let D consist of all expressions nx/m + 
t, where (n,m) = 1, n,t ∈ Z, m ∈ N\{0}, and p does not 
divide m. Define the structure (D,<,0,1,+,-,2|,3|,...) in 
the obvious way. Then a-e hold. Also f) holds for 2 ≤ d < p. 
But f) fails for d = p. QED  
 
THOEREM 0.2.11. (Q,<,+), (ℜ,<,+) are axiomatized with a 
single scheme by  
i. + is an Abelian group. 
ii. < is a dense linear ordering without endpoints. 
iii. x+y < x+z → y < z.  
iv. Every definable subgroup of (X,+) with at least two 
elements is (X,+).  
(Q,<,+), (ℜ,<,+) are not finitely axiomatizable.  
 
Proof: (X,<,+) has a well known quantifier elimination, 
which yields the following axiomatization. 
 
a. + is an Abelian group. 
b. < is a dense linear ordering without endpoints. 
c. x+y < x+z → y < z. 
d. (∃y)(dy = x). 
 
where d ≥ 2. It is clear from the quantifier elimination 
that every set definable in (X,<,+) is a finite union of 
intervals with endpoints in X ∪ ±∞. Hence i-iv hold in 
(X,<,+). Also d) is derived from i-iv by forming the 
subgroup of all multiples of d ≥ 2, and applying iv). This 
establishes that i-iv is an axiomatization of (X,<,+).  
 
To see that (X,<,+) is not finitely axiomatizable, argue as 
in the last paragraph of the proof of Theorem 0.2.8. QED 
 
THEOREM 0.2.12. (N,+,2x) is axiomatized with a single scheme 
by  
i. (x+y)+z = x+(y+z), x+y = x+z → y = z. 
ii. There are unique 0 ≠ 1 such that x+y = 0 ↔ x,y = 0, and 
x+y = 1 ↔ {x,y} = {0,1}.  
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iii. 20 = 1, 2x+1 = 2x + 2x.  
iv. Every definable set containing 0 and closed under +1 is 
everything. 
 
Proof: Obviously i-iv hold in (N,+,2x). We use the 
definitional expansion of (N,+,2x) and its axiomatization 
given in Appendix B, p. 3. The definitional expansion is M 
= (N,+,-',≤,0,1,÷n,2x,l2,λ2), n ≥ 0, where π is as follows.  
 
x -' y = 0 if y > x; x - y otherwise. 
x ≤ y ↔ (∃z)(x+z = y). 
0 is the 0 of ii). 
1 is the 1 of ii). 
For n > 0, x÷n is the unique y such that ny ≤ x < n(y+1). 
For n = 0, x÷n = 0. 
l2(x) is the unique y such that 2y ≤ x < 2y+1 if x > 0: 0 
otherwise. 
λ2(x) = 2l_2(x) if x > 0; 0 otherwise. 
 
By Theorem 0.2.6, i-iv proves every sentence true in M that 
has only +. I.e., i-iv contains Presburger Arithmetic. 
Hence π is provably well defined in i-iv, except possibly 
for l2(x) and λ2(x).  
 
Let E = {x: (∀y < x)(2y+1 ≤ 2x)}. Then 0 ∈ E. Let x ∈ E. 
Since (∀y ≤ x)(2y+1 ≤ 2x+1), we have x+1 ∈ E. We conclude 
that E is everything. From this, we see that there is at 
most one y such that 2y ≤ x < 2y+1.  
 
Let E = {x: (∃y)(2y ≤ x < 2y+1)} ∪ {0}. Obviously 0 ∈ E. Let 
x ∈ E, 2y ≤ x < 2y+1. To see that x+1 ∈ E, note that 2y ≤ x+1 
< 2y+1, holds or x+1 = 2y+1. Hence E is everything. 
 
We have established that l2(x) is well defined.        
 
Appendix B does quantifier elimination for M, with an 
axiomatization of M on page 3. We briefly sketch why the 
result of applying π to these axioms is provable in i-iv. 
 
The axiomatization uses the Euler function, φ(m) = the 
number of positive integers ≤ m that are relatively prime 
with m. Of course, this function is only used externally. 
 
Appendix B uses the following well known fundamental fact 
about the Euler totient function. If m is an odd positive 
integer then 2φ(m)-1 is a multiple of m. 
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(1) TPres. Presburger Arithmetic. We have already remarked 
that by Theorem 0.2.6, the result of applying π to TPres is 
provable in 1-iv. 
 
(2) (∀x)(λ2(x) ≤ x < 2λ2(x)). Obvious from π at λ2, l2. 
 
(3) (∀x,y)(x ≥ y → l2(x) ≥ l2(y)). Obvious from π at l2. 
 
(4) l2(1) = 0. Obvious from π at l2. 
 
(5) (∀x)(x ≥ 1 → l2(2x) = l2(x)+1). Obvious from π at l2 and 
iii). 
 
(6) (∀x)(x ≥ 1 → 2l_2(x) = λ2(x)). Obvious from π at l2, λ2. 
 
(7) (∀x)(l2(2x) = x). Obvious from π at l2. 
  
(8) (∀x)(2x+1 = 2x + 2x). By iii).   
 
(9) (∀x)(x ≥ 1 → 2x-1 ≥ x). Let E = {x: 2x+1 ≥ x} ∪ {0}. 
Obviously 0 ∈ E. Suppose x ∈ E. Then x+1 ∈ E. Hence by iv), 
E is everything.  
 
(10) (∀x)(if x is a multiple of φ(m) then 2x-1 is a multiple 
of m), where m is an odd positive integer. It suffices to 
prove that for all y, 2φ(m)y-1 is a multiple of m. We apply 
iv). Let E = {y: 2φ(m)y-1 is a multiple of m}. Obviously, 0 ∈ 
E. Let y ∈ E. Then 2φ(m)y-1 is a multiple of m. Now if we 
keep multiplying 2φ(m)y by 2, φ(m) times, then the exponent 
raises by m, and so we arrive at 2φ(m)(y+1). Hence 2φ(m)(2φ(m)y-1) 
= 2φ(m)(y+1)-2φ(m) is a multiple of m. Since 2φ(m)-1 is a multiple 
of m, we see that 2φ(m)(y+1)-1 is a multiple of m. Hence y+1 ∈ 
E. Since we have established that E contains 0 and is 
closed under +1, we apply iv) to obtain that for all y, 
2φ(m)y-1 is a multiple of m. QED 
 
We conjecture that (N,+,2x) is not finitely axiomatizable. 
 
THEOREM 0.2.13. (ℜ,+,•), (RALG,+,•) are axiomatized with a 
single scheme by  
i. (X,+,•) is a field.  
ii. The relation y-x is a nonzero square, is a strict 
linear ordering of x,y. 
iii. Every definable nonempty bounded set has a least upper 
bound.  
(ℜ,+,•), (RALG,+,•) are not finitely axiomatizable. 
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Proof: It is well known that i-iii hold in (X,+,•). We now 
use Theorem 0.2.1 and the definitional expansion 
(X,<,0,1,+,•) via π, where < is defined by x < y ↔ y-x is a 
nonzero square, 0 is defined as the unique x with x+x = x, 
1 is defined as the unique x with (∀y)(xy = y).  
 
The well known elimination of quantifiers leads to the 
axiomatization  
 
a. (X,0,1,+,•) is a field. 
b. < is a strict linear ordering. 
c. x < y → x+z < y+z. 
d. 0 < x ∧ 0 < y → 0 < x•y. 
e. 0 < x → (∃y)(x = y2). 
f. Every polynomial of odd degree ≥ 1 with leading 
coefficient 1 has a zero.  
 
We claim that the result of applying π to a-f is provable in 
i-iii. Clearly this holds of a,b.  
 
For c), suppose y-x is a nonzero square. Then (y+z)-(x+z) 
is a nonzero square.  
 
For d), suppose x,y are nonzero squares. Then x•y is a 
nonzero square.  
 
For e), suppose x is a nonzero square. Then x is a square. 
 
This also verifies the usual ordered field axioms, 
formulated with <, within i-iii. Hence we can show in i-iii 
that every monic polynomial of odd degree ≥ 1 is positive 
for all sufficiently positive x, and negative for all 
sufficiently negative x.  
 
Let E be the set of all x such that P(x) < 0. Then E is 
obviously nonempty and bounded. Let w be the < least upper 
bound of E, according to iii. Using the ordered field 
axioms, we see that P(w) = 0.  
 
We have thus proved that i-iii is an axiomatization of 
(X,+,•).  
 
It is well known that a-f, the theory of ordered real 
closed fields, is not finitely axiomatizable. Fix an odd 
prime p. We can build the partial real closure K[p] of the 
field of rationals, adding square roots of positive 
elements and roots of odd degree monic polynomials of 
degree < p only. The p-th root of 2 is missing, but axioms 
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a-e hold, and axiom f) holds for odd degree < p. Hence by 
Theorem 0.2.2, (X,+,•) is not finitely axiomatizable. QED 
 
We will be using the following combinatorial lemma. 
 
LEMMA 0.2.14. If (A,<) is an uncountable linear ordering, 
then there exists a ∈ A such that (-∞,a) and (a,∞) are 
infinite.  
 
Proof: Suppose not. Then for all a ∈ A, (-∞,a) or (a,∞) is 
uncountable.  
 
Define the equivalence relation a ~ b if and only if there 
are finitely many points between a and b.  
 
Since every equivalence class is countable, there are 
uncountably many equivalence classes. Let 1 ≤ α ≤ ω be such 
that there are uncountably many equivalence classes of 
cardinality α.  
 
case 1. α < ω. Let [a,b], [c,d] be equivalence classes of 
cardinality α, a < b < c < d. Then b is a limit point from 
the right, and c is a limit point from the left. Hence (-
∞,b), (b,∞) are infinite.  
 
case 2. α = ω. Let I < J < K be three equivalence classes 
of cardinality ω. For all a ∈ J, (-∞,a), (a,∞) are 
infinite. QED  
 
THEOREM 0.2.15. (C,+,•), (CALG,+,•) are axiomatized with two 
schemes by 
i. (X,+,•) is a field. 
ii. Every definable subgroup of (X,+) with at least two 
elements is (X,+).    
iii. Let f:X2 → X be definable. Let (A,<) be a definable 
strict linear ordering, A ⊆ X. Assume that for all z ∈ A, 
fz:X → X is either constant, or the identity, or the sum or 
product of two fw:X → X with w < z. Then for all z ∈ A, 
fz:X → X is constant or onto.  
(C,+,•) and (CALG,+,•) are not finitely axiomatizable. 
 
Proof: We use Theorem 0.2.1 and the definitional expansion 
(X,+,•,0,1) by π, where 0 is the unique z with (∀w)(z+w = w) 
and 1 is the unique z ≠ 0 with (∀w)(z•w = w).  
 
(X,+,•,0,1) has a very well known quantifier elimination 
leading to the very well known axiomatization  
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a. (X,+,•,0,1) is a field. 
b. dz = dw → z = w. 
c. Every polynomial of degree ≥ 1 has a zero.   
 
where d ≥ 2. Using the quantifier elimination, we easily 
obtain the well known crucial property that every set 
definable in (X,+,•) is finite or cofinite. We also see that 
X has no strict linear ordering. 
 
Obviously i) holds in (X,+,•). For ii), let G be a definable 
subgroup with at least two elements. Obviously G is 
infinite. But G is finite or cofinite. Hence G is cofinite. 
Therefore G = X.  
 
For iii), we first show that in (C,+,•), every definable 
linear ordering on a definable subset of C is finite. To 
see this, we have A is finite or cofinite. Suppose A is 
cofinite. By Lemma 0.2.14, there exists a ∈ A, such that 
{x: x < a} and {x: x > a} are infinite. This is impossible.  
 
It then follows by the well known elementary equivalence of 
(C,+,•) and (CALG,+,•), that in (CALG,+,•), every definable 
linear ordering on a definable subset of CALG is finite. 
 
To complete the verification of iii), let f,A,< be as 
given. By the above, A is finite. It is clear by finite 
induction that every fz is a polynomial. Polynomials in 
(X,+,•) are constant or onto because (X,+,•) is 
algebraically closed.  
 
The result of applying π to a) is obviously provable in i-
iii. For b), assume dz = 0, z ≠ 0, and form the group 
{0,z,...,(d-1)z}. This group is definable in (X,+,•), and so 
by ii), it is (X,+). This is a contradiction. 
 
For c), let P be a polynomial of degree ≥ 1 with leading 
coefficient 1. Let Q1,...,Qn be polynomials, where each Qi 
is either constant, the identity, or the sum or product of 
two Qj, j < i, and where Qn = P. Use A = {1,...,n} ⊆ X with 
the usual < to apply iii). Use f:X2 → X, where  
 

f(z,w) = Qz(w) if z ∈ {1,...,n}; 0 otherwise. 
 
By iii), Qn = P is constant or onto. It remains to prove in 
i-iii that P is not constant. 
 
Every model of i-iii is a field of characteristic zero. 
Form algebra, in every field of characteristic zero, every 
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polynomial of degree ≥ 1 is not constant. By the Gödel 
completeness theorem, i-iii proves that P is not constant.  
 
We have established that i-iii is an axiomatization of 
(X,+,•).  
 
To see that (X,<,•) is not finitely axiomatizable, let p be 
a prime, and let F be the algebraically closed field of 
characteristic p. Then a-c hold in F. Also b) holds for 2 ≤ 
d < p. But b) fails for d = p. QED 
 
THEOREM 0.2.16. (ℜ,<,+,•), (RALG,<,+,•) are axiomatized with 
a single scheme by 
i. (X,+,•) is a field.  
ii. < is a strict linear ordering. 
iii. x < y ↔ y-x is a nonzero square. 
iv. Every definable nonempty set with an upper bound has a 
least upper bound.  
(ℜ,+,•), (RALG,+,•) are not finitely axiomatizable. 
 
Proof: Clearly i-iv hold in (ℜ,<+,•), (RALG,<,+,). Also 
(ℜ,<,+,•), (RALG,<,+,) are respective definitional 
extensions of (ℜ,+,•,), (RALG,+,•) by the interpretation π 
that defines  
 
x < y if and only if y-x is a nonzero square.  
 
So an axiomatization consists of the above definition of <, 
together with the axioms i-iii from Theorem 0.2.13. This 
axiomatization is equivalent to the present i-iv.  
 
By Theorems 0.2.2, 0.2.13, (ℜ,+,•), (RALG,+,•) are not 
finitely axiomatizable. QED  
 
THEOREM 0.2.17. (ℜ2,B,E) is axiomatized with a single 
scheme. (ℜ2,B,E) is not finitely axiomatizable.  
  
Proof: Tarski's axiomatization of Euclidean geometry uses B 
= betweenness, and E = equidistance, equality, and points, 
as the primitives. It has finitely many axioms together 
with an axiom scheme of continuity. See [Ta51], [TG99].   
 
(ℜ2,B,E) is well known to be not finitely axiomatizable, 
using the (K[p]2,B,E), where K[p] is as defined in the last 
paragraph of the proof of Theorem 0.2.13. By the 
axiomatization of real closed fields a-f there, we see that 
any finite set of sentences true in (ℜ2,B,E) is true in 
some (K[p]2,B,E). Furthermore, the existence of a p-th root 
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of 2 in ℜ corresponds to a true statement in (ℜ2,B,E) that 
fails in (K[p],B,E). Hence there cannot be a finite 
axiomatization of (ℜ2,B,E). QED 
 
We shall briefly mention three additional fundamental 
structures that have been investigated intensively.  
 
The first is (ℜ,+,•,ex). It has been proved that every 
subset of ℜ definable in (ℜ,+,•,ex) is a finite union of 
intervals with endpoints in ℜ ∪ {±∞}. It is not known if 
(ℜ,+,•,ex) is recursively axiomatizable. However, it has 
been shown that if a famous conjecture in transcendental 
number theory, called the Schanuel Conjecture, is true, 
then (ℜ,+,•,ex) is recursively axiomatizable. See [MW96], 
[Wi96], [Wi99].   
 
The second is the field (Qp,+,•) of all p-adic numbers and 
its finite algebraic extensions, where p is any given 
prime. See [AK65], [AK65a], [AK66], [Co69], [Eg98].  
 
The third is the structure S2S. This is a two sorted 
structure ({0,1}*,℘({0,1}*),∈,S0,S1), where S0 and S1 are 
the two successor functions on the set {0,1}* of finite bit 
strings defined by S0(x) = x0, S1(x) = x1. It is more common 
to present S2S, equivalently, either ({0,1}*,S0,S1), or 
(T,<), where second order logic is used instead of the 
customary first order logic. Here T is the full binary tree 
viewed abstractly, with its usual partial order <.  
 
A recursive axiomatization of S2S was first given using 
automata, in [Rab68]. For a modern treatment using game 
theory, see [BGG01], section 7.1.  
 
Is is often said that in "tame" contexts such as the 
ordered group of integers, or the ordered field of reals, 
we avoid the Gödel Incompleteness Phenomena.  
 
However, the Gödel Incompleteness Phenomena simply shifts 
to the computational complexity context, where the results 
are based on diagonal constructions pioneered by Kurt 
Gödel. Even in these "tame" structures, one has the same 
kind of no algorithm results. One also has Gödelian type 
results involving lengths of proofs. We conjecture that 
there is a rich theory of Concrete Mathematical 
Incompleteness, involving lengths of proofs, in such "tame" 
contexts. See, e.g., [FR74], [Rab77], and [FeR79]. 
 
0.3. Abstract and Concrete Mathematical Incompleteness. 
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The focus of this book is on Concrete Mathematical 
Incompleteness. We use the following working definition of 
the Mathematically Concrete:  
 

Mathematical statements concerning Borel measurable sets  
and functions of finite rank in and between  

complete separable metric spaces. 
 
We take the Mathematically Abstract to begin with the 
transfinite levels of the Borel hierarchy, and continue in 
earnest with the low levels of the projective hierarchy of 
subsets of functions between complete metric spaces, 
starting with the analytic sets, followed by the higher 
levels of the projective hierarchy. Here there are still 
only continuumly many such subsets and functions. 
 
Yet higher abstract levels include arbitrary subsets of and 
functions between complete separable metric spaces. Here 
there are more than continuumly many such subsets and 
functions. At still higher levels, the objects are no 
longer subsets or functions between complete separable 
metric spaces.  
 
The overwhelming majority of mathematicians work within the 
Mathematically Concrete as defined above. In fact, the 
overwhelming majority work considerably below this level.  
 
An indication of the special status of the functions and 
sets highlighted here is afforded by the following result, 
which is proved by standard techniques, and is part of the 
folklore of descriptive set theory.  
 
THEOREM 0.3.1. Let X be a complete separable metric space. 
The following classes of functions from X into X are the 
same. 
i. The Borel measurable functions of finite rank from X to 
X. 
ii. The closure under composition of the pointwise limits 
of sequences of continuous functions from X to X. 
iii. The bold faced arithmetic functions from X into X in 
the sense of recursion theory.  
This equivalence also holds for functions of several 
variables, using generalized composition in ii). 
 
Clause ii) shows that we get to finite rank Borel by means 
of composition, and a family of reasonable discontinuous 
functions. Pointwise limits of continuous functions occur 
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in classical mathematics, particularly in connection with 
power series and Fourier series. Often these are not 
everywhere convergent, and we can use a default value where 
the limit does not exist. This is a variant of ii), for 
which Theorem 0.3.1 obviously still holds. One also sees 
functions defined as the sup of an infinite sequence of 
continuous functions, where we have uniform boundedness, or 
a point at infinity, so that the sups exist everywhere. 
This clearly falls under ii).  
 
It would be very interesting to understand the closure 
under composition of special classes of functions, or the 
closure under composition of continuous functions with 
various specific simply presented discontinuous functions. 
 
The highlight of this section is a discussion of various 
aspects of Concreteness in core mathematics, including 
levels of Concreteness. Many interesting issues arise, 
including a rather systematic program.  
 
This systematic program, which we call Mathematical 
Statement Theory, is spelled out more carefully and applied 
to the Hilbert Problem List of 1900 in section 0.17.  
 
A somewhat different, but well established program, which 
we founded in the late 1960's to mid 1970's, is Reverse 
Mathematics, and is discussed in detail in section 0.4.  
 
We close this section with a brief history of 
Incompleteness, in which Abstract Mathematics plays a 
central role.   
 
In order to proceed informatively and robustly, we will 
make free use of the standard analysis from logic of the 
quantifier complexity of formal sentences. The relevant 
standard robust categories of sentences from logic based on 
quantifier complexity are 
 

Π0
0, Π0

1, ... . 
Σ00, Σ01, ... . 
Π1

0, Π1
1, ... . 

Σ10, Σ11, ... . 
 
Here Π0

n (Σ0n) refers to sentences starting with n 
quantifiers ranging over N, the first of which is universal 
(existential), followed by formulas using only bounded 
numerical quantifiers, connectives, and equations and 
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inequalities involving multivariate primitive recursive 
functions from N into N.  
 
Also Π1

n (Σ1n) refers to sentences starting with n 
quantifiers ranging over subsets of N, the first of which 
is universal (existential), followed by a formula using 
only numerical quantifiers, connectives, equations and 
inequalities involving multivariate primitive recursive 
functions from N into N, and membership in subsets of N.  
 
In practice, one normally encounters blocks of like 
quantifiers. It is a standard fact from mathematical logic 
that blocks of like quantifiers, in our context, behave 
like a single quantifier.  
 
Since the languages on which these quantifier complexity 
classes are based are streamlined for logical simplicity, 
we make free use of the so called coding techniques from 
logic in order to actually gauge the strength of real 
mathematical statements. The appropriate robustness of the 
method of coding for such purposes is well established.  
 
Another approach is to base the quantifier complexity 
classes on rich languages. This is less standard, and we 
will not take that approach here. The results obtained 
using this alternate approach would be essentially the 
same.  
 
We do not use superscripts higher than 1 because any 
Mathematically Concrete assertion can be viewed as a Π1

n 
sentence, for some n ≥ 1.  
 
In fact, actual Mathematically Concrete assertions are 
often Π0

3 or simpler. The quantifier complexity classes Π0
1, 

Π0
2, and Π0

3 play very special roles at the concrete end of 
the spectrum.  
 
The Π0

0 = Σ00 sentences have the special property that we can 
prove or refute them by running a computer - at least in 
principle. The computer resources needed may or may not be 
practical. A particularly interesting example of this is 
the proof of the Four Color Conjecture. The statement 
 

existence of an unavoidable  
finite set of reducible configurations 

 
is a Σ01 sentence because unavoidability and reducibility 
are local properties (unavoidability only involves graphs 
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of size related to the set). This Σ01 sentence immediately 
implies the Four Color Conjecture. Appel and Haken gave an 
explicit instantiation of the outermost existential 
quantifier, and then proceeded to prove the resulting Π0

0 
sentence with the help of a computer.  
 
The Π0

1 sentences have the special property that if they are 
false, then we can find a counterexample and verify that it 
is a counterexample by computer - at least this can be done 
in principal. Obviously, any counterexample may be so huge 
that verifying it directly is impractical. Of course, the 
use of theory may make it practical even if the actual 
counterexample is so huge - by greatly reducing the actual 
computer resources.  
 
A particularly well known example of a Π0

1 sentence refuted 
by counterexample is Euler's Quartic Conjecture, which 
states that no fourth power of a positive integer is the 
sum of three fourth powers of positive integers. It was 
refuted in [El88] with  
 

26824404 + 153656394 + 187967604 = 206156734. 
 
Of course, here verifying that this is a counterexample 
barely requires a computer. Roger Frye subsequently found 
the counterexample  
 

958004 + 2175194 + 4145604 = 4224814 
 
by a computer search using techniques suggested by Elkies, 
and demonstrated that this is the counterexample in fourth 
powers with smallest right hand side. Apparently, some 
theory is needed to obtain minimality. See [Gu94], p. 140. 
Note that Frye's minimality result is a Π0

0 = Σ00 sentence.  
 
The category Π0

∞ = ∪nΠ0
n also has special significance. This 

is the category of "arithmetic sentences". Many scholars 
feel that the integers and associated finite objects have a 
kind of objective existence that is not shared by arbitrary 
infinite objects such as an infinite sequence of integers. 
They often believe that statements involving only such 
finite objects - no matter how much quantification over all 
such finite objects are present - have a matter of factness 
that protects them from foundational issues in a way that 
statements involving infinite objects do not.  
 
Some scholars have this kind of attitude towards only, say, 
Π0

1 sentences. Others have varying degrees of cautiousness 
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about the matter of factness of even Π0
0 = Σ00 sentences, 

which can involve integers far too large for computer 
processing. For example, the number A7198(158,386), which 
arises in Theorem 0.7.11, or even an exponential stack of 
100 2's.  
 
We have the following noteworthy representatives. 
 
Π0

1. Fermat's Last Theorem (Wiles' Theorem), Goldbach's 
Conjecture, the Riemann Hypothesis. 
 
Π0

2. Collatz Conjecture. 
 
Π0

3. Falting's Theorem (Mordell's Conjecture), Thue-Siegel-
Roth Theorem. 
 
Note that some of these statements are conjectures and some 
of these statements are theorems. There are a number of 
interesting issues related to these classifications above.  
 
Consider the known FLT. It could be argued that FLT is in 
fact Π0

0, since it is known to be equivalent to 0 = 0. 
However, that equivalence depends on some substantial 
portion of the new ideas in its proof. In fact, that 
equivalence relies on all of the new ideas in its proof! 
 
So in this classification scheme applied to theorems, we 
must only use equivalence proofs that are orthogonal to the 
proof of the theorem. Perhaps surprisingly, in practice 
this requirement is sufficiently robust to support our 
classification scheme.  
 
In section 0.17, we formulate Mathematical Statement 
Theory, where we are sensitive to such issues, so that this 
classification theory meaningfully applies to actual 
theorems.  
 
FLT and Goldbach's Conjecture are obviously, on the face of 
it, Π0

1. One need go no further than consider their utterly 
standard formulations.  
 
However, RH is quite a different matter. Looking at the 
standard formulation, we only obtain Π1

1, because of the 
quantification over all real numbers. This is hugely higher 
than any Π0

n.  
 
But there are well known concrete equivalences of RH. We 
present one of many well known Π0

1 equivalences in section 
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0.17, when we discuss H8 = Hilbert's Eighth Problem. There 
is also a Π0

1 equivalence of RH in [Mat93], Chapter 7. Hence 
RH is what we call essentially Π0

1.   
 
The Collatz Conjecture is stated as follows. Define f:Z+ → 
Z+ by f(n) = n/2 if n is even; 3n+1 if n is odd. For all n ∈ 
Z+, if we keep iterating f starting at n, then we eventually 
arrive at 1.  
 
Note that the Collatz Conjecture takes the form                                    
 

(∀n ∈ Z+)(∃ a finite sequence ending in 1,  
which starts with n and continues by applying f). 

 
This can be put in Π0

2 form using standard coding techniques 
from logic that rely on the fact that a finite sequence 
form Z+ is a finite object of a basic kind.  
 
Π0

2 sentences practically beg to become Π0
1 sentences 

through the use of an upper bound. Thus, if we could show, 
e.g., that  
 
#) (∀n ∈ Z+)(∃ a finite sequence ending in 1, which starts 
with n and continues by applying f, where all terms are at 
most (8n)!!) 
 
without using ideas in the proof of Collatz Conjecture (at 
the moment we are not even close to being able to do this), 
then we would say that the Collatz Conjecture is 
essentially Π0

1.  
 
Another possibility is that after we prove the Collatz 
Conjecture, we actually prove a stronger theorem that is Π0

1 
- such as #). In this case, we won't say that the Collatz 
Conjecture is, or is essentially, Π0

1, since we are relying 
on the proof of the Collatz Conjecture. But we would 
certainly want to note that  
 

The Collatz Conjecture is implied by a Π0
1 theorem. 

 
Of course, another possibility is that we are able to prove 
the equivalence of the Collatz Conjecture with, say, #), 
without using ideas in the proof of the Collatz Conjecture 
- but in fact, historically, we only saw this after we 
proved the Collatz Conjecture. In this case, we would say 
that the Collatz Conjecture is essentially Π0

1.  
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Of course, independently of the discussion above, if we 
were to prove the equivalence of the Collatz Conjecture 
with #), we would have made a major contribution that would 
be readily recognized.  
 
We now come to Falting's Theorem. This asserts that there 
are finitely many solutions to an effectively recognizable 
class of Diophantine problems over Q. This takes the form  
 

(∀n)(there are finitely many m such that P(n,m)) 
 
where P is an appropriate (primitive recursive) binary 
relation. Because of standard coding techniques, we can 
collapse several integers to a single integer for our 
purposes.  
 
This in turn takes the form 
 

(∀n)(∃r)(∀m)(P(n,m) → m < r) 
  
which is obviously Π0

3. Note how this is significantly 
higher - i.e., less concrete - than Π0

2 (Collatz 
Conjecture).   
 
Π0

3 sentences also practically beg to become Π0
1 sentences 

through the use of an upper bound - just like Π0
2 sentences.  

 
Suppose we could show, e.g., that Mordell's Conjecture is 
equivalent to  
 

##) (∀n)(∀m)(P(n,m) → m < (8n)!!) 
 
without using ideas in the proof of Mordell's Conjecture 
(Falting's Theorem), then we would say that Mordell's 
Conjecture is essentially Π0

1.  
 
Of course, independently of the discussion above, if we 
prove ##)  then we would have made a major contribution 
that would be readily recognized.  
 
A situation quite analogous to Falting's Theorem, in this 
sense, is the Thue-Siegel-Roth Theorem. It states that if α 
is an irrational algebraic number, and ε > 0, the 
inequality 
 

|α - p/q| < 1/q2+ε 
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has finitely many solutions in integers p and q. This is 
also in Π0

3 for the same reason - and also begs to graduate 
to Π0

1. 
 
We now jump to the upper reaches of the quantifier 
complexity classes that we are using. These most commonly 
appear as Π1

1, Π1
2, Σ11, Σ12.  

 
This level of quantifier complexity has special 
significance for our purposes.  
 
THEOREM 0.3.2. Let ϕ be a Π1

2 or Σ12 sentence. The main 
methods of set theory - inner models and forcing - cannot 
establish that ϕ is unprovable in ZFC. In particular, any 
two transitive models of ZFC with the same ordinals agree 
on the truth value of ϕ.  
 
Theorem 0.3.2 essentially tells us that if a sentence is Π1

2 
or Σ12, then establishing its unprovability in ZFC requires 
something quite different than standard techniques from set 
theory. The only techniques available for establishing the 
unprovability in ZFC of mathematical sentences in these 
complexity classes are essentially those used for sections 
0.13, 0.14, and laid out in detail in Chapters 4,5 of this 
book. 
 
Furthermore, we claim that mathematics has, for many 
decades,  been focused on problems that are well within the 
Π1

2 and Σ12 classes. This seems to be increasingly the case 
in recent years, particularly with the steady increase in 
the power of computation. The question "can you compute 
this" and "how efficiently can you compute this" have 
become more attractive now that many answers to the second 
question are actually implemented. This has inevitably 
affected the interest in the Concrete, even if one is still 
far removed from implementability.   
 
It is still the case that you will see abstract 
mathematical statements from time to time considered by 
core mathematicians. The usual situation in which this 
arises is where the great generality is not causing its own 
inherent difficulties.  
 
But if difficulties arise, traced to the generality and 
abstraction - not to the intended mathematical purposes - 
then interest wanes in the abstract formulation, and 
attention shifts to more concrete formulations where these 
"foreign" difficulties are absent.  
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This basically amounts to a kind of separation of the "set 
theoretic difficulties" from the "fundamental mathematical 
difficulties".  
 
For instance, we still teach that every field has a unique 
(in the appropriate sense) algebraic closure. This is a 
highly abstract assertion, because the field is completely 
arbitrary. However, the set theoretic difficulties, which 
are not negligible, are highly manageable through Zorn's 
Lemma.  
 
On the other hand, the highly abstract continuum hypothesis 
(discussed below under H1) is now well known to cause major 
difficulties disconnected from the normal issues in 
analysis.  
 
Borel measurable sets and functions in separable metric 
spaces, lie at the outer cusp of what mathematicians 
generally accept as appropriate for the formulation of 
problems of genuine mathematical interest.  
 
Thus the "Borel Continuuum Hypothesis" arises, and is a 
rather basic and striking classical result in descriptive 
set theory. See [Ke95] and the discussion below in H1 of 
section 0.17.  
 
Sometimes a highly abstract statement not only causes no 
logical difficulties, but it even is obviously equivalent 
to a much more concrete statement. See the discussion below 
in H14 of section 0.17.  
 
These points are elaborated in some detail, as we discuss 
the levels of Concreteness associated with Hilbert's famous 
list of 23 problems, 1900, in section 0.17.  
 
It appears that exactly one of the Hilbert problems lies 
outside Concrete Mathematics, according to our working 
definition above. This is H1, the first one in the list. 
 
We conjecture that all of the other problems on this list, 
and all closely related problems, are  
 
i. Essentially Π1

2 or essentially Σ12; or  
ii. Will get proved or refuted in ZFC, and stronger 
statements will emerge from those proofs that are 
essentially Π1

2 or essentially Σ12 (and in most cases, much 
lower).  
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Two other problem lists, created one hundred years later, 
are the 18 Smale problems, 1998, and the 7 Clay Millennium 
Prize Problems, 2000. See [Sm00] and 
[http://www.claymath.org/millennium/]. 
 
We also conjecture that all of the problems on these other 
two lists, and all closely related problems, have 
properties i,ii above. 
 
So what are we to make of this adequacy of the usual 
foundations of mathematics through ZFC with regard to these 
problem lists? 
 
This matter is addressed in some detail in the Preface. 
Specifically, the development of mathematics is still 
extremely primitive on evolutionary - let alone 
cosmological - time scales. Although the scope of deep 
mathematical activity represented by these three lists of 
problems and the efforts leading up to them may look 
incredibly impressive to us, they are certain to look 
mundane in a few centuries (or even earlier), let alone in 
thousands (or millions!) of years.  
 
We maintain that Boolean Relation Theory is just one of 
many subjects of gigantic scope (see section 1.2) that are 
yet to be discovered or developed, but which are entirely 
inevitable given their internal coherence, motivating 
themes, and simplicity of concept.  
 
We believe that Concrete Mathematical Incompleteness - 
where large cardinals are shown to be sufficient, and 
weaker large cardinals are shown to be insufficient - will 
ultimately become commonplace.  
 
What is much less clear is whether mathematicians will 
ultimately decide to accept large cardinal hypotheses, even 
under such utility. A major drawback of the large cardinal 
hypotheses in this regard is that they postulate objects 
that are radically foreign to mathematical practice.  
 
It would seem more palatable to have forms of the large 
cardinal hypotheses involving objects that are least 
familiar to mathematicians, if not used generally in 
mathematical practice.  
 
This is not possible in terms of literal equivalence. 
However, for applications of large cardinals such as the 
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ones in this book (the Exotic case), as well as any Π0
2 

consequence, an alternative is to use only the 1-
consistency of the large cardinal hypotheses, and not the 
actual existence of the large cardinal. This opens the door 
to reformulations of large cardinal hypotheses in terms of 
familiar, or at least more familiar, objects.   
 
One radical possibility along these lines is through the 
axiomatization of concepts that are entirely foreign to 
mathematics, but are, instead, a part of common everyday 
thinking. Plausible, or perhaps compelling, principles 
might be identified involving such concepts. Formal systems 
based on such principles may emerge, and imply the 1-
consistency of the relevant large cardinal hypotheses. See 
[Fr06] and [Fr11] for work along these lines.   
 
Another possibility is to directly analyze the mental 
pictures that are used to process large cardinals. Mental 
pictures are normally a crucial component in sophisticated 
mathematical reasoning, whether or not large cardinals are 
involved. They are a crucial component in the widespread 
acceptance of the usual ZFC axioms.  
 
Moreover, mental movies are a particularly powerful 
component in mathematical reasoning, in the sense of short 
coherent sequences of mental pictures.  
 
Mental pictures, and the more powerful mental movies, are 
combinatorial objects of very limited finite size.   
 
The idea is to develop a combinatorial analysis of such 
finite movies, and discover some fundamental principles 
about them that imply the consistency or the 1-consistency 
of a range of large cardinal hypotheses.  
 
We now close with a brief history of Incompleteness in 
which Abstract Mathematics plays a central role.  
 
Let us review the initial stages of work on Incompleteness.  
 
We can view Gödel's First Incompleteness Theorem as an 
existence theorem only, or we can view it as proving the 
independence of an arithmetization of the Liar's paradox. 
In either case, one cannot view it as providing an 
intelligible instance of mathematical incompleteness.  
 
Gödel's Second Incompleteness Theorem does provide an 
important and intelligible example - e.g., Con(ZFC). 
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However, the intelligibility of Con(ZFC) depends on an 
understanding of "formalizations of abstract set theory".  
 
One can object to this comment on the grounds that Con(ZFC) 
can be stated purely in terms of the ring of integers, or 
the hereditarily finite sets - using the standard coding 
devices. This "removes" the reference to abstract set 
theory and to formalizations.  
 
However, when one removes the references to formalizations 
of abstract set theory, the presentation of Con(ZFC) 
becomes unintelligible - in particular, unintelligibly 
complex. This is a crucially important point, even though 
we do not have (yet) any kind of surrounding rigorous 
theory that formally supports important distinctions of 
this kind.  
 
We are beginning to get a sense of definite criteria for 
judging the intelligibility or naturalness of mathematical 
statements. We believe that there are ways of judging 
intelligibility or mathematical naturalness that are 
independent of particular mathematical research interests 
or the sociology of mathematics. This topic lies well 
beyond the scope of this book.  
 
The next big development in Incompleteness involved two 
obviously important problems in abstract set theory - the 
first implicitly used by Cantor, and the second emphasized 
by Cantor. These were the axiom of choice, and the 
continuum hypothesis. The consistency of ZFC + CH relative 
to ZF was established in [Go38]. The consistency of ZF + 
¬AxC, and ZFC + ¬CH, relative to ZF, was later established 
in [Co63,64].  
 
Note that here there is no reference to formalizations of 
abstract set theory. AxC and CH are problems directly in 
abstract set theory.  
 
However, AxC and CH are not concrete - in anything like the 
way that Con(ZFC) is.  
 
Con(ZFC) is formulated in terms of finite objects only. It 
asserts the nonexistence of a finite configuration. Its 
intelligibility depends on some understanding of abstract 
set theory. But nevertheless, with the help of coding, it 
asserts the nonexistence of a finite configuration. 
 
In contrast, AxC and CH cannot be formulated in this way, 
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regardless of coding devices. These statements live 
inherently in the abstract set theoretic universe. 
 
Subsequent developments in Incompleteness initially 
centered around analyzing a large backlog of problems from 
abstract set theory, mostly with the help of Cohen's method 
of forcing introduced in [Co63,64]. Some of the problems in 
this backlog were well known from the set theoretic parts 
of analysis, group theory, and other subjects. Early 
pioneers in this extensive development include Donald 
Martin, Saharon Shelah, Robert Solovay, and others. See 
[Je78,06] for a comprehensive treatment.  
 
A notably different method of attack on Abstract 
Incompleteness arose from Ronald Jensen's work on Gödel's 
constructible universe, which provides tools for 
establishing that various statements hold in L (Gödel's 
constructible universe). This establishes relative 
consistency with ZFC, where the independence is normally 
establishes by forcing. E.g., see [Jen72], [De84]. 
 
These applications of forcing and constructible sets 
established that ZFC neither proved nor refuted many 
problems in Abstract Mathematics, but generally did not 
determine or even shed light on their truth or falsity, 
from the abstract set theoretic point of view. 
 
Work on the projective hierarchy of sets of reals took 
hold, forming an entry point for large cardinals in 
Incompleteness.  
 
The projective hierarchy begins with Borel and analytic 
sets (analytic sets are projections of Borel sets), and 
forms a hierarchy indexed by the natural numbers.  
 
Classical analysts from the first half of the twentieth 
century sought to extend their impressive understanding of 
the structure of Borel and analytic sets to the more 
general projective sets.  
 
During the 1960s and 1970s, it was discovered that 
projective determinacy implies all of these sought after 
generalizations to projective. 
 
Large cardinal hypotheses were shown to imply projective 
determinacy in [MSt89]. Specifically, Martin and Steel 
proved in ZFC that if there are infinitely many Woodin 
cardinals then projective determinacy holds. In addition, 
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projective determinacy establishes all of the 
generalizations  
 
Woodin has proved in ZFC that if there are infinitely many 
Woodin cardinals below a measurable cardinal, then L(ℜ) 
determinacy holds, extending the work of Martin and Steel. 
See [St09], [Lar04]. These results are shown to be roughly 
optimal. For a detailed account, see [KW10]. (Here L(ℜ) is 
the constructible closure of ℜ, and L(ℜ) determinacy 
asserts that in all infinite length games with integer 
moves and winning set in the constructible closure of ℜ, 
one player has a winning strategy). 
 
For a much more detailed picture of set theoretic 
incompleteness, see [Je78,06].  
 
We close with a brief account of an important development 
initiated by Richard Laver, taken from [DJ97].  
 
In [La92], properties of the free left-distributive algebra 
on one generator are proved using an extremely large 
cardinal - a nontrivial elementary embedding from some V(λ) 
into V(λ). These consequences included the recursive 
solvability of the word problem for this algebra.    
 
These algebraic results were later proved in [Deh94], 
[Deh00] using completely different methods based on braid 
groups and generalizations thereof. The new proofs use only 
very weak fragments of ZFC, and in fact weak fragments of 
PA.  
 
But some further algebraic results were obtained using the 
large cardinal. [La95] produces a sequence of finite left-
distributive algebras An, which can be constructed in simple 
combinatorial terms without the large cardinal. [La95] 
proves that A∞ is also free.  
 
"A∞ is free" can be rephrased in purely algebraic form, as 
a Π0

2 sentence asserting that certain equations do not imply 
certain other equations under the left distributive law.  
 
In [DJ97a], it is shown that "A∞ is free" is not provable in 
PRA (primitive recursive arithmetic). At present, the only 
proof of "A∞ is free" uses the extremely large cardinal.  
 
Even if (as many expect) the large cardinal is subsequently 
removed, this does show how large cardinals can provide 
insights into Concrete Mathematics.  
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But here we give an application of large cardinals to 
combinatorics that is proved in Chapter 4 from large 
cardinals, and shown to be necessary (unremoveable) in 
Chapter 5.  
 
In fact, we believe that in the future, large cardinals 
will be systematically used for a wide variety of Concrete 
Mathematics in an essential, unremoveable, way.   
 
0.4. Reverse Mathematics. 
 
The ZFC axioms (Zermelo Frankel with the axiom of choice) 
have served for nearly a century as the de facto standard 
by which we judge whether a mathematical theorem has been 
proved.  
 
Early on, it was clear that ZFC serves as convenient 
overkill for this purpose. Mathematical results generally 
require use of only a "small part" of the power of the ZFC 
axioms.  
 
Interest naturally developed in determining which fragments 
of ZFC are sufficient to prove which specific theorems.  
 
In order to systematize this work in an informative way, a 
collection of standard fragments of ZFC are needed. This 
turns out to be rather awkward given the way the axioms of 
ZFC are laid out. 
 
The advantages of working with the pair of primitives, 
natural numbers and sets of natural numbers (or natural 
numbers, and the closely related alternative choice of 
functions from natural numbers into natural numbers), 
became apparent, both for proof theory and for the logical 
analysis of mathematical theorems. See [Kre68], [Fe64], 
[Fe70].  
 
Thus Feferman, Kreisel, and others, began to use the system 
Z2 and its fragments for the purpose of identifying logical 
principles sufficient to prove various mathematical 
theorems.  
 
Reverse Mathematics (RM) is an open ended project in which 
a wide range of mathematical theorems are systematically 
classified in terms of the "minimum" logical principles 
sufficient to prove them. 
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After RM was founded through [Fr74], [Fr75-76], and [Fr76], 
S. Simpson focused on the area, made important advances in 
RM, supervised many Ph.D. students in RM, and wrote the 
authoritative book [Si99,09] covering RM.    
 
But how can we identify the "minimum" logical principles 
sufficient to prove a given mathematical theorem? 
 
Our key insight goes back to at least 1969 (cited in [Fr75-
76]), and culminated in the polished formulations of 
[Fr74], [Fr76].  
 
We first identify a weak "base theory" T of core 
fundamental principles, in the form of a subsystem of Z2.  
 
We then realize through experimentation with examples, that 
the base theory is strong enough so that the equivalence 
relation  
 

base theory T proves A is equivalent to B 
 
on basic mathematical theorems, has relatively few 
equivalence classes. 
 
These insights already supported a robust theory of 
"logical strength" of mathematical theorems, although the 
phrase "logical strength" now has a more focused meaning. 
See the DEEP UNEXPLAINED OBSERVED FACT below. 
 
We went further and identified natural preferred logical 
systems associated with the various equivalence classes of 
mathematical theorems that arise.  
 
We identified a group of natural fragments of Z2 such that 
many mathematical theorems correspond exactly to one of 
these fragments in the sense that  
 

base theory T proves that theorem A is  
equivalent to the formal system S 

 
so that theorem A is calibrated by the system S.  
 
Note that under this conception, we have both the usual  
 

proving of mathematical theorems from formal systems 
 
and the unusual 
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proving of formal systems from mathematical theorems  
(over the base theory). 

 
Hence we introduced the name "reverse mathematics" for this 
classification project.  
 
Our choice of base theory for RM underwent some evolution, 
culminating with RCA in [Fr74] and the improved, weaker, 
finitely axiomatized RCA0 in [Fr76]. The choice of RCA0 has 
remained the working standard for RM since that time.  
 
In [Fr75-76], one of our earliest results is cited in these 
terms: 
 
"1. In 1969 I discovered that a certain subsystem of second 
order arithmetic based on a mathematical statement (that 
every perfect [sic] tree that does not have at most 
countably many paths, has a perfect subtree) was provably 
equivalent to a logical principle (the weak Π1

1 axiom of 
choice) modulo a weak base theory (comprehension for 
arithmetic formulae)." 
 
The use of the first "perfect" here was an apparent 
typographical error, and should be struck out here [sic].  
 
Already in [Fr74], [Fr76], we used the system ATR0 for that 
level instead of the weak Π1

1 axiom of choice.  
 
But note that our use of arithmetic comprehension as the 
base theory, at least for this early reversal from 1969. 
This is what appears as ACA in [Fr74] - but not as the base 
theory.  
 
Our choice of base theory in [Fr74] is the much weaker RCA 
= recursive comprehension axiom scheme, which has full 
induction in its language (the language of Z2). We 
subsequently sharply weakened the induction axiom to what 
is really essential, resulting in the base theory RCA0 of 
[Fr76].  
 
The most commonly occurring systems of RM were first 
introduced as a group (with some additional systems) in 
[Fr74]. These are   
 

RCA, WKL, ACA, ATR, Π1
1-CA 

 
and were later weakened, in [Fr76], to the finitely 
axiomatized systems 
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RCA0, WKL0, ACA0, ATR0, Π1

1-CA0 
 
by limiting the induction axioms to what is essential. Many 
reversals of some basic mathematical theorems are also 
presented in [Fr74] and [Fr76].  
 
Two additional levels are also introduced in [Fr74] and 
[Fr76]. These levels had figured prominently in earlier 
investigations of fragments of Z2. These are the closely 
related  
 

HCA, HAC, HDC, and HCA0, HAC0, HDC0 
 
of hyperarithmetic comprehension, choice, dependent choice, 
better known as  
 

Δ11-CA, Σ11-AC, Σ11-DC, Δ11-CA0, Σ11-AC0, Σ11-DC0 
 
and the system TI of transfinite induction, better known as 
BI (bar induction of lowest type).  
 
All of these systems above, starting with RCA, that are 
based on full induction (i.e., without the naught), figured 
prominently in earlier work on fragments of Z2 by S. 
Feferman and G. Kreisel and others. Their main motivation 
was proof theoretic. The development of the naught systems 
with restricted induction serves the particular needs of 
Reverse Mathematics.  
 
The hyperarithmetic systems above have not played an 
important role in RM until recently. But now see [Mo06], 
[Mo∞], [Ne09], [Ne∞1], [Ne∞2]. 
 
TI, or at least significant fragments of TI, have figured 
importantly in the metamathematics of Kruskal's theorem. 
For example,  
 

RCA0 + Kruskal's theorem for wqo labels  
with bounded valence;  

 
and  
 

the theory Π1
2-TI0 

 
prove the same Π1

1 sentences. See [RW93] and [Fr84].  
 
In the development of RM, many systems have arisen beyond 
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the most frequently occurring ones discussed above. In the 
main Chapters of this book alone, which is not focused on 
RM, the systems ACA' and ACA+ arise (Definitions 1.4.1, 
6.2.1). In [Si99,09], we find, additionally, Σ11-IND, Π1

1-
TR0, Σ11-TI0, and WWKL0.  
 
Incomparability under provability does naturally arise in 
Reverse Mathematics. A particularly clear example, that 
involves only modest amounts of coding, is as follows. 
Consider  
 
i. Every ideal in the polynomial ring in n variables over 
any finite field is finitely generated. 
 
ii. Every infinite tree of finite sequences of 0's and 1's 
has an infinite path. 
 
In [Si88], it is shown that i) above is provably equivalent 
to "ωω is well ordered" over RCA0. WKL0 is RCA0 + ii).  
 
Now RCA0 + "ωω is well ordered" does not imply WKL0 since 
the former has the ω model consisting of the recursive 
subsets of ω, whereas this does not form a model of WKL0.  
 
Also, WKL0 does not imply RCA0 + "ωω is well ordered" since 
the ordinal, in the sense of proof theory, of WKL0 is ωω, 
whereas the ordinal of the former is considerably higher. 
See [Si99,09], p. 391.   
 
The systems that arise above form a hierarchy - but not in 
the sense of being linearly ordered under provability. 
Instead, we have linearity under interpretability. 
Moreover, we expect that as the range of systems used in RM 
expands from the analysis more and more mathematical 
theorems, we will maintain this linearity under 
interpretability. 
 
We summarize this observed phenomena as follows.  
 
DEEP UNEXPLAINED OBSERVED FACT. For any two naturally 
occurring mathematical theorems A,B, naturally formulated 
in the language of RM, either RCA0 + A is interpretable in 
RCA0 + B, or RCA0 + B is interpretable in RCA0 + A.  
 
This phenomenon also holds in wide ranging contexts, 
including in set theories, provided a suitable base theory 
is chosen.    
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This phenomenon begs for an explanation. At present, there 
isn't any. Theoretically, lots of incomparability arise 
under interpretability. See [Fr07], Lecture 1.  
 
In light of this observed comparability, the phrase 
"logical strength" for formal systems has come to mean 
"interpretation power". Sometimes it also means 
"consistency strength". We have shown that interpretation 
power and consistency strength are equivalent, in a certain 
precise sense. See [Fr80a], [Smo84], [Vi90], [Vi92], 
[Vi09], [FVxx].  
 
The principal theme of [Fr75-76] is actually a criticism of 
the use of fragments of Z2 for RM. Our idea was that the 
language of Z2 is far too impoverished to adequately 
represent mathematical statements. We categorically 
rejected the use of coding, which is generally required for 
formalization within Z2.  
 
Nevertheless, we quickly came to realize that there were 
just too many unresolved issues involved in setting up a 
coding free RM. We chose not to publish the approach of 
[Fr75-76] (although we circulated those manuscripts 
widely), but rather focus initially on the more 
straightforward approach of [Fr74], [Fr76], initiating the 
Reverse Mathematics program. 
 
The setup in [Fr76] is a compromise. It uses variables over 
N and variables over unary, binary, and ternary functions 
from ω into ω, with the numerical constant 0 and a unary 
function constant for successor.  
 
The system ETF - elementary theory of functions - is then 
formulated in this language, which is equivalent to the now 
standard RCA0 (adapted in the obvious way to the language of 
ETF). Note that ETF avoids any use of axiom schemes, or 
reliance in any way on formulas with bounded quantifiers.  
 
As we expected, these subtle issues were put aside by the 
community, and the much more manageable version of RM using 
RCA0 was pursued using the standard coding apparatus used 
for many years in recursion theory.  
 
In particular, the normal presentation of RCA0 is simply the 
axioms for RCA that we gave in [Fr74], with the Induction 
Axiom Scheme replaced by the weaker Σ01 Induction Axiom 
Scheme. E.g., see [Si99,09], Definition II.1.5. We 
preferred the equivalent formulation of ETF.  
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Our deep interest in coding free RM was, in retrospect, 
premature. Any reasonably stated equivalent form of RCA0 was 
adequate to drive the subsequent development of RM.  
 
Recently, we have come back to the development of coding 
free RM under the banner of SRM = Strict Reverse 
Mathematics. Our initial publication on SRM has appeared in 
[Fr09]. Also see the abstract [Fr09a].   
 
This initial development of SRM is focused on arithmetic 
(integers and finite sets and finite sequences of 
integers), and provides strictly mathematical assertions 
that generate the bounded induction scheme. Integer 
exponentiation is also investigated in this context, both 
as an additional principle, and as a derived construction 
(geometric progressions).  
 
Thus SRM can suitably operate with robustness at a level 
considerably lower than RCA0. This promises to refine the 
reverse mathematics idea to analyze the considerable range 
of interesting mathematics that is already provable in RCA0 
when suitably formalized.  
 
An intermediate approach is to weaken the base theory RCA0 
to RCA0*. Here we drop Σ01 induction in favor of the weaker 
Σ00 induction. See [Si99,09], p. 410-411.  
 
We believe that SRM (strict reverse mathematics), which 
aims to remove coding entirely, is the appropriate vehicle 
for greatly expanding the scope of RM.   
 
For the convenience of the reader, we now present the 
axioms of our now standard RM systems RCA0, WKL0, ACA0, ATR0, 
and Π1

1-CA0. Of course, these are entirely unsuitable for 
our new SRM. 
 
The language is two sorted, with variables over natural 
numbers and variables over subsets of N. We use 0,S,+,•,<,= 
on sort N, and ∈ between natural numbers and sets of 
natural numbers.  
 
A formula is Σ01 (Π0

1) if it begins with an existential 
(universal) numerical quantifier, and is followed by a 
formula with only bounded quantifiers (using <).  
 
A formula is Π1

1 if it begins with a universal set 
quantifier, followed by a formula with no set quantifiers.   
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The axioms of RCA0 are  
 
i. Basics. ¬S(n) = 0, S(n) = S(m) → n = m, n + 0 = n, n + 
S(m) = S(n + m), n • 0 = 0, n • S(m) = (n • m) + n. n < m ↔ 
(∃r)(n + S(r) = m).  
ii. Σ01 induction. ϕ[n/0] ∧ (∀n)(ϕ → ϕ[n/S(n)]) → ϕ, where 
ϕ is Σ01. 
iii. Δ01 comprehension. (∀n)(ϕ ↔ ψ) → (∃A)(∀n)(n ∈ A ↔ 
ϕ), where ϕ is Σ01, ψ is Π0

1, and A is not free in ϕ. 
 
The axioms of WKL0 are RCA0 together with "every infinite 
tree of finite sequences of 0's and 1's has an infinite 
path" suitably coded in RCA0.  
 
The axioms of ACA0 are  
 
i. Basics. See RCA0. 
ii. Set induction. 0 ∈ A ∧ (∀n)(n ∈ A → S(n) ∈ A) → n ∈ 
A. 
iii. Arithmetic comprehension. (∃A)(∀n)(n ∈ A ↔ ϕ), where 
ϕ has no set quantifiers, and A is not in ϕ.  
 
The axioms of ATR0 are ACA0 together with "transfinite 
recursion can be performed along any well ordering using 
any arithmetic formula" suitably coded in ACA0. 
 
The axioms of Π1

1-CA0 are  
 
i. Basics. See RCA0. 
ii. Set induction. See ACA0. 
iii. Π1

1 comprehension. (∃A)(∀n)(n ∈ A ↔ ϕ), where ϕ is 
Π1

1, and A is not free in ϕ. 
 
0.5. Incompleteness in Exponential Function Arithmetic. 
 
Exponential Function Arithmetic, or EFA, is a fragment of 
Peano Arithmetic (PA) that we explicitly named, identified, 
and used, in [Fr78], p. 2, and continue to use in [Fr78], 
p. 23, [Fr79], p. 6, [Fr80a], p. 2, to this day.  
 
The language of PA consists of 0,S,+,•,=. The axioms of PA 
are  
 
1. ¬Sx = 0, Sx = Sy → x = y. 
2. x + 0 = x, x + Sy = S(x + y). 
3. x • 0 = 0, x • Sy = (x • y) + x. 
4. Induction for all formulas in the language of PA. 
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The language of EFA consists of 0,S,+,•,2^,≤,=. The axioms 
of EFA are  
 
1. The axioms of Q. (See section 0.1A). 
2. 2^0 = 1, 2^Sy = 2^y + 2^y. 
3. Induction for all bounded formulas in the language of 
EFA. 
 
In bounded formulas, all quantifiers must be bounded (≤) to 
terms not mentioning the variable being bounded.  
 
Technically speaking, EFA is not a fragment of PA since its 
language is not even a fragment of the language of PA. 
However, PA is a definitional extension of EFA whose 
symbols of PA are unmodified.  
 
We focused on EFA long ago because it is the most obvious 
natural weak fragment of PA for which finite sequence 
coding provably behaves as expected. 
 
EFA is called EA, or elementary arithmetic, in [Av03], 
where a major conjecture of mine is discussed in great 
detail. He writes  
 
"From the point of view of finitary number theory and 
combinatorics, EA turns out to be surprisingly robust. So 
much so that Harvey Friedman has made the following Grand 
conjecture: Every theorem published in the Annals of 
Mathematics whose statement involves only finitary 
mathematical objects (i.e., what logicians call an 
arithmetical statement) can be proved in elementary 
arithmetic." 
 
A special case of this conjecture is that Fermat's Last 
Theorem is provable in EFA. However, we are a long way from 
establishing this, although there is an attack on showing 
that FLT is provable in PA (see [Mac11]). However, [Mac11] 
explicitly denies confidence that FLT is provable in EFA. 
Also see [Mc10].  
 
EFA is essentially identical to what is now called IΣ0(exp) 
(see [HP93]). It is synonymous with IΣ0 + exp. EFA is more 
convenient than IΣ0 + exp, in the sense that in order to 
formulate the latter, we need a suitable formalization of 
exp in IΣ0 - which is cumbersome. 
 
EFA is known to be finitely axiomatizable. This is credited 
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to J. Paris (see [HP93], p. 366). 
 
We are unaware of any presentation of EFA earlier than our 
[Fr78]. The system IΣ0 = IΔ0 = bounded arithmetic (which we 
like to call PFA for polynomial function arithmetic), was 
introduced much earlier in [Pa71]. Here PFA is Q is 
extended with the Δ0 induction scheme. It is open whether 
PFA is finitely axiomatizable. This question has been seen 
to be related to issues in computational complexity theory 
(see [HP93]).   
 
Here is the key property of EFA that is behind the 
incompleteness from EFA that we discuss. 
 
We write 2[y](x) for 2^...^2^x, where there are y 2's. We 
take 2[0](x) = x.  
 
THEOREM 0.5.1. Suppose EFA proves a sentence of the form 
(∀x1,...,xn)(∃y1,...,ym)(ϕ), where ϕ is bounded. There exists 
r such that (∀x1,...,xn)(∃y1,...,ym < 
2[r](max(x1,...,xn)))(ϕ). Furthermore, there exists r such 
that EFA proves (∀x1,...,xn)(∃y1,...,ym < 
2[r](max(x1,...,xn)))(ϕ). 
 
This is an instance of what is known as Parikh's theorem. 
See [HP93], Theorem 1.4, p. 272. 
 
The best known example of a finite theorem that is not 
provable in EFA but is provable just beyond EFA, is the 
ordinary finite Ramsey theorem. We give two standard forms 
of this theorem.  
 
FINITE RAMSEY THEOREM 1. For all k,p,r ≥ 1 there exists n so 
large that the following holds. In any coloring of the 
unordered k tuples from {1,...,n} using p colors, there is 
an r element subset of {1,...,n} whose unordered k tuples 
have the same color.  
 
FINITE RAMSEY THEOREM 2. For all k,p,r ≥ 1 there exists n so 
large that the following holds. For all f:{1,...,n}k → 
{1,...,p}, there exists S ⊆ {1,...,n} of cardinality r, 
such that for any x,y ∈ Sk of the same order type, f(x) = 
f(y).  
 
These two formulations are easily proved to be equivalent 
in EFA.  
 
There has been considerable work on upper and lower bounds 
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for these statements. For our purposes, we need only the 
following.  
 
Let Rk(l) be the least n such that the following holds. In 
any coloring of the unordered k tuples from {1,...,n} using 
2 colors, there is an l element subset of {1,...,n} whose 
unordered k tuples have the same color.  
 
THEOREM 0.5.2. For all k ≥ 4, there is a constant ck, such 
that the following holds. For all l ≥ 1, Rk(l) ≥ 2[k-
2](ckl2)). 
 
For a proof of Theorem 0.5.2, see [GRS80], p. 91-93.  
 
There is ongoing work on sharper estimates of such higher 
Ramsey numbers of various kinds. For example, see [CFS10].  
 
By Theorems 0.5.1 and 0.5.2, we obtain 
 
COROLLARY 0.5.3. The Finite Ramsey Theorem, even for 2 
colors, is not provable in EFA.  
 
The status of the Finite Ramsey Theorem over EFA is 
completely known. It is given by a so called reversal (as 
in reverse mathematics).  
 
Consider the statement  
 

(∀n)(2[n] exists). 
 
This can be formalized in EFA as follows. For all n, there 
is a (coded) finite sequence with n terms, starting with 1, 
where each term is the base 2 exponential of the previous 
term. It is immediate from Theorem 0.5.1 that this sentence 
is not provable in EFA.  
 
We also consider the following obvious generalization. 
 

(∀n,m)(n[m] exists). 
 
THEOREM 0.5.4. EFA proves the equivalence of the following. 
i. Finite Ramsey Theorem. 
ii. Finite Ramsey Theorem for p = 2. 
iii. (∀n)(2[n] exists). 
iv. (∀n,m)(n[m] exists). 
 
n[m] is often referred to as the superexponential. 
Accordingly, we can define the system SEFA = 
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superexponential function arithmetic, as follows.  
 
The language of SEFA consists of 0,S,+,•,2^,2^^,≤. The 
axioms of SEFA are  
 
1. The axioms of EFA. 
2. 2^^0 = 1, 2^^Sy = 2^(2^^y). 
3. Induction for all bounded formulas in the language of 
SEFA.  
 
SEFA has the finite sequence coding of EFA. This can be 
used to treat the obvious generalization, n^^m.  
 
THEOREM 0.5.5. SEFA proves the Finite Ramsey Theorem. SEFA 
and EFA + (∀n)(2[n] exists) prove the same sentences from 
L(EFA). 
 
There is a very attractive weakening of the Finite Ramsey 
Theorem, which we call the Adjacent Ramsey Theorem.  
 
THEOREM 0.5.6. Adjacent Ramsey Theorem. For all k,p ≥ 1 
there exists t so large that the following holds. For all 
f:{1,...,t}k → {1,...,p}, there exist 1 ≤ x1 < ... < xk+1 ≤ t 
such that f(x1,...,xk) = f(x2,...,xk+1). 
 
We have shown that this behaves like the Finite Ramsey 
Theorem. We have also shown that for p = 2, we can set t = 
2k+1. [Fr08], [Fr10a]. 
 
THEOREM 0.5.7. EFA proves the equivalence of the following. 
i. Adjacent Ramsey Theorem. 
ii. (∀n)(2[n] exists). 
iii. (∀n,m)(n[m] exists). 
 
We became aware of work that is pretty close to the 
Adjacent Ramsey Theorem, again with iterated exponential 
lower bounds - that predates our work. See [DLR95].  
 
A sketch of our work appears in [Fr99b], [Fr10a]. A full 
self contained manuscript will appear elsewhere. 
 
0.6. Incompleteness in Primitive Recursive Arithmetic, 
Single Quantifier Arithmetic, RCA0, and WKL0. 
 
This level of incompleteness is unusually rich, and we 
organize the discussion as follows. 
 
0.6A. Preliminaries.  
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0.6B. Sequences of Vectors. 
0.6C. Walks in Nk. 
0.6D. Hilbert's Basis Theorem. 
0.6E. Sequences of Algebraic Sets. 
0.6F. Relatively Large Ramsey Theorem for Pairs. 
 
0.6A. Preliminaries.  
 
PRA (primitive recursive arithmetic), IΣ1 (single quantifier 
arithmetic), RCA0 (our base theory for Reverse Mathematics), 
and WKL0 (another of our theories for Reverse Mathematics), 
are well known systems that represent the same "level", in 
a sense made explicit below.  
 
PA = Peano arithmetic, is most commonly formulated in the 
language 0,S,+,•,=, with the following axioms. 
 
1. ¬Sx = 0. 
2. Sx = Sy → x = y. 
3. x+0 = x, x+Sy = S(x+y). 
4. x•0 = 0, x•Sy = x•y + x. 
5. Induction for all formulas in L(PA). 
 
The Σn (Πn) formulas are the formulas which begin with an 
existential (universal) quantifier, followed by at most n-1 
quantifiers, followed by a bounded formula.  
 
IΣn (IΠn) denotes the fragment of PA based on induction for 
Σn (IΠn) formulas.  
 
There is a fair amount of robustness here. For instance, we 
can allow blocks of like quantifiers in the definition of 
Σn,(Πn) and we get the same fragments of PA.  
 
It is well known that for n ≥ 1, IΣn and IΠn are equivalent. 
See [HP93], p. 63.   
 
By single quantifier arithmetic, we will mean IΣ1 ∪ IΠ1, 
which is equivalent to IΣ1.  
 
Another important system is PRA = primitive recursive 
arithmetic. The language of PRA includes 0,S, and symbols 
for every primitive recursive function (the primitive 
recursive function symbols). The axioms of PRA are as 
follows. 
 
1. ¬Sx = 0. 
2. Sx = Sy → x = y. 
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3. The primitive recursive defining equations. 
4. Induction for all quantifier free formulas of PRA. 
 
Some authors work with a quantifier free version of PRA. 
See, e.g., [Min73].  
 
The systems RCA0 and WKL0 are from Reverse Mathematics. See 
[Fr74], [Fr76], [Si99,09], and the end of section 0.4.  
 
We will use the following proof theoretic information about 
the systems PRA, IΣ1, RCA0, and WKL0.  
 
THEOREM 0.6A.1. PRA proves induction for all bounded 
formulas of PRA. WKL0 proves RCA0 proves IΣ1 proves PRA. The 
implications are strict. IΣ1, RCA0, WKL0 prove the same 
arithmetic sentences. IΣ1, PRA prove the same Π0

2 sentences. 
IΣ1 and RCA0 prove the same arithmetic sentences. RCA0 and 
WKL0 prove the same Π1

1 sentences. These results are 
provable in SEFA. If we remove the second "PRA", then these 
results are provable in EFA.  
 
For proofs, see [Si99,09], Corollary IX.1.11, Corollary 
IX.2.7, and Theorem IX.3.16. The proof of the fifth claim, 
involving IΣ1 and PRA, is model theoretic, not formalizable 
in weak fragments of arithmetic. However, it has been 
proved in SEFA. See the last paragraph before section 0.1.   
 
Recall that bounded quantifiers are allowed after the 
unbounded existential quantifier in Π0

2 formulas. In Π1
1 

sentences, we start with one universal set quantifier, 
followed by an arithmetic formula. 
 
We also need the following relationship between RCA0, WKL0, 
and the ordinal ωω. 
 
THEOREM 0.6A.2. Let T be a primitive recursively given 
finite sequence tree. If RCA0 proves that T is well founded, 
then there exists n ∈ N and a primitive recursive function 
h such that RCA0 proves that h is a map from vertices of T 
into notations < ωn, such that if v' extends v in T, then 
h(v') < h(v). The same holds for WKL0. These results are 
provable in SEFA. 
 
Proof: This can be established through the use of IΣ1(F), 
which is IΣ1 extended by a single unary function symbol F. 
The induction allows use of F. This system has a natural 
proof theoretic analysis. The last claim follows from the 
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fact that WKL0 and RCA0 prove the same Π1
1 sentences, due to 

L. Harrington. See [Si99,09], p. 372. QED 
 
We note that the h in Theorem 0.6A.2 can be chosen to be 
elementary recursive by an observation in [Ara98].  
 
We define the strict Π1

1 sentences to be sentences asserting 
the well foundedness of a particular primitive recursively 
given finite sequence tree.  
 
We obtain the following from Theorem 0.6A.2. 
 
THEOREM 0.6A.3. The following are provably equivalent in 
RCA0. 
i. Every strict Π1

1 sentence provable in RCA0 is true. 
ii. Every strict Π1

1 sentence provable in WKL0 is true. 
iii. ωω is well ordered. 
 
THEOREM 0.6A.4. Suppose PRA proves a sentence 
(∀x1,...,xn)(∃y1,...,ym)(ϕ), where ϕ is bounded. There is a 
primitive recursive function f such that 
(∀x1,...,xn)(∃y1,...,ym < f(x1,...,xn))(ϕ). Furthermore, 
there are primitive recursive function symbols F1,...,Fm 
such that PRA proves 
ϕ(x1,...,xn,F1(x1,...,xn),...,Fm(x1,...,xn)). The same is true 
of IΣ1, RCA0, and WKL0. These results are provable in SEFA. 
 
Proof: Since PRA has a universal axiomatization, we can 
obtain this using Herbrand's theorem (in a sharper form, 
with < replaced by =). Or we can apply Parikh's theorem to 
each finite fragment of PRA. See [HP93], Theorem 1.4, p. 
272, and [Sie91]. QED 
 
Note that Theorems 0.6A.1 and 0.6A.4 are closely related. 
They are used in the same way. Thus, if a Π0

2 sentence has 
an associated growth rate higher than all primitive 
recursive functions, then we know that it is not provable 
in PRA, or even WKL0, by Theorem 0.6A.4.  
 
0.6B. Sequences of Vectors. 
 
We now consider termination of lexicographic descent in the 
natural numbers.  
 
For k ≥ 1, x,y ∈ Nk, write x <lex y if and only if at the 
first coordinate at which x,y differ, x is less than y. 
 
THEOREM 0.6B.1. Every sequence from Nk that is decreasing in 
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the lex ordering terminates. 
 
Note that Theorem 0.6B.1 is a strict Π1

1 sentence. Its 
status is well known over the base theory, RCA0, of reverse 
mathematics.  
 
THEOREM 0.6B.2. For each fixed k, Theorem 0.6B.1 is 
provable in RCA0. The following are provably equivalent in 
RCA0. 
i. Theorem 0.6B.1. 
ii. ωω is well ordered. 
 
Theorem 0.6B.2 follows from the identification of each ωk 
with the lexicographic ordering on Nk. Use the 
straightforward provability in RCA0 of (∀k)(ωk is well 
ordered → ωk+1 is well ordered). 
 
There is an important sharper form of Theorem 0.6B.1. For 
x,y ∈ Nk, write x ≤c y if and only if for all i, xi ≤ yi. 
Here "c" means "coordinatewise". 
 
THEOREM 0.6B.3. Every infinite sequence from Nk has a finite 
initial segment such that every term is ≥c some term in that 
finite initial segment.  
 
The equivalence of Theorem 0.6B.3 with ωω is well ordered is 
more delicate.  
 
THEOREM 0.6B.4. For each fixed k, Theorems 0.6B.1 and 
0.6B.3 are provable in RCA0. The following are provably 
equivalent in RCA0. 
i. Theorem 0.6B.1. 
ii. Theorem 0.6B.3. 
iii. ωω is well ordered. 
The first claim is provable in SEFA. 
 
Proof: We have already seen that for each fixed k, Theorem 
0.6B.1 is provable in RCA0. It is obvious that Theorem 
0.6B.3 implies Theorem 0.6B.1 in RCA0.  
 
We first show that for each k, RCA0 proves that every 
infinite sequence from Nk has an infinite increasing (≤c) 
subsequence. This is proved by induction on k. The case k = 
1 asserts that every infinite sequence from N has an 
infinite increasing (≤) subsequence. If the sequence is 
bounded, then it has a constant infinite subsequence. 
Otherwise, use primitive recursion.  
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Suppose RCA0 proves this for k. Now let x1,x2,... ∈ Nk+1. 
Consider the infinite sequence of first terms, take an 
infinite increasing (≤) subsequence, and then chop the first 
terms off, forming y1,y2,... ∈ Nk. By the induction 
hypothesis, we can prove that the y's have an infinite 
increasing (≤c) subsequence, which immediately gives rise to 
an infinite increasing (≤c) subsequence of the x's.  
 
We claim that RCA0 + ωω is well ordered proves  
 

for all k, for every x1,x2,... from Nk,  
there exists i < j such that xi ≤c xj 

 
because for each fixed k, the above is strict Π1

1, and we 
can apply Theorem 0.6A.3. (The RCA0 proofs for each k are a 
primitive recursive function of k).   
 
Now the above proves Theorem 0.6B.3 by the following 
argument.  
Let x1,x2,... ∈ Nk be such that for all n there exists xm 
that is not ≥c any of x1,...,xn. By primitive recursion, 
build an infinite subsequence y1,y2,... of the x's such that 
no yi is ≥c any of y1,...,yi-1. Choose i < j such that yi ≤c 
yj. This is a contradiction.  
 
Hence iii → ii → i. We have already seen that i → iii. QED   
 
Theorem 0.6B.4 was first proved in [Si88] using 
combinatorial methods. Note that here we have avoiding the 
combinatorial argument in favor of proof theory.  
 
We now discuss finite forms of Theorems 0.6B.1 and (a weak 
form of) 0.6B.3. These are Π0

2 sentences, thus falling 
within the scope of PRA and IΣ1. 
 
THEOREM 0.6B.5. For all k ≥ 1 there is a longest sequence x1 
>lex x2 >lex ... >lex xn from Nk such that each max(xi) ≤ i. 
 
THEOREM 0.6B.6. For all k there exists n such that the 
following holds. For all x1,...,xn from Nk such that each 
max(xb) ≤ b, there exists 1 ≤ i < j ≤ n such that xi ≤c xj.  
 
It is also natural to add a parameter as follows. 
 
THEOREM 0.6B.7. For all k ≥ 1 and p ≥ 0, there is a longest 
sequence x1 >lex x2 >lex ... >lex xn from Nk such that each 
max(xi) ≤ i+p. 
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THEOREM 0.6B.8. For all k ≥ 1 and p ≥ 0, there exists n such 
that the following holds. For all x1,...,xn from Nk such 
that each max(xb) ≤ b+p, there exists 1 ≤ i < j ≤ n such 
that xi ≤c xj.  
 
THEOREM 0.6B.10. EFA proves 0.6B.8 ↔ 0.6B.6 → 0.6B.7 ↔ 
0.6B.5. 
 
Proof: This is easily seen by raising the dimension. E.g., 
to derive Theorem 0.6B.8, apply Theorem 0.6B.6 in Nk+p to 
(0,...,0;1,...,0),(0,...,0;0,1,...,0),...,(0,...,0;0,...,1)
, 
(x1;0,...,0),(x2;0,...,0),...,(xn;0,...,0). QED 
 
We show below that → can be replaced by ↔. 
 
THEOREM 0.6B.11. For each fixed k ≥ 1, Theorem 0.6B.8 is 
provable in WKL0, and hence in PRA. For fixed k ≥ 1, Theorem 
0.6B.8 has a primitive recursive witness function (of p). 
This applies to Theorems 0.6B.5 - 0.6B.7. The first claim 
is provable in SEFA. 
 
Proof: We argue in WKL0. Fix k,p, and form the appropriate 
finitely branching tree. By Theorem 0.6B.3, there is no 
infinite path through this tree. Hence this tree is finite. 
QED 
 
To pin down the status of Theorems 0.6B.5 - 0.6B.8, we need 
the analog of Theorem 0.6A.3 for Π0

2 sentences. This is 
given through a formalization of the primitive recursive 
functions in EFA. 
 
Now EFA cannot treat an arbitrary primitive recursive 
function, because they grow too fast - see Theorem 0.5.1. 
So the primitive recursive functions are instead treated in 
EFA as partial recursive functions given by specific 
algorithms. 
 
We work in EFA. We assume that each primitive recursive 
function symbol comes with an associated primitive 
recursive derivation, using terms rather than projection 
functions and composition introduction.  
 
We let PRCT be the class of closed terms in this language. 
We define the all important reduction function RF:PRCT → 
PRCT as follows. Let t ∈ PRCT. Let s be the leftmost 
subterm of t which has exactly one occurrence of a 
primitive recursive function symbol F other than S. Replace 
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s by its expansion given by the derivation associated with 
F. If there is no such subterm of t, set RF(t) = t. 
 
Let F be a primitive recursive function symbol. We 
associate the following algorithm ALG(F). Given p1,...,pk ≥ 
0, apply RF successively starting at F(p1*,...,pk*). Stop 
when we arrive at a fixed point of RF, say q*. Output q.  
 
From the point of view of EFA, ALG(F) defines a k-ary 
partial recursive function, where the arity of F is k.  
 
We can now state the analog of Theorem 0.6A.3.  
 
THEOREM 0.6B.12. The following are provably equivalent in 
SEFA. 
i. 1-Con(PRA). 
ii. 1-Con(WKL0). 
iii. Every primitive recursive definition defines a total 
function (i.e., each ALG(F) computes a total function). 
 
Proof: Here i ↔ ii is by Theorem 0.6A.1. It is 
straightforward in EFA to construct, for each primitive 
recursive function symbol F, a proof in WKL0 that ALG(F) is 
total. It is easiest to make use of Σ01 induction in WKL0.  
Hence ii → iii. Using iii, first obtain super 
exponentiation, and hence cut elimination. Then use the 
primitive recursive semantics of cut free proofs in PRA to 
obtain i. QED  
 
THEOREM 0.6B.13. SEFA proves that for each fixed k, 
Theorems 0.6B.5 - 0.6B.8 are provable in PRA. The following 
are provably equivalent in SEFA. 
i. Any of Theorems 0.6B.5 - 0.6B.8. 
ii. Every primitive recursive definition defines a total 
function. 
iii. 1-Con(PRA). 
 
Proof: For the first claim, fix k. Prove Theorem 0.6B.8 by 
assuming that it is false, constructing an associated 
finitely branching tree, taking an infinite path, and 
applying Theorem 0.6A.7 to get a contradiction. This proves 
the first claim with PRA replaced by WKL0. Now apply Theorem 
0.6A.1. From the first claim, we obtain iii → i. For ii → 
iii, see Theorem 0.6B.12.  
 
For i → ii, we argue in EFA. We have to be careful to avoid 
use of Σ01 induction. Assume first that Theorem 0.6B.7 
holds.  
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We need to handle the reduction process RFCT:PRCT → PRCT in 
EFA.  
 
For any t ∈ PRCT, we can use a numerical measure #(t) 
computed as follows. Let r be the largest depth of the 
primitive recursive function symbols appearing in t, other 
than S. Form the length r sequence, where the i-th term, 1 ≤ 
i ≤ r, is the number of occurrences in t of primitive 
recursive function symbols whose derivation has depth r-
i+1.  
 
It is clear that if t is not a fixed point of RFCT, then 
#(t) >lex #(RF(t)). We can almost use Theorem 0.6B.7 to show 
that iteration of RFCT comes to a fixed point. However, the 
growth in the max's of the #'s is greater than 1. 
Nevertheless, the growth is at most a constant, for each 
ALG(F), that depends only on the derivation of F. Hence we 
can Theorem 0.6B.7, by raising the dimension, and using 
dummy variables.  
 
Also by raising the dimension, it is easily seen that 
Theorem 0.6B.6 implies Theorem 0.6B.7. Thus we obtain ii → 
i. QED  
 
0.6C. Walks in Nk. 
 
A walk in Nk is a finite or infinite sequence in Nk such 
that each successive vector is "close" to the preceding 
vector.  
 
There are several interesting notions of "close" that we 
can use. We restrict attention to only these four: 
 
1. The Euclidean distance |x-y|2 is at most 1.  
2. The Euclidean distance |x-y|2 is at most 1.5.  
3. The Euclidean distance |x-y|2 is at most 2.   
4. The sup norm distance |x-y|∞ is at most 1.  
 
These all have combinatorial equivalents that are easier to 
think about for our purposes. 
 
1. At most one coordinate is changed, and it is changed by 
1. 
2. At most two coordinates are changed, and they are 
changed by 1.  
3. Either no change, or one coordinate is changed by 1 or 
2, or two coordinates are each changed by 1.  
4. All coordinates are changed by at most 1.  
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Recall the definition of ≤c in Nk. We can think of x ≤c y as 
"x points outward to y".  
 
Let W1,W2,... be a walk in Nk. We look for i < j such that Wi 
≤c Wj.  
 
THEOREM 0.6C.1. For all x ∈ Nk, in every sufficiently long 
walk W in Nk starting with x, there exists i < j such that 
Wi ≤c Wj. Here we can use any of 1-4. If we use 1), then a 
walk of length |x|1 + k + 1 is sufficient. 
 
Proof: This is proved the same way that Theorem 0.6B.8 was 
proved using Theorem 0.6B.3. For the final claim, note that 
we cannot keep going down for that long. Hence there exists 
i < j such that the i-th and (i+1)-st terms are the same, 
or the former goes up to the latter, according to 1. QED  
 
Note that the weakest of 1-4, except for the trivial 1), is 
2). Hence we now focus on 2). 
 
We now develop lower bounds for the functions f1,f2,...:Z+ → 
Z+ given by  
 
fk(n) = the of terms in the longest walk (n,0,...,0) = 
x1,x2,...,xr ∈ Nk, such that for no i < j is x ≤c xj. (Here 
we take the length of a walk as the number of terms, r). 
 
This particular definition of fk(n) is used for convenience. 
Note that any longest such walk must have xr = (0,...,0).   
 
First consider the case k = 2. Clearly for all n ≥ 1, f2(n) 
≥ 2n, by looking at the walk 
 
(n,0) 
... 
(0,n) 
(0,n-1) 
... 
(0,0) 
 
We now develop a lower bound on fk+2(n) in terms of fk.  
fk+2(1) ≥ 2.  
 
Now consider the following walk in Nk+2, which is divided 
into n blocks. In the i-th block, fkfk...fk(1) appears, 
where there are i fk's.  
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(n,0,...,0) 
(n-1,1,1,...,0) 
... 
(n-1,fk(1),0,...,0) 
(n-2,fk(1),0...,1) 
... 
(n-2,0,...,0,fkfk(1)) 
(n-3,1,...,0,fkfk(1)) 
... 
(n-3,fkfkfk(1),0,...,0) 
... 
(0,...,0,fkfk...fk(1)), or (0,fkfk...fk(1),0,...,0) 
... 
(0,...,0) 
 
where there are n fk's in the second to last displayed 
tuple. 
 
The first block starts with (n-1,1,1,...,0). It walks from 
(1,0,...,0) to (0,...,0) in dimension k, for fk(1) steps, 
using coordinates 3 through k+2. Meanwhile, the first term 
stays unchanged at n-1, and the second term counts from 1 
to fk(1).   
 
We continue in this way, creating n blocks.  
 
In this walk, no xi is ≤c any later xj. Hence fk+2(n) ≥ 
fkfk...fk(1), where k,n ≥ 1, and there are n fk's.  
 
Note that  
 
f2(n) ≥ 2n, fk+2(1) ≥ 2, fk+2(n) ≥ fkfk...fk(1).  
 
It now follows immediately that f2k(n) ≥ Ak(n), k,n ≥ 1. See 
the definition of the Ak, k ≥ 1, just before Theorem 0.7.10. 
 
From these considerations, and from Theorem 06B.13, we 
obtain the following.  
 
THEOREM 0.6C.2. For each fixed k, Theorem 0.6C.1 is 
provable in PRA. EFA + 1-Con(PRA) proves Theorem 0.6C.1.   
 
THEOREM 0.6C.5. SEFA proves that for each fixed k, Theorem 
0.6C.2 is provable in PRA. The following are provably 
equivalent in SEFA. 
i. Theorem 0.6C.1. 
ii. Theorem 0.6C.2. 
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iii. Every primitive recursive definition defines a total 
function. 
iv. 1-Con(PRA). 
 
Here 1-Con(T) means T is  1-consistent; i.e., every Σ01 
sentence provable in T is true. 
 
0.6D. Hilbert's Basis Theorem. 
 
We now come to a discussion of concrete formulations of the 
Hilbert basis theorem for polynomial rings in several 
variables over fields.  
 
THEOREM 0.6D.1. HBT (Hilbert's Basis Theorem). Let P1,P2,... 
be an infinite sequence of polynomials from the polynomial 
ring in k variables over a countable field. There exists n 
such that each Pi is in the ideal generated by P1,P2,...,Pn. 
 
Here a countable field in RCA0 consists of operations 
0,1,+,-,•,-1 obeying the field axioms, on a domain which is 
a subset of ω. 
 
Let us review a proof of the above concrete strict Π1

1 form 
of HBT. 
 
Order the monomials in k variables lexicographically. First 
let Q1,Q2, ... enumerate all polynomials in the ideal 
generated by the P’s. For each i, look at the leading 
monomial Mi of Qi. 
 
Apply Theorem 0.6B.3 to the sequence M1,M2,..., obtaining n 
such that all M’s are multiples of at least one of M1,..., 
Mn. This gives us n such that the leading coefficient of 
every Qi is a multiple of the leading coefficient of at 
least one of Q1,...,Qn. Then every Qi is ideal generated by 
Q1,...,Qn, using iterated division with remainder. 
 
From this sketch, and by looking at monomial ideals, we see 
the following. 
 
LEMMA 0.6D.2. RCA0 proves 0.6B.3 → HBT → 0.6B.1. In fact, 
this implication works for HBT over the two element field. 
We write this special case as HBT(2).  
 
THEOREM 0.6D.3. HBT is provable in RCA0 for each fixed k. 
RCA0 proves the equivalence of  
i. HBT.  
ii. HBT(2). 
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ii. ωω is well ordered. 
 
This is obtained immediately from Theorem 0.6B.2 and Lemma 
0.6D.2.  
 
Theorem 0.6D.3 was proved in [Si88].  
 
We also have the following finite form of HBT.  
 
THEOREM 0.6D.4. FHBT (Finite Hilbert's Basis Theorem). For 
each k ≥ 1 there exists n so large that the following holds. 
Let F be a countable field. Let P1,P2,...Pn be polynomials 
in k variables with coefficients from F. Assume that the 
degree of each Pi is at most i. There exists 1 ≤ i ≤ n such 
that Pi is in the ideal generated by P1,...,Pi-1.  
 
The above result is stronger than expected, in that it has 
a strong uniformity - the integer n depends only on k, and 
not on the field. It is true for all fields F, but we want 
to stay within countable objects.   
 
We also have the form with an additional numerical 
parameter. 
 
THEOREM 0.6D.5. FHBT' (Finite Hilbert's Basis Theorem'). 
For each k ≥ 1 and p ≥ 0, there exists n so large that the 
following holds. Let F be a countable field. Let P1,P2,...Pn 
be polynomials in k variables with coefficients from F. 
Assume that the degree of each Pi is at most i+p. There 
exists 1 ≤ i ≤ n such that Pi is in the ideal generated by 
P1,...,Pi-1.  
 
We sketch a proof of FHBT' in WKL0 + HBT. Fix k,r,p, and 
assume FHBT' is false. Write down the countable field 
axioms, and the infinitely many axioms with infinitely many 
constants asserting that we have polynomials P1,P2,P3,... . 
The number of constants used for each Pi is dictated by the 
bound deg(Pi) ≤ i+p. For each i, assert that Pi is not in 
the ideal generated by P1,...,Pi-1 using infinitely many 
universal axioms. Call this theory T, and let T0 ⊆ T be 
finite. Using the counterexample F,P1,P2,..., we see that T0 
is consistent (with the help of cut elimination in WKL0). 
Hence T is consistent, and has a model. A model of T 
violates HBT.  
 
The statement of FHBT' is not in explicitly Π0

2 form. If F 
is a finite field or the field of rationals, then FHBT and 
FHBT' are in Π0

2 form.  
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THEOREM 0.6D.6. SEFA proves that for each k ≥ 1, FHBT and 
FHBT' for finite fields and the field of rationals is 
provable in PRA. The following are provably equivalent in 
SEFA. 
i. FHBT on any finite field or the rationals.  
ii. FHBT' on any finite field or the rationals. 
iii. Every primitive recursive definition defines a total 
function. 
 
We can put FHBT' in Π0

2 form using the uniform algorithm and 
bounds for ideal membership in polynomial rings over 
fields, from [He26]. For a modern treatment of ideal 
membership, see [As04].                                                                                          
 
Alternatively, note that for fixed k,p, the conclusion 
quantifying over countable fields F is equivalent, over 
WKL0, to a Σ01 sentence, using the formalized completeness 
theorem. This gives us a Π0

2 sentence which appropriately 
strengthens FHBT from the point of view of WKL0.  
 
Using either argument, and applying Theorem 0.6B.11, and 
using monomials, we obtain the following.  
 
THEOREM 0.6D.7. In FHBT', for each k ≥ 1, there is a 
primitive recursive upper bound on n as a function of p. 
There is no universal primitive recursive bound for FHBT or 
FHBT'. The following are provably equivalent in RCA0. 
i. FHBT. 
ii. FHBT'. 
iii. Every primitive recursive definition defines a total 
function. 
 
A proof of the first two claims of Theorem 0.6D.7 has 
appeared in [Soc92].  
 
0.6E. Sequences of Algebraic Sets. 
  
We now consider the following well known consequence of 
HBT: every decreasing chain of algebraic sets is eventually 
constant. We will formulate this directly in terms of 
polynomials.  
 
THEOREM 0.6E.1. Let P1,P2,... be an infinite sequence of 
polynomials from the polynomial ring in k variables over a 
countable field. There exists n such that every 
simultaneous zero of P1,...,Pn is a zero of all P’s. 
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It is somewhat tricky to show that Theorem 0.6E.1 implies ωω 
is well ordered. We cannot just use monomials. Also, this 
cannot be done if the P's represent irreducible algebraic 
sets, by Krull's theorem for chains of prime ideals. So we 
must consider reducible algebraic sets. 
 
Fix the dimension k and an infinite field F. Let T be a 
finite tree with at least one vertex, where every path 
has at most k vertices (excluding the root), and where the 
vertices other than the root are labeled with different 
elements of the field F. We call these k-good trees. 
 
The algebraic meaning of a vertex at the i-th level above 
the root with label c is the equation xi = c (the root is at 
the 0-th level). The algebraic meaning of a path is the 
conjunction of the algebraic meaning of the vertices along 
that path other than the root. The algebraic meaning of the 
tree T is the 
disjunction of the algebraic meanings of the paths of T. 
Take [T] to be this union of intersections. Rewrite this as 
an intersection of unions. Each union is the zero set of a 
polynomial obtained by multiplying the relevant xi-c. [T] 
becomes an algebraic subset of Fk, given by polynomials of 
degree ≤ #T = the number of terminal vertices of T. 
 
We need to have a sufficient criterion for [T] to properly 
contain [T’]. 
 
LEMMA 0.6E.2. Let T,T’ be k-good trees. Suppose T’ is 
obtained from T by adding one or more children to a 
terminal vertex. Or suppose T’ is obtained from T by 
deleting one of the children of a vertex that has at least 
two children (and of course all vertices above the one 
deleted). Then [T] properly contains [T’]. 
 
Now all we have to do is to deal with the combinatorics of 
these two tree operations. 
 
There is a nice way of assigning ordinals < ωk to k-good 
trees. For each terminal node x of height 1 ≤ i ≤ k, assign 
the ordinal ωi-1. Now take the sum of the ordinals assigned 
to the terminal nodes, in decreasing (≥) order. This is 
ord(T). 
 
The two tree operations lower ordinals. Also, ord(T) is 
onto 
the ordinals < ωk. Even more is true and useful. Given α < 
ord(T), there exists T’ obtained from T by successive 



 93 

applications of the two tree operations in some 
combination, such that ord(T’) = α. 
 
We have just provided a way of assigning an algebraic set 
to ordinals < ωk so that if the algebraic set decreases then 
the ordinal lowers. We do require that that the field be 
infinite.  
 
THEOREM 0.6E.3. The following are provably equivalent in 
RCA0. 
i. HBT. 
ii. HBT(2). 
iii. Theorem 0.6E.1. 
iv. Theorem 0.6E.1 for the field of rationals. 
v. ωω is well ordered. 
 
We can also develop a finite form for Theorem 0.6E.1 that 
is analogous to the finite forms discussed above for HBT. 
 
THEOREM 0.6E.4. Let k ≥ 1 and F be a field. There is a bound 
on the length of chains of algebraic sets A1 ⊇ ... ⊇ An in 
Fk, where each Ai is of presentation degree ≤ i. 
Furthermore, the bound can be taken to depend on k only, 
and not on F. 
 
We can show that the witness function for Theorem 0.6E.4 is 
(roughly) at least the witness function for our finite form 
of lex descent using the above way of assigning algebraic 
sets to ordinals (see Theorems 0.6B.5, 0.6B.7). In fact, 
the analog of Theorem 0.6D.7 holds here. 
 
0.6F. Relatively Large Ramsey Theorem for Pairs. 
 
We discuss the Relatively Large Ramsey Theorem in section 
0.8C. [EM81] considers this theorem for pairs.  
 
THEOREM 0.6F.1. Relative Large Ramsey Theorem for Pairs. 
For all p,r there exists n so large that the following 
holds. In any coloring of the unordered pairs from 
{1,...,n} using p colors, there is a relatively large 
subset of {1,...,n} with at least r elements whose 
unordered pairs have the same color.  
 
The following is proved in [EM81]. 
 
THEOREM 0.6F.2. For each p, consider the function fp of r 
that outputs the least n that makes Theorem 0.6F.1 true. 
Then each fp is primitive recursive, and each primitive 
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recursive function is dominated by some fp. 
 
0.7. Incompleteness in Nested Multiply Recursive 
Arithmetic, and Two Quantifier Arithmetic. 
 
The material in this section is taken from [Fr01c], until 
the last four paragraphs. 
 
The well known proof theoretic analysis of IΣn, n ≥ 1, is 
based on the ordinal ω[n+1] = ω^...^ω, a tower of n+1 ω's. 
In particular, the proof theory of IΣ2 is based on the 
ordinal ωω^ω.  
 
Nested multiple recursion on the nonnegative integers is 
given by the scheme 
 

f(x1,...,xk,y1,...,ym) = t(f<x_1,...,x_k(y1,...,ym)) 
 
where 
 
i) f<x_1,...,x_k is the function given by 
 
f<x_1,...,x_k(z1,...,zk,y1,...,ym) = f(z1,...,zk,y1,...,ym) if 
(z1,...,zk) <lex (x1,...,xk); 0 otherwise; 
 
ii) t is any term involving f<x_1,...,x_k, variables 
x1,...,xk,y1,...,ym, the successor function, constants for 
integers, previously defined functions, and IF THEN ELSE 
based on <,=. 
 
The functions generated in this way are called the nested 
multiply recursive functions (on the integers). This is a 
rather robust collection of functions on the integers, 
whose 
definition does not involve ordinal notations. It coincides 
with the <ωω^ω recursive functions, and the <ωω nested 
recursive functions; see [Ros84], pages 93,94, going back 
to 
[Tai61]. For a general treatment of <λ recursive functions 
via descent recursion, see [FSh95]). 
 
Combining this with the proof theory of IΣ2 based on ωω^ω, 
gives the following. 
 
THEOREM 0.7.1. The provably recursive functions of IΣ2 are 
the <ωω^ω recursive functions (via descent recursion, 
[FSh95])), and the nested multiply recursive functions. 
Every Π0

2 sentence provable in IΣ2 has a nested multiply 
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recursive witness function. The first result is provable in 
SEFA. 
 
NMRA (nested multiply recursive arithmetic) is the analog 
of PRA (primitive recursive arithmetic). It extends the 
usual axioms for successor by the defining equations for 
the nested multiply recursive functions, and the induction 
scheme for quantifier free formulas in its language.  
 
THEOREM 0.7.2. IΣ2 and NMRA prove the same Π0

2 sentences. 
The following are provably equivalent over SEFA. 
i. 1-Con(IΣ2). 
ii. 1-Con(NMRA). 
iii. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from ωω^ω stops 
descending.  
These are provable in IΣ3 but not in IΣ2.   
 
Let us start with the following simple problem. 
 
THEOREM 0.7.3. There is a longest finite sequence 
x1,x2,...,xn from {1,2} in which no consecutive block 
xi,...,x2i is a subsequence of any later consecutive block 
xj,...,x2j. 
 
Let us call this property of finite sequences property *. 
 
One can easily show that the maximal length of a sequence 
from {1,2} with property * is 11, and that the only 
examples are 12221111111 and 21112222222.  
 
THEOREM 0.7.4. There is a longest finite sequence from 
{1,2,3} with property *. 
 
Since the above is a Σ01 statement, it is provable in 
extremely weak fragments of arithmetic. However, such a 
proof is not of reasonable size. 
 
The simplest known proof of reasonable size is truly exotic 
compared with the statement; this proof is conducted in Π1

1-
CA0 (see section 0.4). With some considerable trouble, it 
can be replaced with a considerably less exotic proof, of 
reasonable size, that is formalizable in IΣ2. Of course, 
this is still rather exotic compared to the statement. 
 
We sketch the simplest known proof, which uses the Nash 
Williams minimal bad sequence argument, from [NW65], in 
this context. First we shift context to infinite sequences 
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of finite sequences. 
 
THEOREM 0.7.5. Let k ≥ 1 and x1,x2,... be an infinite 
sequence of finite sequences from {1,...,k}. There exists i 
< j such that xi is a subsequence of xj. 
 
Proof: Suppose this is false. Call an infinite sequence bad 
if it is a counterexample. Let x1 be of least length so that 
it starts an infinite bad sequence. Let x2 be of least 
length 
so that x1,x2 starts a bad sequence. Continue in this way, 
getting a “minimal” bad sequence x1,x2,... . There is an 
infinite subsequence xi_1,xi_2,..., all of which start with 
the 
same number. Note that xi_1',xi_2',... is bad, where the 
primes mean “chop off the first term” (no x can be empty). 
Hence x1,...,xi1 -1,xi_1',xi_2',... is also bad. But xi_1' is 
shorter than xi_1, contradicting the choice of xi_1. QED 
 
Proof of Theorem 0.7.4: Suppose there are arbitrarily long 
such. Build the finitely branching tree of such. Let 
x1,x2,... be an infinite branch, which therefore has 
property *. Consider the infinite sequence 
 
x1,x2 
x2,x3,x4 
x3,x4,x5,x6 
... 
 
By Theorem 0.7.5, one is a subsequence of a later one. This 
contradicts property *. QED 
 
Obviously we did not use that there are only three letters. 
 
THEOREM 0.7.6. The Block Subsequence Theorem. For all k ≥ 1, 
there is a longest finite sequence x1,....,xn in k letters 
in which no consecutive block xi,...,x2i is a subsequence of 
a later consecutive block xj,...,x2j. 
 
THEOREM 0.7.7. For each fixed k, the Block Subsequence 
Theorem is provable in IΣ2 and NMRA. This is provable in 
EFA.  
 
Proof: In order to tame the proof of The Block Subsequence 
Theorem, we need to tame Theorem 0.7.5. I.e., we need to 
replace the minimal bad sequence argument with something 
more concrete. 
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The sharpest way to do this is to effectively assign (names 
for) ordinals < ωω^k to finite bad sequences in the partial 
order of finite sequences from {1,...,k+1} under 
subsequence, where if one is extended to another, then the 
corresponding ordinal decreases. This is for each fixed k ≥ 
1. This construction appears in [Si88]. Also see [Has94]. 
 
For fixed k, we now build the tree T of bad finite 
sequences in the sense of the Block Subsequence Theorem for 
{1,...,k+1}. Each bad finite sequence here gives rise to a 
bad sequence in the partial order of finite sequences from 
{1,...,k+1}. Therefore we can assign ordinals < ωω^k to 
vertices in T according to the preceding paragraph.  
 
For each level n of the tree T, we have finitely many 
vertices of that level, whose assigned ordinals are 
α1,...,αp < ωω^k, where p ≥ 0. We define βn to be the ordinal 
ωα_1' + ... + ωα_p', where α1',...,αp' is α1,...,αp put in 
decreasing order.  
 
It is obvious that if βn > 0 then βn+1 < βn. Hence for some 
n, βn = 0. Therefore T is finite, and the Block Sequence 
Theorem is proved.  
 
Note that this proof is carried out in just EFA, together 
with the fact that there is no double exponential time 
computable infinite descending sequence through ωω^k. 
However, the latter is well known to be provable in IΣ2 and 
in NMRA. Or we can prove the latter in IΣ2 and appeal to 
Theorem 0.7.2. If we follow that route, we need SEFA and 
not just EFA. QED   
 
THEOREM 0.7.8. The Block Subsequence Theorem is provable in 
IΣ3. 
 
Proof: We argue in IΣ3. By Theorem 0.7.7, we see that for 
each k, The Block Subsequence Theorem for k is provable in 
IΣ2. Note that for each k, the Block Subsequence Theorem is 
a Σ01 sentence. It is well known that IΣ3 proves 1-Con(IΣ2). 
E.g., see [HP93], Corollary 4.34, p. 108. Hence we have The 
Block Subsequence Theorem. QED  
 
In [Fr01c], it is shown how to reverse this process in 
order to show how descent recursion through ωω^ω can be 
suitably handled in EFA + the block subsequence theorem. 
Hence from Theorems 0.7.1, 0.7.2, we obtain the following. 
 
THEOREM 0.7.9. The Block Subsequence Theorem is provable in 
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IΣ3 but not in NMRA and IΣ2. The witness function for The 
Block Subsequence Theorem dominates all multiply recursive 
functions. The following are provably equivalent in SEFA. 
i. The Block Subsequence Theorem. 
ii. 1-Con(IΣ2). 
iii. 1-Con(NMRA).  
 
To prove this, use Theorems 0.7.1, 0.7.8.  
  
We now return to the block subsequence theorem with 3 
letters. The exotic lower bounds are obtained in [Fr01c].  
 
The construction is rather intricate, and uses a seed that 
we constructed by hand. This seed is a particular sequence 
of length 216 with property *. This sequence α is displayed 
on p. 126 of [Fr01c]. (Actually, its blocks α[i],...,α[2i], 
1 ≤ i ≤ 108, are displayed). It is important that α has the 
following two additional properties from [Fr01c], p. 122. 
 
i. α is of the form u13108. 
ii. For all i ≤ 108, α[i],...,α[2i] has at least one 1.  
 
In [Fr01c], we use a convenient version of the Ackermann 
hierarchy of functions. We define functions A1,A2,... from 
Z+ into Z+ as follows. A1 is doubling. Ak+1(n) = Ak...Ak(1), 
where there are n Ak's.  
 
It is worth noting that Ak(1) = 2, Ak(2) = 4, and Ak(3) goes 
to ∞ as k goes to ∞.  
 
We take the Ackermann function to be given by A(k) = Ak(k). 
 
It is easy to see that all primitive recursive functions 
are eventually dominated by some Ak. In fact, all primitive 
recursive functions are dominated by some Ak at all 
arguments ≥ 3.  
 
In [Fr01c], this seed is extended to a sequence of length > 
A7(184), thus obtaining the following.  
 
THEOREM 0.7.10. The longest length of a sequence from 
{1,2,3} with * is > A7(184). 
 
Randall Dougherty wrote some software that looks for 
sequences from {1,2,3} with * obeying i,ii above, 108 
replaced by much higher even integers. He was able to find 
such a seed with length 187,196; i.e., 108 replaced by 
93,598. Using this seed, we obtain the following in 
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[Fr01c].  
 
THEOREM 0.7.11. The longest length of a sequence from 
{1,2,3} with * is > A7198(158,386). 
 
As for an upper bound, we haven’t worked this out, but are 
confident that A(A(5)) is a crude upper bound. 
 
If we consider 4 letters, then the numbers grow 
considerably more exotic. The maximal length is greater 
than AA...A(1), where there are A(5) A’s. 
 
Let J(k) be the maximal length of a sequence in k letters 
with property *. By Theorem 0.7.9, J grows faster than all 
multiply recursive functions. By comparison, the Ackermann 
function Ak(k) is a puny little doubly recursive function. 
 
The ordinal ωω^ω is also used in [Si88] in connection with 
the Robson basis theorem, involving polynomial rings based 
on noncommuting indeterminates (see [Robs78a], [Robs78b]). 
It is shown there that RBT is provably equivalent to "ωω^ω 
is well ordered" over RCA0. 
 
We close with a brief discussion of braids. The following 
is obtained from [CDW10].  
 
Artin’s braid groups are algebraic structures of 
substantial importance in core mathematics. There has 
emerged a standard ordering on braids, called the Dehornoy 
order.  
 
It is known that the restriction of this standard ordering 
to B+n, which consists of the Garside positive braids, is a 
well ordering of type ω^ωn−2. This allows for the 
development of combinatorial theorems based on this 
restricted ordering, that are provable in IΣ3 but not in 
IΣ2, and whose associated functions are just beyond being 
multiply recursive. This has been accomplished in [CDW10].  
 
0.8. Incompleteness in Peano Arithmetic and ACA0. 
 
This level of incompleteness is unusually rich. We will not 
try to be exhaustive.  
 
We will organize the discussion as follows.  
 
0.8A. Preliminaries. 
0.8B. Goodstein Sequences.  
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0.8C. Relatively Large Ramsey Theorem. 
0.8D. Regressive Ramsey Theorem. 
0.8E. Hercules Hydra Game and Worms. 
0.8F. Regressive Counting Theorems.  
0.8G. The Shift Inequality.  
0.8H. Tree Embedding Theorems. 
 
0.8A. Preliminaries. 
 
The earliest mathematical example of incompleteness in 
Peano Arithmetic (PA) appeared in [Goo44], although it 
wasn't known until [KP82] that the result was not provable 
in PA. The result is the termination of Goodstein 
sequences.  
 
This was followed by an entirely different example in 
[PH77], that is closely related to well known existing 
mathematical developments - i.e., Ramsey theory. This was 
the Paris-Harrington Ramsey theorem.  
 
0.8E is a direct spin-off of 0.8B. 0.8D is a direct spin-
off of 0.8C. 0.8F, 0.8G, and 0.8H break new ground, and 
represent the current state of the art with regard to 
incompleteness at the level of Peano Arithmetic.  
 
0.8H is particularly flexible, and is a specialization to 
the binary case of incompleteness results from far stronger 
systems than PA. These are discussed in sections 0.9 and 
0.10. 
 
The relevant proof theoretic information about PA, ACA0, 
ACA' is as follows. For the definition of ACA', see 
Definition 1.4.1. 
 
THEOREM 0.8A.1. ACA0 is a conservative extension of PA. The 
provably recursive functions of ACA0 and PA are the <∈0 
recursive functions. ACA0 proves WKL0. The following are 
provably equivalent in RCA0. 
i. Π1

1 reflection on ACA0. 
ii. ∈0 is well ordered.  
These are provable in ACA' but not in ACA0. 
The first claim is provable in SEFA.  
 
For a general treatment of <λ recursive functions via 
descent recursion, see [FSh95]). 
 
THEOREM 0.8A.2. The following are provably equivalent in 
SEFA. 
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i. 1-Con(ACA0). 
ii. 1-Con(PA). 
iii. Every primitive recursive (elementary recursive, 
polynomial time) sequence from ∈0 stops descending. 
 
0.8B. Goodstein Sequences. 
 
Let b ≥ 2. We can write any n ≥ 0 uniquely in base b, where 
we think of the exponents as nonnegative integers. Then we 
can write these exponents in base b, again creating perhaps 
more exponents. Of course, numbers < b do not get 
rewritten. This process must end, and we obtain a fully 
base b representation of n. It has the structure of a 
finite tree, and the only integers appearing are b's and 
numbers from [1,b).  
 
Let n ≥ 0. We define the Goodstein sequence starting at n as 
follows.  
 
Firstly, write n completely in base 2. 
Next raise the base to 3, evaluate the number, and subtract 
1. 
Secondly, write this completely in base 3.  
Next raise the base to 4, evaluate the number, and subtract 
1. 
Thirdly, write this completely in base 4. 
... 
 
This process is terminated once 0 is reached. E.g., the 
Goodstein sequence starting at 0 is of length 1. 
 
THEOREM 0.8B.1. Goodstein's Theorem. The Goodstein sequence 
starting at any n ≥ 0 eventually terminates.  
 
This was proved in [Goo44]. The idea is that if we change 
the base to the infinite ordinal ω in all of the complete 
representations that occur starting at n, then the ordinals 
so represented form a strictly decreasing sequence. Hence 
we must have termination.  
 
Let G(n) be the length of the Goodstein sequence starting 
at n. 
 
THEOREM 0.8B.2. Goodstein's Theorem can be proved in ACA' 
but not in PA. It is provably equivalent to 1-Con(PA) over 
EFA. The function G is ∈0 recursive but eventually dominates 
every <∈0 recursive function. 
 



 102 

This was proved in [KP82]. Also see [Ci83] and [BW87].  
 
0.8C. Relatively Large Ramsey Theorem. 
 
Here is the original infinite Ramsey theorem.  
 
THEOREM 0.8C.1. Infinite Ramsey Theorem. In any coloring of 
the unordered k tuples from the positive integers using p 
colors, there is an infinite set of positive integers whose 
unordered k tuples have the same color.  
 
This is proved in [Ra30], and applied there to a 
fundamental decision problem in predicate calculus.  
 
A set of positive integers is said to be relatively large 
if and only if its cardinality is at least its minimum 
element.  
 
THEOREM 0.8C.2. Infinite Relatively Large Ramsey Theorem. 
In any coloring of the unordered k tuples from any infinite 
set of positive integers using p colors, there is a 
relatively large finite set of positive integers with at 
least r elements whose unordered k tuples have the same 
color.  
 
Proof: This is an immediate consequence of the Infinite 
Ramsey Theorem, as observed in [PH77]. QED 
 
THEOREM 0.8C.3. Relatively Large Ramsey Theorem. For all 
k,p,r there exists n so large that the following holds. In 
any coloring of the unordered k tuples from {1,...,n} using 
p colors, there is a relatively large subset of {1,...,n} 
with at least r elements whose unordered k tuples have the 
same color.  
 
Proof: This is proved in [PH77] from Theorem 0.8C.2, using 
a finitely branching infinite tree argument. QED 
 
This should be compared with the Finite Ramsey Theorem 1 of 
section 0.5.  
 
Let PH(k,p,r) be the least n in Theorem 0.8C.3.  
 
THEOREM 0.8C.4. The Relatively Large Ramsey Theorem can be 
proved in ACA' but not in PA. It is provably equivalent to 
1-Con(PA) over EFA. The function PH is ∈0 recursive, but the 
unary function PH(k,k,k) eventually dominates every <∈0 
recursive function. 
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Proof: See [PH77]. QED 
 
Theorem 0.8C.4 has been proved even if we fix p = 2 (i.e., 
for 2 colors). See [LN92], p. 824. 
 
0.8D. Regressive Ramsey Theorem. 
 
The Regressive Ramsey Theorem and its independence from PA 
can be gleaned from [PH77], as it was used as a kind of 
unadvertised intermediate step. The statement is also 
essentially present in [Sc74], but without any discussion 
or results, except to note that it follows from the usual 
infinite Ramsey theorem. However, The Regressive Ramsey 
Theorem was first focused on and perfected in [KM87].  
 
Let N be the set of all nonnegative integers. We write [A]k 
for the set of all unordered k element subsets of A ⊆ N. 
Also, write [n]k for the set of all unordered k element 
subsets of {0,...,n-1}. 
 
We say that f:[N]k → N is regressive if and only if for all 
x ∈ [N]k, if min(x) > 0 then f(x) < min(x).  
 
We say that f is min homogenous on A ⊆ N if and only if for 
all x,y ∈ [A]k, min(x) = min(y) → f(x) = f(y). 
 
THEOREM 0.8D.1. Infinite Regressive Ramsey Theorem. Any 
regressive f:[N]k → N is min homogenous on some infinite A 
⊆ N.  
 
It is well known that RCA0 proves the equivalence of the 
Infinite Ramsey Theorem and the Infinite Regressive Ramsey 
Theorem. They are both equivalent, over RCA0, to ACA'. See 
Definition 1.4.1.  
 
THEOREM 0.8D.2. Finite Regressive Ramsey Theorem. For all 
k,r there exists n so large that the following holds. Every 
regressive f:[n]k → [n] is min homogenous on some r element 
A ⊆ [n].  
 
This is obtained from the Infinite version by a finitely 
branching infinite tree argument, in [KM87]. Also, in 
[KM87], the equivalence of Theorems 0.8C.3 and 0.8D.2 is 
established. Thus we have the following result from [KM87]. 
 
Let KM(k,r) be the least n in Theorem 0.8D.2.  
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THEOREM 0.8D.3. The Finite Regressive Ramsey Theorem can be 
proved in ACA' but not in PA. It is provably equivalent to 
1-Con(PA) over EFA. The function KM is ∈0 recursive, but 
KM(k,k) eventually dominates every <∈0 recursive function. 
 
0.8E. Hercules Hydra Game and Worms. 
 
In [KP82], Goodstein's Theorem (Theorem 0.8B.1) is 
analyzed, and also the closely related Hercules Hydra games 
are introduced and analyzed. 
 
Let T be a hydra, which is simply a finite rooted tree. We 
draw trees with the root at the bottom, and v < v' means 
that v is a parent of v' (equivalently, v' is a child of 
v).  
 
Hercules goes to battle with T1 = T. Hercules first removes 
a leaf, and the hydra reacts by growing new vertices in the 
manner below, creating T2. Then Hercules removes a leaf from 
T2, and the hydra grows new vertices as below, thus creating 
T3. This continues as long as the tree has at least two 
vertices.  
 
Suppose Hercules removes the leaf, x, from Tn, creating the 
temporary tree Tn'. Since we are assuming that Tn has at 
least two vertices, let y be the parent of x. If y is the 
root of Tn', then set Tn+1 = Tn'. Otherwise, let z be the 
parent of y. Let Tn'|≥y be the subtree of T' with root y. 
The hydra grafts n copies of Tn'|≥y on top of z, so that the 
roots of these copies become children of z. This results in 
the tree Tn+1.  
 
By assigning ordinals to trees, [KP82] proves the 
following. 
 
THEOREM 0.8E.1. Every strategy for Hercules in the Hercules 
hydra game is a winning strategy. I.e., the hydra is 
eventually cut down to a single vertex.  
 
[KP82] also proves the following.  
 
THEOREM 0.8E.2. Theorem 0.8E.1 can be proved in ACA' but 
not in PA. It is provably equivalent to 1-Con(PA) over EFA.  
 
In [Bek06], a Worm Principle is introduced and 
investigated. It is a flattened and deterministic version 
of the Hercules Hydra game, and metamathematcal properties 
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corresponding to those of the Hercules Hydra game are 
established.   
 
0.8F. Regressive Counting Theorems. 
 
Our Counting Theorems appear in section 1 of [Fr98].  
 
THEOREM 0.8F.1. Let k,r,p > 0 and F:Nk → Nr obey the 
inequality max(F(x)) ≤ min(x). There exists E ⊆ N, |E| = p, 
such that |F[Ek]| ≤ (kk)p. 
 
We now turn this around so that it asserts a combinatorial 
property of any function F:Nk → Nr.  
 
Let A,B ⊆ Nk, and F: A → Nr. We say that y is a regressive 
value of F on B if and only if there exists x ∈ B such that 
F(x) = y and max(y) < min(x). 
 
THEOREM 0.8F.2. Let k,r,p > 0 and F:Nk → Nr. F has ≤ (kk)p 
regressive values on some Ek ⊆ Nk, |E| = p.  
 
We now state the obvious finite forms of Theorems 0.8F.1 
and 0.8F.2.  
 
THEOREM 0.8F.3. For all k,r,p > 0 there exists n so large 
that the following holds. Let F:{0,...,n-1}k → {0,...,n-1}r 
obey the inequality max(F(x)) ≤ min(x). There exists E ⊆ 
{0,...,n-1}, |E| = p, such that |F[Ek]| ≤ (kk)p.  
 
THEOREM 0.8F.4. For all k,r,p > 0 there exists n so large 
that the following holds. Let F:{0,...,n-1}k → {0,...,n-1}r. 
F has ≤ (kk)p regressive values on some Ek ⊆ {0,...,n-1}k, 
|E| = p.  
 
In [Fr98], equivalences are established between these 
Theorems and the Regressive Ramsey Theorems. We obtain the 
following. 
 
THEOREM 0.8F.5. Theorems 0.8F.1 and 0.8F.2 are provable in 
ACA' but not in ACA0. They are provably equivalent to "∈0 is 
well ordered" over RCA0. These results hold even if we fix r 
= 2 and merely state the existence of constants ck depending 
only on k. 
 
THEOREM 0.8F.6. Theorems 0.7.3 and 0.7.4 are provable in 
ACA' but not in PA. They are provably equivalent to 1-
Con(PA) over PRA. These results hold even if we fix r = 2 



 106 

and merely state the existence of constants ck depending 
only on k. 
 
0.8G. The Shift Inequality. 
 
Recall that Adjacent Ramsey Theory studies the shift 
equation  
 

F(x1,...,xk) = F(x2,...,xk+1) 
 
over N. See the Adjacent Ramsey Theorem (Theorem 0.5.6). We 
saw that Adjacent Ramsey Theory corresponds to EFA in the 
same way that Finite Ramsey Theory does.  
 
We have intensively studied the inequality  
 

F(x1,...,xk) ≤ F(x2,...,xk+1) 
 
over the nonnegative integers, N. This is far more exotic 
than the Adjacent Ramsey Theory, in that it corresponds, 
not to EFA, but to PA. 
 
These results are from [Fr08], [Fr10a].     
 
For x,y ∈ Nk, we write x ≤c y if and only if for all 1 ≤ i ≤ 
k, xi ≤ yi. 
 
THEOREM 0.8G.1. For all k ≥ 1 and f:Nk → N2, there exist 
distinct x1,...,xk+1 such that f(x1,...,xk) ≤c f(x2,...,xk+1). 
 
THEOREM 0.8G.2. For all k ≥ 1 and f:Nk → N, there exist 
distinct x1,...,xk+3 such that f(x1,...,xk) ≤ f(x2,...,xk+1) ≤ 
f(x3,...,xk+2). 
 
THEOREM 0.8G.3. For all k ≥ 1 and f:Nk → N, there exist 
distinct x1,...,xk+1 such that f(x2,...,xk+1)-f(x1,...,xk) ∈ 
2N.  
 
THEOREM 0.8G.4. For all k,r ≥ 1 and f:Nk → Nr, there exist 
distinct x1,...,xk+1 such that f(x1,...,xk) ≤c f(x2,...,xk+1). 
 
THEOREM 0.8G.5. For all k,r,t ≥ 1 and f:Nk → Nr, there exist 
distinct x1,...,xk+t-1 such that f(x1,...,xk) ≤c ... ≤c 
f(xt,...,xt+k-1). 
 
THEOREM 0.8G.6. For all k,r,t ≥ 1 and f:Nk → Nr, there exist 
distinct x1,...,xk+1 such that f(x2,...,xk+1)-f(x1,...,xk) ∈ 
tNr. 
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THEOREM 0.8G.7. Theorems 0.8G.1 - 0.8G.6 are provable in 
ACA' but not in ACA0. They are provably equivalent to "∈0 is 
well ordered" over RCA0.  
 
We can weaken these Theorems by restricting to complexity 
classes. These restrictions are obviously arithmetic 
sentences.  
 
THEOREM 0.8G.8. Theorems 0.8G.1 - 0.8G.6 hold for recursive 
f. These are explicitly Π0

3 sentences. 
 
THEOREM 0.8G.9. Theorems 0.8G.1 - 0.8G.6 hold for primitive 
recursive (elementary recursive, polynomial time in base 2 
representations) f. These are explicitly Π0

2 sentences. 
 
For p ≥ 0, we define p-Con(T) to be the sentence "every Σ0p 
sentence provable in T is true".  
 
THEOREM 0.8G.10. Theorem 0.8G.8 (all forms) is provably 
equivalent to 2-Con(PA) over EFA. Theorem 0.8G.9 (all 
forms) is provably equivalent to 1-Con(PA) over EFA.  
 
We say that f:Nk → Nr is limited if and only if for all x ∈ 
Nk, max(f(x)) ≤ max(x).  
 
THEOREM 0.8G.11. Theorems 0.8G.1 - 0.8G.6 hold for limited 
functions.  
 
THEOREM 0.8G.12. Theorem 0.8G.9 (all forms) is provably 
equivalent to 1-Con(PA) over RCA0. 
 
THEOREM 0.8G.13. Theorems 0.8G.1 - 0.8G.6 hold for limited 
functions defined on some [0,n]k, n depending on the given 
numerical parameters.  
 
Note that Theorem 0.8G.13 (all forms) is explicitly Π0

2.  
 
THEOREM 0.8G.14. Theorem 0.8G.13 (all forms) is provably 
equivalent to 1-Con(PA) over EFA. The associated witness 
function (all forms) is ∈0 recursive but eventually 
dominates all <∈0 recursive functions.  
 
We have applied the shift inequality to polynomials with 
integer coefficients, and to the tangent function. 
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Let n1,...,nk ∈ Z. The translates of (n1,...,nk) in 
coordinate 1 ≤ i ≤ k are the vectors obtained by adding an 
integer to the i-th coordinate.  
 
THEOREM 0.8G.15. The Polynomial Shift Translation Theorem. 
For all polynomials P:Zk → Zk, there exist distinct positive 
integers n1,...,nk+1 such that, in each coordinate, the 
number of translates of (n1,...,nk) which are values of P is 
at most the number of translates of (n2,...,nk+1) which are 
values of P. 
 
THEOREM 0.8G.16. Theorem 0.8G.15 is provable in ACA' but 
not in Peano Arithmetic. It implies 2-Con(PA) over EFA. 
 
A *block* is a subsequence that does not skip over terms. A 
k-block is a block of length k. 
 
Tangent here means the trigonometric tan function. We 
exploit the periodic and surjective properties of tan. 
There have been earlier results of ours and others 
concerning sine. See [Bo07]. 
 
THEOREM 0.8G.17. Let k ≥ 1. Every infinite sequence of 
integers contains an infinite subsequence, where the 
tangents of the products of its k-blocks lie within 1 of 
each other, or go to +-∞.  
 
We make Theorem 0.8G.17 successively more concrete as 
follows. 
 
THEOREM 0.8G.18. Let k,n ≥ 1. Every infinite sequence of 
integers contains a subsequence of length n, where the 
tangents of the products of its k-blocks lie within 1 of 
each other, or are strictly increasing and positive, or are 
strictly decreasing and negative. 
 
THEOREM 0.8G.19. Let k ≥ 1. Every infinite sequence of 
integers contains a subsequence of length k+2, where the 
tangents of the products of its k-blocks lie within 1 of 
each other, or are strictly increasing and positive, or are 
strictly decreasing and negative. 
 
THEOREM 0.8G.20. For k ≥ 1 there exists n such that the 
following holds. Every finite sequence of integers of 
length n obeying |x[i]| ≤ i, i ≥ 1, contains a subsequence 
of length k+2, where the tangents of the products of its k-
blocks lie within 1 of each other, or are strictly 
increasing and positive, or are strictly decreasing and 
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negative. 
 
THEOREM 0.8G.21. Theorems 0.8G.17 - 0.8G.20 are provable in 
ACA' but not in ACA0. Theorems 0.8G.17 - 0.8G.19 are 
provably equivalent to "∈0 is well ordered" over RCA0. 
Theorem 0.8G.20 is provably equivalent to 1-Con(PA) over 
EFA. The witness function associated with Theorem 0.8G.20 
is ∈0 recursive but grows faster than all <∈0 recursive 
functions. 
 
0.8H. Tree Embedding Theorems.  
 
We will postpone a full discussion of Kruskal's Tree 
Theorem until section 0.9B. We refer the reader to section 
0.9B for definitions not given here.  
 
We will consider three immediate consequences of Kruskal's 
Theorem here. We know that these are equivalent. Various 
natural variants can also be seen to be equivalent.  
 
EBTE. Exactly Binary Tree Embedding Theorem.  
TE. Tree Embedding Theorem. 
STE. Structured Tree Embedding Theorem. 
 
These are presented below. STE → TE → EBTE is immediate.  
 
Kruskal's Theorem involves inf preserving embeddings. Here 
we will use only embeddings. Here is the reason behind 
this. 
 
THEOREM 0.8H.1. The following is provable in EFA. If there 
is an embedding from a finite binary tree S into a finite 
binary tree T, then there is an inf preserving embedding 
from S into T. If there is a structure preserving embedding 
from a finite structured binary tree S into a finite 
structured binary tree T, then there is a structure and inf 
preserving embedding from S into T. 
 
Proof: This is well known. Use induction on the sum of the 
number of vertices in S and T. QED  
 
An exactly binary tree is a tree all of whose vertices have 
valence 0 or 2.  
 
In reading the next theorem (and later), note that 
according to the definitions in section 0.9, embeddings 
between finite structured trees are required to preserve 
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structure. However, inf preservation must be explicitly 
stated. 
 
THEOREM 0.8H.2. i. Exactly Binary Tree Embedding Theorem 
(EBTE). In any infinite sequence of exactly binary trees, 
some tree is embeddable into a later tree.  
ii. Tree Embedding Theorem (TE). In any infinite sequence 
of finite trees, some tree is embeddable into a later tree.  
iii. Structured Tree Embedding Theorem (STE). In any 
infinite sequence of finite structured trees, some tree is 
embeddable into a later tree. 
 
Proof: These are very special cases of Kruskal's Theorem 
[Kr60]. EBTE is also a very special case of Higman's Wqo 
Theorem from [Hig52]. QED 
 
THEOREM 0.8H.3. The following are provably equivalent in 
RCA0. 
i. EBTE. 
ii. TE. 
iii. STE.  
iv. ∈0 is well ordered.  
i-iv are provable in ACA' but not in ACA0. 
 
Proof: i → iv is due to [VV05] and A. Weiermann (advisor), 
and will appear in [FWa], together with a different proof 
of ours. These proofs yield very effective ordinal 
assignments f to binary trees onto ∈0, where if S is 
embeddable into T then f(S) ≤ f(T).   
 
That iv) implies structured EBTE is in [Fr84]. 
Specifically, In [Fr84], calculations are made of the 
ordinals of the trees of bad sequences for various 
restricted forms of Kruskal's Theorem, including structured 
EBTE. In general, these calculations used a theory of 
ordinals - i.e., ATR0. However, in this case, the proof 
shows that for each starting exactly binary structured 
tree, ACA0 proves that there are no infinite bad sequences 
extending it. Hence structured EBTE can be proved using Π1

1 
reflection on ACA0. Now apply Theorem 0.8A.1. 
 
We have recently proved that structured EBTE implies STE as 
follows. We inductively define a very effective map h from 
finite structured trees into finite exactly binary 
structured trees, so that if h(S) is structure preserving 
embeddable into h(T) then S is structure preserving 
embeddable into T. This will appear in [FWa]. This 
establishes that structured EBTE implies STE.  
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By combining the last two paragraphs, we have iv → iii. 
Note that iii → ii → i is trivial. QED 
 
The following two Theorems are immediate consequences of 
EBTE, TE, STE, respectively. 
 
THEOREM 0.8H.4. Subrecursive EBTE, TE, STE. In any infinite 
primitive recursive (elementary recursive, polynomial time 
computable) sequence of finite exactly binary trees (trees, 
structured trees), one tree is embeddable in a later tree.  
 
THEOREM 0.8H.5. Recursive EBTE, TE, STE. In any infinite 
recursive sequence of finite exactly binary trees (trees, 
structured trees), one tree is embeddable in a later tree.  
 
THEOREM 0.8H.6. Finite EBTE, TE, STE. For all c ≥ 0 there 
exists n such that the following holds. Let T1,...,Tn be 
exactly binary trees (trees, structured trees), where each 
Ti has at most i+c vertices. There exist i < j such that Ti 
is embeddable in Tj.  
 
Proof: The argument is in [Fr81a]. Also see [Si85]. Let c ≥ 
0 be given and assume this is false. Build a finitely 
branching tree of counterexamples. By STE, the tree has no 
infinite paths, and therefore is finite. QED 
 
The following Theorem provides the required link between 
these effective and finite forms of EBTE, TE, STE, and 
proof theory. 
 
THEOREM 0.8H.7. The following are provably equivalent in 
EFA. 
i. Every primitive recursive sequence from ∈0 stops 
descending. 
ii. Every elementary recursive sequence from ∈0 stops 
descending. 
iii. Every polynomial time computable sequence from ∈0 stops 
descending. 
iv. 1-Con(PA). 
 
Proof: This is well known from standard proof theory - 
except for iii. Here we follow the usual practice in 
computational complexity theory, where the base 2 
representation is used for nonnegative integers - not only 
for representing the indexation of the infinite sequences, 
but also for the coefficients in notations below ∈0. It is 
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straightforward to check that the required manipulations 
can be done in polynomial time. QED 
 
An interesting question is how small a subclass of poly 
time can be used for iii above. At very low computational 
levels, we expect that some interesting detailed issues 
should naturally arise. 
 
THEOREM 0.8H.8. The following are provably equivalent in 
EFA. 
i. Every recursive sequence from ∈0 stops descending. 
ii. 2-Con(PA). 
 
Proof: Assume ii. Fix k ≥ 1. Let M be a TM set up to compute 
a partial recursive function from N into ω[k]. Obviously PA 
proves  
 
if M computes a total recursive function from N into ω[k], 
then that function is not everywhere descending. 
 
The above sentence is obviously Σ02. Hence we have  
 
for all k ≥ 1, if M is a TM set up to compute a partial 
recursive function from N into ω[k], and if M computes a 
total recursive function from N into ω[k], then that 
function is not everywhere descending. 
 
for all k ≥ 1, every recursive function from N into ω[k] 
stops descending. 
 
every recursive function from N into ∈0 stops descending. 
 
This establishes ii → i.  
 
For i → ii, we argue in EFA. Assume i. In particular, every 
polynomial time computable computable sequence from ∈0 stops 
descending. Hence by Theorem 0.8H.7, we have 1-Con(PA). 
Therefore we have access to all of the < ∈0 recursive 
functions.  
 
We now use the standard Schütte infinitary proof theory for 
PA. See [Sch77] and [Bu91].  
 
We start with a proof in PA of a Σ02 sentence. We use 
primitive recursive function symbols, and so the Σ02 
sentence ϕ takes the form (∃n)(∀m)(F(n,m) = 0). 
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By effective infinitary cut elimination, we obtain an 
infinitary cut free proof, tagged with ordinals < ∈0, that 
is < ∈0 recursive. We now examine this infinitary proof.  
 
We go up the proof tree (backwards in the proof), starting 
at the root, through vertices of valence 1 only. By 1-
Con(PA), we see that this process must stop. It is clear 
that it must stop at a vertex of valence > 1. This must be 
a vertex which is the result of ∀ introduction. But then we 
must have introduced F(t(n),0) = 0, F(t(n),1) = 0, and so 
on. Here t(n) is a term which may or may not mention the 
variable n. By 1-Con(PA), these equations can only be 
introduced here if they are true. Hence we obtain 
(∀m)(F(t(n),m) = 0). Therefore (∃n)(∀m)(F(n,m) = 0). QED 
 
THEOREM 0.8H.9. The following are provably equivalent in 
EFA. 
i. Subrecursive EBTE. 
ii. Subrecursive TE. 
iii. Subrecursive STE. 
iv. 1-Con(PA).  
 
Proof: Assume i. Using the very effective surjective 
assignment of ordinals < ∈0 to exactly binary trees referred 
to in the proof of Theorem 0.8H.3, we obtain i in Theorem 
0.8H.7. Hence 1-Con(PA).  
 
Assume 1-Con(PA). Fix a primitive recursive sequence f of 
finite exactly binary structured trees. Let T be the first 
tree in the sequence. The proof from [Fr84] discussed in 
the proof of Theorem 0.8H.3, shows how to prove in PA that 
for some i < j, f(i) ≤ f(j). Hence i holds, for exactly 
binary structured trees.  
 
We then have iii by applying the very effective map from 
finite structured trees to finite exactly binary structured 
trees, referred to in the proof of Theorem 0.8H.3. 
 
Thus we have shown i → iv → iii. Obviously iii → ii → i. 
QED 
 
THEOREM 0.8H.10. The following are provably equivalent in 
EFA. 
i. Recursive EBTE. 
ii. Recursive TE. 
iii. Recursive STE. 
iv. 2-Con(PA).  
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Proof: Assume i. Using the very effective surjective 
assignment of ordinals < ∈0 to exactly binary trees referred 
to in the proof of Theorem 0.8H.3, we obtain i) in Theorem 
0.8H.8. Hence 2-Con(PA).  
 
Assume 2-Con(PA). We argue similarly to the proof of ii → i 
in Theorem 0.8H.8. Fix a finite exactly binary structured 
tree T. Let TM be set up to compute a partial recursive 
function from N into finite exact binary trees. From 
[Fr84], as discussed in the proof of Theorem 0.8H.3, PA 
proves  
 
if TM computes a total recursive function f from N into 
finite exactly binary trees, starting with T, then there 
exist i < j such that f(i) ≤ f(j).  
 
The above sentence is obviously Σ02. Hence we have  
 
for all finite exactly binary structured T, if a TM is set 
up to compute a partial recursive function from N into 
finite exactly binary structured trees, starting with T, 
and if that TM computes a total recursive function from N 
into finite exactly binary structured trees, then there 
exist i < j such that f(i) ≤ f(j).  
 
for all finite exactly binary structured trees T, for every 
recursive function f from N into finite exactly binary 
structured trees, starting with T, there exist i < j such 
that f(i) ≤ f(j).  
 
for all recursive functions f from N into finite exactly 
binary structured trees, there exist i < j such that f(i) ≤ 
f(j).   
 
This establishes iv → i for exactly binary structured 
trees.  
 
We then have iii by applying the very effective map from 
finite structured trees to finite exactly binary structured 
trees, referred to in the proof of Theorem 0.8H.3. 
 
Thus we have shown i → iv → iii. Obviously iii → ii → i.  
QED 
 
THEOREM 0.8H.11. The following are provably equivalent in 
EFA. 
i. Finite EBTE. 
ii. Finite TE. 
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iii. Finite STE. 
iv. 1-Con(PA).  
 
Proof: Assume i. Using the very effective surjective 
assignment of ordinals < ∈0 referred to in the proof of 
Theorem 0.8H.3, we obtain the "slow well foundedness of ∈0" 
or CWF = "combinatorial well foundedness of ∈0", in the 
sense of [Fr81a] and [Fr01c], p. 71. This is bootstrapped 
up (as in [Fr81a] and [Fr01c]) to obtain the elementary 
recursive or even primitive recursive well foundedness of 
∈0. By the proof theory of PA, 1-Con(PA) follows.  
 
Assume 1-Con(PA). Fix c ≥ 0. We can obtain a proof in PA of 
i for finite exactly binary structured trees, for this 
fixed c, very effectively in c, as follows. Assume that i 
for this fixed c is false, using structured binary trees. 
Now form  the tree T of appropriately bad sequences, and 
hypothesize in PA that T is infinite. Then there is an 
arithmetically defined infinite bad sequence. Now there are 
only finitely many first terms that this infinite bad 
sequence can have. For each of these terms, we argue from 
[Fr84] as in the proof of Theorem 0.8H.3, to obtain a 
contradiction. Therefore T is finite. 
 
Since the statement of i with structure, for fixed c is Σ01, 
we see that the statement must be true for any c, by 1-
Con(PA). This establishes iv → i for exactly binary 
structured trees. We can obviously use, say, a double 
exponential growth rate in the formulation of i for exactly 
binary structured trees, and the same argument will apply. 
I.e., we will obtain that also from 1-Con(PA). But this 
modification of i for exactly binary structured trees 
obviously implies iii using the very effective map from 
finite structured trees into finite exactly binary 
structured trees, referred to in the proof of Theorem 
0.8H.3. This establishes iv → iii. Note that iii → ii → i 
is immediate. QED 
 
In section 0.10, my Extended Kruskal Theorem is discussed, 
in which we impose a gap condition on the inf preserving 
embeddings. It is provable in Π1

1-CA but not in Π1
1-CA0 (see 

Theorems 0.10A.4 and 0.10A.5).  
 
In [SS85], the Extended Kruskal Theorem is specialized to 
valence 1, which is just for finite sequences. The 
resulting statement is much weaker, and is shown to 
correspond to ∈0.  
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In [Gor89], the Extended Kruskal Theorem for valence 1 is 
generalized allowing ordinal labels (with a suitable 
natural weakening of the gap condition), still at valence 
1. The logical strength for α corresponds roughly to the 
Turing jump hierarchy on α.  
 
0.9. Incompleteness in Predicative Analysis and ATR0. 
 
0.9A. Predicative analysis, Γ0, and ATR0. 
0.9B. Kruskal's Theorem. 
0.9C. Comparability. 
 
0.9A. Predicative analysis, Γ0, and ATR0. 
 
The philosophy of mathematics known as predicativity 
focuses on the legitimacy of forming a subset of N via the 
construction {n: ϕ(n)}.  
 
H. Poincaré, in [Po06], argued that this is not legitimate 
if the condition ϕ refers to all subsets of N. He argued 
that ϕ must only refer to subsets of N that have already 
been constructed, thus implicitly introducing a notion of 
abstract time. Note that this criterion is easily met if ϕ 
is arithmetical, even if it has parameters for subsets of 
N. Poincare referred to this as the Vicious Circle 
Principle.  
 
His ideas were taken up by Weyl, in [Wey18,87], and others. 
Russell articulated the basic idea earlier than Poincaré, 
but in the context of the paradoxes. Russell in effect 
abandoned the Vicious Circle Principle through his adoption 
of his highly impredicative Theory of Types, [Ru08,67].   
 
S. Feferman and K. Schütte, independently sought to analyze 
predicative analysis formally. The initial analyses 
appeared in [Fe64] and [Sch65]. Subsequently, Feferman 
refined his analysis in many papers, culminating with 
[Fe05].  
 
What is constant throughout all of these formal analyses is 
that  
 
i. The provably recursive functions of predicative analysis 
consists of the < Γ0 recursive functions. 
 
ii. The finite sequence trees, presented arithmetically, 
that are provably well founded within predicative analysis, 
have ordinals up to, but not including, Γ0. 
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iii. The subsets of N present in the first Γ0 levels of the 
hyperarithmetical hierarchy form (the subset of N part of) 
a model of predicative analysis.  
 
For a general treatment of <λ recursive functions via 
descent recursion, see [FSh95]). 
 
These analyses have been generally accepted as reasonably 
representing predicative analysis according to its 
historical informal descriptions. The degree of acceptance 
is not nearly as great as it is for Turing's analysis of 
algorithms. It is an open question whether it is possible 
to attain such a high level of acceptance. Nevertheless, 
there is no competing analysis of predicative analysis with 
anything like the same level of acceptance.  
 
This usual analysis of predicativity takes the form of what 
amounts to the formal system ATR(<Γ0) of arithmetic, based 
on ACA0 and arithmetic transfinite recursion up to any 
ordinal (notation) < Γ0. Its minimum ω model consists of the 
hyperarithmetic sets of level < Γ0.  
 
Competing analyses of predicativity generally differ only 
in the choice of ordinal, but do take the form of a system 
ATR(<λ), for some effectively given ordinal λ.   
 
Recall our system ATR0, which plays a prominent role in 
Reverse Mathematics. We proved a striking matchup between 
ATR0 and the standard formalization of predicative analysis. 
 
THEOREM 0.9A.1. ATR0 is a conservative extension of ATR(<Γ0) 
for Π1

1 sentences.  The provably recursive functions of ATR0 
and ATR(<Γ0) are the <Γ0 recursive functions. The following 
are provably equivalent in RCA0. 
i. Π1

1 reflection on ATR0. 
ii. Γ0 is well ordered. 
These are provable in ATR but not in ATR0. For ATR, use Γ∈_0. 
throughout instead of Γ0. The first claim is provable in 
SEFA. 
 
Proof: For these results of ours about ATR0, see our 
announcement [Fr76], our proof in [FMS82], section 4, and 
[Si02]. For ATR, see [Ja80]. QED 
 
Let (N,R) be a primitive recursively given well ordering of 
N. The system ATI(<R) is in L(PA), and extends PA by the 
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scheme of arithmetic transfinite induction on any proper 
initial segment of R determined by any given point.   
 
Below, ATI(<Γ0) refers to ATI(<R), where R is a standard 
notation system for Γ0. All such standard R lead to 
equivalent systems ATI(<R). 
 
THEROEM 0.9A.2. ATR0 is a conservative extension of 
ATI(<Γ0). The following are provably equivalent in SEFA.  
i. 1-Con(ATR0). 
ii. 1-Con(ATR(<Γ0). 
iii. 1-Con(ATI(<Γ0)). 
iv. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from Γ0 stops 
descending. 
These are provable in ATR but not in ATR0. For ATR, use Γ∈_0. 
throughout instead of Γ0. 
 
Proof: For these results of ours about ATR0, see [FMS82], 
section 4, and [Si02]. For ATR, see [Ja80]. QED 
 
However, ATR0 cannot be considered part of predicative 
analysis because of the following.  
 
THEOREM 0.9A.3. Every ω-model of ATR0 properly includes all 
hyperarithmetic subsets of N.   
 
Proof: See [Si99,09], p. 346, notes for section VIII.4. QED 
 
Theorem 0.9A.3 is especially powerful for establishing that 
a Π1

2 sentence cannot be proved predicatively. By showing 
that the Π1

2 sentence implies ATR0 over RCA0 (or even ACA0), 
it is clear that the Π1

2 sentence cannot hold in any subset 
of the hyperarithmetic sets, and therefore cannot be proved 
in any system ATR(<λ), where λ is effectively given.   
 
Let TI be the subsystem of second order arithmetic 
consisting of ACA0 plus the scheme of transfinite induction 
on all countable well orderings. Often this is referred to 
as BI = bar induction, but we prefer to call this TI = 
transfinite induction.  
 
For n ≥ 1, we define Π1

n-TI0 and Σ1n-TI0 as ACA0 together with 
transfinite induction on all countable well orderings, with 
respect to Π1

n and Σ1n formulas, respectively. Here Π1
n (Σ1n) 

formulas start with a universal (existential) set 
quantifier, followed by at most n-1 set quantifiers, 
followed by an arithmetical formula. If we use ACA instead 
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of ACA0 (which is ACA0 with full induction), then we write 
Π1

n-TI and Σ1n-TI. 
Also, ATR is ATR0 with full induction. 
 
THEOREM 0.9A.4. ATR and Σ11-TI are equivalent. ATR0 and Σ11-TI 
have the same ω-models. ATR0 + Σ11 induction and Σ11-TI0 are 
equivalent.  
 
Proof: See [Si82]. QED 
 
The next two theorems are proved in [RW93]. Here <θΩω refers 
to a standard notation system for the proof theoretic 
ordinal θΩω, as defined in [RW93]. 
 
THEOREM 0.9A.5. Π1

2-TI0 is a conservative extension of 
ATR(<θΩω) for Π1

1 sentences. The provably recursive 
functions of Π1

2-TI0 and ATR(<θΩω) are the <θΩω recursive 
functions. The following are provably equivalent in RCA0. 
i. Π1

1 reflection on Π1
2-TI0. 

ii. θΩω is well ordered. 
These are provable in Π1

2-TI but not in Π1
2-TI0.  

 
THEROEM 0.9A.6. Π1

2-TI0 is a conservative extension of 
ATI(<θΩω). The following are provably equivalent in SEFA.  
i. 1-Con(Π1

2-TI0). 
ii. 1-Con(ATR(<θΩω)). 
iii. 1-Con(ATI(<θΩω)). 
iv. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from θΩω stops 
descending. 
These are provable in Π1

2-TI but not in Π1
2-TI0.  

 
0.9B. Kruskal's Theorem. 
 
A poset is a pair (D,≤) where D is a nonempty set and ≤ is a 
reflexive transitive relation obeying  
 

(x ≤ y ∧ y ≤ x) → x = y. 
 
A tree is a poset T = (V,≤) where there is a minimum element 
called the root, and where for each x ∈ V, {y: y ≤ x} is 
linearly ordered by ≤.  
 
The elements of V = V(T) are called the vertices of T. A 
tree is said to be finite if it has finitely many vertices. 
 
If x < y then we call x a predecessor of y and y a 
successor of x.  
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If x < y and there is no z such that x < z < y then we call 
y an immediate successor of x and y the immediate 
predecessor of y.  
 
We say that x,y are comparable if and only if x = y ∨ x < y 
∨ y < x. Otherwise, we say that x,y are incomparable.  
 
For finite trees, we have the crucial inf operation on V, 
where x inf y is the greatest z such that z ≤ x ∧ z ≤ y.  
 
The valence of a vertex is the number of its immediate 
successors. The valence of a tree is the maximum of the 
valences of its vertices (for finite trees).  
 
The vertices of valence 0 are called the terminal vertices. 
The remaining vertices are called the internal vertices.  
 
For definiteness, we will require that the domain of any 
finite tree is {1,...,n}, where n is the number of its 
vertices. Thus the set of all finite trees exists. Note 
that many pairs of distinct finite trees are isomorphic.  
 
We will also consider what we call structured trees. These 
are finite trees with a left/right structure. I.e., where 
for any vertex i, there is a strict linear ordering 
(left/right) of the immediate successors of i. This induces 
the following relation on vertices: x is to the left of y 
if and only if x,y are incomparable and the immediate 
successor of x inf y comparable with x is to the left of 
the immediate successor of x inf y comparable with y. This 
relation is irreflexive and transitive.  
 
A quasi order is a pair (D,≤) where D is a nonempty set and 
≤ is a reflexive and transitive relation on D. 
 
A well quasi order (wqo) is a quasi order (D,≤), where for 
any x1,x2,... from D, there exists i < j such that xi ≤ xj.  
 
Let (D,≤) be a quasi order. A (D,≤) labeled (structured) 
tree is a (structured) tree with a labeling function from 
its vertices into D. We write l(x) for the label of x. 
Although we consider only finite (D,≤) labeled (structured) 
trees, the D itself may be infinite.  
 
We introduce the following notation for certain important 
tree classes. Here Q is a quasi order. 
 



 121 

TR(n). The finite trees of valence ≤ n. 
TR(<∞). The finite trees. 
TR(n;Q). The finite Q labeled trees of valence ≤ n. 
TR(<∞;Q). The finite Q labeled trees. 
STR(n). The finite structured trees of valence ≤ n. 
STR(<∞). The finite structured trees. 
STR(n;Q). The finite Q labeled structured trees of valence ≤ 
n. 
STR(<∞;Q). The finite Q labeled trees. 
 
If we write an integer r ≥ 2 instead of Q, then we mean the 
quasi order Q = {1,...,r} under =. If we write ω instead of 
Q, then we mean the quasi order of ω under ≤ (which is the 
usual linear ordering). 
 
All of these tree classes come with their own notion of 
embedding.  
 
TR(n), TR(<∞). We say that h is an embedding from S into T 
if and only if h:V(S) → V(T), where for all x,y ∈ V(S), x 
≤S y ↔ hx ≤T hy. 
 
STR(n), STR(<∞). We say that h is an embedding from S into 
T if and only if h:V(S) → V(T), where for all x,y ∈ V(S)  
i. x ≤S y ↔ hx ≤T hy. 
ii. x is to the left of y in S if and only if hx is to the 
left of hy in T. 
 
TR(n;Q), TR(<∞;Q). We say that h is an embedding from S 
into T if and only if h:V(S) → V(T), where for all x,y ∈ 
V(S), 
i. x ≤S y ↔ hx ≤T hy. 
iii. l(x) ≤Q l(hx). 
 
STR(n;Q), STR(<∞;Q). We say that h is an embedding from S 
into T if and only if h:V(S) → V(T), where for all x,y ∈ 
V(S), 
i. x ≤S y ↔ hx ≤T hy. 
ii. x is to the left of y in S if and only if hx is to the 
left of hy in T. 
iii. l(x) ≤Q l(hx). 
 
Additional conditions are often placed on embeddings.  
 
Inf Preservation. h:V(S) → V(T) is said to be inf 
preserving if and only if for all x,y ∈ V(S), h(x inf y) = 
hx inf hy. 
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Valence Preservation. h:V(S) → V(T) is said to be valence 
preserving if and only if for all x in V(S), the valence of 
x is the same as the valence of hx.   
 
In this section, we will always use inf preservation. 
 
THEOREM 0.9B.1. Kruskal's Tree Theorem. If Q is a wqo then 
STR(<∞;Q) is a wqo under inf preserving embeddability.  
 
Proof: This was proved in [Kr60]. The simplest proof is in 
[NW65]. The proof is not any easier for TR(<∞,Q). QED 
 
THEOREM 0.9B.2. Higman's Wqo Theorem. If Q is a wqo then 
STR(n;Q) is a wqo under inf and valence preserving 
embeddability.  
 
Proof: See [Hig52]. This is weaker than Kruskal's Theorem 
(except for the valence preserving), but predates it. It is 
easy to encode the valence in the labels, so that this is 
easily obtained from Kruskal's Tree Theorem. The original 
language in [Hig52] is couched in algebraic terms, and our 
present reformulation is in terms of trees. QED  
 
THEOREM 0.9B.3. Theorems 0.9B.1 and 0.9B.2 are provable in 
Π1

2-TI. For each fixed n ≥ 1, Theorem 0.9B.2 is provable in 
Π1

2-TI0. 
 
Proof: This is proved in [Fr84]. Provability in TI is in 
[Fr81a]. QED 
 
THEOREM 0.9B.4. The following are provably equivalent in 
RCA0. 
i. TR(<∞) is a wqo under inf preserving embeddability.  
ii. For all n, TR(n) is a wqo under inf preserving 
embeddability. 
iii. For all n,r, TR(n;r) is a wqo under inf and valence 
preserving embeddability. 
iv. For all n, TR(n;ω) is a wqo under inf and valence 
preserving embeddability. 
v. STR(<∞) is a wqo under inf preserving embeddability. 
vi. For all n, STR(n) is a wqo under inf preserving 
embeddability. 
vii. For all n,r, STR(n;r) is a wqo under inf and valence 
preserving embeddability.  
viii. For all n, STR(n;ω) is a wqo under inf and valence 
preserving embeddability. 
ix. θΩω is well ordered. 
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In particular, i-ix are provable in Π1
2-TI, but not in Π1

2-
TI0.  
 
THEOREM 0.9B.4. The following are provably equivalent in 
RCA0. 
i. STR(<∞) is a wqo under inf preserving embeddability.  
ii. For all n, TR(n) is a wqo under inf preserving 
embeddability. 
iii. For all n, STR(n;ω) is a wqo under inf and valence 
preserving embeddability. 
iv. θΩω is well ordered. 
In particular, i-iii are provable in Π1

2-TI, but not in Π1
2-

TI0.  
 
Proof: The equivalence of i,iii,iv is in [Fr84], using 
Theorem 0.9A.6. The implication iii → iv is by assigning 
ordinals to trees. The implication iv →  iii uses the 
provability in Π1

2-TI0 of iii for each fixed n.  
 
For unstructured trees, ii → Γ0 is well ordered was shown 
in [Fr81a], and appeared in [Si85]. ii → iv appears in 
[RW93], p. 53, extending the construction (it was 
attributed to us in [Si85]). Hence i-iii are equivalent to 
iv. QED 
 
THEOREM 0.9B.5. The following are provable in Π1

2-TI. 
i. If Q is a countable wqo then STR(<∞;Q) is a wqo under 
inf preserving embeddability.  
ii. If Q is a countable wqo and n < ω, then STR(n;Q) is a 
wqo under inf and valence preserving embeddability. 
For each fixed n, ii) is provable in Π1

2-TI0.  
 
Proof: This is proved in [Fr84]. QED 
 
We now come to effective and finite forms of Kruskal's 
Theorem.  
 
THEOREM 0.9B.6. Subrecursive Kruskal Theorem. In any 
infinite primitive recursive (elementary recursive, 
polynomial time computable) sequence of finite trees, one 
tree is embeddable in a later tree.  
 
THEOREM 0.9B.7. Recursive Kruskal Theorem. In any infinite 
recursive sequence of finite trees, one tree is inf 
preserving embeddable in a later tree.  
 
THEOREM 0.9B.8. Finite Kruskal Theorem. For all c ≥ 0 there 
exists n such that the following holds. Let T1,...,Tn be 



 124 

finite trees, where each Ti has at most i+c vertices. There 
exist i < j such that Ti is inf preserving embeddable in Tj. 
 
The finite Kruskal theorem has been refined in an 
interesting way in [LM87]. 
 
For f:N → N, let FKTf assert the following. 
 
For all c ≥ 0 there exists n such that the following holds. 
Let T1,...,Tn be finite trees, where each Ti has at most 
f(i)+c vertices. There exist i < j such that Ti is inf 
preserving embeddable in Tj. 
 
The following is proved in [LM87]. 
 
Let fr(i) be r(log2(i)). If r ≤ 0.5 then PA does prove 
FKTf_r. 
If r ≥ 4 then PA does not prove FKTf_r. 
 
Note the gap between .5 and 4. In [We03] there is an exact 
calculation of the transition point from PA provability to 
PA unprovability, using analytic combinatorics.  
 
This result led to further systematic investigations on 
critical phenomena related to independence results. For 
example, the phase transition corresponding to the 
relatively large Ramsey theorem is classified in [We04]. 
Also see [We09]. 
 
There is also a phase transition analysis of the regressive 
Ramsey theorems (see section 0.8D and [KM87]). See [CLW11].  
 
We now proceed from Theorem 0.9B.4 exactly as we proceeded 
from Theorem 0.8H.3 in section 0.8H.  
 
THEOREM 0.9B.9. The following are provably equivalent in 
SEFA. 
i. Subrecursive Kruskal Theorem. 
ii. Finite Kruskal Theorem. 
iii. Every primitive recursive sequence from θΩω stops 
descending. 
iii. 1-Con(ATI(<θΩω)). 
iv. 1-Con(Π1

2-TI0). 
 
THEOREM 0.9B.10. The following are provably equivalent in 
SEFA. 
i. Recursive Kruskal Theorem. 
ii. Every recursive sequence from θΩω stops descending. 
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iii. 2-Con(ATI(<θΩω)). 
iv. 2-Con(Π1

2-TI0). 
 
We now focus on Γ0 and ATR0.  
 
THEOREM 0.9B.11. The following are provably equivalent in 
RCA0. 
i. TR(2;2) is a wqo under inf preserving embeddability.  
ii. STR(2;2) is a wqo under inf preserving embeddability. 
iii. Γ0 is well ordered.  
In particular, i-iii are provable in ATR but not in ATR0.  
 
Proof: ii ↔ iii is in [Fr84]. i → ii is a result of A. 
Weiermann that will appear in [FWa]. QED 
 
Again, proceeding as before, we obtain the following. 
 
THEOREM 0.9B.12. The following are provably equivalent in 
SEFA. 
i. Subrecursive Kruskal Theorem for TR(2;2). 
ii.  Finite Kruskal Theorem for STR(2;2). 
iii. Every primitive recursive sequence from Γ0 stops 
descending. 
iv. 1-Con(ATI(<Γ0)). 
v. 1-Con(ATR0). 
 
An old unpublished result of ours from the 1980's also 
concerns binary trees. See [FMW∞] for planned publication. 
Here is the result in its most primitive form. 
 
THEOREM 0.9B.13. RCA0 + "If Q is a countable wqo, then 
TR(2;Q) is a wqo under inf preserving embeddability", 
proves ATR0. 
 
Here is a more refined form. Let TR*(2;Q) be the set of 
finite trees of valence ≤ 2, where vertices of valence 2 are 
unlabeled, and vertices of valence 0 or 1 are labeled from 
Q. Embeddings are required to be label increasing (≥) on the 
labeled vertices. Both forms will appear in [FWb].  
 
THEOREM 0.9B.14. The following are provably equivalent in 
RCA0. 
i. If Q is a countable wqo, then TR*(2;Q) is wqo under inf 
preserving embeddability.  
ii. If X is a well ordering then θX0 is a well ordering. 
iii. ATR0. 
 



 126 

In [Fr02] the innovation was to use internal tree 
embeddings in favor of sequences of trees.  
 
We use the following important subclass of TR(k;n). We 
define FUTR(n;m) as the set of all T ∈ TR(k;n) such that  
 
i. All vertices of valence 0 have the same height. 
ii. All vertices are of valence 0 or k.  
 
Here FU means "full".   
 
The height of a vertex in a finite tree is the number of 
its predecessors. Thus the height of the root is 0. The 
height of a finite tree is the maximum of the heights of 
its vertices.  
 
Let T ∈ FUTR(k;n). The truncations of T are obtained by 
restricting T to all vertices whose height is at most a 
given nonnegative integer. Thus the number of truncations 
of T is exactly one more than the height of T.  
 
THEOREM 0.9B.15. Internal Finite Tree Embedding Theorem. 
Let k,n ≥ 1 and T ∈ FUTR(k;n) be sufficiently tall. There 
is an inf and valence preserving embedding from some 
truncation of T into some truncation of T of greater 
height.  
 
Proof: This appears as Theorem 1.3 in [Fr02]. Fix k,n ≥ 1, 
and suppose this is false. Then we obtain a finitely 
branching tree of counterexamples, growing in height as we 
go up the tree. Therefore there is an infinite path, which 
forms an infinite full n-labeled tree S of valence k. Now 
look at its sequence of finite truncations, S0,S1,... . As a 
consequence of iii in Theorem 0.9B.4, there exists i < j 
such that Si is inf and valence preserving embeddable into 
Sj. This contradicts the construction of the tree of 
counterexamples. QED 
 
THEOREM 0.9B.16. The following are provably equivalent in 
SEFA. 
i. Internal Finite Tree Embedding Theorem. 
ii. Version of i) for structured trees.  
iii. Every primitive recursive descending sequence through 
θΩω stops descending. 
iv. 1-Con(ATI(<θΩω)). 
v. 1-Con(Π1

2-TI0). 
For valence 2, SEFA proves that i) implies 1-Con(ATI(<Γ0)), 
and, equivalently, 1-Con(ATR0).  
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Proof: See [Fr02]. For valence 2, Γ0 here can be raised to 
ordinals considerably higher than, say, Γ∈_0, thereby going 
past ATR. QED 
 
0.9C. Comparability. 
 
A number of Comparability Theorems are known to be 
equivalent to ATR0 over RCA0. They are naturally in Π1

2 form. 
By Theorem 0.9A.3 and the comments after its proof, they 
are not predicatively provable in a strong sense.  
 
The original Comparability Theorem equivalent to ATR0, was 
the comparability of well orderings. See i) in the next 
theorem.  
 
THEOREM 0.9C.1 The following are provably equivalent in 
RCA0.  
i. For any two countable well orderings, there is an order 
preserving map from one onto an initial segment of the 
other.  
ii. For any two countable well orderings, there is an order 
preserving map from one into the other.  
iii. ATR0. 
 
Proof: i ↔ iii is a result of ours that appears in 
[Si99,09], section V.6. (The derivation of ATR0 (ATR) from 
i) in [St76], that was cited in [Si99,09] as an "early" 
version, uses a technical strengthening of Δ11-CA for the 
base theory.) For ii ↔ iii, see [FH90]. QED  
 
THEOREM 0.9C.2. The following are provably equivalent in 
RCA0. 
i. For any two countable metric spaces, there is a 
pointwise continuous one-one map from one into the other. 
ii. For any two sets of rationals, there is a pointwise 
continuous one-one map from one into the other. 
iii. For any two compact well ordered sets of rationals, 
there is a pointwise continuous one-one map from one into 
the other. 
iv. For any two closed sets of reals, there is a pointwise 
continuous one-one map from one into the other.  
v. ATR0. 
 
Proof: See [Fr05a]], Theorem 4.5. We were the first to 
prove i,ii even in ZFC. Comparability for closed sets of 
reals was known much earlier - although we don't know of a 
reference.  
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We now verify v → iv. If A is uncountable, then A has a 
perfect subset (uses ATR0). Hence B will continuously embed 
in A, unless B has interior (this requires at most ACA0). 
But if B has interior, then A continuously embeds in B 
(this is obviously in RCA0). This establishes comparability 
if at least one of the two sets is uncountable. If both are 
countable, then we are in a special case of i). QED 
 
There is a natural descriptive set theoretic consequence 
one can draw immediately from the fact that a Π1

2 sentence 
implies ATR0 over RCA0. Actually we can use ACA. 
 
THEOREM 0.9C.3. Let ϕ be a Π1

2 sentence, and suppose that 
ACA proves ϕ → ATR0. Then ϕ has no Borel choice function.  
 
Proof: Suppose ϕ is (∀x)(∃y)(A(x,y)), where A is 
arithmetical, and ACA proves ϕ → ATR0. Suppose 
(∀x)(A(x,fx)), where f is Borel. Choose a countable set K ⊆ 
℘(ω) such that K is f closed and arithmetically closed. 
Then K forms an ω model of ACA + ϕ, where K is contained in 
the hyperarithmetic sets. Hence K forms an ω model of ATR0, 
contradicting Theorem 0.9A.3. QED  
 
0.10. Incompleteness in Iterated Inductive Definitions and 
Π1

1-CA0. 
 
0.10A. Preliminaries.  
0.10B. Extended Kruskal and Graph Minors.  
0.10C. Extended Hercules Hydra Game. 
0.10D. Equivalences with Π1

1-CA0. 
 
0.10A. Preliminaries. 
 
We discuss three kinds of Concrete Mathematical 
Incompleteness in this section.  
 
The first is our extension of the work on finite trees 
discussed in section 0.9B. The second is an extension of 
the work on the Hercules Hydra Game discussed in section 
0.8E. The third is equivalences with Π1

1-CA0.  
 
Here is the basic proof theoretic information on Π1

1-CA0. 
The theories of iterated inductive definitions, IDn, do not 
have any quantifiers over sets, but instead introduce 
predicate symbols for inductively defined sets. The 
predicates introduced in ID1 correspond to Π1

1 sets, 
whereas, the predicates introduced in IDn, n ≥ 2, correspond 
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to sets Π1
1 in the (n-1)-st hyperjump of 0. ID<ω is the union 

of the IDn, n ≥ 1. See [BFPS81]. 
 
The following reduction of Π1

1-CA0 to ID<ω prepared the way 
for a proof theoretic analysis of Π1

1-CA0 via a proof 
theoretic analysis of the IDn. 
 
THEOREM 0.10A.1. Π1

1-CA0 proves Con(TI). In fact, Π1
1-CA0 

proves the existence of a β-model of TI. Π1
1-CA0 is a 

conservative extension of ID<ω for arithmetical sentences. 
In fact, it is a conservative extension of ID<ω for 
sentences of the form "n lies in Kleene's O".  
 
Proof: For the first two claims, see [Fr69]. For the last 
two claims, see [Fr70]. These papers appeared before my 
focus on systems with only set induction, such as RCA0, 
ACA0, WKL0, ATR0, and Π1

1-CA0, in connection with our 
introduction of the Reverse Mathematics program. These 
systems were introduced in [Fr76] (the systems RCA. WKL, 
ATR in [Fr75], with ACA, Π1

1-CA having been previously 
formulated by others, including S. Feferman and G. 
Kreisel). The proof in [Fr69] is carried out in Π1

1-CA0. In 
[Fr70], the considerably more involved result that Π1

1-CA 
(even Σ12-AC) is a conservative extension ID<∈_0 is 
established. After we introduced the naught systems, it was 
evident that a specialization and simplification of the 
proof establishes the last two claims (even for Σ12-AC0). QED 
 
Here is the basic proof theory for Π1

1-CA0. See [BFPS81], 
[Tak75], and [Sch77] for proofs.  
 
THEOREM 0.10A.2. Π1

1-CA0 is a conservative extension of 
ATR(<θΩω) for Π

1
1 sentences. The provably recursive 

functions of Π1
1-CA0 and ATR(<θΩω) are the <θΩω recursive 

functions. The following are provably equivalent in RCA0. 
i. Π1

1 reflection on Π1
1-CA0. 

ii. θΩω is well ordered. 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
For a general treatment of <λ recursive functions via 
descent recursion, see [FSh95]). 
 
THEROEM 0.10A.3. Π1

1-CA0 is a conservative extension of 
ATI(<θΩω). The following are provably equivalent in SEFA.  
i. 1-Con(Π1

1-CA0). 
ii. 1-Con(ATR(<θΩω)). 
iii. 1-Con(ATI(<θΩω)). 
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iv. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from θΩω stops 
descending. 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
0.10B. Extended Kruskal and Graph Minors.  
 
In [Fr82], we sought to strengthen Kruskal's theorem in a 
way that would make it independent of yet stronger systems 
such as Π1

1-CA0. We succeeded with this through our 
introduction of the gap embedding condition. This turned 
out to have profound connections with ongoing work at the 
time by Robertson and Seymour on their Graph Minor Theorem. 
In fact, it completely encapsulates the only logically high 
level part of their proof, at least in the case of bounded 
tree width.  
 
The gap condition concerns the tree classes TR(k;n) and 
STR(k;n) from section 0.9B. Let S,T ∈ TR(k;n) (or 
STR(k;n)). We say that h is a gap embedding from S into T 
if and only if h is an embedding from S into T such that 
for all x,y ∈ V(S), if y is an immediate successor of x, 
then for all z in the gap (hx,hy), l(z) ≥ l(hy).  
 
THEROEM 0.10B.1. The Extended Kruskal Theorem. For k,n ≥ 1, 
TR(k;n) (STR(k;n)) is wqo under inf preserving gap 
embeddability.  
 
Proof: See [Fr82], [Si85]. QED   
 
THEOREM 0.10B.2. The following are provably equivalent in 
RCA0. 
i. Extended Kruskal Theorem (structured and unstructured).  
ii. Extended Kruskal Theorem for full binary trees 
(structured and unstructured). 
iii. θΩω is well ordered.  
These are provable in Π1

1-CA but not in Π1
1-CA0. 

 
Proof: See [Fr82] for i → iii (unstructured), and a proof 
of i) (structured) for each k,n, in Π1

1-CA0. Applying 
0.10A.2, we have i ↔ iii. For ii → i (unstructured), see 
[FRS87]. Also see [Si85] and [Fr02]. QED 
 
Let G,H be finite graphs. We say that G is minor included 
in H if and only if G can be obtained from H (up to 
isomorphism) by successive applications of the following 
operations.  
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i. Deleting a vertex (and all edges involving that vertex). 
ii. Deleting an edge. 
iii. Contracting an edge. I.e., if v,w is an edge, v ≠ w, 
remove w and replace all edges involving w that are not 
loops by replacing w with v.  
 
The Graph Minor Theorem asserts that in any infinite 
sequence of finite graphs, one graph is minor included in a 
later one. The Graph Minor Theorem is proved in a series of 
papers culminating with [RS04].  
 
The entire proof consists of very detailed structure 
theory, with a brief logically strong part, involving 
minimal bad sequence constructions. We communicated our 
earlier Extended Kruskal Theorem to Robertson and Seymour. 
Robertson and Seymour adapted and extended these ideas to 
their later proof of the Graph Minor Theorem.   
 
The Bounded Graph Minor Theorem is the Graph Minor Theorem 
specialized to trees of bounded tree width (see [FRS87]). 
 
Our work on the Extended Kruksal Theorem was applied in a 
striking way to the Graph Minor Theorem in [FRS87]. 
 
THEOREM 0.10B.3. The following are provably equivalent in 
RCA0. 
i. Extended Kruskal Theorem (structured and unstructured). 
ii. Bounded Graph Minor Theorem. 
iii. θΩω is well ordered. 
These are provable in Π1

1-CA but not in Π1
1-CA0. 

 
Proof: See [FRS87]. QED 
 
As before, we obtain subrecursive, recursive, and finite 
forms.  
 
THEOREM 0.10B.4. The following are provably equivalent in 
SEFA.  
i. Extended Kruskal Theorem for primitive recursive 
(elementary recursive, polynomial time computable) 
sequences of finite trees (all four forms above). 
ii. Bounded Graph Minor Theorem for primitive recursive 
(elementary recursive, polynomial time computable) 
sequences of finite graphs. 
iii. 1-Con(Π1

1-CA0). 
iv. 1-Con(ATI(<θΩω)). 
These are provable in Π1

1-CA but not in Π1
1-CA0.  
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Proof: The ordinal assignments involved are very effective, 
and i,ii are Π0

2 statements. Use that for a fixed number of 
labels, or fixed tree width, the statements are provable in 
Π1

1-CA0. QED 
 
THEOREM 0.10B.5. The following are provably equivalent in 
SEFA.  
i. Extended Kruskal Theorem for recursive sequences of 
finite trees (all four forms above). 
ii. Bounded Graph Minor Theorem for recursive sequences of 
finite graphs. 
iii. Every recursive sequence from θΩω

 stops descending. 
iii. 2-Con(Π1

1-CA0). 
iv. 2-Con(ATI(<θΩω)). 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
Proof: See the proof of Theorem 0.8H.10. QED 
 
We can proceed with the finite forms. For the Extended 
Kruskal Theorems, there are no surprises. We can use my 
usual finite sequences where the i-th term has at most i+c 
vertices, where the parameter c is universally quantified.   
 
THEOREM 0.10B.6. The following are provably equivalent in 
SEFA.  
i. The Finite Extended Kruskal Theorem (all four forms 
above). 
ii. 1-Con(Π1

1-CA0). 
iii. 1-Con(ATI(<θΩω)). 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
In [Fr02], the following Internal Embedding Theorem is 
treated. 
 
THEOREM 0.10B.7. The Internal Finite Tree Gap Embedding 
Theorem. Let k,n ≥ 1 and T ∈ FUTR(k;n) be sufficiently 
tall. There is an inf and valence preserving gap embedding 
from some truncation of T into some truncation of T of 
greater height.  
 
Proof: This appears as Theorem 7.7 in [Fr02]. QED 
 
THEOREM 0.10B.8. The following are provably equivalent in 
SEFA. 
i. Internal Finite Tree Gap Embedding Theorem. 
ii. Variants of i) with structure and/or with valence 2.  
iii. Every primitive recursive sequence from θΩω stops 
descending. 
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iii. 1-Con(ATI(<θΩω)). 
iv. 1-Con(Π1

2-TI0). 
For valence 2, EFA proves that i) implies 1-Con(ATI(<Γ0)), 
and, equivalently, 1-Con(ATR0).  
 
Proof: See [Fr02]. QED 
 
The following Finite Bounded Graph Minor Theorem is treated 
in [FRS87]. 
 
THEOREM 0.10B.9. Finite Bounded Graph Minor Theorem. For 
all p,c ≥ 1 there exists n such that the following holds. 
Let G1,...,Gn be finite graphs of tree-width ≤ p, where each 
|Gi| ≥ i+c. There exist i < j such that Gi ≤m Gj. 
 
Here |G| denotes the sum of the number of vertices and 
edges in G, and ≤m denotes graph minor inclusion. 
 
THEOREM 0.10B.10. The following are provably equivalent in 
SEFA.  
i. The Finite Bounded Graph Minor Theorem.  
ii. Every primitive recursive sequence from θΩω stops 
descending. 
iii. 1-Con(ATI(<θΩω)). 
iv. 1-Con(Π1

1-CA0). 
 
Proof: See [FRS87]. QED 
 
It remains unclear just what is required to prove the full 
Graph Minor Theorem. Its proof has not been subject to a 
logical analysis sufficient to determine a reasonable upper 
bound.  
 
0.10C. Extended Hercules Hydra Game. 
 
The following treatment is taken directly from [Bu87]. 
 
A (Buchholz) hydra is a finite rooted planar labeled tree H 
which has the following properties: 
 
i. The root has label +. 
ii. Any other node of A is labeled by some ordinal α ≤ ω, 
iii. All nodes immediately above the root of H have label 
0. 
 
If Hercules chops off a head (i.e. a top node) s of a given 
hydra, the hydra will choose an arbitrary number n and 
transform itself into a new hydra H(s,n) as follows. Let t 
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be the node of H which is immediately below s, and let H- 
denote the part of H which remains after s has been chopped 
off. The definition of H(s,n) depends on the label of s. 
 
case 1. label(s) = 0. If t is the root of H, we set H(s,n) 
= H-. Otherwise H(s,n) results from H- by sprouting n 
replicas of Ht^-, from the node immediately below t. Here 
Ht^- denotes the subtree of H- determined by t. 
 
case 2. label(s) = u+1. Let e be the first node below s 
with a label v ≤ u. Let T be that tree which results from 
the subtree He by changing the label of e to u and the label 
of s to 0. H(s,n) is obtained from H by replacing s by T. 
In this case H(s,n) does not depend on n. 
 
Case 3: label(s) = ω. H(s,n) is obtained from H simply by 
changing the label of s (which is ω) to n+1. 
 
Let H(n) be H(s,n) where s is the rightmost head. Let (+) 
be the hydra which consists of one node, namely its root. 
Let Hn be the hydra consisting of a chain of n+2 nodes where 
the root has label +, the successor of the root has label 0 
and where all other nodes have label ω. 
 
THEOREM. Let H be a fixed hydra. Π1

1-CA + BI proves that for 
all number theoretic functions F there exists k such that 
H(F(1))(F(2))...(F(k)) = (+). 
 
THEOREM. Π1

1-CA + BI does not prove that for all n there 
exists a k such that Hn(1)(2)...(k) = (+). 
 
0.10D. Equivalences with Π1

1-CA0. 
 
There are a number of interesting equivalences with Π1

1-CA0.  
 
THEOREM 0.10D.1. The following are provably equivalent in 
RCA0. 
i. Every tree of finite sequences of natural numbers with 
an infinite path, has a leftmost infinite path. 
ii. Every tree of finite sequences of natural numbers 
(bits) has a perfect subtree which contains all perfect 
subtrees. 
iii. If a quasi order on N is not a wqo then it has a 
minimal bad sequence.  
iv. Every countable Abelian group G has a divisible 
subgroup which contains all divisible subgroups of G. 
v. Π1

1-CA0. 
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Proof: Clearly v) → i). Assume i). Let T1,T2,... be any 
infinite sequence of finite sequence trees from N. We will 
derive the existence of {i: Ti has an infinite path}. This 
is a well known equivalent of Π1

1-CA0 over RCA0 (see 
[Si99,09], Lemma VI.1.1).  
 
Let S be the tree of sequences x[1],...,x[n], n ≥ 0, from N, 
with the following properties. 
 
a. If p ≤ n is not a power of a prime, then x[p] = 1.  
b. Let p ≤ n be a prime, and r ≥ 1 be largest such that pr ≤ 
n. Then  

b.1. x[p],x[p2],...,x[pr] = 1; or  
b.2. x[p] = 0, and x[p2],...,x[pr] forms a path of 

length r-1 through Ti, starting at an immediate successor of 
the root (a length 1 sequence), where p is the i-th prime, 
and we view each term as coding a finite sequence from N.  
 
S will have the infinite path 1,1,... . Let x[1],x[2],... 
be a (the) leftmost infinite path P through S. Let p be the 
i-th prime. If x[p] = 0 then there is a path through Ti. 
Suppose x[p] = 1 and there is a path Q through Ti. Then we 
can retain the first p-1 terms, lower the p-th term to 0, 
and use Q so that we have another infinite path through S 
which is to the left of P. This is a contradiction. Hence 
x[p] = 0 if and only if there is an infinite path through 
Ti. Therefore {i: Ti has an infinite path} exists. 
 
For ii ↔ v, see [Si99,09], Theorem VI.1.3.  
 
For iii ↔ v, see [Mar96], Theorem 6.5. 
 
In Π1

1-CA0, we can construct the union of all divisible 
subgroups, and so obviously v → iv. Now suppose iv.  
 
In [FSS87] it is shown that "every countable Abelian group 
is a direct sum of a divisible group and a reduced group" 
is equivalent to Π1

1-CA0 over RCA0 (see [Si99,09], Theorem 
VI.4.1). 
 
With a little bit of care, the derivation of Π1

1-CA0 there 
can be accomplished with just iv). QED 
 
Here is a somewhat different kind of example. 
 
THEOREM 0.10D.2. The following are provably equivalent in 
RCA0. 
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i. Every countable algebra with an infinitely generated 
subalgebra has a maximal infinitely generated subalgebra. 
ii. Proposition i) for a single binary function. 
iii. Proposition i) for two unary functions. 
iv. Π1

1-CA0. 
 
Proof: See [Fr05b]. QED 
 
The Borel Ramsey theorem, also known as the Galvin/Prikry 
theorem, asserts the following. Let S ⊆ ℘(N) be Borel. 
There exists an infinite A ⊆ N such that all infinite 
subsets of A lie in S, or all infinite subsets of A lie 
outside S. 
 
With its use of Borel measurable sets of arbitrary high 
countable rank, the Borel Ramsey theorem is an example just 
beyond Concrete Mathematics.  
 
We rely on the standard treatment of Borel sets in ℘(N) in 
order to formulate the Borel Ramsey theorem in the language 
of RCA0. This is achieved through the use of Borel codes, 
and is discussed in some detail in section 0.11.  
 
Π1

1-TR0 consists of ACA0 together with Π1
1 transfinite 

recursion. This is the same as arithmetic transfinite 
recursion - as in ATR0 - except that the formula to which 
transfinite recursion is being applied is allowed to be Π1

1. 
This is equivalent to the existence of the hyperjump 
hierarchy on every countable well ordering, starting with 
any subset of ω.  
 
Borel sets in and functions between complete separable 
metric spaces lie just beyond what we regard as Concrete 
Mathematics. We take finitely Borel to be at the outer 
limits of Concrete Mathematics.  
 
Everything in sections 0.11, 0.12, and much of section 
0.13, will be focused at this borderline between Concrete 
and Abstract Mathematics.   
 
Some care is needed to properly formalize Borel sets and 
functions in RCA0. A standard way of doing this has emerged. 
This will be discussed in section 0.11.   
 
The Borel Ramsey Theorem sits in the context of ℘(N) as a 
complete separable metric space, under d(A,B) = 2-n, where n 
= min(A Δ B) if A ≠ B; 0 otherwise. It asserts that for any 
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Borel S ⊆ ℘(N), there exists infinite A ⊆ N such that ℘(A) 
⊆ S or ℘(A) ∩ S = ∅.   
 
THEOREM 0.10D.3. The following are provably equivalent in 
RCA0. 
i. The Borel Ramsey Theorem (or Galvin/Prikry Theorem). 
ii. Π1

1-TR0. 
 
Proof: See [Tan89]. QED  
 
THEOREM 0.10D.4. The following are provably equivalent in 
RCA0. 
i. The Borel Ramsey Theorem (or Galvin/Prikry Theorem) for 
finitely Borel subsets of ℘(N). 
ii. (∀x ⊆ N)(∀n)(the n-th hyperjump of x exists).  
In particular, i implies Π1

1-CA0, and follows from Π1
1-CA 

(Π1
1-CA0 with full induction). 

 
L. Gordeev and I. Kriz have proved some transfinite 
extensions of my Extended Kruskal Theorem (Theorem 0.10B.1) 
using much stronger principles than Π1

1-CA0. See [Gor89], 
[Gor90], [Gor93], [Kri89a], [Kri89b], [Kri95]. The proof of 
the main theorem of [Kri89b] given there (which was a 
conjecture of mine) requires Π-

2-CA0. However, this was 
later sharply reduced to Π1

1-TR0 by [Gor90], [Gor93], with a 
reversal to a level corresponding to Π1

1-TR0.  
 
There are a number of interesting mathematical statements 
which have been proved using systems significantly stronger 
than Π1

1-CA0 - but it remains unknown whether that is 
necessary. We have already mentioned the Graph Minor 
Theorem. 
 
Nash-Williams proved that infinite trees are wqo under inf 
preserving embeddability. See [NW65], [NW68], where his 
notions of better quasi orders and minimal bad arrays were 
introduced. He uses much stronger principles than Π1

1-CA0. 
It is not known whether this is required. [Si85a] 
simplifies the notion of better quasi order. Also see 
[EMS87]. 
 
R. Laver proved in [La71] that the linear orderings on N 
form a wqo under embeddability. This is known as Fraïssé's 
conjecture. In [Sho93] this theorem is shown to imply ATR0 
over RCA0. However, it is not known if ATR0 is sufficient, 
or even whether Π1

1-CA0 and much stronger systems are 
sufficient. Π1

2-CA0 certainly suffices. [Si85a] simplifies 
the proof of Fraïssé's conjecture. 
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0.11. Incompleteness in Second Order Arithmetic and ZFC\P. 
 
0.11A. Preliminaries. 
0.11B. Borel Determinacy in Z2. 
0.11C. Borel Diagonalization.  
0.11D. Borel Inclusion for ℜ∞ → ℜ), ℜ∞ → ℜ∞, GRP → GRP. 
0.11E. Borel Subalgebra Theorems.  
0.11F. Borel Squaring Theorem and Function Agreement. 
 
0.11A. Preliminaries. 
 
The system Z2 of "(full) second order arithmetic", and the 
closely related ZFC\P, ZF\P, have been discussed in section 
0.4.  
 
It will be useful to have a system stronger than Z2, which 
suffices to prove the various statements presented in this 
section, that are not provable in Z2.  
 
For this purpose, it is convenient to use a weak fragment 
of Z3 = "(full) third order arithmetic". Here Z3 has three 
sorts: N, PN, PPN. We use 0,S,+,•,∈, where 0,S,+,• live in 
N, and ∈ connects N to PN, and PN to PPN. We will have 
equality only for sort N.  
 
Recall the axioms of Z2: 
 
1. Sx ≠ 0, Sx = Sy → x = y, x+0 = x, x+Sy = S(x+y), x•0 = 
0, x•Sy = (x•y)+x.  
2. 0 ∈ A ∧ (∀x)(x ∈ A → Sx ∈ A) → x ∈ A. 
3. (∃A)(∀x)(x ∈ A ↔ ϕ), where ϕ is any formula in L(Z2) in 
which A is not free.  
 
The axioms of Z3 are very similar. The terms of sort N are 
the same as for Z2. The atomic formulas are the equations 
between terms of sort N, and t ∈ x, x ∈ A, where x is a 
variable of sort PN and A is a variable of sort PPN. 
Formulas are built up as usual using the connectives and 
sorted quantifiers.  
 
1. Sx ≠ 0, Sx = Sy → x = y, x+0 = x, x+Sy = S(x+y), x•0 = 
0, x•Sy = (x•y)+x.  
2. 0 ∈ A ∧ (∀x)(x ∈ A → Sx ∈ A) → x ∈ A. 
3. (∃A)(∀x)(x ∈ A ↔ ϕ), where ϕ is any formula in L(Z3) in 
which A is not free.  
4. (∃α)(∀A)(A ∈ α ↔ ϕ), where ϕ is any formula in L(Z3) in 
which α is not free.  
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The axioms of WZ3 are very convenient (W for "weak"). The 
only change is that in axiom 4, we require that there be no 
quantifiers over PPN. WZ3 is enough to extend the projective 
hierarchy along ω1. Z3 proves the existence of a beta model 
of WZ3, and much more.  
 
In this section 0.11, we will focus entirely on the outer 
limits of Concrete Mathematical Incompleteness, in that we 
will be using  
 

Borel measurable sets in and functions between  
complete separable metric spaces 

 
throughout. We take finitely Borel to lie within Concrete 
mathematics, and arbitrary Borel to lie just outside.  
 
In each case in this section, the incompleteness from Z2 
will emerge already using only Borel objects of finite rank 
in the Borel hierarchy (i.e., finitely Borel). In section 
0.12, when we use Zermelo set theory, the incompleteness 
will emerge at Borel rank ω.  
 
Our position that the finite levels of the Borel hierarchy 
for complete separable metric spaces lies at the outer 
limit of the Mathematically Concrete was discussed in 
section 0.3, with Theorem 0.3.1 used as some justification 
- particularly item ii there. 
 
Let X be a complete separable metric space. We define the 
classes Σα and Πα of subsets of X, α < ω1, as follows.  
 
Σ0 consists of the sets of the form {y: d(x,y) < q}, for x ∈ 
X and positive rationals q. Π0 consists of the sets of the 
form {y: d(x,y) ≥ q}, for x ∈ X and positive rationals q.  
 
For 0 < α < ω1, Σα consists of unions of sequences of sets 
from the Πβ, β < α, and Πα consists of intersections of 
sequences of sets from the Σβ, β < α.  
 
The Borel subsets of X are the sets that are in Σα, for some 
α < ω1. It is easily seen that the Borel sets form the least 
σ algebra of subsets of X containing all elements of Σ0.  
 
It is also clear that each Πα is the set of complements of 
the elements of Σα. Also, for 0 ≤ α ≤ β < ω1, Σα ⊆ Σβ and Πα 
⊆ Πβ.  
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If X is uncountable, then for all β < ω1, Σβ ≠ Σβ+1, and Πβ ≠ 
Πβ+1.  
 
This is equivalent to the definition of the Borel hierarchy 
given in [Ke95], 11.B, p. 68, where these claims are 
proved.  
  
We focus on the functions f:X → Y, where X,Y are complete 
separable metric spaces. We say that f is Borel (Borel 
measurable) if and only if the inverse image of every open 
subset of Y is a Borel subset of X.   
 
We also define the following important hierarchy of 
functions. 
 
Baire class 0 consists of the f:X → Y which are pointwise 
limits of continuous f:X → Y.  
 
For 0 < α < ω1, Baire class α consists of the f:X → Y that 
are the pointwise limit of a sequence of g:X → Y that 
pointwise converges, where for each g there exists β < α 
such that g is in Baire class β.  
 
We say that f:X → Y is Baire if and only if f is in Baire 
class α, for some α < ω1.  
 
It is a standard theorem of descriptive set theory that the 
Baire functions are exactly the Borel functions (in the 
context of f:X  → Y, where X,Y are complete separable 
metric spaces). See [Ke95], Theorem 24.3, p. 190,  
 
Some authors define the Baire classes a little differently, 
where they start at Baire class 1, and define f:X → Y to be 
of Baire class 1 if and only if the inverse image of every 
open subset of Y is a Σ2 subset of X.  
 
According to [Ke95], Theorem 24.10, this definition agrees 
with our definition above (pointwise limits of continuous 
functions) in the case Y = ℜ.  
 
We must formalize these notions appropriately in L(RCA0). 
Some care is required. We adopt the approach of [Si99,09].  
 
Firstly, complete separable metric spaces are defined in 
L(RCA0) by means of codes. We henceforth refer to these 
spaces as Polish spaces.  
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As in [Si99,09], Definition II.5.1, a code for a Polish 
space T is a nonempty set A ⊆ N together with a function 
d:A2 → ℜ obeying the usual metric conditions. Points in T 
are then defined as infinite sequences from A that form a 
Cauchy sequence (using the estimates 2-i). We don't factor 
out by the obvious equivalence relation. Similarly, when 
developing ℜ as Cauchy sequences, we also don't factor out.  
 
The metric d extends naturally to T, A becomes dense in T, 
and Cauchy completeness holds for the elements of T.  
 
Open subsets of X are coded by sequences of pairs (a,q), 
where a ∈ A and q > 0 is rational. Membership of x ∈ T in 
the open set means that d(a,x) < q. Closed subsets of X are 
viewed as complements of open sets. 
 
Continuous functions from X into Y are coded in L(RCA0) by 
means of systems of neighborhood conditions. In [Si99,09], 
Definition II.6.1, they are sets of quintuples from N x A x 
Q+ x B X Q+, where A,B ⊆ N are attached to the Polish spaces 
X,Y.   
 
For Borel subsets of X, the usual vehicle for formalization 
in the language of RCA0 is through Borel codes. These are 
well founded trees of finite sequences from N where at the 
terminal vertices, there is a label (a,q), where a ∈ A and 
q > 0 is rational. The idea is that x ∈ X is accepted at a 
terminal vertex with label (a,q) if and only if d(a,x) < q, 
and accepted at an internal vertex v if and only if  
 
case 1. v is of odd length (as a finite sequence from N). x 
is accepted at some immediate successor of v. 
 
case 2. v is of even length. x is not accepted at any 
immediate successor of v.  
 
Finally, x is considered to be in the Borel set with the 
given Borel code, if and only if x is accepted at the root 
of the tree.  
 
A similar Borel coding scheme can be introduced for Borel 
functions f:X → Y that corresponds to the Baire classes.  
 
This whole coding apparatus is very delicate for weak 
systems, particularly for RCA0, since in order to get 
accepted, a certain transfinite recursion must be realized. 
In weak systems, we can only provably realize very special 
transfinite recursions. To a much lesser extent, issues 
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arise in weak systems with regard to the codings of open 
and closed sets, and continuous functions.  
 
We have no need to confront these issues in this section 
0.11. The statements being reversed here derive ATR0 over 
RCA0, using very little of this coding. We are then free to 
use ATR0 as a base theory when dealing with Borel sets in 
and functions between Polish spaces.  
 
0.11B. Borel Determinacy in Z2. 
 
Determinacy concerns (two person zero sum) infinite games, 
where players I,II alternately play nonnegative integers, 
starting with player I. The outcome of the game is the 
element of N∞ that results from the play of the game.  
 
Specifically, for any A ⊆ NN, we consider the game G[A], 
where player I is considered the winner if the outcome of 
the game is an element of A. Otherwise, player II is 
considered to be the winner.  
 
We say that G[A] is determined if and only if one of the 
two players has a winning strategy. It is well known that 
there exists A ⊆ NN for which G[A] has no winning strategy. 
See [GS53], [Ka94], chapter 6.  
 
However, the proof of the existence of non determined G[A] 
does not produce an A that is definable in set theory. 
There has been much work concerning the determinacy of 
G[A], where A is explicitly definable in various senses. 
These investigations are tied up with large cardinal 
hypotheses. We refer the reader to [Mart69], [MSt89], 
[Ke95], [Lar04], [St09], [Ne∞], [KW∞].  
 
Let K be a class of subsets of NN. K determinacy asserts 
that for all A ∈ K, the game G[A] is determined. 
Henceforth, we will be focused on K contained in the class 
of all Borel subsets of NN.  
 
The original "proof" of Borel determinacy was not conducted 
in ZFC. 
 
THEOREM 0.11B.1. Assume that a measurable cardinal exists. 
Then Borel determinacy holds. I.e., all Borel subsets of NN 
are determined. In fact, the weaker large cardinal 
hypothesis (∀α < ω1)(∃κ)(κ → α) suffices.   
 
Proof: See [Mart69], [Ke95], section 20. QED 
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Later, we showed that any proof of Borel determinacy in ZFC 
is not going to be "normal". 
 
THEOREM 0.11B.2. There is no proof of Borel determinacy in 
Zermelo set theory with the axiom of choice (ZC). In fact, 
no countable transfinite iteration of the power set 
operation suffices.  
 
Proof: See [Fr71]. We will discuss what exactly we mean by 
the second claim, in section 0.12. QED 
 
A few years later, the gap between Theorems 0.11B.1 and 
0.11B.2 was filled. 
 
THEOREM 0.11B.3. Borel determinacy can be proved in ZFC. In 
fact, it suffices to use all countably transfinite 
iterations of the power set operation.  
 
Proof: See [Mart75], [Ke95]. QED 
 
Note that Theorems 0.11B.2 and 0.11B.3 properly lie in the 
domain of section 0.12.  
 
There has been considerable work on determining just where 
in the Borel hierarchy determinacy is provable in full 
second order arithmetic, Z2. This investigation has 
culminated in [MS∞], providing a complete answer. 
 
Note that determinacy for the classes Borel, Σ0n, Π0

n, and 
Δ0n, are Π1

3 statements. So we can use ZFC\P or ZF\P, as all 
three of these systems prove the same Π1

3 sentences. In 
fact, they prove the same Σ14 sentences, as is shown in 
[MS∞], Proposition 1.4 (although this is certainly not due 
to them, but it is not clear who first proved this). Here 
\P indicates "without the power set axiom". 
 
Here is the historical record of Borel determinacy in Z2. 
 
Borel determinacy. Not provable in Zermelo set theory with 
the axiom of choice. Not provable using only countably many 
transfinite iterations of the power set operation, [Fr71]. 
See section 0.12 for precise formulations. 
 
Σ05 determinacy. Not provable in Z2. [Fr71]. 
 
Borel determinacy. Proved in ZFC\P + "the cumulatively 
hierarchy on any well ordering of ω exists". [Mart75]. 
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Σ04 determinacy. Not provable in Z2. [Mart74].  
 
Σ01 determinacy. Equivalent to ATR over RCA. [St76]. Refined 
in [Si99,09] to equivalence with ATR0 over RCA0. 
 
Σ01 ∧ Π0

1 determinacy. Equivalent to Π1
1-CA0 over RCA0. 

[Tan90]. 
 
Δ02 determinacy. Equivalent to Π1

1-TR0 over RCA0. [Tan90].  
 
Σ02 determinacy. Provable in Π1

2-CA0, but not in Π1
1-TR0. 

[Tan91].  
 
Δ03 determinacy. Provable in Δ13-CA, but not in Δ13-CA0. 
[MT08]. 
 
Σ03 determinacy. Provable in Π1

3-CA0. [Wel09]. 
 
Boolean combinations of Σ03 determinacy. Not provable in Z2.  
For n-fold combinations, fixed n < ω, provable in Z2, 
[MS∞].  
 
0.11C. Borel diagonalization on ℜ. 
 
We discovered Borel diagonalization on ℜ by reflecting on 
Cantor's proof that ℜ is uncountable. Put in very basic 
terms, Cantor proved by diagonalization that  
 

*) in any infinite sequence of real numbers,  
some real number is missing. 

 
It occurred to me to consider witness functions for *). Let 
us say that F:ℜ∞ → ℜ is a diagonalizer if and only if (∀x 
∈ ℜ∞)(∀n ∈ Z+)(F(x) ≠ xn).  
 
For any topological space X, X∞ is the infinite product 
space defined in the usual way. It is well known that if X 
is (can be made into) a complete separable metric space, 
then X∞ is (can be made into) a complete separable metric 
space.  
 
Cantor's diagonalization argument easily establishes the 
existence of a diagonalizer F:ℜ∞ → ℜ.  
 
LEMMA 0.11C.1. There is no continuous diagonalizer F:ℜ∞ → 
ℜ. There is no continuous diagonalizer F:I∞ → I. 
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Proof: Let F:ℜ∞ → ℜ be a continuous diagonalizer. Let α ∈ 
ℜ∞ be an enumeration of the rationals. Consider F(x,α) as a 
function of x ∈ ℜ.  
 
case 1. F is constant. Let c be the constant. Then F(c,α) = 
c, which is impossible. 
 
case 2. F is not constant. Let F(x,α) ≠ F(y,α), x < y. By 
the intermediate value theorem there exists x < z < y such 
that F(z,α) ∈ Q. This is also impossible.  
 
We can easily repeat the argument with ℜ replaced by I. QED 
 
We now construct a diagonalizer F:I∞ → I in Baire class 1.  
 
Let x ∈ I∞. First write the coordinates of x in base 2, 
always using infinitely many 0's. Then diagonalize in the 
usual way to construct u ∈ {0,1}∞ which differs from these 
base 2 expansions. I.e., ui = 1 - xi', where xi' is this 
expansion of xi in base 2.  Take F(x) to be the evaluation 
of u in I.  
 
For w ∈ {0,1}k, k ≥ 1, write w* ∈ I for the evaluation of w 
in base 2.  
 
LEMMA 0.11C.2. Let w ∈ {0,1}k, k ≥ 1. A = {x ∈ I∞: F(x) ∈ 
[w*,w*+2-k)} is Δ02 in I∞.  
 
Proof: Let w be given. Let x ∈ I∞. Note that x ∈ A if and 
only if  
 
F(x) has base 2 expansion starting with w. 
 
(∃v1,...,vk ∈ {0,1}k)(∀i ∈ {1,...,k})(vi is the first k 
terms of the base 2 expansion of xi, and the standard 
diagonal construction produces w from v1,...,vk).  
 
(∃v1,...,vk ∈ {0,1}k)(∀i ∈ {1,...,k})(xi ∈ [vi,vi+2-k) and 
the standard diagonal construction produces w from 
v1,...,vk).  
 
QED 
 
LEMMA 0.11C.3. Let V ⊆ I be open. Then F-1(V) is Σ02 in I∞.  
 
Proof: Since every open subset of I is the countable union 
of intervals of the form [w*,w*+2-k), w ∈ {0,1}k, k ≥ 1, 
this is immediate from Lemma 0.11C.2. QED  
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LEMMA 0.11C.4. Let F:I∞ → I, and suppose that the inverse 
image of any open set in I under F is Σ02 in I∞. Then F is 
in Baire class 1. 
 
Proof: By Theorem 24.3 in [Ke95], p. 190, credited to 
Lebesgue, Hausdorff, and Banach. QED 
 
THEOREM 0.11C.5. There is a diagonalizer F:I∞ → I in Baire 
class 1, but none that is continuous. There is a 
diagonalizer G:ℜ∞ → ℜ in Baire class 1, but none that is 
continuous. There is a continuous diagonalizer H:X∞ → X, 
where X is {0,1} or X = N.   
 
Proof: The first claim is immediate from Lemmas 0.11C.1, 
0.11C.3, and 0.11C.4. For the second claim, take G(x) = 
f(x'), where each x'i = 0 if xi ≤ 0; 1 if xi ≥ 1; x 
otherwise. Note that G:ℜ∞ → ℜ is a diagonalizer, and x' 
defines a continuous function of x. Hence G is in Baire 
class 1. The last claim is essentially due to Cantor, with 
his diagonal argument. QED 
 
We realized that in the constructions of diagonalizers F:ℜ∞ 
→ ℜ, the values F(x1,x2,...) seem to depend critically on 
the order in which the x's appear.  
 
So we were led to the question: is there a diagonalizer 
F:ℜ∞ → ℜ which is suitably invariant? I.e., where for all 
x,y ∈ ℜ∞, if x is "similar" to y, then F(x) = F(y)? 
 
The weakest notion of "similar" that we consider in this 
section is "having the same coordinates" or "having the 
same image". I.e., rng(x) = rng(y), for x,y ∈ ℜ∞. Here 
rng(x) is the set of all coordinates of x.  
 
Thus we say that f:ℜ∞ → ℜ is image invariant if and only if 
for all x,y ∈ ℜ∞, rng(x) = rng(y) → F(x) = F(y). 
 
Of course, this definition applies to f:X∞ → X, where X is 
any set whatsoever.  
 
THEOREM 0.11C.6. There is an image invariant diagonalizer 
f:ℜ∞ → ℜ. In fact, there is an image invariant diagonalizer 
f:X∞ → X if and only if X is uncountable.  
 
Proof: By the axiom of choice. QED 
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Note that the proof of Theorem 0.11C.6 does not produce a 
definable example - even for the first claim. A related 
observation is that it proves the claim in ZFC, but not 
even the first claim is proved in ZF.  
 
We will take this matter up in section 0.13, where we show 
that there is no definition that ZFC proves is an example 
for the first claim, and that ZF does not suffice to prove 
the existence of an example for the first claim.  
 
We now come to a Concrete Mathematical Incompleteness 
result.  
 
THEOREM 0.11C.7. Borel Diagonalization Theorem. There is no 
image invariant Borel diagonalizer f:ℜ∞ → ℜ. This is 
provable in WZ3 but not in Z2. 
 
Proof: See [Fr81]. The unprovability from Z2 was proved 
there by first considering pZ2, which is Z2 formulated 
without parameters. We established the equiconsistency of 
pZ2 and Z2, and other relationships, and then showed how the 
Borel Diagonalization Theorem gives rise to an ω model of 
pZ2, and hence of Z2. We relied on our earlier experience 
with ZF formulated without parameters, from our Ph.D. 
thesis. See [Fr67] and [Fr71a]. QED  
 
0.11D. Borel Inclusion for ℜ∞ → ℜ, ℜ∞ → ℜ∞, GRP → GRP. 
 
We now consider these three notions of similarity. 
 
1. y is a permutation of x. 
2. y is a permutation of x that moves only finitely many 
positions. Such permutations are called finitary 
permutations.  
3. x,y have the same image. 
 
The associated conditions on F:ℜ∞ → ℜ are respectively 
called permutation invariant, finitary permutation 
invariant, and image invariant. 
 
We also consider shift invariance. We say that F:ℜ∞ → ℜ is 
shift invariant if and only if for all x ∈ ℜ∞, F(sx) = 
F(x). Here sx = shift of x, is the result of removing the 
first term of x.  
 
We also find it convenient to switch to positive 
phraseology. We define an inclusion point of F:ℜ∞ → ℜ as an 
x ∈ ℜ∞ such that F(x) is a coordinate of x.  
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THEOREM 0.11D.1. Borel Inclusion Point Theorem for ℜ∞,ℜ. 
Every permutation (finitary permutation, image, shift) 
invariant Borel F:ℜ∞ → ℜ has an inclusion point. All four 
forms are provable in WZ3, but none are provable in Z2. 
 
Proof: These results are proved by straightforward 
adaptations of the methods in [Fr81]. QED  
 
We now consider F:ℜ∞ → ℜ∞. Here we say that x is an 
inclusion point for F if and only if F(x) is a subsequence 
of x.  
 
There are many natural notions of invariance here.  
 
a. Permutation commuting. This means that for all x ∈ ℜ∞ 
and permutations π, f(πx) = πf(x). 
 
b. Finitary permutation commuting. This means that for all 
x ∈ ℜ∞ and finite permutations π, f(πx) = πf(x).  
 
c. Permutation invariant. This means that for all x,y ∈ ℜ∞, 
if y is a permutation of x then F(x) = F(y).  
 
d. Finitary permutation invariant. This means that for all 
x,y ∈ ℜ∞, if y is a finite permutation of x then F(x) = 
F(y).  
 
e. Permutation preserving. This means that for all x,y ∈ 
ℜ∞, if y is a permutation of x then F(y) is a permutation 
of F(x). 
 
f. Finitary permutation preserving. This means that for all 
x,y ∈ ℜ∞, if y is a finitary permutation of x then F(y) is 
a finitary permutation of F(x). 
 
g. Image invariant. This means that for all x,y ∈ ℜ∞, 
rng(x) = rng(y) → F(x) = F(y).  
 
h. Image preserving. This means that for all x,y ∈ ℜ∞, 
rng(x) = rng(y) → rng(F(x)) = rng(F(y)).  
 
i. Shift invariant. This means that for all x ∈ ℜ∞, F(sx) = 
F(x). 
 
j. Shift commuting. This means that for all x ∈ ℜ∞, F(sx) = 
s(F(x)).  
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k. Tail invariant. This means that for all x,y ∈ ℜ∞, if x,y 
have a common tail, then F(x) = F(y). 
 
l. Tail preserving. This means that for all x,y ∈ ℜ∞, if 
x,y have a common tail, then F(x),F(y) have a common tail.  
 
THEOREM 0.11D.2. Borel Inclusion Theorem for ℜ∞,ℜ∞. Every 
Borel F:ℜ∞ → ℜ∞ with any of a-l has an inclusion point. All 
twelve forms are provable in WZ3, but none are provable in 
Z2.  
 
Proof: These results are proved by straightforward 
adaptations of the methods in [Fr81]. QED  
 
Let GRP be the space of groups whose domain is N or a 
finite subset of N. Then GRP is a low level Borel subspace 
of a natural Baire space.  
 
Let F:GRP → GRP. An inclusion point for F is some G ∈ GRP 
such that F(G) is embeddable into G.   
 
We say that F:GRP → GRP is isomorphic preserving if and 
only if for all G,H ∈ GRP, G ≈ H → F(G) ≈ F(H).  
 
We write FGG for the subspace of finitely generated 
elements of GRP. 
 
LEMMA 0.11D.3. Any two elements of FGG that agree on their 
intersection have a common extension in FGG.  
 
Proof: This is by the free product construction. QED 
 
Let FGG be the subspace consisting of the finitely 
generated G ∈ GRP. 
 
THEOREM 0.11D.4. Every isomorphic preserving Borel function 
F:GRP → GRP has an inclusion point. This is provable in WZ3 
but not in Z2. In fact, Z2 does not even prove this for 
F:GRP → FGG. The same results hold for finitely Borel 
functions.  
 
Proof: Let F be as given with Borel code u. Let M be a 
countable transitive model of a weak fragment of ZFC + V = 
L containing u. Then F will remain isomorphic preserving in 
M. Build a generic tower of finitely generated groups of 
length ω, using finite length towers of finitely generated 
groups as the forcing conditions (this will collapse ω1 to 
ω). Let G be the union of the tower. Then F(G) is 
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embeddable into G using Lemma 0.11D.3, and that the FGG of 
the generic extension is the same as the FGG of the ground 
model. The proof can be adapted to be formalized in WZ3. For 
the final claim, let G ∈ GRP. Look at the union V of all 
Turing degrees associated with the finitely generated 
subgroups of G, and get a Turing degree that's missing, 
assuming that V is not a model of parameterless Z2. Then 
output the H ∈ FGG associated with this Turing degree, as 
in [Fr07a]. The reduction of Z2 to parameterless Z2 is 
presented and used in [Fr81]. QED  
 
THEOREM 0.11D.5. Let X be a Borel set of relational 
structures in a finite relational type with domain N or a 
finite subset of N. Suppose any two finitely generated 
substructures of any two respective elements of X that 
agree on their intersection have a common extension in X. 
Then every isomorphic preserving Borel function F:X → X has 
an inclusion point.   
 
Proof: We have just isolated the essential feature needed 
to carry out the proof of Theorem 0.11D.4, which is Lemma 
0.11D.3. QED 
 
THEOREM 0.11D.6. Theorem 0.11D.5 is provable in WZ3 but not 
in Z2. The same holds for finitely Borel sets and functions. 
 
Proof: By Theorem 0.11D.4 and the proof of Theorem 0.11D.5. 
QED 
 
0.11E. Borel Squaring Theorem and Function Agreement.  
 
We seek a one dimensional form of the results on ℜ∞. Let K 
be the Cantor space {0,1}∞, indexed from 1. For x ∈ K, the 
"square" of x, written x(2), is given by  
 

x(2) = (x1,x4,x9,x16,...). 
 
THEOREM 0.11E.1. Borel Squaring Theorem. Every shift 
invariant Borel F:K → K maps some argument into its 
"square". I.e., there exists x ∈ K such that F(x) = x(2). 
This is provable in WZ3 but not in Z2. The same results hold 
for finitely Borel F.  
 
Proof: See [Fr83]. QED 
 
In [Fr83], we went on to try to prove such a one 
dimensional theorem for the circle group S, where 2x on S 
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replaces s(x) on K. Thus we say that F:S → S is doubling 
invariant if and only if for all x ∈ S, F(2x) = F(x). 
 
But we were not able to find a nice function on S like 
"squaring" on K. However, we were able to find a continuous 
function on S that works. 
 
THEOREM 0.11E.2. There is a continuous F:S → S which agrees 
somewhere with every doubling invariant Borel G:S → S. This 
is provable in WZ3 but not in Z2. The same results holds for 
finite Borel G.  
 
Proof: See [Fr83]. QED 
 
This opens up two closely related research topics: 
 
Find a simple function that agrees somewhere with every 
function satisfying a given condition.  
 
Find a function obeying a first given condition that agrees 
somewhere with every function satisfying a second given 
condition.  
 
The results of section 0.11D can be put into the same form 
illustrated by Theorems 0.11E.1 and 0.11E.2, as follows.   
 
THEOREM 0.11E.3. The first coordinate function from ℜ∞ into 
ℜ agrees somewhere with every invariant Borel F:ℜ∞ → ℜ, in 
the various senses discussed in section 0.11D.  
 
Proof: By [Fr81], [Fr83], and sometimes straightforward 
adaptation of the methods there. QED.  
 
0.12. Incompleteness in Russell Type Theory and Zermelo Set 
Theory. 
 
0.12A. Preliminaries. 
0.12B. Borel Determinacy and Symmetric Borel Sets.  
0.12C. Borel Selection.  
0.12D. Borel Inclusion with Equivalence Relations. 
0.12E. Borel Functions on Linear Orderings and Graphs. 
0.12F. Borel Functions on Borel Quasi Orders. 
0.12G. Countable Borel Equivalence Relations and Quasi 
Orders.  
0.12H. Borel Sets and Functions in Groups. 
 
0.12A. Preliminaries. 
 



 152 

By Russell's Type Theory, we will mean his impredicative 
theory (obtained from his predicative theory using his 
axiom of reducibility), with the ground type corresponding 
to N. This modern form, which we call RTT, uses infinitely 
many sorts N,PN,PPN,..., with 0,S,+,• operating at type N, 
and ∈ connecting each sort with the next. We use equality 
only at sort N. The axioms are as follows. 
 
1. Sx ≠ 0, Sx = Sy → x = y, x+0 = 0, x+Sy = S(x+y), x•0 = 
0, x•Sy = x•y + x, where x,y have type N. 
2. 0 ∈ A ∧ (∀x)(x ∈ A → Sx ∈ A) → x ∈ A, where x has type 
N and A has type PN.  
3. (∃A)(∀B)(B ∈ A ↔ ϕ), where ϕ is a formula of L(RTT), 
and A has type one higher than B.  
 
The fragment involving only variables of the first n types, 
including N, is called Zn, or n-th order arithmetic.  
 
It proved quite awkward to formalize mathematics in RTT, 
even in its modern form. So it was supplanted by the single 
sorted system Z (Zermelo set theory), and later with 
Fraenkel's addition of Replacement, forming ZF. Still 
later, the axiom of choice became fully accepted, forming 
ZFC.  
 
Z is a one sorted system with one binary relation symbol ∈, 
in first order predicate calculus with equality. The axioms 
of Z are as follows. 
 
EXTENSIONALITY. (∀x)(x ∈ y ↔ x ∈ z) → y = z. 
PAIRING. (∃x)(y ∈ x ∧ z ∈ x). 
UNION. (∃x)(∀y)(∀z)(y ∈ z ∧ z ∈ w → y ∈ x). 
SEPARATION. (∃x)(∀y)(y ∈ x ↔ y ∈ z ∧ ϕ), where x is not 
free in ϕ. 
POWER SET. (∃x)(∀y)((∀z)(z ∈ y → z ∈ w) → y ∈ x). 
INFINITY. (∃x)(∅ ∈ x ∧ (∀y,z)(y ∈ x ∧ z ∈ x → y ∪ {z} ∈ 
x)). 
 
This modern version of Z differs from what Zermelo wrote in 
[Ze08]. There he included the Axiom of Choice, and also 
used this form of Infinity:  
 

(∃x)(∅ ∈ x ∧ (∀y)(y ∈ x → {y} ∈ x)). 
 
In the case of ZF, this, and other reasonable formulations 
of Infinity such as the most common  
 

(∃x)(∅ ∈ x ∧ (∀y)(y ∈ x → y ∪ {y} ∈ x)) 
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are provably equivalent from the remaining axioms. This is 
not the case for Z - see [Math01], Concluding Remarks. 
However, it is known that the variants of Z determined by 
reasonable formulations of Infinity are mutually 
interpretable.  
 
Note that this version of Z can prove (∀n < ω)(V(ω+n) 
exists), but cannot prove the existence of V(ω+ω). The 
former is enough to prove the consistency of RTT (see 
below).  
 
We write ZC for Z together with the axiom of choice: 
 
CHOICE. If x is a set of pairwise disjoint nonempty sets, 
there is a set which has exactly one element in common with 
each of the elements of x.   
 
It is natural to weaken Separation in Z, where only Δ0 
formulas are allowed. We refer to this as WZ, where W 
indicates "weak". This is also sometimes called MacLane set 
theory. We also consider WZC = WZ + AxC.  
 
We also use WZ(Ω), which is WZ + "every well ordering of ω 
is isomorphic to an ordinal" + "for all countable ordinals 
α, V(α) exists".  
 
The notions of ω model and β model are used for theories 
whose language extends that of Z2, or the language of set 
theory. An ω model is a model where the internal natural 
numbers are standard. A β model is an ω model where if an 
internal binary relation on the internal natural numbers 
is, internally, a well ordering, then it is a well 
ordering.  
 
THEOREM 0.12A.1. Z proves the existence of a countable β 
model of RTT and WZC. WZ is a conservative extension of 
RTT, in the sense that any theorem of WZ that is suitably 
typed, is also a theorem of RTT. 
 
Proof: For the first claim, Z can develop truth for bounded 
formulas, construct the proper class of constructible 
elements of the proper class V(ω+ω), and pass to the 
internally definable elements. This forms the required β 
model. The conservative extension result is most easily 
proved model theoretically, expanding any model of RTT to a 
model of WZ. QED 
 



 154 

In this section, we prove a number of equivalences over 
ATR0. Four main principles arise in this connection. 
 
We make the following definition in ATR0. Let (A,R) be a 
well ordering, A ⊆ N. A countable R model is a triple 
(B,S,rk), where  
 
i. B ⊆ N, S ⊆ B2, and rk:B → A is surjective. 
ii. rk(x) ≤ u ↔ (∀y)(S(y,x) → rk(y) < u). 
iii. If E ⊆ B is definable in (B,S) and u ∈ A, then there 
is a unique x ∈ B whose S predecessors are exactly the 
elements of E of rank < u.  
 
Assume (A,R) has length > ω, and let (B,S,rk) be a 
countable R model. There is an obvious mapping from every n 
∈ ω to a point n* in (B,S,rk) with rk(n*) = n. We say that 
(B,S,rk) encodes x ⊆ ω if and only if there exists u ∈ B 
such that x = {n: S(n*,u)}.  
 
FRA (finite rank axiom). For each n < ω and x ⊆ ω, there is 
a countable ω+n model that encodes x.  
 
BFRA (beta finite rank axiom). For each n < ω and x ⊆ ω, 
there is a countable ω+n model that encodes x, which is a β 
model. 
 
CRA (countable rank axiom). For each well ordering (A,R), A 
⊆ N, with a limit point, and x ⊆ ω, there is a countable R 
model that encodes x. 
 
BCRA (beta countable rank axiom). For each well ordering 
(A,R), A ⊆ N, with a limit point, and x ⊆ ω, there is a 
countable R model that encodes x, which is a β model.  
 
THEOREM 0.12A.2. BFRA is provable in Z. FRA is not provable 
in WZC. BCRA is provable in WZ(Ω). CRA is not provable in 
ZC. The following is provable in ATR0. FRA is equivalent to 
(∀n)(∀x ⊆ ω)(Zn has an ω model encoding x). BFRA is 
equivalent to (∀n)(∀x ⊆ ω)(Zn has a β model encoding x). If 
CRA then ZC has a countable ω model encoding any given x ⊆ 
ω. If BCRA then ZC has a countable β model encoding any 
given x ⊆ ω.  
 
Proof: For the first claim, fix n < ω and x ⊆ ω. Use a 
countable elementary substructure of the V(ω+n) of the 
constructible universe relative to x.   
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For the second claim, suppose that FRA is provable in WZC. 
By a model theoretic argument, FRA is provable in the 
fragment of WZC obtained by replacing the power set axiom 
with the existence of V(ω+n), for some fixed n. However, 
the consistency of that fragment is provable in FRA, 
violating Gödel's second incompleteness theorem.  
 
For the third claim, let (A,R) and x be given, and use a 
countable elementary substructure of the V(α) of the 
constructible universe relative to x, where (A,R) has type 
α.  
 
For the fourth claim, suppose CRA is provable in ZC. Apply 
CRA to a specific well ordering of type ω+ω. Then CRA 
proves the consistency of ZC, which contradicts second 
incompleteness.  
 
For the fifth claim, countable ω models of Zn encoding x 
correspond to countable ω+n models encoding x.  
 
For the sixth claim, countable β models of Zn encoding x 
correspond to countable ω+n models encoding x that are β 
models.  
 
For the seventh and eighth claims, use (A,R) of type ω+ω. 
QED 
 
Let ϕ be a sentence in the language of set theory. We want 
to define what we mean by "ϕ cannot be proved using a 
definite countable iteration of the power set operation". 
This issue was addressed in [Fr81], [Fr05], [Fr07a].  
 
We define the system DCIPS (definite countable iterations 
of the power set) as follows. The language has only ∈ in 
logic with equality. The axioms of DCIPS are given as 
follows. 
 
i. Every axiom of ZFC\P is an axiom of DCIPS. 
ii. Suppose ϕ(x) is a Σ1 formula of set theory with only the 
free variable shown, where ZFC\P proves (∃x)(ϕ(x) ∧ x is an 
ordinal). Then (∃x)(ϕ(x) ∧ V(x) exists) is an axiom of 
DCIPS.  
 
We say that a sentence can be proved using a definite 
countable iteration of the power set operation if and only 
if it can be proved in DCIPS.  
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THEOREM 0.12A.3. ATR0 + CRA proves the existence of an ω 
model of DCIPS. CRA is not provable in DCIPS. 
 
Proof: It is clear that the second claim follows from the 
first. We work in ATR0 + CRA. 
 
By applying CRA to, say, ω+ω, we obtain a countable β model 
M of ZFC + V = L. Let S be the set of all sentences 
(∃x)(ϕ(x) ∧ x is an ordinal), with only the free variable x, 
where ϕ is Σ1, that are provable in ZFC\P. Clearly all 
sentences in S hold in M. 
 
Let λ be the height of M. Apply CRA to a well ordering of 
type λ+ω, obtaining a suitable (B,R), B of type λ+ω. Within 
(B,R), cut back to the inner model of constructible sets in 
the sense of (B,R). Thus M will correspond to the first λ 
levels of (B,R). Then for each sentence (∃x)(ϕ(x) ∧ x is an 
ordinal) in S, the corresponding sentence (∃x)(ϕ(x) ∧ V(x) 
exists) holds in (B,R), since the x can be taken to be an 
ordinal < λ. 
 
(B,R) is not quite an ω model of DCIPS. We have only to 
extend (B,R) using the constructible hierarchy internally 
defined in (B,R). QED 
 
So in particular, if a sentence in L(Z2) implies CRA over 
ATR0, then that sentence "cannot be proved using a definite 
countable iteration of the power set operation". 
 
0.12B. Borel Determinacy and Symmetric Borel Sets.  
 
In [Fr71], we proved that Borel Determinacy is not provable 
in Z (or ZC). As was well known at the time, this can be 
strengthened to any "definite" countably transfinite 
iteration of the power set axiom. In [Fr71], we focused on 
the critical case of Z.  
 
We also formulated the conjecture that Borel Determinacy 
could be proved in (a weak variant of) WZ + (∀α < ω1)(V(α) 
exists). Also, we recognized a problem with coming up with 
an appropriate proof theoretic formulation of "cannot be 
proved using any definite countable transfinite iteration". 
See the definition of DCIPS and Theorem 0.12A.3.  
 
With the benefit of hindsight, we can place Borel 
Determinacy nicely in the realm of Reverse Mathematics.  
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THEOREM 0.12B.1. The following are provably equivalent in 
RCA0.  
i. Finitely Borel Determinacy. 
ii. BFRA. 
In particular, i) is provable in Z but not in WZC.  
 
Proof: Assume i). First use Borel Determinacy for open sets 
to obtain ACA0 and then ATR0, as in [Si99,09]. Then argue as 
in [Fr71] for any given level n < ω of the Borel hierarchy. 
Build the ramified hierarchy of level n+5 as far as it 
goes, starting with x, using well orderings on ω, and use 
Σ0n determinacy with parameter x to show that the hierarchy 
must stop.  
 
Assume ii). From the formulation using Tarski's 
satisfaction relation, ACA0 is immediate. Now Π1

1-CA0 is 
immediate. By [Mart75], for each n, we have a proof that Σ0n 
sets are determined from Zn+c, for some universal constant 
c. Let A be in Σ0n with code u ⊆ ω, and let M be a β model 
of Zn+c containing u. Then M satisfies that the Σ0n set with 
code u is determined. Since M is a β model, A is determined. 
QED 
 
THEOREM 0.12B.2. The following are provably equivalent in 
RCA0. 
i. Borel Determinacy. 
ii. BCRA. 
In particular, i) is provable in WZ(Ω) but not provable in 
DCIPS. 
 
Proof: A straightforward adaptation of the proof of Theorem 
0.12B.1. Also uses Theorem 0.12A.3. QED 
 
We now come to our method of converting Borel determinacy 
to a statement in classical analysis. In [Fr71], we 
presented the following asymmetric form: 
 

For every Borel Y ⊆ K×K,  
either Y contains the graph of a  

continuous function on K,  
or the converse of Y is disjoint from  

the graph of a continuous function on K.  
 
In [Fr71], we claimed that the independence proofs work 
equally well for the above. The proof from Borel 
Determinacy is utterly straightforward, the winning 
strategy giving us the continuous function F.  
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Later we discovered that we can work with only symmetric 
Borel Y ⊆ K×K, and still have the same independence 
results. Here a set of ordered pairs E is said to be 
symmetric if and only if for all (x,y) ∈ E, we have (y,x) ∈ 
E.  
 
THEOREM 0.12B.3. The following are provably equivalent in 
ATR0 (all forms). 
i. Every symmetric finitely Borel set in K×K (NN×NN) 
contains or is disjoint from the graph of a continuous 
(finitely Borel, Borel) function on K (NN). 
ii. Every symmetric finitely Borel set in ℜ×ℜ (I×I) 
contains or is disjoint from the graph of a left continuous 
(right continuous, finitely Borel, Borel) selection on ℜ 
(I).  
iii. Finitely Borel Determinacy. 
iv. BFRA.  
In particular, i-iv are provable in Z but not in WZC. 
 
THEOREM 0.12B.4. The following are provably equivalent in 
ATR0 (all forms). 
i. Every symmetric Borel set in K×K (NN×NN) contains or is 
disjoint from the graph of a continuous (Borel) function on 
K (NN). 
ii. Every symmetric Borel set in ℜ×ℜ (I×I) contains or is 
disjoint from the graph of a left continuous (right 
continuous, finitely Borel, Borel) selection on ℜ (I).  
iii. Borel Determinacy. 
iv. BCRA.  
In particular, i-iv are provable in WZ(Ω) but not in ZC. 
 
We need to explain the choices allowed in Theorems 0.12B.3 
and 0.12B.4. Note that in each of the two Theorems, we have 
the following items for making a choice: 
 

K×K (NN×NN) 
continuous (finitely Borel, Borel) 

K (NN) 
 

ℜ×ℜ (I×I) 
left continuous (right continuous, finitely Borel, Borel) 

ℜ (I) 
 
Here is the list of choices that can be made: 
 

K×K; any of continuous, finitely Borel, Borel; K 
NNxNN; any of continuous, finitely Borel, Borel; NN  
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ℜxℜ; any of left continuous, right continuous, finitely 
Borel, Borel; either of ℜ, I 

 
Proof: The above two theorems are essentially proved in 
[Fr81]. QED 
 
0.12C. Borel Selection. 
 
The work in this section appears in [Fr05], and was 
inspired by [DS96], [DS99], [DS01], [DS04], and [DS07].  
 
Let S be a set of ordered pairs and A be a set. Then f is a 
selection for S on A if and only if dom(f) = A and for all 
x ∈ A, (x,f(x)) ∈ S.  
 
The following statement is well known to be refutable from 
ZFC + V = L, and relatively consistent with ZFC by a 
forcing argument. 
 
DOM. (∀f ∈ NN)(∃g ∈ NN)(∀h ∈ NN ∩ L[f])(g eventually 
strictly dominates h).  
 
All of the statements considered here are local/global in 
the sense that if we have a continuous or Borel selection 
on every compact subset of E, then we have a continuous or 
Borel section on all of E. 
 
We consider the following two Templates.  
 
TEMPLATE A. Let S ⊆ NN × NN be Borel (finitely Borel). If 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on every compact subset of N∞, then there is 
a constant (continuous, finitely Borel, Borel) selection 
for S on NN. 
 
TEMPLATE B. Let S ⊆ NN×NN and E ⊆ NN be Borel (finitely 
Borel). If there is a constant (continuous, finitely Borel, 
Borel) selection for S on every compact subset of E, then 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on E. 
 
Note that Template A is just Template B for E = NN. 
 
The choices in these Templates are independent of each 
other. In other words, each Template has 32 instances - 
with two first options, four second options, and four third 
options.  
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THEOREM 0.12C.1. The following fourteen instances of 
Templates A,B are refutable in RCA0: 
 
i. Borel or finitely Borel, constant, constant. 
ii. Borel or finitely Borel, continuous, constant. 
iii. Borel or finitely Borel, finitely Borel, constant. 
iv. Borel or finitely Borel, finitely Borel, continuous. 
v. Borel or finitely Borel, Borel, constant. 
vi. Borel or finitely Borel, Borel, continuous. 
vii. Borel or finitely Borel, Borel, finitely Borel. 
 
Proof: To refute i-iii,v, set S(x,y) ↔ y everywhere 
dominates x. To refute iv,vi, let S be the graph of some 
f:NN → NN that is finitely Borel but not continuous. To 
refute vii), let S be the graph of some f:NN → NN that is 
Borel but not finitely Borel. QED 
 
THEOREM 0.12C.2. The following eight instances below of 
Templates A,B are provable in Z but not in WZC.  
 
finitely Borel, constant, continuous.  
finitely Borel, constant, finitely Borel. 
finitely Borel, constant, Borel.  
finitely Borel, continuous, continuous.  
finitely Borel, continuous, finitely Borel. 
finitely Borel, continuous, Borel.  
finitely Borel, finitely Borel, finitely Borel. 
finitely Borel, finitely Borel, Borel.  
 
Proof: In each case, the provability is implicit in [DS04], 
and reproved in [Fr05]. The unprovability is from [Fr05]. 
QED 
 
THEOREM 0.12C.3. The following eight instances below of 
Templates A,B are provable in WZ(Ω), but are unprovable in 
DCIPS.  
 
Borel, constant, continuous.  
Borel, constant, finitely Borel. 
Borel, constant, Borel.  
Borel, continuous, continuous.  
Borel, continuous, finitely Borel. 
Borel, continuous, Borel.  
Borel, finitely Borel, finitely Borel. 
Borel, finitely Borel, Borel.  
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Proof: In each case, the provability is implicit in [DS04], 
and reproved in [Fr05]. The unprovability is from [Fr05]. 
QED 
 
THEOREM 0.12C.4. The following two instances below of 
Templates A,B are provably equivalent, over ZFC, to DOM.  
 
finitely Borel, Borel, Borel. 
Borel, Borel, Borel. 
 
Proof: The provability in ZFC + DOM for Templates A,B, is 
due to [DS07]. We prove DOM from these instances, for 
Templates A,B, over ZFC, in [Fr05]. We also give a proof of 
these instances from ZFC + DOM for Template A only, in 
[Fr05]. QED 
 
We can use ℜ instead of the Baire space NN as follows.  
 
TEMPLATE A'. Let S ⊆ ℜ × ℜ be Borel (finitely Borel). If 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on every compact set of irrationals, then 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on the irrationals. 
 
TEMPLATE B'. Let S ⊆ ℜ × ℜ and E be a Borel (finitely 
Borel) set of irrationals. If there is a constant 
(continuous, finitely Borel, Borel) selection for S on 
every compact subset of E, then there is a constant 
(continuous, finitely Borel, Borel) selection for S on the 
irrationals in E. 
 
As in Templates A,B, the choices in these Templates are 
independent of each other. Thus each Template has 32 
instances - with two first options, four second options, 
and four third options.  
 
THEOREM 0.12C.1. The 32 instances of Template A and the 
corresponding instances of Template A' are respectively 
provably equivalent in ATR0. The 32 instances of Template B 
and the corresponding instances of Template B' are 
respectively provably equivalent in ATR0.  
 
Proof: See [Fr05]. QED  
 
The reason that we have run into independence from ZFC here 
is that in the  
 

(finitely) Borel, Borel, Borel 
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instance of the Templates, the second Borel uses 
arbitrarily high levels of the Borel hierarchy. We regard 
this as just beyond the scope of Concrete Mathematical 
Incompleteness. 
 
We also point out that these instances that are independent 
of ZFC, are Π1

4, and since they are provably equivalent to 
DOM, they are refutable in ZFC + V = L. (V = L is Gödel's 
axiom of constructibility [Go38], [Je76,06]).  
 
In sections 13 and 14, we will encounter Concrete 
Mathematical Incompleteness from ZFC. In section 13, the 
use of finitely Borel leads to independence from ZFC. 
 
For all of our examples of Concrete Mathematical 
Incompleteness from ZFC, we have independence from ZFC + V 
= L. For all of our examples of Concrete Mathematical 
Incompleteness from fragments T of ZFC, we have 
independence from T + V = L, where V = L is the standard 
analog of the axiom of constructability adapted to T.  
 
0.12D. Borel Inclusion with Equivalence Relations. 
 
Let E ⊆ ℜ2 be a Borel equivalence relation with field ℜ. 
There has been considerable work in descriptive set theory 
concerning the classification of Borel equivalence 
relations under the Borel reducibility notion that was 
introduced in [FSt89]. See, e.g., [Ke95], [BK96], [HK96], 
[HK97], [HKL98], [HK01].  
 
We say that x,y are E equivalent if and only if E(x,y). We 
write E* for the equivalence relation on ℜ∞ given by  
 

E*(x,y) ↔ every coordinate of x is E equivalent  
to a coordinate of y, and vice versa. 

 
We give two forms of Borel Inclusion for E. 
 
i. Let F:ℜ∞ → ℜ be Borel, where E* equivalent arguments are 
sent to E equivalent values. There exists x ∈ ℜ∞ such that 
F(x) is E equivalent to a coordinate of x. 
ii. Let F:ℜ∞ → ℜ∞ be Borel, where E* equivalent arguments 
are sent to E* equivalent values. There exists x ∈ ℜ∞ such 
that every coordinate of F(x) is E equivalent to a 
coordinate of x. 
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THEOREM 0.12D.1. Both forms of Borel Inclusion for Borel 
equivalence relations hold.  
 
Proof: The first claim is proved in [Fr81], p. 235. For the 
second claim, let F:ℜ∞ → ℜ∞ be Borel, where E* equivalent 
arguments are sent to E* equivalent values. Let G:(ℜ∞)∞ → 
ℜ∞ be defined for all x ∈ (ℜ∞)∞ by 
 

G(x) = F(x11,x12,x21,x13,x22,x31,...). 
 
We use E** for the Borel equivalence relation on (ℜ∞)∞. 
given by  
 

E**(x,y) ↔ every coordinate of x is E* equivalent  
to a coordinate of y, and vice versa. 

 
We claim that G maps E** equivalent arguments to E* 
equivalent values. To see this, let x,y ∈ (ℜ∞)∞ be E** 
equivalent. Then  
 

(x11,x12,x21,x13,x22,x31,...) 
(y11,y12,y21,y13,y22,y31,...) 

 
are E* equivalent, and so their values under F are E* 
equivalent.  
 
By the first claim, let G(x) be E* equivalent to xi. 
 
F(x11,x12,x21,x13,x22,x31,...) is E* equivalent to 
(xi1,xi2,xi3,...).  
 
QED  
 
THEOREM 0.12D.2. The following are provably equivalent in 
ATR0.  
i. Both forms of (finitely) Borel Inclusion for finitely 
Borel Equivalence Relations. 
ii. FRA. 
In particular, i) is provable in Z but not in WZC.  
 
Proof: See [Fr81]. QED 
 
THEOREM 0.12D.3. The following are provably equivalent in 
ATR0.  
i. Both forms of Borel Inclusion for Borel Equivalence 
Relations. 
ii. CRA. 
In particular, i) is provable in WZ(Ω) but not in DCIPS.  
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Proof: See [Fr81]. QED 
 
In [Fr81], we go on to deal with Borel Inclusion for NN 
under conjugation. I.e., f ≈ g ↔ (∃h)(g = hgh-1). This is a 
complete analytic equivalence relation. We again obtain 
Theorems 0.12D.2,  0.12D.3 for this equivalence relation. 
Subsequently, we improved this to analytic equivalence 
relations.  
 
THEOREM 0.12D.4. The following are provably equivalent in 
ATR0.  
i. Both forms of Borel Inclusion for Analytic Equivalence 
Relations, NN under conjugation, graphs on N under 
isomorphism (a total of 6 forms). 
ii. CRA. 
In particular, each of the 6 forms of i) can be proved in 
WZ(Ω) but not in DCIPS. 
 
Proof: For our proof of Borel Inclusion for Analytic 
Equivalence Relations, see [Sta85], p. 23. The second form 
is obtained from the first form as in the proof of Theorem 
0.12D.1. QED 
 
0.12E. Borel Functions on Linear orderings and Graphs. 
 
The formulations in this section avoid infinite sequences, 
and attain the same level of strength as the statements in 
section 0.12D.  
 
It is particularly convenient to think of countable linear 
orderings, up to isomorphism, as subsets of Q up to order 
isomorphism. Thus we have the nice Cantor space ℘Q of 
subsets of Q. We say that A,B ∈ ℘Q are isomorphic if and 
only if they are isomorphic as linearly ordered sets, in 
the induced order. 
 
We say that F:℘Q → ℘Q is isomorphic preserving if and only 
if isomorphic arguments are assigned isomorphic values.   
 
Let A1,A2,... ∈ ℘Q. A dense mix is obtained by starting 
with Q, and replacing each point with some Ai, in such a way 
that for all i,j, strictly between any two copies of Ai, 
there is a copy of Aj. (We regard the A's as distinct for 
this purpose). Note that all dense mixes of A1,A2,... are 
isomorphic.  
 



 165 

THEOREM 0.12E.1. Every isomorphic preserving Borel F:℘Q → 
℘Q sends some A to an isomorphic copy of an interval in A 
with endpoints in A.  
 
Proof: See [Sta85], where the result is derived from Borel 
Inclusion for Analytic Equivalence Relations. The idea is 
as follows. Given F, define G:(℘Q)∞ → ℘Q by G(A1,A2,...) = 
F(B), where B ∈ ℘Q is a canonically constructed dense mix 
of A1',A2',..., where each Ai' is the result of adding a 
left and right endpoint to Ai. 
 
Now apply Borel inclusion for Analytic Equivalence 
Relations to G, and take the dense mix of the coordinates 
of the infinite sequence from ℘Q, after adding endpoints to 
these coordinates. QED 
 
Let GPH be the space of all graphs whose vertex set is N or 
a finite subset of N. Here graphs are viewed as irreflexive 
symmetric relations on their vertex set.  
 
We say that F:GPH → GPH is isomorphic preserving if and 
only if isomorphic arguments have isomorphic values (via 
ordinary graph isomorphism).  
 
Let CGPH be the subspace of all connected graphs.  
 
THEOREM 0.12E.2. Every isomorphic preserving Borel F:GPH → 
CGPH maps some G to an isomorphic copy of a connected 
component of G.  
 
Proof: Let F be as given, and define H:CGPH∞ → CGPH by 
H(G1,G2,...) = F(G*), where G* is the disjoint union of the 
G's. Apply Borel inclusion for Analytic Equivalence 
Relations to H, and take the disjoint union of the infinite 
sequence from GPH. Thus we have G' such that F(G') is 
isomorphic to one of the terms in the disjoint union 
representation of G'. I.e., F(G') is isomorphic to a 
connected component of G'. QED 
 
THEOREM 0.12E.3. The following are provably equivalent in 
ATR0. 
i. Every isomorphic preserving Borel F:℘Q → ℘Q maps some A 
to an isomorphic copy of an interval in A (with endpoints 
in A).  
ii. Every isomorphic preserving Borel F:GPH → CGPH maps 
some G to an isomorphic copy of a connected component of G.  
iii. CRA. 
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In particular, i),ii) can be proved in WZ(Ω) but not in 
DCIPS. 
 
Proof: For iii → i,ii, use Theorem 0.12D.3, and the proofs 
of Theorems 0.12E.1, and 0.12E.2. For i → ii, see [Sta85], 
p. 31. For ii → iii, use a similar coding mechanism that 
associates hereditarily countable sets of a given countable 
rank or less, to connected graphs. QED 
 
0.12F. Borel Functions on Borel Quasi Orders. 
 
We say that (ℜ,≤) is a quasi order if and only if ≤ is 
transitive and reflexive. We write a ≅ b if and only if (a ≤ 
b ∧ b ≤ a), a < b if and only if a ≤ b ∧ ¬b ≤ a.  
 
We say that (ℜ,≤) is ω-closed if every strictly increasing 
sequence from X has a (unique up to ≅) least upper bound, 
and ω-complete if and only if every countable set has a 
least upper bound.  
 
We say that F:ℜ → ℜ is invariant if and only if a ≅ b → 
F(a) ≅ F(b). A fixed point for F is an x such that F(x) ≅ x.  
 
The following three Theorems are proved in [Fr81] using 
Borel determinacy. 
 
THEOREM 0.12F.1. Let (ℜ,≤) be an ω-closed (ω-complete) 
Borel quasi order. Let F:ℜ → ℜ be an invariant Borel 
function such that for all x, F(x) ≥ x. Then F has a fixed 
point.  
 
THEOREM 0.12F.2. Let (ℜ,≤) be an ω-closed (ω-complete) 
Borel quasi order. Then there is no invariant Borel 
function such that for all x, F(x) > x.  
 
THEOREM 0.12F.3. Let (ℜ,≤) be an ω-complete Borel quasi 
order. Let F:ℜ → ℜ be an invariant Borel function. Then 
for some x, F(x) ≤ x.  
 
THEOREM 0.12F.4. The following is provable in ATR0. BCRA → 
Theorems 0.12F.1 - 0.12F.3 → CRA. In particular, Theorems 
0.12F.1 - 0.12F.3 are provable in WZ(Ω) but not in DCIPS. 
 
Proof: This is proved in [Fr81]. QED 
 
Note that the definitions of ω-closed and ω-complete are 
Π1

3. In [Fr81], we strengthen these two notions to 
explicitly ω-closed and explicitly ω-complete, by requiring 
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that there be a Borel witness function giving a least upper 
bound.  
 
THEOREM 0.12F.5. The following are provably equivalent in 
ATR0. 
i. Theorems 0.12F.1 - 0.12F.3 with explicitly ω-closed and 
ω-complete.  
ii. CRA. 
In particular, i) is provable in WZ(Ω) but not in DCIPS.  
 
Proof: This is proved in [Fr81]. QED  
 
0.12G. Countable Borel Equivalence Relations and Quasi 
Orders.  
 
In this section, we consider Borel equivalence relations E 
on ℜn. We say that A ⊆ ℜn is E invariant if and only if 
E(x,y) → (x ∈ A ↔ y ∈ A). We say that f:ℜn → ℜ is E 
invariant if and only if E(x,y) → f(x) = f(y).   
 
Let x1,x2,... be a sequence of real numbers that converges 
absolutely. We write SUM(x1,x2,...) for the set of all sums 
of one or more of the x's, without repetition of 
subscripts. We make this definition only if the x's 
converge absolutely. 
 
We say that a Borel equivalence relation E on ℜ has the 
(finitely) Borel translation property if and only if every 
E invariant (finitely) Borel set contains or is disjoint 
from some translate of SUM(4-1,4-2,...).  
 
We now present a stronger property. 
 
We say that a Borel equivalence relation E on ℜ has the 
strong (finitely) Borel translation property if and only if 
every E invariant (finitely) Borel F:ℜ → ℜ is constant on 
some translate of SUM(4-1,4-2,...).  
 
THEOREM 0.12G.1. {(x,y): x,y ∈ ℜ ∧ x = y} does not satisfy 
the finitely Borel translation property. 
 
Proof: In [Fr07a], Lemma 2.2, we showed how to construct 
elements of each SUM(4-1,4-2,...)+x from which we can 
reconstruct x. Let A be the set of all reals so 
constructed. Then obviously A meets every translate of 
SUM(4-1,4-2,...). Also every y ∈ A lies in exactly one SUM(4-
1,4-2,...)+x.  
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Suppose A contains SUM(4-1,4-2,...)+x. Then Let s,t be 
distinct elements of SUM(4-1,4-2,...). Then s+x,t+x ∈ A. 
Hence s+(x+t-s) ∈ A. Therefore s+x lies in SUM(4-1,4-2,...)+x 
and SUM(4-1,4-2,...)+x+t-s. Thus some element of A lies in 
more than one translate of SUM(4-1,4-2,...). This is a 
contradiction.  
 
Clearly A neither contains nor is disjoint from some 
translate of SUM(4-1,4-2,...). It is easily seen that A is 
finitely Borel by its construction. QED 
 
THEOREM 0.12G.2. There is a countable finitely Borel 
equivalence relation on ℜ with the strong Borel translation 
property. Turing equivalence has the strong Borel summation 
property.  
 
Proof: This is proved in [Fr07a], Theorem 2.6. QED 
 
THEOREM 0.12G.3. The following are equivalent over ATR0. 
i. There is a countable (finitely) Borel equivalence relation 
on ℜ with the finitely Borel translation property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ with the strong finitely Borel translation 
property. 
iii. BFRA. 
In particular, i,ii are provable in Z but not in WZC. 
 
Proof: This is proved in [Fr07a], Theorems 2.9, 2.11. QED 
 
THEOREM 0.12G.4. The following are equivalent over ATR0. 
i. There is a countable (finitely) Borel equivalence relation 
on ℜ with the Borel translation property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ with the strong Borel translation property. 
iii. BCRA. 
In particular, i) is provable in WZ(Ω) but not in DCIPS.   
 
Proof: This is proved in [Fr07a], Theorems 2.9, 2.11. QED 
 
It is clear that if a countable Borel equivalence relation on 
ℜ has the Borel translation property, then any more inclusive 
countable Borel equivalence relation on ℜ also has the Borel 
translation property. In fact, in [Fr07a], we assert that all 
sufficiently inclusive countable Borel equivalence relations 
on ℜ have the (strong) Borel translation property. 
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So there remains the unanswered question of how to describe 
the threshold, whereby the (strong) Borel translation 
property kicks in. 
 
What about Lebesgue or Baire measurable functions? Then the 
(finitely) Borel translation property is impossible. 
 
THEOREM 0.12G.5. There is no countable Borel equivalence 
relation on ℜ, where every E invariant set of measure 0 (or 
meager) contains or is disjoint from some translate of SUM(4-
1,4-2,4-3,...).  
 
Proof: This is proved in [Fr07a}, Theorem 2.12. QED 
 
In higher dimensions, these results take on a more 
geometric meaning. A curve is a homeomorphic image of [0,1] 
in ℜn. 
 
We say that a Borel equivalence relation E on ℜ2 has the 
(finitely) Borel line, curve, vertical line, horizontal 
line, circle about the origin, property if and only if 
every invariant (finitely) Borel set contains or is 
disjoint from a line, curve, vertical line, horizontal 
line, circle about the origin.   
 
We now present a stronger property. 
 
We say that a Borel equivalence relation E on ℜ2 has the 
(finitely) Borel line, curve, vertical line, horizontal 
line, circle about the origin, property if and only if 
every invariant (finitely) Borel F:ℜ2 → ℜ is constant on a 
line, curve, vertical line, horizontal line, circle about 
the origin.   
 
THEOREM 0.12G.6. There is a countable finitely Borel 
equivalence relation on ℜ2, with the strong Borel vertical 
line, horizontal line, circle about the origin, property.  
 
Proof: This is proved in [Fr07a], Theorem 3.1, using Borel 
Turing degree determinacy. QED 
 
Once again, there is the unanswered question of the 
threshold, since evidently all sufficiently inclusive 
countable (finitely) Borel equivalence relations on ℜ2 have 
these properties. 
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THEOREM 0.12G.7. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel equivalence 
relation on ℜ2 with the finitely Borel line, curve, 
vertical line, horizontal line, circle about the origin, 
property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ2

 with the strong finitely Borel line, curve, 
vertical line, horizontal line, circle about the origin, 
property. 
iii. BFRA. 
In particular, i),ii) can be proved in Z but not in WZC.  
 
Proof: This is implicit in [Fr07a]. QED 
 
THEOREM 0.12G.8. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel equivalence 
relation on ℜ2 with the Borel line, curve, vertical line, 
horizontal line, circle about the origin, property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ2

 with the strong Borel line, curve, vertical 
line, horizontal line, circle about the origin, property. 
iii. BCRA. 
In particular, i-iii can be proved in Z(Ω) but not in 
DCIPS. 
 
Proof: This is proved in [Fr07a]. QED 
 
We say that (ℜ,≤) is a quasi order if and only if ≤ is 
reflexive and transitive on X. We define x ≡ y ↔ x ≤ y ∧ y 
≤ x. We say that (ℜ,≤) is an ω1 like quasi order if and only 
if (X,≤) is a quasi order where each {y: y ≤ x} is 
countable. 
 
We say that B ⊆ ℜ is invariant if and only if x ≡ y → (x ∈ 
B ↔ y ∈ B). We say that F:ℜ → ℜ is invariant if and only 
if x ≡ y → f(x) = f(y). 
 
A cone in (ℜ,≤) is a set of the form {y: x ≤ y}, x ∈ ℜ. 
 
We say that a Borel quasi order ≤ on ℜ has the (finitely) 
Borel cone property if and only if every invariant 
(finitely) Borel set A contains or is disjoint from a cone. 
 
We say that a Borel quasi order ≤ on ℜ has the strong 
(finitely) Borel cone property if and only if every 
invariant (finitely) Borel F:ℜ → ℜ is constant on a cone.  
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THEOREM 12G.9. There is a countable finitely Borel quasi 
order ≤ on ℜ with the strong Borel cone property.  
 
Proof: This is proved in [Fr07a]. Turing reducibility, ≤T, has 
the strong Borel cone property. QED 
 
THEOREM 0.12G.10. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel quasi order on ℜ 
with the finitely Borel cone property.  
ii. There is a countable (finitely) Borel quasi order on ℜ 
with the strong finitely Borel cone property.  
iii. BFRA.  
In particular, i),ii) are provable in Z but not in WZC.  
 
Proof: This is implicit in [Fr07a]. QED 
 
THEOREM 0.12G.11. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel quasi order on ℜ 
with the Borel cone property.  
ii. There is a countable (finitely) Borel quasi order on ℜ 
with the strong Borel cone property.  
iii. BCRA.  
In particular, i),ii) are provable in Z(Ω) but not in 
DCIPS.  
 
Proof: This is proved in [Fr07a]. QED 
 
Let ≤ be a quasi order on ℜ. We say F:ℜ∞ → ℜ is left/right 
invariant if and only if for all x,y ∈ ℜ∞, if x,y are 
coordinatewise ≈, then F(x) ≈ F(y).   
 
THEOREM 0.12G.12. There is a countable finitely Borel quasi 
order ≤ on ℜ such that the following holds. For all 
left/right invariant Borel F:ℜ∞ → ℜ, there exists x ∈ ℜ∞ 
and n < ω such that F(x) ≤ xn.  
 
Proof: We established in [Sta85], using Turing degrees. The 
proof lies in ZF\P + V(ω+ω) exists. QED 
 
THEOREM 0.12G.13. Theorem 0.12G.12 is provable in ZF\P + 
V(ω+ω). Theorem 0.12G.12 is not provable in ZC, even for 
Borel ≤ and finitely Borel F.  
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Which countable Borel quasi orders have the (strong) Borel 
cone property? {(x,y): x,y ∈ ℜ ∧ y-x ∈ N} does not have the 
finitely Borel cone property, using the invariant set {x ∈ 
ℜ: the integer part of x is even}. What can we say about 
the threshold? 
 
We have recently discovered a kind of universality 
condition on a countable Borel quasi order ≤ on 2N that is 
sufficient for the strong Borel cone property.  
 
Let ≤ be a Borel quasi order on 2N. We say that ≤ is 
continuously full if and only if for all continuous F:2N → 
2N, there is a cone C in ≤ such that (∀x ∈ C)(F(x) ≤ x).  
 
We say that ≤ is strongly continuously full if and only if 
for all continuous Fi:2N → 2N, i ≥ 1, there is a cone C in ≤ 
such that (∀x ∈ C)(∀i ≥ 1)(Fi(x) ≤ x). 
 
We now formulate the Borel cone property, and the strong 
Borel cone property for ≤, using 2N everywhere instead of ℜ.  
 
THEOREM 0.12G.14. There is a finitely Borel quasi order on 
2N which is strongly continuously full. In fact, ≤T on 2N is 
strongly continuously full.  
 
Proof: Let Fi:2N → 2N be continuous, i ≥ 1. Let ui ∈ 2N 
appropriately code Fi, respectively. Let u be the join of 
the ui, i ≥ 1. Let C be the cone in ≤T with base u. We have 
only to verify that v ≥T u → Fi(v) ≤T v. This is clear. QED 
 
THEOREM 0.12G.15. Every continuously full Borel quasi order 
on 2N has the Borel cone property. 
 
Proof: Let ≤ be a continuously full Borel quasi order on 2N. 
Let A ⊆ 2N be Borel and ≤ invariant.  
 
I,II play a game, with outcomes x,y ∈ 2N. II wins if and 
only if x ∉ A ∨ (¬y < x ∧ y ∉ A).  
 
A winning strategy H is a continuous function from 2N into 
2N, with the identity function as a modulus of continuity. 
By continuous fullness, let u be the base of a cone C where 
x ∈ C → H(x) ≤ x.  
 
case 1. I wins. If II plays y ∈ C\A then I plays H(y) ≤ y, 
and we have H(y) ∈ A, ¬(¬y < H(y) ∧ y ∉ A), which is a 
contradiction. Hence A contains the cone C.  
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case 2. II wins. If I plays x ∈ C ∩ A then II plays H(x) ≤ 
x, and we have ¬H(x) < x, H(x) ∉ A, H(x) ≡ x, H(x) ∈ A, 
which is a contradiction. Hence A is disjoint from the cone 
C.    
 
QED 
 
LEMMA 0.12G.16. In every strongly continuously full Borel 
quasi order on 2N, every infinite sequence has an upper 
bound (≥). 
 
Proof: Let x1,x2,... . Use the sequence of continuous 
functions which are constantly x1,x2,... . QED 
 
THEOREM 0.12G.17. Every strongly continuously full Borel 
quasi order on 2N has the strong Borel cone property. 
 
Proof: Apply Lemma 0.12G.16 to the bases of the cones given 
by Theorem 0.12G.15. QED 
 
THEOREM 0.12G.18. The following are provably equivalent in 
ATR0. 
i. Every continuously full finitely Borel quasi order on 2N 
has the finitely Borel cone property.  
ii. Every strongly continuously full finitely Borel quasi 
order on 2N has the strong finitely Borel cone property. 
iii. BFRA. 
In particular, i,ii are provable in Z but not in WZC. 
 
Proof: From the above, and the metamathematics of Borel 
determinacy and Borel Turing degree determinacy. QED 
 
THEOREM 0.12G.19. The following are provably equivalent in 
ATR0. 
i. Every continuously full (finitely) Borel quasi order on 
2N has the Borel cone property.  
ii. Every strongly continuously full (finitely) Borel quasi 
order on 2N has the strong Borel cone property. 
iii. BCRA. 
In particular, i,ii are provable in Z(Ω) but not in DCIPS. 
 
Proof: From the above, and the metamathematics of Borel 
determinacy and Borel Turing degree determinacy. QED 
 
0.12H. Borel Sets and Functions in Groups.  
 
As in section 0.11D, we define GRP as the space of groups 
whose domain is N or a finite subset of N. We let FGG be 
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the subspace of GRP consisting of the finitely generated 
elements of GRP. 
 
We say that F:GRP → ℜ is isomorphically invariant if and 
only if for all G,H ∈ GRP, if G,H are isomorphic then F(G) 
= F(H). 
 
We say that A ⊆ GRP is unbounded if and only if every G ∈ 
GRP is embeddable in an element of A. 
 
THEOREM 0.12H.1. Every isomorphically invariant finitely 
Borel function F:FGG → ℜ is constant on an unbounded Borel 
subset of FGG of finite rank. In fact, Borel rank ≤ 4 
suffices. 
 
Proof: This is proved in [Fr07a], Theorem 5.4. The exact 
rank needed depends on the exact setup of FGG as a Borel 
space. Here 4 is a crude upper bound that works for even 
naïve setups. QED 
 
THEOREM 0.12H.2. Every isomorphically invariant Borel 
subset of FGG contains or is disjoint from an unbounded 
Borel set of finite Borel rank. In fact, Borel rank ≤ 4 
suffices. 
 
Proof: Immediate from Theorem 0.12H.1. QED  
 
THEOREM 0.12H.3. Theorem 0.12H.1 is provable in Z but not 
in WZC. Theorem 12H.2 is provable in Z(Ω) but not using any 
countable iteration of the power set operation.  
 
Proof: See [Fr07a]. QED 
 
We now consider Borel F:FGG∞ → FGG. We say that F is 
isomorphic preserving if and only if for all α,β ∈ FGG∞, if 
α,β are coordinatewise isomorphic, then F(α),F(β) are 
isomorphic. 
 
THEOREM 0.12H.4. For all isomorphic preserving Borel F:FGG∞ 
→ FGG, there exists α ∈ FGG∞ such that F(α) is embeddable 
in a coordinate of α. 
 
Proof: See [Sta85], p. 35. QED 
 
We consider Borel F:FGG∞ → GRP. We say that F is isomorphic 
preserving if and only if for all α,β ∈ FGG∞, if α,β are 
coordinatewise isomorphic, then F(α),F(β) are isomorphic. 
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THEROEM 0.12H.5. For all isomorphic preserving Borel F:FGG∞ 
→ GRP, there exists α ∈ FGG∞ such that F(α) is embeddable 
in some direct limit of α1,α2,... . 
 
Proof: Implicit in [Sta85]. QED 
 
THEOREM 0.12H.6. Theorems 0.12H.4 and 0.12H.5 are provable 
in ZFC\P + "V(ω+ω) exists" but not in ZC. Theorems 0.12H.4 
and 0.12H.5 for finitely Borel F are not provable in ZC.  
 
Proof: Implicit in [Sta85]. QED 
 
0.13. Incompleteness in ZFC using Borel Functions. 
 
0.13A. Preliminaries. 
0.13B. Borel Ramsey Theory. 
0.13C. Borel Functions on Groups. 
0.13D. Borel Functions on Borel Quasi Orders. 
0.13E. Borel Functions on Countable Sets. 
 
0.13A. Preliminaries.  
 
ZF is the following well known axiom system with one binary 
relation symbol ∈, in one sorted first order predicate 
calculus with equality.  
 
EXTENSIONALITY. (∀x)(x ∈ y ↔ x ∈ z) → y = z. 
PAIRING. (∃x)(y ∈ x ∧ z ∈ x). 
UNION. (∃x)(∀y)(∀z)(y ∈ z ∧ z ∈ w → y ∈ x). 
SEPARATION. (∃x)(∀y)(y ∈ x ↔ y ∈ z ∧ ϕ), where x is not 
free in ϕ. 
POWER SET. (∃x)(∀y)((∀z)(z ∈ y → z ∈ w) → z ∈ x). 
INFINITY. (∃x)(∅ ∈ x ∧ (∀y)(y ∈ x → y ∪ {y} ∈ x)). 
FOUNDATION. y ∈ x → (∃y)(y ∈ x ∧ (∀z)(¬(z ∈ x ∧ z ∈ y))). 
REPLACEMENT. (∀x)(x ∈ u → (∃!y)(ϕ)) → (∃z)(∀x)(x ∈ u → 
(∃y ∈ z)(ϕ)), where ϕ ∈ L(∈), and z is not free in ϕ.  
 
ZFC is ZF together with  
 
CHOICE. If x is a set of pairwise disjoint nonempty sets, 
there is a set which has exactly one element in common with 
each of the elements of x. 
 
As discussed in section 0.3, we sharply distinguish typical 
statements in set theory from statements involving at most 
finitely Borel sets and functions on complete separable 
metric spaces. In this section we will consider only 
Concrete Mathematical Incompleteness involving finitely 
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Borel sets and functions on complete separable metric 
spaces.  
 
Recall that we have already presented the following 
Mathematical Incompleteness from ZFC in section 0.12C, 
using Borel sets.  
 
FROM TEMPLATE A. Let S ⊆ NN × NN be (finitely) Borel. If 
there is a Borel selection for S on every compact subset of 
E, then there is a Borel selection for S on E. 
 
FROM TEMPLATE B. Let S ⊆ NN × NN and E ⊆ NN be (finitely) 
Borel. If there is a Borel selection for S on every compact 
subset of E, then there is a Borel selection for S on E. 
 
We don't classify these as Concrete Mathematical 
Incompleteness, as it is not confined to finitely Borel 
sets. See the last four paragraphs of section 0.12C.  
 
In section 0.12C, we also discussed the versions with NN 
replaced by ℜ, above. 
 
The Concrete Mathematical Incompleteness in this section 
overshoots ZFC considerably.  
 
In section 0.13B, we use strongly Mahlo cardinals of finite 
order. These also represent the level associated with the 
Exotic Case which preoccupies Chapters 4-6 of this book. 
The Mahlo cardinals of finite order are defined in section 
0.14A.  
 
In sections 0.13C and 0.13D, we use the much stronger large 
cardinal hypotheses asserting the existence of Ramsey 
cardinals and measurable cardinals. Yet stronger large 
cardinal hypotheses are used in section 0.13E.  
 
A Ramsey cardinal is a cardinal κ with the partition 
property κ → κ<ω2, which asserts the following. If we 
partition the nonempty finite sequences from κ into 2 
pieces, then there exists A ⊆ κ of cardinality κ such that 
for all 1 ≤ n < ω, all of the n-tuples from κ lie in the 
same piece.  
 
A measurable cardinal is an uncountable cardinal κ such that 
there is a {0,1} valued measure µ on ℘(κ) which is <κ 
additive, µ(κ) = 1, and each µ({α}) = 0. 
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It is well known that the first measurable cardinal (if it 
exists) is much larger than the first Ramsey cardinal. See, 
e.g., [Ka94], p. 83, and [Je78], p. 328.  
 
In section 0.13E, we will use the yet much stronger Woodin 
cardinals. The notion of Woodin cardinal is a specialized 
notion that matches up exactly with determinacy 
(corresponding to infinitely many Woodin cardinals); see 
[MS89], [KW∞].  
 
A Woodin cardinal is a cardinal κ such that for any f:κ → 
κ, there exists an elementary embedding j:V → M, M 
transitive, with critical point α < κ such that f[α] ⊆ α 
and Vj(f)(α) ⊆ M. 
 
A Woodin cardinal is a weakening of the more natural notion 
of superstrong cardinal: there exists an elementary 
embedding j:V → M, M transitive, with critical point κ such 
that Vj(κ) ⊆ M. See [Ka94], p. 361. Every superstrong 
cardinal is a Woodin cardinal, but not vice versa (assuming 
there is a Woodin cardinal).  
 
A Woodin cardinal is also a strengthening of the 
specialized notion of strong cardinal, in terms of 
consistency strength. We refer the reader to [Ka94], p. 
358, for its definition.  
 
Our first Concrete Mathematical Incompleteness from ZFC was 
Borel Ramsey Theory, involving (finitely) Borel functions 
on ℜ∞. We have already encountered such functions in 
section 0.11C.  
 
Later, we discovered statements involving Borel functions 
from infinite sequences of Turing degrees into Turing 
degrees, which can be proved using a measurable cardinal 
but not a Ramsey cardinal. An account of this work appears 
in [Sta85].  
 
Still later, we converted the Turing degrees into finitely 
generated groups (FGG), and more recently, points in 
countable Borel quasi orders. See sections 0.13C and 0.13D. 
The extensions involving (finitely) Borel functions on 
countable sets discussed in section 0.13E are the strongest 
of all - reaching the level of multiple Woodin cardinals.   
 
0.13B. Borel Ramsey Theory. 
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Recall the Borel Ramsey Theorem (otherwise known as the 
Galvin/Prikry theorem) discussed in section 0.10D. This 
combines Borel measurability with Ramsey theory. 
 
We discovered yet more powerful combinations of Borel 
measurability with Ramsey theory, that go beyond ZFC. 
 
For this development, we use the infinite product space ℜ∞, 
which is a complete separable metric space in the natural 
way. We write x ~ y ↔ x,y ∈ ℜ∞ ∧ y is a permutation of x.  
 
PROPOSITION 0.13B.1. Let F:ℜ∞ × (ℜ∞)n → ℜ be a (finitely) 
Borel function such that if x ∈ ℜ∞, y,z ∈ (ℜ∞)n, and y ~ z, 
then F(x,y) = F(x,z). Then there is a sequence {xk} from ℜ∞ 
of length m ≤ ω such that for all indices s < t1 < ... < tn 
≤ m, F(xs,xt_1,...,xt_n) is the first coordinate of xs+1. 
 
THEOREM 0.13B.2. Proposition 0.13B.1 for Borel functions is 
provable in ZFC + (∀n)∃κ)(κ is strongly n-Mahlo). However, 
for all n, ZFC + (∃κ)(κ is strongly n-Mahlo) + V = L does 
not prove Proposition 0.13B.1 for finitely Borel functions, 
using m < ω (instead of m ≤ ω). ZFC + V = L does not prove 
Proposition 0.13B.1 for n = 4 and finitely Borel functions, 
using m < ω (instead of m ≤ ω).  
 
Proof: This is proved in [Fr01], section 5. QED 
 
In [Fr01], Proposition 0.13B.1 is couched in terms of the 
Hilbert cube I∞, which is, of course, equivalent to ℜ∞ for 
present purposes. 
 
In [Ka89], a more refined analysis of Proposition 0.13B.1 
is presented. In [Ka91], a strengthening of Proposition 
0.13B.1 that corresponds to the subtle cardinal hierarchy 
is presented. The subtle cardinal hierarchy is presented in 
section 0.14A.  
 
0.13C. Borel Functions on Borel Quasi Orders. 
 
Let ≤ be a quasi order on ℜ. We say that F:ℜ∞ → ℜ is ≈ 
preserving if and only if for all x,y ∈ ℜ∞, if x,y are 
coordinatewise ≈, then F(x) ≈ F(y).  
 
Recall that a quasi order is said to be countable if and 
only if the set of predecessors of any point is countable.  
 
A finite deletion subsequence is a subsequence obtained by 
deleting finitely many terms.  
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PROPOSITION 0.13C.1. There is a countable (finitely) Borel 
quasi order ≤ on ℜ such that the following holds. For all ≈ 
preserving (finitely) Borel F:ℜ∞ → ℜ, there exists x ∈ ℜ∞ 
such that for all infinite subsequences y of x, there 
exists n such that F(y) ≤ xn. 
 
PROPOSITION 0.13C.2. There is a countable (finitely) Borel 
quasi order ≤ on ℜ such that the following holds. For all ≈ 
preserving (finitely) Borel F:ℜ∞ → ℜ, there exists x ∈ ℜ∞ 
and n < ω such that for all infinite (finite deletion) 
subsequences y of x, F(y) ≤ yn.  
 
THEOREM 0.13C.3. All forms of Proposition 0.13C.1 and 
0.13C.2 are provable in ZFC + "there exists a measurable 
cardinal" but not in ZFC + "there exists a Ramsey 
cardinal". The same holds for their relativizations to the 
constructible universe, L, or even to the sets recursive in 
the first ω hyperjumps of ∅.  
 
Proof: We originally proved this with "there exists a 
Ramsey cardinal" replaced by "(∀x ⊆ ω)(x# exists)", at 
least breaking the constructibility barrier in large 
cardinals (see [Sta85]). However our arguments can be 
combined with the inner model theory of large cardinals 
below a measurable cardinal - as was first observed by R. 
Solovay (private communication and lectures). QED 
 
PROPOSITION 0.13C.4. There is a countable (finitely) Borel 
quasi order ≤ on ℜ such that the following holds. For all ≈ 
preserving (finitely) Borel F:ℜω+ω → ℜ, there exists x ∈ 
ℜω+ω and α < ω+ω such that for all finite deletion 
subsequences y of x, F(y) ≤ yα.  
 
THEOREM 0.13C.5. All forms of Proposition 0.13C.4 are 
provable in ZFC + "there exists a strong cardinal", but not 
in ZFC + "there exists arbitrarily large measurable 
cardinals". The same holds for their relativizations to the 
constructible universe, L, or even to the sets recursive in 
the first ω hyperjumps of ∅.  
 
Proof: This also combines work of ours reported in [Sta85] 
with the inner model theory of "strongly" measurable 
cardinals. QED 
 
0.13D. Borel Functions on Groups. 
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This section is basically a reworking of section 0.13C 
using the space FGG of finitely generated groups. However, 
there are some additional statements involving the space 
GRP of all countable groups. Recall that we have already 
introduced these spaces in section 0.12H.  
 
We say that x in GRP∞ is towered if and only if for all n, 
xn is a subgroup of xn+1. 
 
We say that F:FGG∞ → GRP is isomorphic preserving if and 
only if for all x,y ∈ ℜ∞, if x,y are coordinatewise 
isomorphic, then F(x),F(y) are isomorphic.  
 
PROPOSITION 0.13D.1. For all isomorphic preserving 
(finitely) Borel F:FGG∞ → GRP, (F:FGG∞ → FGG), there exists 
towered x ∈ FGG∞ such that for all infinite subsequences y 
of x, F(y) is embeddable in ∪nxn. 
 
PROPOSITION 0.13D.2. For all isomorphic preserving 
(finitely) Borel F:FGG∞ → FGG, there exists x ∈ FGG∞ and n 
< ω such that for all infinite (finite deletion) 
subsequences y of x, F(y) is embeddable in yn.  
 
THEOREM 0.13D.3. All forms of Proposition 0.13D.1 and 
0.13D.2 are provable in ZFC + "there exists a measurable 
cardinal" but not in ZFC + "there exists a Ramsey 
cardinal". The same holds for their relativizations to the 
constructible universe, L, or even to the sets recursive in 
the first ω hyperjumps of ∅.  
 
Proof: We originally proved this with "there exists a 
Ramsey cardinal" replaced by "(∀x ⊆ ω)(x# exists)", at 
least breaking the constructibility barrier in large 
cardinals (see [Sta85]). However our arguments can be 
combined with the inner model theory of large cardinals 
below a measurable cardinal - as was first observed by R. 
Solovay (private communication and lectures). QED 
 
PROPOSITION 0.13D.4. For all isomorphic preserving 
(finitely) Borel F:FGGω+ω → FGG, there exists x ∈ ℜω+ω and α 
< ω+ω such that for all finite deletion subsequences y of 
x, F(y) is embeddable in yα.  
 
THEOREM 0.13D.5. All forms of Proposition 0.13D.4 are 
provable in ZFC + "there exists two measurable cardinals", 
but not in ZFC + "there exists a measurable cardinal". The 
same holds for their relativizations to the constructible 
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universe, L, or even to the sets recursive in the first ω 
hyperjumps of ∅.  
 
Proof: This also combines work of ours reported in [Sta85] 
with the inner model theory of a measurable cardinal. QED 
 
0.13E. Borel Functions on Countable Sets. 
 
We write CS(ℜ) for the space of countable subsets of ℜ. 
This is to be viewed as the space ℜ∞, under the equivalence 
relation "having the same range".  
 
The notions of a Borel function F:CS(ℜ) → ℜ, or F:CS(ℜ) → 
CS(ℜ) are very natural. For the former, we mean that there 
is a Borel function G:ℜ∞ → ℜ such that F(rng(x)) = G(x). 
Note that G must be invariant in the sense used in section 
0.11C.  
 
For the latter, we mean that there exists a Borel function 
H:ℜ∞ → ℜ∞ such that F(rng(x)) = rng(H(x)). Note that H must 
be image preserving in the sense used in section 0.11D.  
 
THEOREM 0.13E.1. For all Borel F:CS(ℜ) → ℜ, there exists x 
∈ CS(ℜ) such that F(x) ∈ x. For all Borel F:CS(ℜ) → 
CS(ℜ), there exists x ∈ CS(ℜ) such that F(x) ⊆ x.  
 
Proof: The first claim is equivalent to Theorem 0.11D.1 
using image invariance. The second claim is equivalent to 
Theorem 0.11D.2 using image preserving. Thus these two 
statements correspond to roughly Z2. QED 
 
Now let ≤ be a quasi order on ℜ, and A,B ⊆ ℜ. We say that x 
is a break point for A in B,≤ if and only if x ∈ A ⊆ B, and  
 
i. (∀y ∈ B)(y ≥ x → (∃z ∈ A)(z ≡ y)); or 
ii. (∀y ∈ B)(y ≥ x → (∃z ∉ B)(z ≡ y)). 
 
PROPOSITION 0.13E.2. There is a countable (finitely) Borel 
quasi order ≤ such that for all (finitely) Borel F:ℜ2×CS(ℜ) 
→ CS(ℜ), there exists nonempty A such that each F(x,y,A), 
x,y ∈ A, has a break point in A,≤.  
 
Let λ be a countable limit ordinal. A λ-model of Z2 is an ω 
model M ⊆ ℘ω, of Z2, where every subset of ω lying in the 
first λ levels of the constructible hierarchy starting with 
M and its elements, lies in M.   
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LEMMA 0.13E.3. Proposition 0.13E.2 (all four forms) is 
provable in ZFC + L(ℜ) determinacy. In fact, ZFC + Lω_1(ℜ) 
determinacy suffices. For finitely Borel, ZFC + projective 
determinacy suffices.  
 
Proof: We argue in ZFC +Lω_1(ℜ) determinacy. We set ≤ = ≤T. 
Let λ < ω1, u ⊆ ω, code F:ℜ2×CS(ℜ) → CS(ℜ). Let M be the 
transitive collapse of a countable elementary substructure 
of V(ω1+λ) that contains the elements λ+1,u, and the subset 
λ. Let A = M ∩ ℘ω. Then A is a countable λ-model of Z2 
containing u, and Lλ(ℜ) determinacy holds in M.  
 
By using an M generic enumeration of A (with finite 
conditions), we see that for all x,y ∈ A, F(x,y,A) is a 
subset of A lying in the internal Lλ(ℜ) of M. Therefore we 
can apply Lλ(ℜ) determinacy within M, which implies Lλ(ℜ) 
Turing degree determinacy. Thus we obtain the required 
break points in A. QED  
 
By a degree, we mean a pair λ < ω1 and x ⊆ ω coding λ, where 
we use y ≤λ,x z ↔ y ∈ Lλ(x,z). By projective degree 
determinacy, we mean "there exists a degree such that every 
projective set of degrees contains or is disjoint from a 
cone".  
 
LEMMA 0.13E.4. Proposition 0.13E.2 with "finitely" implies 
the existence of an ω model of Σ1

n-CA + "Σ1
n degree 

determinacy holds for some degree", for each n < ω, over 
ATR0. Proposition 0.13E.2 implies the existence of an ω 
model of Lω+ω(ℜ)-CA + "Lω+ω(ℜ) determinacy holds for some 
degree". 
 
Proof: This uses the techniques from [Fr81] for 
constructing ω models from Borel statements of this general 
form. Let ≤ be given by Proposition 0.13E.2. Let u be a 
Borel code for ≤. Let F:ℜ2×CS(ℜ) → CS(ℜ) be a finitely 
Borel function such that  
 
i. If x < y then F(x,y,A) is singleton of the x-th Σ1n 
subset of ω with parameters x,y, provided u ∈ A; u 
otherwise. 
 
ii. If x ≥ y then F(x,y,A) is the x-th Σ1n subset of A with 
parameters x,y, provided u ∈ A; u otherwise. 
 
Let A be nonempty, where each F(x,y,A), x,y ∈ A, has a 
break point in A,≤. In particular, each F(x,y,A), x,y ∈ A, 
is a subset of A. It is now clear that u ∈ A, and that A is 
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an ω model of Σ1
n-CA. We also see by the break points that A 

satisfies Σ1
n determinacy for ≤.  

 
The second claim is proved analogously. QED 
 
LEMMA 0.13E.5. ZFC + "there exists infinitely many Woodin 
cardinals" proves projective determinacy. ZFC + "there 
exists a measurable cardinal above infinitely many Woodin 
cardinals" proves L(ℜ) determinacy.  
 
Proof: The first claim is from [MSt89]. The second claim is 
from [Wo88] and [Lar04]. QED 
 
THEOREM 1.13E.6. Proposition 0.13E.2 (all four forms) are 
provable in ZFC + "there exists a measurable cardinal above 
infinitely many Woodin cardinals", but not in ZFC + "there 
exists infinitely Woodin cardinals". Proposition 0.13E.2 
for finitely Borel is provable in ZFC + "there exists 
infinitely many Woodin cardinal", but not in ZFC + "there 
exists at least n Woodin cardinals", for any n < ω.  
 
Proof: The provability claims are from Lemma 0.13E.3. The 
unprovability claims follow from Lemma 0.13E.4 together 
with the reversal of the Σ1

n determinacy, n < ω, for any 
degree, and of the reversal of Lω+ω(ℜ) determinacy for any 
degree. The reversals can be carried out without choice and 
over Z2, and weak extensions thereof (communication from W. 
Woodin). See [KW10]. QED 
 
0.14. Incompleteness in ZFC using Discrete Structures. 
 
0.14A. Preliminaries. 
0.14B. Function Assignments. 
0.14C. Boolean Relation Theory. 
0.14D - 0.14J. NEW MATERIAL AS AGREED. 
 
0.14A. Preliminaries. 
 
The first arguably natural examples of incompleteness in 
ZFC using discrete structures appeared in [Fr98], and are 
discussed in section 0.14B.  
 
The second examples of incompleteness in ZFC using discrete 
structures are from Boolean Relation Theory, which is the 
subject of this book. BRT represents a more natural and far 
more systematic approach than Function Assignments, with 
much greater points of contact with existing mathematical 
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contexts. In section 0.14C, we give a brief account of BRT, 
reserving the extended account for section 0.15.  
 
The third examples of incompleteness in ZFC using discrete 
structures are the culmination of recent developments since 
2009, culminating with announcements made in May, 2011. 
These take a different direction from BRT, but rely on many 
technical insights from BRT. They result in statements 
equivalent to the consistency of certain large cardinal 
hypotheses, and thus are equivalent to Π0

1 sentences. In 
contrast, function assignments and BRT result in statements 
equivalent to the 1-consistency of large cardinals, and 
thus equivalent to Π0

2 sentences.  
 
These new developments are discussed in sections 0.14D - 
0.14I. This is work in progress, and proofs will appear 
elsewhere. 
 
There are two hierarchies of large cardinal hypotheses 
relevant to this section (except for 0.14G). The weaker of 
the two is the hierarchy of strongly n-Mahlo cardinals. 
These are defined inductively as follows.  
 
The strongly 0-Mahlo cardinals are the strongly 
inaccessible cardinals (uncountable regular strong limit 
cardinals).  
The strongly n+1-Mahlo cardinals are the infinite cardinals 
all of whose closed unbounded subsets contain a strongly n-
Mahlo cardinal. 
 
We define SMAH+ = ZFC + (∀n < ω)(∃κ)(κ is a strongly n-Mahlo 
cardinal). SMAH = ZFC + {(∃κ)(κ is a strongly n-Mahlo 
cardinal)}n. 
 
Mahlo cardinals were introduced surprisingly early, in 
[Mah11], [Mah12], [Mah13]. For more information about the 
strongly Mahlo hierarchy, and the related Mahlo hierarchy, 
see section 4.1.  
 
The second, stronger hierarchy of large cardinal hypotheses 
relevant to this section is the stationary Ramsey cardinal 
hierarchy. This hierarchy originated with [Ba75]. Also see 
[Fr01].  
 
We say that λ has the k-SRP if and only if λ is a limit 
ordinal, k ≥ 1, and every partition of the unordered k-
tuples from λ into two pieces has a homogeneous stationary 
subset of λ.  
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We define SRP+ = ZFC + (∀k < ω)(∃κ)(κ has the k-SRP). SRP = 
ZFC + {(∃κ)(κ has the k-SRP)}k. 
 
The SRP hierarchy is intertwined with the more technical 
subtle cardinal hierarchy. See [Fr01] for a detailed 
treatment of this level of the large cardinal hierarchy. 
 
0.14B. Function Assignments. 
 
The first published examples of arguably mathematically 
natural arithmetic sentences independent of ZFC appeared in 
[Fr98]. These examples are Π0

2, although it was left open in 
[Fr98] whether they are provably equivalent to 1-Con(SRP), 
as we expect.  
 
A function assignment for a set X is a mapping U which 
assigns to each finite subset A of X, a unique function  
 

U(A): A → A. 
 
The following is easily obtained from Theorem 0.8F.4 
(Theorem 0.4 in [Fr98]). See section 0.8F for the 
definition of regressive values.  
 
THEOREM 0.14B.1. Let k,p > 0 and U be a function assignment 
for Nk. Then some U(A) has ≤ (kk)p regressive values on some 
Ek ⊆ A, |E| = p.  
 
In the set theoretic world, we have the following analog 
(Theorem 0.5 in [Fr98]).  
 
THEOREM 0.14B.2. Let k,r,p > 0 and F:λk → λr, where λ is a 
suitably large cardinal. Then F has ≤ kk regressive values 
on some Ek ⊆ λk, |E| = p. It suffices that λ has the k-SRP. 
 
We placed a natural condition on function assignments for Nk 
so that we get the improved estimate kk in Theorem 0.14B.2 
rather than the (kk)p in Theorem 0.14B.1.  
 
Let U be a function assignment for Nk. We say that U is #-
decreasing if and only if for all finite A ⊆ Nk and x ∈ Nk,  
 

either U(A) ⊆ U(A ∪ {x}) or there exists 
|y| > |x| such that |U(A)(y)| > |U(A ∪ {x})(y)|. 

 
Here we have used | | for max.  
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An alternative definition of #-decreasing is as follows. 
For all finite A ⊆ Nk and x ∈ Nk, either U(A) ⊆ U(A ∪ {x}), 
or there exists |y| > |x| such that  
 
i. |U(A)(y)| > |U(A ∪ {x})(y)|. 
ii. for all z ∈ A, if |z| < |y|, then U(A)(z) = U(A ∪ 
{x})(z). 
iii. for all z ∈ A, if |z| = |y|, then U(A)(z) = U(A ∪ 
{x})(z) or |U(A)(z)| > |U(A ∪ {x})(z)|.  
 
The following infinitary proposition is Proposition A in 
[Fr98]. 
 
PROPOSITION 0.14B.3. Let k,p > 0 and U be a #-decreasing 
function assignment for Nk. Then some U(A) has ≤ kk 
regressive values on some Ek ⊆ A, |E| = p.  
 
The finite form is Proposition B in [Fr98].  
 
PROPOSITION 0.14B.4. Let n >> k,p > 0 and U be a #-
decreasing function assignment for [n]k. Then some U(A) has 
≤ kk regressive values on some Ek ⊆ A, |E| = p. 
 
Proposition 0.14B.4 takes the form  
 
for all k,p there exists n such that every gadget bounded 

by n has an internal property 
 
and is therefore explicitly Π0

2.  
 
As remarked in [Fr98], p. 808, Proposition 0.14B.3 
immediately implies Proposition 0.14B.4, using a standard 
compactness (finitely branching tree) argument. The 
implication from Proposition 0.14B.4 to Proposition 0.14B.3 
is immediate. So clearly Proposition 0.14B.3 is provably 
equivalent to a Π0

2 sentence, over RCA0. 
 
The following is proved in [Fr98]. See Theorems 4.18, 5.91.  
 
THEOREM 0.14B.5. SRP+ proves Propositions 0.14B.3, 0.14B.4, 
but not from any consequence of SRP that is consistent with 
ZFC. Propositions 0.14B.3, 0.14B.4 imply Con(SRP) over ZFC.  
 
We conjecture that Propositions 0.14B.3, 0.14B.4 are 
provably equivalent to 1-Con(SRP) over ZFC.  
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In fact, we conjecture that Proposition 0.14B.3 is provably 
equivalent to 1-Con(SRP) over ACA', and Proposition 0.14B.4 
is provably equivalent to 1-Con(SRP) over EFA. 
 
0.14C. Boolean Relation Theory. 
 
We give a brief account of some highlights of Boolean 
Relation Theory (BRT), the subject of this book. A much 
more detailed account will be given in section 0.15.  
 
BRT begins with two theorems proved well within ZFC that 
provides an excellent point of departure. 
 
Let N be the set of all nonnegative integers. 
 
COMPLEMENTATION THEOREM. Let f:Nk → N obey the inequality 
f(x) > max(x). There exists a (unique) A ⊆ N with f[Ak] = 
N\A.  
 
THIN SET THEOREM. Let f:Nk → N. There exists an infinite A 
⊆ N such that f[Ak] ≠ N.  
 
These theorems are discussed in detail in sections 1.3 and 
1.4.  
 
Note that the Complementation Theorem (without uniqueness) 
has the following structure: 
 

for every function of a certain kind there is a set of a 
certain kind such that a given Boolean equation holds 
involving the set and its image under the function. 

 
The Thin Set Theorem has the following structure: 
 

for every function of a certain kind there is a set of a 
certain kind such that a given Boolean inequation holds 

involving the set and its image under the function. 
 
In fact, the inequation in the Thin Set Theorem involves 
only the image of the set under the function. 
 
Here, and throughout BRT, we use a particular notion of the 
image of a set A under a multivariate function f - namely 
f[Ak]. For notational brevity, we suppress the arity of f, 
and simply write fA for f[Ak]. In all contexts under 
consideration, the arity, k, of f will be apparent.  
 



 188 

In addition, here N serves as the universal set for the 
Boolean algebra.  
 
More specifically, we use MF for the set of all f such that 
for some k ≥ 1, f:Nk → N. SD for the set of all f ∈ MF such 
that for all x ∈ dom(f), f(x) > max(x). INF for the set of 
all infinite A ⊆ N.  
 
We can restate these two theorems in the form 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A. 
 
THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N.  
 
The Complementation Theorem is an instance of what we call  
 

EBRT in A,fA on (SD,INF). 
 
The Thin Set Theorem is an instance of what we call  
 

IBRT in A,fA on (MF,INF). 
 
Here EBRT means "equational BRT", and IBRT means 
"inequational BRT".  
 
For our independence results, we use a somewhat different 
class of functions. We let ELG be the set of all f ∈ MF of 
expansive linear growth; i.e., where there exist rational 
constants c,d > 1 such that for all but finitely many x ∈ 
dom(f), 
 

c|x| ≤ f(x) ≤ d|x| 
 
where |x| is the maximum coordinate of the tuple x.  
 
The core finding of this book is the discovery and analysis 
of a particular instance of  
 

EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) 
 
that is independent of ZFC. More specifically, we show that 
this "special instance" has the following three 
metamathematical properties:  
 
i. It is provable in SMAH+. 
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ii. It is not provable from any set of consequences of SMAH 
that is consistent with ACA'. 
iii. It is provably equivalent to the 1-consistency of SMAH 
over ACA'.  
 
In fact, the special instance is an instance of  
 

EBRT in A,B,C,fA,fB,gB,gC on (ELG,INF). 
 
Although this special instance is far simpler than a 
randomly chosen instance, it does not convey any clear 
compelling information.  
 
We were very anxious to establish the necessary use of 
large cardinals in order to analyze EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF).  
 
CONJECTURE. Every instance of EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) is provable or 
refutable in SMAH+.  
 
This conjecture would establish a necessary and sufficient 
use of large cardinals in BRT in light of the "special 
instance". 
 
There are 2512 instances of EBRT in A,B,C,fA,fB,fC,gA,gB,gC 
on (ELG,INF), there being nine terms involved. This proved 
far too difficult to analyze, even using theoretical 
considerations.  
 
There are 264 instances of EBRT in A,C,fA,fB,gB,gC on 
(ELG,INF), and the special instance referred to above comes 
under this smaller set.  
 
CONJECTURE. Every instance of EBRT in A,C,fA,fB,gB,gC on 
(ELG,INF) is provable or refutable in SMAH+.  
 
Unfortunately, this conjecture also appears out of reach. 
 
What was needed is a natural fragment of EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC that is small enough to be 
completely analyzable, yet large enough to include our 
instance.  
 
We discovered the following class of 38 = 6561 instances of 
EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 
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TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Here X,Y,V,W,P,R,S,T are among the three letters A,B,C.  
 
Here we have used ∪. for disjoint union. I.e.,  
 

D ∪. E is D ∪ E if D ∩ E = ∅;  
undefined otherwise. 

 
The special instance is called the Principal Exotic Case 
throughout the book. It appears as Proposition A in section 
4.2.  
 
PRINCIPAL EXOTIC CASE. For all f,g ∈ ELG there exist A,B,C 
∈ INF such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
There are obviously 12 symmetric forms of the Principal 
Exotic Case obtained by permuting A,B,C, and switching the 
two clauses. These 12 are called the Exotic Cases. The 
remaining 6561 - 12 = 6549 instances of the Template are 
shown to be provable or refutable in Chapter 3.  
 
In section 4.2, we prove the Principal Exotic Case from 
SMAH+. In section 4.4, we sharpen this by proving the Exotic 
Case from ACA' + 1-Con(SMAH).  
 
In Chapter 5, we derive 1-Con(SMAH) from ACA' + the Exotic 
Case. In section 5.9, we establish that the Principal 
Exotic Case (Proposition A) is not provable from any set of 
consequences of SMAH that is consistent with ACA'.  
 
In section 3.15, we also consider the modified, weaker 
Template 
 
TEMPLATE'. For all f,g ∈ ELG there exist arbitrarily large 
finite A,B,C ⊆ N such that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
In section 3.15, we show that every instance of Template' 
is provable or refutable in RCA0, and that Template and 
Template' are equivalent for all but the 12 Exotic Cases. 
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We also show that the 12 Exotic Cases become provable in 
RCA0 under Template'.  
 
We then draw the conclusion that the assertion  
 

Template and Template' are equivalent 
 
which we refer to as the BRT Transfer Principle, has the 
same metamathematical properties i-iii enumerated two pages 
earlier. In this sense, the above assertion represents a 
necessary use of large cardinals for obtaining arguably 
clear and compelling information in the realm of discrete 
mathematics.  
 
0.14D - 0.14J. NEW MATERIAL GOES HERE AS AGREED.  
 
0.15. Detailed Overview of Book Contents.  
 
We give an informal discussion of the contents of the book, 
section by section. This discussion is far more detailed 
than the overview given in section 0.14C above. 
 

Chapter 1 Introduction to BRT   
1.1. General Formulation 

 
Here we begin with two Theorems that lie at the heart of 
Boolean Relation Theory (abbreviated BRT). These are the 
Thin Set Theorem and the Complementation Theorem. We repeat 
these here. 
 
THIN SET THEOREM. Let k ≥ 1 and f:Nk → N. There exists an 
infinite set A ⊆ N such that f[Ak] ≠ N. 
 
COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk → N. Suppose 
that for all x ∈ Nk, f(x) > max(x). There exists an infinite 
set A ⊆ N such that f[Ak] = N\A.  
 
Note that the Thin Set Theorem asserts that for every 
function in a certain class there is a set in a certain 
class such that a Boolean inequation holds between the set 
and its forward image under the function. In fact, the 
Boolean inequation does not even use the set.  
 
Similarly, the Complementation Theorem asserts that for 
every function in a certain class there is a set in a 
certain class such that a Boolean equation holds between 
the set and its forward image under the function.  
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The notion of forward image used throughout BRT is the set 
of values of the multivariate function at arguments drawn 
from the set. Throughout BRT, we abbreviate this 
construction, f[Ak], by fA. 
 
Thus we can rewrite the Thin Set Theorem and the 
Complementation Theorem in the following form. 
 
THIN SET THEOREM.  For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
We say that the Thin Set Theorem is an instance of IBRT 
(inequatonal BRT) on the BRT setting (MF,INF), and the 
Complementation Theorem is an instance of EBRT (equational 
BRT) on the BRT setting (SD,INF). 
 
More specifically, we say that  
 
i. The Thin Set Theorem is an instance of: IBRT in fA on 
(MF,INF). 
ii. The Complementation Theorem is an instance of: EBRT in 
A,fA on (SD,INF). 
 
We then present the general formulation. We define the 
following concepts, starting with Definition 1.1.4.  
 
As an aid to the reader, we give examples of most of these 
concepts based on the Thin Set Theorem (TST), and the 
Complementation Theorem (CT). 
 
1. BRT set variable, BRT function variable. For CT, TST we 
use A and f.  
 
2. BRT term. For CT, we use fA,U\A. For TST, we use fA,U. 
 
3. BRT equation, BRT inequation, BRT inclusion. For CT, we 
use the BRT equation fA = U\A. For TST, we use the BRT 
inequation fA ≠ U.  
 
4. BRT formula. These are quantifier free. For CT, we use 
fA = U\A. For TST, we use fA ≠ U. 
 
5. Formal treatment of multivariate function, arity, and 
the forward imaging fE.  
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6. BRT setting. For CT we use (SD,INF). For TST we use 
(MF,INF). 
 
7. BRT assertion. BRT,⊆ assertion. For CT, we use (∀f ∈ 
V)(∃A ∈ K)(fA = U\A). For TST, we use (∀f ∈ V)(∃A ∈ K)(fA ≠ 
U).   
 
8. BRT valid formula, BRT,⊆ valid formula. 
 
9. BRT equivalent formulas, BRT,⊆ equivalent formulas. 
 
10. BRT environments. For CT, we use EBRT. For TST, we use 
IBRT. 
 
11. BRT signatures. For CT, we use A,fA. For TST, we use 
fA. 
 
12. BRT fragment. For CT, we use EBRT in A,fA on (SD,INF). 
For TST, we use IBRT in fA on (MF,INF).  
 
13. The standard BRT signatures. For CT and TST, we use 
A,fA. 
 
14. Standard BRT fragments. For CT we use EBRT in A,fA on 
(SD,INF). For TST we use IBRT in A,fA on (MF,INF).  
 
The highlight of the book is the proof of the Principal 
Exotic Case (see Appendix A) from large cardinals, and its 
unprovability from weaker large cardinals. The proof is in 
Chapter 4, and the unprovability is from Chapter 5.  
 
The Principal Exotic Case arises in Chapter 3, and lies in 
the standard BRT fragment  
 

EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 
 
Here ELG is the class of f ∈ MF which are of expansive 
linear growth (see section 0.14C)).  
 
In fact, the Principal Exotic Case lives in the 
considerably reduced flat BRT fragment  
 

EBRT in A,C,fA,fB,gB,gC,⊆ on (ELG,INF) 
 
since Proposition A is not affected by inserting A ⊆ B ⊆ C 
in its conclusion (see Appendix A).  
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Even the above BRT fragment is too rich for us to 
completely analyze at this time, let alone the standard 
fragment above.  
 
In Chapter 2, we do give a complete analysis of several 
much more restricted BRT fragments, as indicated by their 
section headings. 
 
The main BRT settings considered in this book are (MF,INF), 
(SD,INF), and (ELG,INF). See Definitions 1.1.2 and 2.1.  
 
The state of the art with regard to complete analyses of 
BRT fragments on these BRT settings can be summarized as 
follows.  
 
In both EBRT and IBRT, we completely understand one 
function and two sets with ⊆, in the sense that RCA0 
suffices to prove or refute every instance. See sections 
2.4 - 2.7.  
 
However, it remains to analyze one function and two sets 
without the substantial simplifier ⊆. This is a very 
substantial challenge, although we are convinced that this 
is a manageable project. 
 
Only very special parts of the standard fragment EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) are presently amenable 
to complete analysis. One very symmetric part consisting of 
38 = 6561 cases is completely analyzed in Chapter 3. All 
instances are provable or refutable in RCA0 - expect for the 
Principal Exotic Case and its eleven symmetric forms, 
forming the twelve Exotic Cases.  
 
Section 1.1 presents a very useful canonical form for any 
Boolean equation (arising in the BRT fragments analyzed in 
the book) as a finite conjunction of Boolean inclusions of 
certain forms. This greatly facilitates work with the 
general Boolean equations that arise.  
 
For instance, see the 16 A,B,fA,fB pre elementary 
inclusions listed right after Lemma 2.4.5 according to 
Definition 1.1.35. Also see the 9 A,B,fA,fB,⊆ elementary 
inclusions listed right after Lemma 2.4.5 according to 
Definition 1.1.37.  
 

1.2. Some BRT settings 
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In this section, we give an indication of the tremendous 
variety of BRT settings that arise from standard 
mathematical considerations.  
 
We conjecture that the behavior of BRT fragments in BRT 
settings depends very delicately on the choice of BRT 
setting. Generally speaking, we believe that even small 
changes in the BRT setting lead to different 
classifications, even with BRT fragments in modest 
signatures.  
 
This leads us to the conviction that BRT is a 
mathematically fruitful problem generator of unprecedented 
magnitude and scope. 
 
Indications of this sensitivity are already present in the 
classifications of Chapter 2 as well as the results of 
section 1.4. 
 
Even in the realm of natural subsets of the set MF of all 
functions from some Nk into N, the variety of subclasses is 
staggering. These are discussed in part I of section 1.2. 
In addition, a large variety of subclasses of INF are also 
very natural.  
 
It is very compelling to use Z, Q, ℜ, and C, instead of N, 
creating many additional natural BRT settings, involving 
algebraic, topological, and analytic considerations.  
 
The use of function spaces is also compelling. We mention 
(V,K), where V is the set of all bounded linear operators 
on L2, and K is the set of all nontrivial closed subspaces 
of L2. Then the famous invariant subspace problem for L2 is 
expressed as the following instance of EBRT in A,fA on 
(V,K): 
 

(∀f ∈ V)(∃A ∈ K)(fA = A). 
 
We can obviously use other function spaces for BRT 
settings. 
 
We also propose Topological BRT, where we use the 
continuous functions - and even the multivariate continuous 
functions - on various topological spaces, and the open 
subsets of the spaces.  
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It also makes sense to investigate those BRT statements 
that hold in the continuous functions and nonempty open 
sets, on all topological spaces obeying certain conditions. 
 
Section 1.2 concludes with a back of the envelope 
calculation of the number of BRT settings presented there, 
that are suspected of having different BRT behavior. We 
count only those on N.  
 
The estimate given there is 1,000,000 naturally described 
individual BRT settings with substantially different BRT 
behavior.  
 
The book focuses on only five BRT settings (MF,INF), 
(ELG,INF), (SD,INF), (EVSD,INF), (ELG ∩ SD,INF), and only 
scratches the surface of very simple BRT fragments even in 
these settings. For the definition of all these settings in 
one place, see Appendix A.  As indicated by the 
classifications in Chapter 2, incredible complexities are 
expected to always arise in passing from BRT fragments to 
even slightly richer BRT fragments - even on these five BRT 
settings. When considering the number 1,000,000 above, we 
see how vast and deep BRT is expected to be.  
 

1.3. Complementation Theorems 
 
This section focuses on aspects of the Complementation 
Theorem (CT). Recall the discussion at the beginning of 
section 1.1. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
COMPLEMENTATION THEOREM (with uniqueness). For all f ∈ SD 
there exists a unique A ⊆ N with fA = N\A. Moreover, A ∈ 
INF.  
 
A few equivalent formulations of CT are given, as well as 
the simple inductive proof.  
 
CT is then extended to strictly dominating functions on 
well founded relations. This extension is used in Chapter 4 
to prove the Principal Exotic Case (Proposition A). 
 
We also show that for irreflexive transitive relations with 
an upper bound condition, CT is equivalent to well 
foundedness.   
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In CT, we define the complementation of f ∈ SD to be the 
unique A ⊆ N with fA = N\A.  
 
There is the expectation that even for very simple f ∈ SD, 
the unique complementation A of f can be very complicated - 
and have an intricate structure well worth exploring.  
 
We present some basic examples, where we calculate the 
unique complementation. In particular, we consider some 
cases where f is an affine transformation from Nk into N. 
 
It is also very natural to consider affine f:Nk → Z. Only 
here we need to use the following variant of CT. This 
requires use of the "upper image" of f on A, defined by  
 

f<A = {f(x1,...,xk):  
f(x1,...,xk) > max(x1,...,xk) and x1,...,xn ∈ A}. 

 
An upper complement of f is an A ⊆ N with f<A = N\A. 
 
UPPER COMPLEMENTATION THEOREM. Every f:Nk → Z has a unique 
upper complementation. This unique upper complement is 
infinite.  
 
This formulation has the advantage that it applies to all 
f:Nk → Z, without requiring that f obey any inequalities.  
 
We then present some calculations of upper 
complementations.  
 
We then view CT as a fixed point theorem, and present a 
more general BRT Fixed Point Theorem.  
 
We also consider a version on the reals, and present a 
continuous complementation theorem.  
 
The Complementation Theorem is closely related to an 
important development in digraph theory. These are the 
kernels and dominators of digraphs. Kernels are used in the 
recent work reported in section 0.14D. 
 

1.4. Thin Set Theorems 
 
This section focuses on aspects of the Thin Set Theorem 
(TST). Recall the discussion at the beginning of section 
1.1. 
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THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N.   
 
We begin by tracing the origins of the Thin Set Theorem 
back to the square bracket partition calculus in 
combinatorial set theory. There, one uses unordered tuples 
instead of ordered tuples. However, we give an equivalence 
proof in RCA0 (see Theorem 1.4.2).  
 
This is followed by a discussion of the metamathematical 
status of TST, which is only partially understood. 
 
We then present a simple proof of TST using the infinite 
Ramsey theorem.  
 
We give a strong form of TST where the codomain is 
[0,ot(k)], and establish its metamathematical status. We 
show that it is provably equivalent to ACA' over RCA0. 
 
We briefly consider TST with an infinite cardinal κ instead 
of N. We cite [To87], [BM90], and [Sh95] to obtain some 
results.  
 
TST makes sense on any BRT setting. We explore TST on some 
BRT settings in real analysis.  
 
We first consider 8 natural families of unary functions 
from ℜ to ℜ, and 9 families of subsets of ℜ, for a total of 
72 BRT settings.  
 
FCN(ℜ,ℜ). All functions from ℜ to ℜ. 
BFCN(ℜ,ℜ).  All Borel functions from ℜ to ℜ. 
CFCN(ℜ,ℜ). All continuous functions from ℜ to ℜ. 
C1FCN(ℜ,ℜ). All C1 functions from ℜ to ℜ. 
C∞FCN(ℜ,ℜ). All C∞ functions from ℜ to ℜ. 
RAFCN(ℜ,ℜ). All real analytic functions from ℜ to ℜ. 
SAFCN(ℜ,ℜ). All semialgebraic functions from ℜ to ℜ. 
CSAFCN(ℜ,ℜ). All continuous semialgebraic functions from ℜ 
to ℜ.  
 
cSUB(ℜ). All subsets of ℜ of cardinality c. 
UNCLSUB(ℜ). All uncountable closed subsets of ℜ. 
NOPSUB(ℜ). All nonempty open subsets of ℜ.  
UNOPSUB(ℜ). All unbounded open subsets of ℜ. 
DEOPSUB(ℜ). All open dense subsets of ℜ. 
FMOPESUB(ℜ). All open subsets of ℜ of full measure. 
CCOPSUB(ℜ). All open subsets of ℜ whose complement is 
countable. 
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FCSUB(ℜ). All subsets of ℜ whose complement is finite. 
≤1CSUB(ℜ). All subsets of ℜ whose complement has at most 
one element. 
 
We determine the status of TST in all 72 BRT settings.  
 
We then consider the corresponding 8 families of 
multivariate functions from ℜ to ℜ. I.e., functions whose 
domain is some ℜn and whose range is a subset of ℜ. We use 
the same 9 families of subsets of ℜ.  
 
FCN(ℜ*,ℜ). All multivariate functions from ℜ to ℜ. 
BFCN(ℜ*,ℜ). All multivariate Borel functions from ℜ to ℜ. 
CFCN(ℜ*,ℜ). All multivariate continuous functions from ℜ to 
ℜ. 
C1FCN(ℜ*,ℜ). All multivariate C1 functions from ℜ to ℜ. 
C∞FCN(ℜ*,ℜ). All multivariate C∞ functions from ℜ to ℜ. 
RAFCN(ℜ*,ℜ). All multivariate real analytic functions from 
ℜ to ℜ. 
SAFCN(ℜ*,ℜ). All multivariate semialgebraic functions from 
ℜ to ℜ. 
CSAFCN(ℜ*,ℜ). All multivariate continuous semialgebraic 
functions from ℜ to ℜ. 
 
We again determine the status of TST in all 72 BRT 
settings.  
 
The status of TST in all 144 BRT settings is displayed in a 
table at the end of section 1.4.  
 

Chapter 2 Classifications 
 2.1. Methodology 

 
In Chapter 2, we focus on five BRT settings, falling 
naturally into three groups according to their observed BRT 
behavior. 
 

(SD,INF), (ELG ∩ SD,INF). 
(ELG,INF), (EVSD,INF). 

(MF,INF). 
 
The inclusion diagram for these five sets of multivariate 
functions is  
 

ELG ∩ SD 
SD ELG 
EVSD 
MF 
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(SD,INF), (ELG,INF), and (MF,INF) are the most natural of 
these five BRT settings. The remaining two BRT settings are 
closely related to these three, and serve to round out the 
theory. 
 
In section 2.1, we present the treelike methodology for 
giving complete classifications for BRT fragments.  
 
This treelike methodology is used in sections 2.4, 2.5, and 
the reader can absorb this methodology by looking at the 
physical layout of the classifications in those sections.  
 
The formal treatment of the treelike methodology is given 
fully in section 2.1.  
 

2.2. EBRT, IBRT in A,fA 
 
In this section, we give a complete classification of EBRT 
in A,fA, and IBRT in A,fA, on our list of five basic BRT 
settings, (SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), 
(MF,INF).  
 
The EBRT classifications are conducted entirely within RCA0. 
The IBRT classifications are conducted entirely within 
ACA'.  
 
This establishes that every instance of the EBRT fragments 
is provable or refutable in RCA0, and every instance of the 
IBRT fragments is provable or refutable in ACA'. 
 
Since there are only 16 instances for each of these simple 
BRT fragments, we can afford to simply list all of the A,fA 
elementary inclusions  
 

A ∩ fA = ∅. 
A ∪ fA = U. 

A ⊆ fA. 
fA ⊆ A. 

 
and consider all of the 16 subsets, interpreted 
conjunctively. For EBRT in A,fA, if we reject a subset of 
the elementary inclusions, then we automatically reject any 
superset. So in order to save work, we can first list the 
subsets (A,fA formats) of cardinality 0, then list the 
subsets of cardinality 1, and so forth, through the subset 
of cardinality 4. But of course we don't have to list any 
subset where some proper subset has already been rejected.  
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This kind of classification is called a tabular 
classification. We give a tabular classification for EBRT 
in A,fA on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), 
(MF,INF), and present the results in a table that lists all 
sixteen of the A,fA formats.  
 
For IBRT in A,fA on (SD,INF), we dualize, and thus put the 
assertions in the form  
 

(∃f ∈ V)(∀A ∈ K)(ϕ) 
 
where ϕ is an A,fA format interpreted conjunctively. Once 
again, if we reject a format, then we automatically reject 
any superset. So we also give a tabular classification of 
IBRT in A,fA on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), 
(EVSD,INF), (MF,INf). We also present the results in a 
table listing all sixteen of the A,fA formats.  
 
In the course of working out the classification on the IBRT 
side, we came across the following sharpening of the Thin 
Set Theorem, which we derive from TST. 
 
THIN SET THEOREM (variant). For all f ∈ MF there exists A ∈ 
INF such that A ∪ fA ≠ N. 
 
We conclude section 2.2 with a discussion of the effect of 
restricting the arity of the functions in the various 
classes. 
 
The EBRT classifications are conducted in RCA0, and the IBRT 
classifications are conducted in ACA'.  
 
As a Corollary, all instances of EBRT in A,fA on these five 
BRT settings are provable or refutable in RCA0, and all 
instances of IBRT in A,fA on these five BRT settings are 
provable or refutable in ACA'.  
 
In fact, ACA' is used only in IBRT in A,fA on the setting 
(MF,INF), and not on the other four settings. 
 

2.3. EBRT, IBRT in A,fA,fU 
 
Here we redo section 2.2 for the signature A,fA,fU, with 
the same five BRT settings (SD,INF), (ELG ∩ SD,INF), 
(ELG,INF), (EVSD,INF), (MF,INF). Here U stands for the 
universal set, which in these five BRT settings, is N.  
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Now we have the 6 A,fA,fU elementary inclusions  
 

A ∩ fA = ∅. 
A ∪ fU = U. 

A ⊆ fU. 
fU ⊆ A ∪ fA. 
A ∩ fU ⊆ fA. 

fA ⊆ A. 
 
There are 64 subsets of these 6 elementary inclusions. 
These are conveniently handled again by tabular 
classifications for both EBRT and IBRT.  
 
Some interesting issues arise using N and fN, as presented 
in Theorems 2.3.2 and 2.3.3. We also examine the effect of 
arity on the class of functions, as in section 2.2. 
 
As in section 2.2, the EBRT classifications are conducted 
in RCA0, and the IBRT classifications are conducted in ACA'.  
 
As a Corollary, all instances of EBRT in A,fA,fU on these 
five BRT settings are provable or refutable in RCA0, and all 
instances of IBRT in A,fA,fU on these five BRT settings are 
provable or refutable in ACA'.  
 
In fact, ACA' is used only in IBRT in A,fA,fU on (MF,INF), 
and not on the other four settings. 
 

2.4. EBRT in A,B,fA,fB,⊆ on (SD,INF) 
 2.5. EBRT in A,B,fA,fB,⊆ on (ELG,INF) 

 
Here we use the treelike classification method in order to 
give complete classifications of EBRT in A,B,fA,fB,⊆ on 
(SD,INF), (ELG ∩ SD,INF), (ELG,INF), and (EVSD,INF). EBRT 
on (MF,INF) is treated in section 2.6.  
 
The classifications in sections 2.4, 2.5 are conducted in 
RCA0. As a Corollary, all instances of these four BRT 
fragments are provable or refutable in RCA0. 
 
A substantial number of new issues arise in both of these 
classifications. The new issues can be seen from Lemmas 
2.4.1 - 2.4.5, 2.5.1 - 2.5.14.  
 
Both treelike classifications start with a listing of the 9 
elementary inclusions in A,B,fA,fB,⊆. 
 
A ∩ fA = ∅. 
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B ∪ fB = N. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
 
Recall that the elementary inclusions originate from the 16 
pre elementary inclusions through formal simplification 
using A ⊆ B.  
 
The classifications provide a determination of the subsets 
S of the above nine inclusions for which  
 
(∀f ∈ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG ∩ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG)(∃A ⊆ B from INF)(S) 
(∀f ∈ EVSD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively. 
 
We believe that obtaining complete classifications of EBRT 
in A,B,fA,fB on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), and 
(EVSD,INF) is a manageable project, and can be completed 
within five years. The pre elementary inclusions in 
A,B,fA,fB number 16. 
 
There needs to be a determination of the sets S of these 
sixteen inclusions for which  
 
(∀f ∈ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG ∩ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG)(∃A ⊆ B from INF)(S) 
(∀f ∈ EVSD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively.  
 
The classifications are carried out entirely within RCA0. 
Hence every instance of these classifications is provable 
or refutable in RCA0. 
 

2.6. EBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) 
 
Classifications in EBRT on (MF,INF) are substantially 
easier than on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), and 
(EVSD,INF), at least under ⊆. Here we handle one function 
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and k sets under ⊆ on (MF,INF). Again, the classification 
is conducted in RCA0, and so we see that every instance of 
this BRT fragment is provable or refutable in RCA0. 
 
We begin with a listing of the fifteen convenient types of 
elementary inclusions based on simple inequalities on the 
subscripts. Five of these are easily eliminated, leaving a 
sublist of ten. The conjunction of all of these is 
accepted. 
 
Without ⊆, we have an incomparably more difficult 
challenge, which we have not attempted.   
 

2.7. IBRT in A1,...,Ak,fA1,...,fAk,⊆ 
 
In this section, we give a complete classification of IBRT 
in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG ∩ SD,INF), 
(ELG,INF), (EVSD,INF), and (MF,INF). We work entirely 
within RCA0, except for the BRT setting (MF,INF), where we 
work within ACA'.  
 
In fact, this classification for the first four of these 
BRT settings is seen to be trivial, and so section 2.7 
focuses on the BRT setting (MF,INF).  
 
We start with the A1,...,Ak,fA1,...,fAk,⊆ elementary 
inclusions, grouped into the same 15 categories based on 
simple inequalities of the subscripts that were used in 
section 2.6.  
 
For each of these elementary inclusions, ρ, we will provide 
a useful description of the witness set for ρ, in the 
following sense: The set of all f ∈ MF such that  
 

(∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ρ). 
 
We then calculate the witness sets for the sets of 
elementary inclusions by taking intersections.  
 
It is easily seen that a format is correct if and only if 
this intersection is nonempty. Correctness of formats 
correspond to Boolean inequations. See item 4) just before 
Definition 1.1.40, with n = 1.  
 
We completely determine the formats (sets of elementary 
inclusions) for which the intersection is nonempty.   
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Once again, without ⊆, we have an incomparably more 
difficult challenge, which we have not attempted.   
 
Chapter 3 6561 Cases of Equational Boolean Relation Theory 

3.1. Preliminaries 
 
Recall that EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) 
involves 29 = 512 pre elementary inclusions, with 2512 
statements. A complete classification is well beyond our 
capabilities. This is also true for EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC,⊆ on (ELG,INF), although the number 
of elementary inclusions reduces to 64, with 264 statements.  
 
Here we completely classify a modest, but significant, part 
of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF).  
 
We use the notation A ∪. B from Definition 1.3.1. In 
particular,  
 

A ∪. B ⊆ C ∪. D 
 
means  
 

A ∩ B = ∅ ∧ C ∩ D = ∅ ∧ A ∪ B ⊆ C ∪ D. 
 
This is a very natural concept, and is illustrated by a 
diagram in section 3.1.  
 
The part of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) 
treated here is given as follows. 
 
TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Here X,Y,V,W,P,R,S,T are among the three letters A,B,C. We 
refer to the statements X ∪. fY ⊆ V ∪. gW, for X,Y,V,W ∈ 
{A,B,C}, as clauses.   
 
In Chapter 3, we determine the truth values of all of these 
6561 statements. We also read off a number of specific 
results about the Template. We do not know how to obtain 
these results without examining the classification.  
 
In particular, every assertion in the Template is either 
provable or refutable in SMAH+. In fact, there exist 12 
assertions in the Template, which are obtained by permuting 
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A,B,C and interchanging the two clauses, so that the 
remaining 6549 assertions are each provable or refutable in 
RCA0.   
 
These 12 exceptional cases are called the Exotic Cases. The 
Principal Exotic Case is as follows.  
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
In Chapter 4, we prove Proposition A in SMAH+. In Chapter 5, 
we show that Proposition A is provably equivalent to 1-
Con(SMAH) over ACA’.  
 
We also show that every one of the 6561 assertions in the 
Template, other than the 12 Exotic Cases, are provably 
equivalent to the result of replacing ELG by any of ELG ∩ 
SD, SD, EVSD. All 12 Exotic Cases are refutable in RCA0 if 
ELG is replaced by SD or EVSD (Theorem 6.3.5). 
 
The 6561 cases are organized into 10 manageable groups 
according to the inner trace (quadruple) of letters used. 
I.e., the Principal Exotic Case above (Proposition A) has 
inner quadruple ACBC.  
 
Lemma 3.1.6 establishes that we need only consider single 
clauses, of which there are 14 up to symmetry - and these 
ten inner traces: 
 
1. AAAA. 20 up to symmetry. 
2. AAAB. 81. No symmetries. 
3. AABA. 81. No symmetries. 
4. AABB. 45 up to symmetry. 
5. AABC. 81. No symmetries. 
6. ABAB. 36 up to symmetry. 
7. ABAC. 45 up to symmetry. 
8. ABBA. 45 up to symmetry. 
9. ABBC. 81. No symmetries. 
10. ACBC. 45 up to symmetry. 
 
This adds up to a total of 574 ordered pairs up to 
equivalence (including the 14 duplicates or single 
clauses). 
 

3.2. Some Useful Lemmas 
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In this section, five useful lemmas are established that 
are used extensively throughout Chapter 3.  
 
The first of these lemmas provides f ∈ ELG ∩ SD such that 
whenever A is nonempty and fA ∩ 2N ⊆ A, we have fA is 
cofinite. This is useful for refuting instances of the 
Template, since if fA is cofinite then all instances of the 
Template in which fA appears must be false.  
 
The second and fourth lemmas are variants of the first, 
also providing g ∈ ELG ∩ SD such that if g feeds any 
nontrivial A back into A, the gA is cofinite.  
 
The third lemma decomposes any f ∈ ELG ∩ SD into a suitable 
composition of functions in ELG ∩ SD. It is used to prove 
the fourth lemma.  
 
The fifth lemma says that if we have finitely many terms in 
a set variable A ⊆ N, built out of functions from EVSD, 
then we can find A ∈ INF which is disjoint from all of 
them. This is particularly straightforward.  
 

3.3. Single Clauses (duplicates). 
3.4. AAAA. 
3.5. AAAB. 
3.6. AABA. 
3.7. AABB. 
3.8. AABC. 
3.9. ABAB. 
 3.10. ABAC. 
 3.11. ABBA. 
 3.12. ABBC. 
 3.13. ACBC. 

 
In each section, every instance of the Template covered 
under the titles are either proved or refuted in RCA0, with 
one exception. That exception is in section 3.13, and is 
the Principal Exotic Case (Proposition A). The Principal 
Exotic Case is treated in Chapters 4,5.  
 

3.14. Annotated Table 
 
Here we present a table of all of the results in sections 
3.3 - 3.13.  
 
The Template is based on INF. In sections 3.3 - 3.13, we 
also treat four alternatives to INF.  
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AL is "arbitrarily large", which includes infinite. 
 
ALF is "arbitrarily large finite", which does not include 
infinite. 
 
FIN is "finite".  
 
NON is "nonempty".  
 
The Annotated Table has 584 entries, each treating the five 
attributes INF, AL, ALF, FIN, NON. Every one of the 6561 
instances is symmetric - and therefore trivially equivalent 
- to one of the 584.  
 
Thus the Annotated Table lists a total of 574 × 5 = 2870 
determinations.  
 

3.15 Some Observations 
 
In this final section of Chapter 3, we read off some 
striking information from examination of the Annotated 
Table from section 3.14.  
 
The following asserts that ALF and INF come out the same in 
the Template.  
 
BRT TRANSFER. Let X,Y,V,W,P,R,S,T be among the letters 
A,B,C. The following are equivalent. 
i. for all f,g ∈ ELG and n ≥ 1, there exist finite A,B,C ⊆ 
N, each with at least n elements, such that X ∪. fY ⊆ V ∪. 
gW, P ∪. fR ⊆ S ∪. gT.  
ii. for all f,g ∈ ELG, there exist infinite A,B,C ⊆ N, such 
that X ∪. fY ⊆ V ∪. gW, P ∪. fR ⊆ S ∪. gT. 
 
Of course, BRT Transfer has, as a consequence, the 
Principal Exotic Case (Proposition A). In fact, it is 
clearly provably equivalent to the Principal Exotic Case 
over RCA0.  
 
BRT Transfer provides a way of stating a result in BRT for 
which it is necessary and sufficient to use large cardinals 
to prove, without having to give any particular BRT 
instance.  
 

Chapter 4 Proof of Principal Exotic Case 
4.1. Strongly Mahlo Cardinals of Finite Order 
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In this section, we introduce the large cardinals used to 
prove the Principal Exotic Case. These are the strongly 
Mahlo cardinals of finite order. 
 
The relevant large cardinal combinatorics is developed in a 
self contained way using Erdös-Rado trees.  
 
This large cardinal combinatorics first appeared in [Sc74]. 
We follow the treatment given in [HKS87].  
 
We use SMAH+ for ZFC + (∀n < ω)(∃κ)(κ is an n-Mahlo 
cardinal). We use SMAH for ZFC + {(∃κ)(κ is a strongly n-
Mahlo cardinal)}n<ω. 
 
The large cardinal combinatorics used in the book is given 
by the following. We give a self contained proof. 
 
LEMMA 4.1.6. Let n,m ≥ 1, κ a strongly n-Mahlo cardinal, and 
A ⊆ κ unbounded. For all i ∈ ω, let fi:An+1 → κ, and let 
gi:Am → ω. There exists E ⊆ κ of order type ω such that  
i) for all i ≥ 1, fiE is either a finite subset of sup(E), 
or of order type ω with the same sup as E; 
ii) for all i ∈ ω, giE is finite. 
 

4.2. Proof using Strongly Mahlo Cardinals 
 
In this section, we prove the Principal Exotic Case 
(Proposition A) in SMAH+. We actually prove the following 
sharp form of Proposition B.  
 
PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist 
infinite sets A1 ⊆ ... ⊆ An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅. 
 
We start with f,g ∈ ELG and n ≥ 1, with a cardinal κ that 
is strongly Mahlo of sufficiently high finite order.  
 
We begin with the discrete linearly ordered semigroup with 
extra structure, M = (N,<,0,1,+,f,g).  
 
We first extend this structure to a countable structure  
 

M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...) 
 
generated by the atomic indiscernibles ci*, i ∈ N. This 
construction uses the infinite Ramsey theorem, infinitely 
iterated. 
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After verifying a number of properties of M*, we then 
extend transfinitely to  
 

M** = (N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...) 
 
where the c**'s are indexed by the large cardinal κ. In 
particular, we verify that any partial substructure of M** 
boundedly generated by 0**, 1**, and a set of c**'s of 
order type ω, is embeddable back into M* and M.  
 
We then apply then Complementation Theorem for well founded 
relations (Theorem 1.3.1) to obtain a unique set W of 
nonstandard elements of M** such that for all nonstandard x 
in M**,  
 

x ∈ W ↔ x ∉ g**W. 
 
We then build a Skolem hull construction of length ω 
consisting entirely of elements of W. The construction 
starts with the set of all c**’s. Witnesses are thrown in 
from W that verify that values of f** at elements thrown in 
at previous stages do not lie in W (provided they in fact 
do not lie in W). Only the first n stages of the 
construction will be used. 
 
Every element of the n-th stage of the Skolem hull 
construction has a suitable name involving a bounded number 
of the c**'s.  
 
At this crucial point, we then apply Lemma 4.1.6 to the 
large cardinal κ, in order to obtain a suitably 
indiscernible subset of the c**’s of order type ω, with 
respect to this naming system. 
 
We can redo the length n Skolem hull construction starting 
with S.  This is just a restriction of the original Skolem 
hull construction that started with all of the c**'s.  
 
Because of the indiscernibility, we generate a subset of 
N** whose elements are given by terms of bounded length in 
c**'s of order type ω. This forms a suitable partial 
substructure of M**, so that it is embeddable back into M. 
The image of this embedding on the n stages of the Skolem 
hull construction will comprise the A1 ⊆ ... ⊆ An satisfying 
the conclusion of Proposition B. 
 
This completes the proof of Proposition B in SMAH+.  
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4.3. Some Existential Sentences 

 
The proof of the Principal Exotic Case in section 4.2 from 
SMAH+ is not optimal. Proposition B can, in fact, be proved 
in ACA' + 1-Con(SMAH). This is more delicate, and is proved 
in section 4.4. Section 4.3 provides a crucial Lemma for 
that proof.  
 
The Lemma needed is Theorem 4.3.8, which gives a primitive 
recursive algorithm for determining the truth value of all 
sentences of the first form  
 

(∃ infinite B1,...,Bn ⊆ Nk) 
(∀i ∈ {1,...,n-1})(∀x1,...,xm ∈ Bi)  

(∃y1,...,ym ∈ Bi+1)(Ri(x1,...,xm,y1,...,ym)) 
 
where k,n,m ≥ 1, and R1,...,Rn-1 ⊆ N2km are order invariant 
relations. Recall that order invariant sets of tuples are 
sets of tuples where membership depends only on the order 
type of a tuple. Furthermore, it is provable in ACA' that 
this algorithm is correct.  
 
We start with the simpler set of sentences of the second 
form  
 

(∃ infinite B1,...,Bn ⊆ Nk) 
(∀i ∈ {1,...,n-1}) 

(∀x,y,z ∈ Bi)(∃w ∈ Bi+1)(Ri(x,y,z,w)) 
 
where k,n ≥ 1, and R1,...,Rn-1 ⊆ N4k are order invariant 
relations. We primitive recursively convert every sentence 
of the first form to a corresponding sentence of the second 
form, without changing the truth value.  
 
We then consider sentences of the third form  

 
(∃f:Np → N)(∀x1,...,xq ∈ N)(ϕ) 

 
where ϕ is a propositional combination of atomic formulas 
of the forms xi < xj, f(y1,...,yp) < f(z1,...,zp), where 
xi,xj,y1,...,yp,z1,...,zp are among the (distinct) variables 
x1,...,xq. We primitive recursively convert every sentence 
of the second form to a corresponding sentence of the third 
form, without changing the truth value. 
 
Sentences of the third form are analyzed using strong 
SOI's. It is shown that a sentence of the third form is 
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true if and only if there is a small finite set of strong 
SOI's of a certain kind associated with the sentence.  
 

4.4. Proof using 1-consistency 
 
In this section we show that Proposition B - and hence the 
Principal Exotic Case - can be proved in ACA' + 1-
Con(SMAH). 
 
We first restate what is proved in section 4.2 in a 
different form with numerical parameters.  
 
Recall that in section 4.2, we essentially proved in SMAH 
that for any suitable structure 
 

M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) 
 
there exist r ≥ 1 and infinite sets D[1] ⊆ ... ⊆ D[n] ⊆ 
M*[r] such that D[1] ⊆ {cj*: j ≥ 0}, and for all 1 ≤ i < n, 
f*D[i] ⊆ D[i+1] ∪. g*D[i+1]. Here we assume that n ≥ 1 and 
the arities p,q of f*,g*, and a bound b on the ELG 
inequalities, are given in advance. See Lemma 4.4.1.  
 
Since for fixed parameters n,p,q,b, the set of such M* 
forms a compact space in an appropriate sense, we can 
choose r so large that it works even if the c*s are only 
indiscernible with respect to atomic formulas of bounded 
complexity.  
 
So these considerations allow us formulate an assertion of 
the form (∀n)(∃m)(σ(n,m)) that implies Proposition B, where 
for each n, (∃m)(σ(n,m)) is provable in SMAH.  
 
Note that if σ(n,m) were a primitive recursive equation, 
then (∀n)(∃m)(σ(n,m)) would be provable in ACA' + 1-
Con(SMAH), and so would Proposition B, as required.  
 
However, σ(n,m) asserts the existence of a chain of 
infinite sets of length n satisfying some inclusion 
relations.  
 
Now Theorem 4.3.8 comes to the rescue, telling us that 
σ(n,m) can be put in primitive recursive form.  
 

Chapter 5 Independence of Exotic Case 
5.1 Proposition C and Length 3 Towers 
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Chapter 5 is devoted to a proof of 1-Con(SMAH) in ACA' + 
the Principal Exotic Case.  
 
In fact, we use a specialization of the Principal Exotic 
Case, to a subset of ELG.  
 
This subset is ELG ∩ SD ∩ BAF, where BAF is the countable 
set of functions given by terms in 0,1,+,-,•,↑,log. Here 
(see Definition 5.1.1),  
 
1. Addition. x+y is the usual addition. 
2. Subtraction. Since we are in N, x-y is defined by the 
usual x-y if x ≥ y; 0 otherwise. 
3. Multiplication. x•y is the usual multiplication. 
4. Base 2 exponentiation. x↑ is the usual base 2 
exponentiation. 
5. Base 2 logarithm. Since we are in N, log(x) is the floor 
of the usual base 2 logarithm, with log(0) = 0. 
 
It is easier to work with EBAF (extended basic functions), 
defined in Definition 5.1.7. By Theorem 5.1.4, EBAF = BAF. 
 
In Chapter 5, we give a proof of 1-Con(SMAH) in ACA' + 
Proposition C.  
 
PROPOSITION C. For all f,g ∈ ELG ∩ SD ∩ BAF, there exist 
A,B,C ∈ INF such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
Throughout Chapter 5, we assume Proposition C.  
 
Note that Proposition C does not tell us that A ⊆ B ⊆ C. 
This is a very important condition to have, as we want to 
extend length 3 chains to chains of arbitrary finite 
length, and then apply compactness to get a single 
structure.  
 
So in section 5.1, we obtain the badly needed chain of 
length 3 - but at the cost of degrading the two clauses in 
Proposition C. The tradeoff is well worth it - and needed.  
 
Section 5.1 concludes with the following.  
 
LEMMA 5.1.7. Let f,g ∈ ELG ∩ SD ∩ BAF and rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  
i) fA ∩ 6N ⊆ B ∪ gB; 
ii) fB ∩ 6N ⊆ C ∪ gC; 
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iii) fA ∩ 2N+1 ⊆ B; 
iv) fA ∩ 3N+1 ⊆ B; 
v) fB ∩ 2N+1 ⊆ C; 
vi) fB ∩ 3N+1 ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ fB = ∅. 
 
The remaining sections in Chapter 5 use only the last Lemma 
from the previous section, together with the previous 
definitions.  
 

5.2. From length 3 towers to length n towers 
 
In this section, we obtain a variant of Lemma 5.1.7 (Lemma 
5.2.12) involving length n towers rather than length 3 
towers.  
 
However, we have to pay a serious cost. As opposed to Lemma 
5.1.7, we will only have that the sets in the length n 
towers have at least r elements, for any given r ≥ 1.  
 
So it is important to make sure that the first sets in 
these towers be a suitable set of indiscernibles before we 
relinquish that the first sets be infinite.  
 
In order to accomplish this, we first apply the infinite 
Ramsey theorem to shrink the infinite first sets coming 
from Lemma 5.1.7 to infinite subsets that are sets of 
indiscernibles of the right kind.  
 
Section 5.2 concludes with the following.  
 
LEMMA 5.2.12. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 48N. There exists (D1,...,Dr) such that  
i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 48α(r,Di;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di;1,r)+1, 3α(r,Di;1,r)+1 ⊆ 
Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3 ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3. 
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Note the partial shift toward the language driven notions 
using α. These are carefully defined sets of nonnegative 
integers given by terms with arguments from sets. Also, 
note the use of t[i,2r].  
 

5.3. Countable nonstandard models with limited 
indiscernibles 

 
Our basic standard structure is (N,<,0,1,+,-,•,↑,log) that 
provides the operations that generate BAF (see section 
5.1).  
 
We use Lemma 5.2.12 to create, for each r ≥ 3, a structure 
(N,<,0,1,+,-,•,↑,log,E1,...,Er) with a related set of 
properties. This is Lemma 5.3.2, which frees us from any 
further consideration of BAF. Thus we no longer see the D ∪ 
gD construction, or the D ∩ gD = ∅ condition. See Lemma 
5.3.2. 
 
The next major step is to consolidate all of the structures 
given by Lemma 5.3.2 relative to each r ≥ 3, to a single 
countable nonstandard structure based on a single tower E1 ⊆ 
E2 ⊆ ... of infinite sets of infinite length. Lemma 5.3.3 
also has further simplifications.  
 
One important point is the condition that the resulting 
single structure M is both a nonstandard model of some 
arithmetic - with primitives 0,1,+,-,•,↑,log - and also has 
the crucial tower of subsets E1 ⊆ E2 ⊆ ..., acting like 
unary predicates. The arithmetic is simply the set of all 
true Π0

1 sentences. This is important for obtaining 1-
Con(SMAH), instead of just Con(SMAH).  
 
A second point is that the elements of the tower are 
cofinal in the structure.  
 
This consolidation into a single structure is obtained by 
two steps. The first step is the compactness argument, 
which arranges for all of the properties except that the 
E's are cofinal in the structure. The second step is to 
restrict this structure to the cut given by a subset of the 
first set in the tower that has order type ω. In fact, this 
subset of order type ω is just the interpretation of 
infinitely many constant symbols used in the compactness 
argument.  
 
There is a considerable development of properties of M. One 
important development is internal finite sequence coding. 
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Because of the role of expansive linear growth - traces of 
which are carried through for several sections - we need 
the rather delicate way of handling coding provided by 
Definition 5.3.11.  
 
Section 5.3 ends with the following.  
 
LEMMA 5.3.18. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...) such that the following 
holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1, t(v1,...,vr) be a term of L, and x1,...,xr ≤ 
cn. Then t(x1,...,xr) < cn+1;  
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let r ≥ 1, a,b ∈ N, and ϕ(v1,...,vr) be a quantifier 
free formula of L. There exist d,e,f,g ∈ N\{0} such that 
for all x1 ∈ α(E;1,<∞), (∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ 
ϕ(x1,...,xr)) ↔ dx1+e ∉ E ↔ fx1+g ∈ E; 
vii) Let r ≥ 1, p ≥ 2, and ϕ(v1,...,v2r) be a quantifier free 
formula of L. There exist a,b,d,e ∈ N\{0} such that the 
following holds. Let n ≥ 1 and x1,....,xr ∈ α(E;1,<∞) ∩ 
[0,cn]. Then  
(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr)) ↔  
aCODE(cn+1;x1,...,xr)+b ∉ E ↔  
dCODE(cn+1;x1,...,xr)+e ∈ E. Here CODE is as defined just 
before Lemma 5.3.11; 
viii) Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where x1,...,xk 
∈ α(E;1,<∞). Then CODE(cm;x1,...,xk) ∈ E; 
ix) Let r ≥ 1 and t(v1,...,v2r) be a term of L. Let i1,...,i2r 
≥ 1 and y1,...,yr ∈ E, where (i1,...,ir) and (ir+1,...,i2r) 
have the same order type and min, and y1,...,yr ≤ 
min(ci_1,...,ci_r). Then  
t(ci_1,...,ci_r,y1,...,yr) ∈ E ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. 
 
Note that the infinite tower of sets from the M of Lemma 
5.3.3 is removed in favor of a single subset E, and 
constants cn, n ≥ 1, enumerating the first term of the 
tower. The single set E is simply the union of the tower of 
E's from the M of Lemma 5.3.3. The E is cofinal in the 
structure.  
 

5.4. Limited formulas, limited indiscernibles,  
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x-definability, normal form 
 
Note that the M of Lemma 5.3.18 obeys two special forms of 
existential comprehension (clauses vi, vii), and one form 
of quantifier free indiscernibility (clause ix).  
 
We upgrade these to a single form of comprehension for 
formulas with bounded quantifiers, and indiscernibility for 
formulas with bounded quantifiers. The range of this 
comprehension is E only, and the objects used in the 
indiscernibility are also only from E. 
 
In fact, the bounded quantifier comprehension is given in 
terms of a normal form. I.e., every suitable k-ary relation 
on E is given by fixing 8 parameters from E in a fixed 
atomic formula with k+8 variables.  
 
Section 5.4 ends with the following.  
 
LEMMA 5.4.17. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...), and terms t1,t2,... of L, 
where for all i, ti has variables among v1,...,vi+8, such 
that the following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1 and t(v1,...,vr) be a term of L, and 
x1,...,xr ≤ cn. Then t(x1,...,xr) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L(E). Let 1 
≤ i1,...,i2r < n, where (i1,...,ir) and (ir+1,...,i2r) have the 
same order type and the same min. Let y1,...,yr ∈ E, 
y1,...,yr ≤ min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr)c_n 
↔ ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n. 
 

5.5. Comprehension, indiscernibles 
 
Here we upgrade the bounded quantifier comprehension and 
indiscernibility to unbounded quantifier comprehension and 
indiscernibility. It is the indiscernibility itself that 
allows us to make this transition.  
 
The comprehension produces bounded relations on E only.  
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A very robust and useful notion of internal relation 
emerges. These are the bounded relations on E that are 
definable with parameters from E and quantifiers ranging 
over E. See Lemma 5.5.4. 
 
We pass to a second order structure where the internal 
relations are used to interpret the second order 
quantifiers.  
 
We retain comprehension and indiscernibility in the 
appropriate forms.  
 
Section 5.5 ends with the following.  
 
LEMMA 5.5.8. There exists a countable structure M* = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...), where for all i 
≥ 1, Xi is the set of all i-ary relations on A that are cn-
definable for some n ≥ 1; and terms t1,t2,... of L, where 
for all i, ti has variables among x1,...,xi+8, such that the 
following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements of E\α(E;2,<∞) with no upper bound in 
A; 
iv) For all r,n ≥ 1, ↑r(cn) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let k ≥ 1, m ≥ 0, and ϕ be an E formula of L*(E) in 
which R is not free, where all first order variables free 
in ϕ are among x1,...,xk+m+1. Then xk+1,...,xk+m+1 ∈ E → 
(∃R)(∀x1,...,xk ∈ E)(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)); 
viii) Let r ≥ 1, and ϕ(x1,...,x2r) be an E formula of L*(E) 
with no free second order variables. Let 1 ≤ i1,...,i2r, 
where (i1,...,ir) and (ir+1,...,i2r) have the same order type 
and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 

5.6. Π0
1 correct internal arithmetic, simplification 

 
The main focus of this section is the derivation of a 
suitable form of the axiom of infinity. This is the one 
place where it is essential to use that the cn, n ≥ 1, lie 
outside α(E;2,<∞). This is from Lemma 5.5.8 iii).  
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The axiom of infinity takes the form of the existence of an 
internal set containing 1, and closed under +2c1.  
 
We then define I to be the intersection of all internal 
sets containing 1, and closed under +2c1. The set I will 
serve as the internal natural numbers.  
 
It is important to link the arithmetic operations that are 
uniquely defined, internally, on I, with the arithmetic 
operations given by the structure M* from Lemma 5.5.8. This 
is required in order to be able to use the fact that M* 
satisfies the true Π0

1 sentences. It allows us to conclude 
that the internal arithmetic on I satisfies the true Π0

1 
sentences.  
 
The required link is provided by Lemma 5.6.11. 
 
LEMMA 5.6.11. Every element of I is of the form 2xc1+1, with 
x ∈ E-E. x ∈ I ∧ x > 1 → x-2c1 ∈ I. 
 
Thus we link each 2xc1+1 ∈ I with x ∈ E-E. This suggests 
that we can define +,•,-,↑,log on I by applying the +,•,-
,↑,log at relevant elements of E-E. But in order to do 
this, we need to know, e.g., that  
 

2xc1+1,2yc1+1 ∈ I → 2xyc1+1 ∈ I. 
 
This is exactly what is established in Lemma 5.6.12.  
 
So this defines the structure  
 

M(I) = (I,<,0’,1’,+’,-’,•’,↑’,log’) 
 
as in Definition 5.6.4, which is isomorphically embeddable 
in (A,<,0,1,+,-,•,↑,log).  
 
Since (A,<,0,1,+,-,•,↑,log) satisfies the true Π0

1 
sentences, we would like to conclude that M(I) also 
satisfies the true Π0

1 sentences. However, because of the 
bounded quantifiers in Π0

1 sentences, we can only conclude 
that M(I) satisfies the true Π0

1 sentences with no bounded 
quantifiers allowed.  
 
However, in the presence of PA, every Π0

1 sentence is 
equivalent to a Π0

1 sentence with no bounded quantifiers, 
using the Y. Matiyasevich solution to Hilbert's 10th 
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problem (based on earlier work of J. Robinson, M. Davis, 
and H. Putnam). See [Da73], [Mat93].  
 
By Lemma 5.6.13, M(I) satisfies PA. Therefore M(I) 
satisfies PA + the true Π0

1 sentences.  
 
We now introduce the linearly ordered set theory K(Π) in 
Definition 5.6.10. It has a linear ordering of the 
universe, full separation, an initial segment serving as 
the integers, with operations +,-,•,↑,log, obeying the true 
Π0

1 sentences. There is also an infinite list of constants 
with axioms of indiscernibility. 
 
A model of K(Π) is explicitly constructed using M* and 
M(I). We put I at the bottom, and E (without the initial 
segment of E determined by I) on top. The arithmetical 
operations on I are inherited from M(I). The c's, after c1, 
serve as the indiscernibles. The ∈ relation is interpreted 
using the normal form relation σ from Lemma 5.6.17.    
 
Section 5.6 ends with the following.  
 
LEMMA 5.6.20. There exists a countable structure M# = 
(D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) such that the 
following holds. 
i) < is a linear ordering (irreflexive, transitive, 
connected); 
ii) x ∈ y → x < y; 
iii) The dn, n ≥ 1, form a strictly increasing sequence of 
elements of D with no upper bound in D; 
iv) Let ϕ be a formula of L# in which v1 is not free. Then 
(∃v1)(∀v2)(v2 ∈ v1 ↔ (v2 ≤ v3 ∧ ϕ)); 
v) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L#. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and min. Let y1,...,yr ≤ min(di_1,...,di_r). Then 
ϕ(di_1,...,di_r,y1,...,yr) ↔ ϕ(di_r+1,...,di_2r,y1,...,yr); 
vi) NAT defines a nonempty initial segment under <, with no 
greatest element, and no limit point, where all points are 
< d1, and whose first two elements are 0,1, respectively; 
vii) (∀x)(if x has an element obeying NAT then x has a < 
least element);  
viii) Let ϕ ∈ TR(Π0

1,L). The relativization of ϕ to NAT 
holds.  
ix) +,-,•,↑,log have the default value 0 in case one or 
more arguments lie outside NAT. 
 

5.7. Transfinite induction, comprehension,  
indiscernibles, infinity, Π0

1 correctness 
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In M#, the < may not be internally well ordered. Moreover, 
we may not have extensionality.  
 
The focus of section 5.7 is on creating a structure 
corresponding to the M# of Lemma 5.6.20 with an internally 
well founded <. However, this new structure will not be a 
model of a set theory, but rather a second order structure. 
I.e., we will have a linearly ordered set of points, with a 
family of relations on the points of each arity.  
 
We will obtain full second order separation (second order 
of course limited to these families of relations), and an 
initial segment corresponding to the natural numbers. We 
will also obtain an infinite sequence of indiscernibles as 
in Lemma 5.6.20, cofinal in the linear ordering.  
 
The idea is to first develop a theory of pre well orderings 
(as binary relations) within M#. Every binary relation in 
M# is a point, since M# is a model of a set theory.  
 
We use this theory of pre well orderings to place two 
closely related relations <#, ≤#, on points. See Definitions 
5.7.21 and 5.7.22. These are, generally speaking, much 
stronger than the relations <, ≤. We define x =# y ↔ (x ≤# 
y ∧ y ≤# x). 
 
By Lemma 5.7.18, we have the trichotomy 
 

x <# y ∨ y <# x ∨ x =# y, with exclusive ∨. 
 
The points in the desired structure with internal well 
foundedness are the equivalence classes under =#, each of 
which forms an interval of points in M*.  
 
For the rest of the definition of the second order 
structure M^, see Definitions 5.7.26 - 5.7.34.  
 
Section 5.7 ends with the following. 
 
LEMMA 5.7.30. There exists a structure M^ = (C,<,0,1,+,-
,•,↑,log,ω,c1,c2,...,Y1,Y2,...) such that the following 
holds. 
i) (C,<) is a linear ordering;  
ii) {x: x < ω} forms an initial segment of (C,<); 
iii) ({x: x < ω},<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
iv) For all x,y ∈ C, ¬(x < ω ∧ y < ω) → x+y = x•y = x-y = 
x↑ = log(x) = 0; 
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v) The cn, n ≥ 1, form a strictly increasing sequence of 
elements of C, all > ω, with no upper bound in C; 
vi) For all k ≥ 1, Yk is a set of k-ary relations on C whose 
field is bounded above; 
vii) Let k ≥ 1, and ϕ be a formula of L^ in which the k-ary 
second order variable Bkn is not free, and the variables Bmr 
range over Yr. Then (∃Bkn ∈ Yk)(∀x1,...,xk)(Bkn(x1,...,xk) ↔ 
(x1,...,xk ≤ y ∧ ϕ));  
viii) Every nonempty M^ definable subset of C has a < least 
element; 
ix) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L^. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and the same min. Let y1,...,yr ∈ C, y1,...,yr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr) ↔ 
ϕ(ci_r+1,...,ci_2r,y1,...,yr). 
 

5.8. ZFC + V = L, indiscernibles, and  
Π0

1 correct arithmetic 
 
Now that we have a second order structure M^ from Lemma 
5.7.30, we want to move back to a model of set theory. This 
time, the model will be of ZFC + V = L + the true Π0

1 
sentences, with an unbounded infinite sequence of ordinals 
with indiscernibility.  
 
We need to build the constructible hierarchy in order to 
fully utilize the indiscernibility afforded by Lemma 
5.7.30. In particular, the definable well ordering arising 
from L is needed in order to derive power set from 
indiscernibility.  
 
Because of the internal well foundedness, the points in M^ 
already behave like ordinals. In M^, we can perform various 
transfinite recursions, resulting in second objects in M^. 
Sometimes in order to accomplish this, we make use of the 
indiscernibles in M^.  
 
Extensionality, pairing, and union are verified in L by 
Lemma 5.8.24. Infinity is verified in L by Lemma 5.8.25. 
Foundation is verified in L by Lemma 5.8.26. Separation and 
Collection, both of which are schemes, are verified in L by 
Lemma 5.8.29. 
 
We then show that power set holds in L with heavy use of 
indiscernibility.  
 
It suffices to show that if, in L, every element of x ∈ L 
is constructed before stage c2, then x < c3. (We can obtain 
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such a strong conclusion because extensionality is built 
into the construction of L). This is Lemma 5.8.32.  
 
If this is false, then by indiscernibility, for each n ≥ 3, 
there is an x ≥ cn such that every element of x in L is 
constructed before stage c2.   
 
Using the definable well ordering of L, we can set J(n) to 
be the < least x ≥ cn such that every element of x in L is 
constructed before stage c2.  
 
But by indiscernibility, J(4) < J(5) and J(4),J(5) will 
have the same elements in L. This is a contradiction. The 
treatment in section 5.8 is fully detailed. See Lemma 
5.8.34.  
 
We now obtain a model of ZF of the required kind. See Lemma 
5.8.36. We can then relativize to L to obtain ZFC + V = L.  
 
Section 5.8 ends with the following.  
 
LEMMA 5.8.37. There exists a countable model M+ of ZFC + V = 
L + TR(Π0

1,L), with distinguished elements d1,d2,..., such 
that  
i) The d’s are strictly increasing ordinals in the sense of 
M+, without an upper bound; 
ii) Let r ≥ 1, and i1,...,i2r ≥ 1, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and min. Let R be a 
2r-ary relation M+ definable without parameters. Let 
α1,...,αr ≤ min(di_1,...,di_r). Then R(di_1,...,di_r,α1,...,αr) 
↔ R(di_r+1,...,di_2r,α1,...,αr). 
 

5.9. ZFC + V = L + {(∃κ)(κ is strongly k-Mahlo)}k + 
TR(Π0

1,L), and 1-Con(SMAH). 
 
We first give a complete proof of a result in combinatorial 
set theory, of independent interest and not involving any 
developments in the book from sections 1.1 through 5.8. It 
is closely related to [Sc74] and the treatment is inspired 
by [HKS87]. The result is as follows.  
 
THEOREM 5.9.5. The following is provable in ZFC. Let k < ω 
and α be an ordinal. Then R(α\ω,k+3,k+5) if and only if 
there is a strongly k-Mahlo cardinal ≤ α. 
 
We then return to the model M+ of ZFC + V = L + the true Π0

1 
sentences, given by Lemma 5.8.37.  
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We show that the indiscernibles themselves (the d's of M+) 
essentially obey the relevant partition properties.  
 
LEMMA 5.9.6. Let k,r ≥ 1 be standard integers. Then 
R(dr+2+1\ω,k,r) holds in M+. 
 
This is proved by first assuming that it is false, and then 
taking the L least counterexample. We can do this since M+ 
obeys V = L. Then apply the indiscernibility in M+ from 
Lemma 5.8.37. 
 
We then easily obtain that M+ satisfies ZFC + V = L + {there 
exists a strongly k-Mahlo cardinal}k + the true Π0

1 
sentences. In fact, we conclude  
 
THEOREM 5.9.11. ACA’ proves the equivalence of each of 
Propositions A,B,C and 1-Con(MAH), 1-Con(SMAH). 
 
The above is shown by checking that all of the relevant 
steps in Chapter 5 can be carried out within ACA', and 
quoting Theorem 4.4.11.  
 
Chapter 5 ends with the following.  
 
THEOREM 5.9.12. None of Propositions A,B,C are provable in 
any set of consequences of SMAH that is consistent with 
ACA’. The preceding claim is provable in RCA0. For finite 
sets of consequences, the first claim is provable in EFA. 
 

Chapter 6 Further Results 
6.1. Propositions D-H 

 
In section 6.1, we establish Theorem 5.9.11 for several 
variants of Propositions A,B,C. This requires various 
adaptations of Chapters 4 and 5. 
 
The strongest proposition considered in this book that is 
proved from large cardinals is the following.  
 
PROPOSITION D. Let f ∈ LB ∩ EVSD, g ∈ EXPN, E ⊆ N be 
infinite, and n ≥ 1. There exist infinite A1 ⊆ ... ⊆ An ⊆ N 
such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅;  
iii) A1 ⊆ E. 
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Proposition D immediately implies Proposition B. We then 
adapt Chapter 4 to derive Proposition D in ACA' + 1-
Con(SMAH).  
 
We then consider the remaining main variants of 
Propositions A,B,C in section 6.1.  
 
PROPOSITION E. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ B ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION F. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION G. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION H. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, where A ∩ B contains infinitely many powers of 
2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
We first observe that in RCA0, D → E → F → G → H. See 
Lemma 6.1.5.  
 
Section 6.1 ends with an adaptation of part of Chapter 5 in 
order to resolve the status of Propositions E-H. I.e., ACA' 
proves Propositions E-H are equivalent to Con(SMAH). See 
Theorem 6.1.10.  
 

6.2. Effectivity 
 
Section 6.2 begins with a straightforward proof that 
Propositions A-H hold in the arithmetic sets. The proof is 
conducted in ACA+. See Definition 6.2.1.  
 
Next in section 6.2, we show that Propositions C,E-H hold 
in the recursive sets (and even in the sets with primitive 
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recursive enumeration functions). We also show that this 
result is provably equivalent to 1-Con(SMAH) over ACA'. 
 
We don't know if any or all of Propositions A,B,D hold in 
the recursive sets. We conjecture that they do not. 
 
Recall that in the proofs of Propositions C,E-H coming out 
of Chapter 4, we rely on an infinite set of indiscernibles 
for functions in BAF. These sets of indiscernibles are 
given by applying the infinite Ramsey theorem, and so go up 
the arithmetic hierarchy, and are far from being recursive.  
 
A key idea of section 6.2 is the development of appropriate 
infinite sets of indiscernibles for functions in BAF that 
are recursive - and even primitive recursive or better. 
 
This relies on properties of the structure (N,+,↑), or base 
2 exponential Presburger arithmetic. It has a primitive 
recursive decision procedure going back to [Se80], [Se83]. 
A modern treatment of quantifier elimination for this 
structure (with additional predicates) appears in [CP85], 
and also a more recent version appears as Appendix B in 
this book, authored by F. Point.  
 
The required infinite sets of indiscernibles are given by 
Lemma 6.2.17.  
 
Section 6.2 continues with an adaptation of sections 4.3 
and 4.4 primitive recursively. This culminates with Theorem 
6.2.20. 
 

6.3. A Refutation 
 
Section 6.3 is devoted to a refutation of the following.  
 
PROPOSITION α. For all f,g ∈ SD ∩ BAF there exist A,B,C ∈ 
INF such that 

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

   
Note that this shows the need for using ELG in Propositions 
A,B,C. In fact, section 6.3 contains a refutation of the 
following. 
 
PROPOSITION β. Let f,g ∈ SD ∩ BAF. There exist A,B,C ⊆ N, 
|A| ≥ 4, such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 



 227 

 
The proof proceeds by assuming Proposition β, and first 
adapting Lemma 5.1.8. See Lemma 5.1.8'. This is followed by 
a combinatorial construction that provides the required 
contradiction.  
 
0.16. Some Open Problems. 
 
1. Is the set of all true instances of EBRT (or IBRT) in 
A1,...,Ak,f1A1,...,f1Am,...,fnA1,...,fnAm on (MF,INF) (or 
(SD,INF), (ELG,INF), (EVSD,INF)) recursive? Here n,m are 
not fixed. We expect a positive result to be hugely 
intractable, and so we are raising the possibility of a 
negative result.  
 
2. PBRT was introduced in section 1.1, but not investigated 
in this book. It is spectacularly more complex than EBRT 
and IBRT. See Definition 1.1.26, and the brief discussion 
of PBRT right after the proof of Theorem 1.1.2. What can we 
say about PBRT in A,fA on (MF,INF) (or (SD,INF), (ELG,INF), 
(EVSD,INF))? What about question 1 for PBRT? 
 
3. Does the behavior of BRT fragments in the various BRT 
settings presented in section 1.2 depend very delicately on 
the choice of BRT setting, as we believe? Give some precise 
formulations of this question and determine whether they 
hold. 
 
4. This concerns the Upper Complementation Theorem of 
section 1.3. Is there a decision procedure for determining 
whether, given two affine functions f:Nk → Z, whether their 
unique upper complementations are equal? What if the two 
functions are quadratics? Polynomials? For any given affine 
f, what can we say about the computational complexity of 
its unique upper complementation? 
 
5. Every instance of EBRT in A,B,fA,fB,⊆ on (SD,INF), 
(ELG,INF), (EVSD,INF) is provable or refutable in RCA0. This 
is shown in sections 2.4, 2.5. Is every instance of EBRT in 
A,B,fA,fB on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), 
(EVSD,INF) provable or refutable in RCA0? As a presumably 
smaller step, what about using A,B,fA,fB,fU,⊆? 
 
6. Every instance of EBRT in A1,...,Ak,fA1,...,fAk,⊆ on 
(MF,INF) is provable or refutable in RCA0. This is shown in 
section 2.6. Is every instance of EBRT in 
A1,...,Ak,fA1,...,fAk on (MF,INF) provable or refutable in 
RCA0? What if k = 2? 
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7. What about question 5 for IBRT in light of section 2.7? 
 
Recall the Template of Chapter 3: 
 
TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Consider two richer Templates. 
 
TEMPLATE'. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 
 D ∪. fE ⊆ J ∪. gK. 

 
 
TEMPLATE ''. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. αY ⊆ V ∪. βW 
 P ∪. γR ⊆ S ∪. δT. 

 
where α,β,γ,δ are among the letters f,g.  
 
8. Every instance of the above Template is provable or 
refutable in SMAH+. This is shown in Chapter 3. Is this true 
for Template'? Is this true for Template''?  
 
9. The Principal Exotic Case (Proposition A) universally 
quantifies over eight numerical parameters. The upper and 
lower rational constant factors for f ∈ ELG, the lower and 
upper rational constant factors for g ∈ ELG, constants for 
sufficiently large associated with each of these four 
rational constant factors, the arity of f, and the arity of 
g. In the case of Proposition B, there is an additional 
parameter, namely the length of the tower. In section 4.2, 
we proved Proposition B by fixing p,n ≥ 1, where p is the 
arity of f, and n is the length of the tower. We used a 
strongly pn-1-Mahlo cardinal. This amounts to using a 
strongly p2-Mahlo cardinal to prove the Principal Exotic 
Case (Proposition A). What is the least order of strong 
Mahloness needed here? Also, what is the metamathematical 
status of Propositions A (B) if we fix various combinations 
of the eight (nine) parameters and let the others vary? For 
some combinations, we expect to get independent statements, 
and for other combinations we expect to get Σ01 statements, 
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which are, of course provable. But do we get length of 
proof results corresponding to the provably recursive 
functions of SMAH? 
 
10. The Principal Exotic Case, is an instance of EBRT in 
A,C,fA,fB,gB,gC on (ELG,INF). The Principal Exotic Case 
with A ⊆ B ⊆ C is an instance of EBRT in A,C,fA,fB,gB,gC,⊆ 
on (ELG,INF). They are both provable in SMAH+ but not in 
SMAH. This is shown in section 4.2 and in Chapter 5. Is 
every instance of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on 
(ELG,INF) provable or refutable in SMAH+? What about in 
A,B,C,fA,fB,fC,gA,gB,gC,⊆, A,C,fA,fB,gB,gC, or 
A,C,fA,fB,gB,gC,⊆?  
 
11. ACA' proves that Propositions A-H are each equivalent 
to 1-Con(SMAH). This is shown in section 6.1. For which of 
these Propositions, can ACA' be replaced by RCA0, or by WKL0 
in either the forward or the reverse direction of the 
equivalence?  
 
12. Propositions A-H hold in the arithmetic sets. This is 
shown in section 6.2. Does the Principal Exotic Case 
(Proposition A) hold in the recursive sets? What about 
Propositions B,D?  
 
13. Propositions C,E-H hold in the recursive sets, and even 
in the sets with primitive recursive enumeration functions. 
This is shown in section 6.2. Do Propositions C,E-H hold in 
the sets with superexponential enumeration functions as 
discussed at the end of section 6.2?  
 
14. What is the status of Proposition D[5] presented in 
section 6.1? What is the status of Proposition G[1], also 
presented in section 6.1?  
 
0.17. Concreteness in the Hilbert Problem List. 
 
We now discuss the levels of Concreteness associated with 
Hilbert's famous list of 23 problems, 1900. See [Br76], and 
http://en.wikipedia.org/wiki/Hilbert's_problems#Table_of_pr
oblems 
 
[Br76] includes a reprint of Hilbert's article. For ready 
web access, see  
 
http://aleph0.clarku.edu/~djoyce/hilbert/toc.html 
http://aleph0.clarku.edu/~djoyce/hilbert/problems.html 
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It is important to distinguish between two quite different 
but overlapping projects. We use HP for "Hilbert's 
Problems".  
 
HP PROOF THEORY. An analysis of levels of Concreteness in 
the proofs of theorems surrounding the Hilbert problem 
list. 
 
HP STATEMENT THEORY. An analysis of levels of Concreteness 
in the statements of propositions surrounding the Hilbert 
problem list.  
 
In this section, we focus entirely on HP Statement Theory. 
We view it as preliminary to a systematic development of HP 
Proof Theory. 
 
There is a very limited amount of work in HP Proof Theory. 
We view HP Proof Theory as part of a wider Mathematical 
Proof Theory limited to theorems surrounding the Hilbert 
problem list. Here Mathematical Proof Theory is the 
systematic study of Concreteness in mathematical proofs, 
generally in the sense of Reverse Mathematics and Strict 
Reverse Mathematics as discussed in section 0.4.  
 
We view HP Statement Theory as part of a wider Mathematical 
Statement Theory limited to propositions (which may or may 
not be theorems) surrounding the Hilbert problem list. HP 
Mathematical Statement Theory is the systematic study of 
Concreteness in mathematical statements. We make full use 
of the basic framework laid out in section 0.3, consisting 
of the categories of sentences 
 

Π0
n, Σ0n, Π1

n, Σ1n, 0 ≤ n ≤ ∞ 
 
discussed there. In Mathematical Statement Theory, we begin 
with a mathematical proposition P, and proceed as follows.  
 
a. We first examine a fully detailed statement of P and 
find the lowest category in which it resides, without 
significant reformulation of P. We say that P is literally 
Πi

j (or Σij). 
 
b. We then find a reformulation P' of P, so that we can 
prove the equivalence P ↔ P', where P' is in the lowest 
category of sentences above that we can find. We say that P 
is essentially Πi

j (or Σij). 
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c. If P has already been proved (or refuted), then b) is 
not to be taken literally, because we can always take P' to 
be 0 = 0 (or 1 = 0), and declare any P to be essentially 
Π0

0. In other words, if we just follow b) uncritically, then 
Mathematical Statement Theory does not apply to theorems - 
only to propositions of unknown status.  
 
d. In case P has already been proved (or refuted), we 
demand that the proof of the equivalence P ↔ P' be based on 
generally applicable principles, and not involve 
substantial ideas from the proof (or refutation) of P. 
 
e. Of special note in the theory are implications P' → P, 
where P' is in the lowest category we can find, and P' is 
interesting. I.e., P' is a strengthening of P. If P is not 
(yet) a theorem, then we want P' to represent a reasonable 
path toward proving P. If P is a theorem, then we want the 
proof of the implication P' → P to not involve substantial 
ideas from the proof of P, and ideally, P' should also be a 
theorem. This often occurs when one discovers the 
"combinatorial essence" of a proof. P' is based on the 
combinatorial essence of P.   
 
We acknowledge the informal nature of d), but submit that 
in practice, d) is rather objective. To a lesser extent, 
there are fuzzy issues regarding a) as well. In fact, a) 
and d) appear to be sufficiently objective in practice to 
support the viability of Mathematical Statement Theory.  
 
Coming back to HP Proof Theory, the principal tool used for 
analyzing levels of Concreteness in proofs is our Reverse 
Mathematics program (RM). The RM program was discussed in 
detail in section 0.3.  
 
However, not much of the work surrounding the Hilbert 
problems falls under the scope of RM.  One reason is that 
so much of the work on these problems falls below the radar 
screen of RM - the proof is already carried out (or easily 
seen to be carried out) in the base theory, RCA0, of RM.  
 
As discussed in section 0.3, our Strict Reverse Mathematics 
program (SRM), which was conceived of even before RM, has a 
far more ambitious scope than RM. However, SRM is at a very 
early stage of development, having been effectively 
launched only with the recent [Fr09], [Fr09a] - and only 
there in certain limited directions. Yet more substantial 
work needs to be done in order to bring SRM to anything 
like the level of development RM even decades ago.  
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It would seem premature to apply SRM to HP Proof Theory at 
this point, although such a venture will be a great test 
for the SRM program.  
 
It would be of great interest to investigate Smale Problems 
Statement Theory, and Clay Problems Statement Theory, based 
on the 18 Smale problems, 1998, and the 7 Clay Millennium 
Prize Problems, 2000. See [Sm00] and 
[http://www.claymath.org]. 
 
There are many gaps in our limited discussion of HP 
Statement Theory. We view the treatment below as a good 
starting point for an intensive and systematic 
investigation. This, in turn, should serve as a prototype 
for Mathematical Statement Theory.  
 
However, it must be said that it is not yet clear just what 
the most fruitful and illuminating frameworks are for a 
suitable discussion of Concreteness and Abstraction in 
mathematics. Even though the framework of Mathematical 
Statement Theory needs to be solidified and amplified, we 
expect it will remain an integral part of subsequent 
formulations.  
 
H1. Cantor's problem of the cardinal number of the 
continuum  
 
This well known problem of Cantor in abstract set theory - 
called the continuum hypothesis - can be conveniently 
stated as follows. Every infinite set of real numbers is in 
one-one correspondence with the integers of the real 
numbers. Assuming ZFC is consistent, this statement is not 
provable in ZFC ([Co63,64]), and not refutable in ZFC 
([Go38], [Go86-03]). The use of all sets of real numbers 
(and functions onto the reals) means that it is a statement 
of Abstract Mathematics as opposed to Concrete Mathematics.  
 
Furthermore, it is well known that the Continuum Hypothesis 
is not provably equivalent, over ZFC, to any Π1

n sentence, n 
≥ 1, and hence lies essentially ouside of Concrete 
Mathematics. 
 
The easiest way to prove this claim is to start with a 
countable model M of ZFC + 2ω = ω2. Let M' be a generic 
extension of M obtained by collapsing ω2 to ω1 using 
countable functions from ω1 into ω2. Then 2ω = ω1 holds in 
M', yet M and M' have the same real numbers.   
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The continuum hypothesis has well known specializations to 
(more) concrete mathematical objects. For instance, it is 
provable in ZFC that every infinite Borel set of real 
numbers is in one-one correspondence with the integers or 
the real numbers.  
 
To be fully coherent, we also need to treat the maps. It is 
also provable in ZFC that every infinite Borel set of real 
numbers is in Borel one-one correspondence with the 
integers or the real numbers. In fact, we can replace Borel 
by "Borel of finite rank".  
 
This Borel form of the continuum hypothesis follows easily 
from the classic theorem of Alexandrov and Hausdorff that 
every Borel set of real numbers is either countable or 
contains a Cantor set, and the obvious Borel form of the 
Cantor-Bernstein theorem. See [Ke95], p. 83, and [Je78,06].   
 
H2. The compatibility of the arithmetical axioms    
 
This is properly viewed as a metamathematical problem as 
opposed to a mathematical problem. However, it did generate 
a considerable amount of work on formal systems and their 
relationships, beginning, most notably, with [Pr29] and 
[Go31].  
 
These formal investigations generally give rise to formal 
problems in classes Π0

1, Σ01, Π0
2, and Σ02, and theorems in 

classes Π0
1, Π0

2.  
 
For instance, consistency of an effectively presented 
formal system is a Π0

1 sentence; interpretability of one 
finitely axiomatized system in another is a Σ01 sentence; 1-
consistency of an effectively presented formal system is a 
Π0

2 sentence; interpretability of one effectively presented 
formal system in another is a Σ03 sentence. In each specific 
example, the relevant theorems witness the outermost 
existential quantifiers with particular interpretations.   
 
H3. The equality of two volumes of two tetrahedra of equal 
bases and equal altitudes 
 
Hilbert asks whether there exists 
 
two tetrahedra of equal bases and equal altitudes which can 
in no way be split up into congruent tetrahedra, and which 
cannot be combined with congruent tetrahedra to form two 
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polyhedra which themselves could be split up into congruent 
tetrahedral. 
  
The dissections are normally required to be polyhedra, in 
the sense of a 3 dimensional solid consisting of a 
collection of polygons, joined at their edges.  
 
The problem is literally Σ12 as stated. This is a rather 
high complexity class, given that so much mathematics is 
Π0

∞. 
 
Suppose two tetrahedra are given, as well as an integer 
bound on the number of complementary tetrahedra allowed, 
the number of pieces in the dissections allowed, and the 
number of points in the polyhedra allowed. Then the 
statement of impossibility can be expressed as a first 
order formula in the ordered field of reals. Thus the 
formula is subject to Tarski's elimination of quantifiers 
for real closed fields, [Ta51], and is quantifier free in 
the language of ordered fields.   
 
These considerations show that H3 is essentially Σ11. The 
outermost second order existential quantifiers correspond 
to the tetrahedral, which are followed by a universal 
quantifier(s) over integers, corresponding to the bound.  
 
Can further uses of Tarski's elimination and some general 
principles further reduce the essentially complexity? E.g., 
from Σ11 to Π0

2 or even Π0
1?  

 
As is widely known, the problem was solved negatively in 
[Dehn01] using Dehn invariants. The counterexample given by 
Dehn provides  many specific natural examples α,β.  
 
For any of these specific natural examples (using algebraic 
points), the Tarski elimination yields a Π0

1 sentence, since 
the outermost second order quantifiers are replaced by 
specific algebraic numbers.  
 
Thus H3 is immediately implied by a Π0

1 sentence. The proof 
of this implication does not involve [Dehn01]. 
 
H4. Problem of the straight line as the shortest distance 
between two points 
 
It would be very interesting to have clear formulations of 
this problem, and subject them to logical analysis.  
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H5. Lie's concept of a continuous group of transformations 
without the assumption of the differentiability of the 
functions defining the group 
 
The modern formulation of this problem is: 
 
Are continuous groups automatically differentiable groups? 

 
A topological group (continuous group) G is a topological 
space and group such that the group operations of product 
and inverse are continuous. 
 
A continuous group is a topological group where the 
topological space is locally Euclidean.  
 
The problem asks whether it follows that the group 
operations of product and inverse are (continuously) 
differentiable.  
 
It is clear that we can assume without loss of generality 
that the space is separable.  
 
Additional considerations show that the problem is 
essentially in class Π1

1. Do the positive solutions by 
Gleason, Montgomery, Zippin provide a stronger assertion 
that is essentially Π0

2, or even essentially Π0
1? 

 
H6. Mathematical Treatment of the Axioms of Physics  
 
The investigations on the foundations of geometry suggest 
the problem: To treat in the same manner, by means of 
axioms, those physical sciences in which already today 
mathematics plays an important part; in the first rank are 
the theory of probabilities and mechanics. 
  
Although very substantial mathematics is needed to begin 
seriously treating this problem, the problem itself is not 
a mathematical problem in the sense meant here. 
 
H7. Irrationality and transcendence of certain numbers 
 
Hilbert's seventh problem is answered by the Gelfond-
Schneider theorem, which states that  
 
If α and β are algebraic numbers with α ≠ 0,1 and if β is 
not a rational number, then any value of αβ = exp(β log α) 
is a transcendental number. 
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There are three main types of such problems. The first is 
where we present a particular interesting number, and ask 
if it is irrational or if it is transcendental. In this 
case, invariably we have an effective means of 
approximating the number, α.  
 
It follows that "α is irrational" is a Π0

2 sentence, and 
that "α is transcendental" is also a Π0

2 sentence.  
 
A particularly famous example is e + π. It is not known if e 
+ π is rational or if e + π is transcendental. The 
transcendence, or irrationality, is in Π0

2. 
 
Many expect that not only is e + π irrational, but there is 
a reasonable function f such that  
 

(∀a,b ≥ 1)(|e + π - a/b| > 1/f(a,b)) 
 
thereby creating a stronger form of the assertion, that is 
Π0

1.  
 
The second is statements that all interesting combinations 
of a countable family of numbers - typically algebraic 
numbers - are irrational, or transcendental. Such 
statements are also generally Π0

2. The Gelfond-Schneider 
theorem is obviously of this second type.   
 
Does the proof of the Gelfond-Schneider theorem give a 
stronger theorem that is much more concrete? E.g., Π0

2 or 
even Π0

1? 
 
The third type concerns relationships between interesting 
combinations of arbitrary real or complex numbers. Such 
statements are generally Π1

1. We expect that they are 
generally implied by interesting statements of far lower 
complexity - e.g., Π0

2 or even Π0
1. 

 
Schanuel's Conjecture is in the third type, and is wide 
open. So Schanuel's Conjecture is literally Π1

1. Is there a 
reasonable stronger conjecture that is much more concrete? 
E.g., Π0

2, or even Π0
1? 

 
H8. Problems of prime numbers 
 
Here Hilbert poses the following problems. 
 
The Riemann hypothesis (the real part of any non-trivial 
zero of the Riemann zeta function is 1/2), Goldbach's 
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conjecture (every even number greater than 2 can be written 
as the sum of two prime numbers), and the Twin Prime 
conjecture (there are infinitely many primes p such that 
p+2 is prime). 
 
Let  
 

δ(x) = ∏n<x∏j≤n η(j) 
 
where η(j) = 1 unless j is a prime power, and η(pk) = p. 
 
LEMMA. RH is equivalent to the following. For all integers 
n ≥ 1, (∑k≤δ(n)1/k - n

2/2)2 < 36 n3. 
 
Proof: See [DMR76]], p. 335. QED 
 
The above equivalence to RH can be straightforwardly 
expressed in Π0

1 form, and so RH is essentially Π0
1. 

 
It is obvious that Goldbach's conjecture and Fermat's Last 
Theorem are Π0

1. The latter was proved by Wiles.  
 
The Twin Prime conjecture asserts that for all n ≥ 0 there 
exists p > n such that p and p+2 are prime. Hence the Twin 
Prime conjecture is Π0

2. 
 
It is expected that the Twin Prime conjecture is true and a 
stronger result will be obtained in the form  
 

(∀n)(∃p)(p,p+2 are prime and p ≤ f(n)) 
 
for some reasonable function f. This strong form will 
obviously be Π0

1.  
 
Mordell's conjecture (proved by Faltings) is Π0

3. It asserts 
that certain Diophantine equations have at most finitely 
many solutions. I.e., this takes the form  
 

(∀n)(∃m)(∀r)(h(n,m,r) is not a solution) 
 
which is Π0

3. (Here h is a specific primitive recursive 
function required in the classification scheme.)  
 
Many expect this result to be improved with an upper bound 
for m as a reasonable function of n: 
 

(∀n)(∃m ≤ f(n))(∀r)(h(n,m,r) is not a solution) 
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which is Π0
1 (after some quantifier manipulation).   

 
H9. Proof of the most general law of reciprocity in any 
number field 
 
A number field is a finite degree field extension of the 
field of rational numbers. The residue fields are all 
finite, and so these kinds of problems about solving 
equations mod primes are all Π0

1.  
 
This problem led to far reaching developments in algebraic 
number theory, and ultimately to the Langlands program. It 
would be interesting to see what these developments mean 
from the point of view of Mathematical Statement Theory.  
 
H10. Determination of the solvability of a diophantine 
equation 
 
The most commonly cited interpretation of Hilbert's tenth 
problem is the following. 
 
Is there an algorithm for determining whether a given 
polynomial of several variables with integer coefficients 
has a zero in the integers? 
 
This has the form  
 
(∃ algorithm α)(∀ integral polynomials P)(P has a zero → 

α(P) = 1 ∧ P does not have a zero → α(P) = 0) 
 
which is Σ03 (after some quantifier manipulation). The 
negation  
 
(∀ algorithm α)(∃ integral polynomial P)(¬(P has a zero ∧ 

α(P) = 1 ∧ P does not have a zero → α(P) = 0)) 
 
is therefore Π0

3, and was proved in [Mat70] building on 
earlier work of M. Davis, H. Putnam, and J. Robinson. See 
[Da73], [DMR76]], [Mat93].  
 
Actually, what is proved is stronger, and results in a Σ02 
sentence. A rather complicated algorithm γ is provided with 
the following Π0

1 property.  
 

Given any algorithm α, γ(α) quickly produces  
an integral polynomial P 

and an integral vector x such that either 
P(x) = 0 and α(x) does not compute 1, or 
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P(x) has no integral zero and α(x) does not compute 0. 
 
If we ask for real or complex zeros, then there is an 
algorithm by [Ta51]. The problem is open for rational 
zeros.  
 
There has been considerable interest in this problem over 
number fields. It is known that if the Shafarevich-Tate 
conjecture holds, then Hilbert's Tenth Problem has a 
negative answer over the ring of integers of every number 
field. See [MR10].  
 
We use the solution to H10 in section 5.6 as a technical 
tool. 
 
H11. Quadratic forms with any algebraic numerical 
coefficients 
 
A quadratic form over a number field F is a quadratic in 
several variables over F, all of whose terms have degree 2. 
Two quadratic forms over F are considered equivalent over F 
if and only if one form can be transformed to the other by 
a linear transformation with coefficients from F. 
 
The Hasse Minkowski theorem is most often cited in 
connection with H11. It asserts that two quadratic forms 
over a number field are equivalent if and only if they are 
equivalent over every completion of the field (which may be 
real, complex, or p-adic). 
 
This theorem takes the form  
 

(∀ number fields F)(∀ quadratic forms α,β over F) 
(α,β are equivalent over F ↔ (∀ completions F' of F) 

(α,β are equivalent over F')). 
 
It would appear that using standard techniques, this can be 
put into Π0

∞ form. Can it be put into Π
0
2 or even Π0

1? If 
there a stronger theorem that is in Π0

1?  
 
H12. Extension of Kronecker's theorem on Abelian fields to 
any algebraic realm of rationality 
 
The modern interpretation of this problem is to extend the 
Kronecker–Weber theorem on Abelian extensions of the 
rational numbers to any base number field. 
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The Kronecker-Weber theorem states that every finite 
extension of Q whose Galois group over Q is Abelian, is a 
subfield of a cyclotomic field; i.e., a field obtained by 
adjoining a root of unity to Q. This takes the form 
 

(∀ finite extensions F of Q)(Gal(F/Q) is Abelian → 
(∃ cyclotomic G over Q)(F is a subfield of G)) 

 
which is Π0

3. It would appear that this can be put into Π0
2 

form. If there a stronger form that is Π0
1? 

 
The same issues occur with related statements over any base 
number field.   
 
H13. Impossibility of the solution of the general equation 
of the 7-th degree by means of functions of only two 
arguments 
 
In modern terms, Hilbert considered the general seventh-
degree equation 
 

x7 + ax3 + bx2 + cx + 1 = 0 
 
and asked whether its solution, x, a function of the three 
coefficients a,b,c, can be expressed using a finite number 
of two variable functions.  
 
A more general question is: can every continuous function 
of three variables be expressed as a composition of 
finitely many continuous functions of two variables? 
 
V.I. Arnold proved a much stronger statement: every 
continuous function of three variables be expressed as a 
composition of finitely many continuous functions of two 
variables? See [Ar59,62]. 
 
Arnold's statement is in Π1

2 form, using standard coding 
techniques from mathematical logic. Is there a yet stronger 
version that is much more concrete? E.g., Π0

2 or Π0
1? 

 
H14. Proof of the finiteness of certain complete systems of 
functions 
 
In modern terms, Hilbert asks the following question.  
 
Let F be a field, and K be a subfield of F(x1,...,xn). Is 
the ring K ∩ F[x1,...,xn] finitely generated over F?  
 



 241 

Here F(x1,...,xn) and F[x1,...,xn] are the ring of rational 
functions over F and the ring of polynomial functions over 
F, in n variables.  
 
On the face of it, this question is even less concrete than 
H1, the continuum hypothesis! This is because the question 
involves absolutely all fields F.  
 
Is there a way of separating the abstract set theory from 
the intended mathematical content? More specifically, is 
there a way of showing, e.g., that if the statement holds 
for all countable fields, then it holds for all fields?  
 
The answer is yes by a simple construction. Let F,K be a 
counterexample. Build an appropriate infinite sequence from 
F and from K, and use the subfield of F generated by the 
infinite sequence from F.  
 
Consequently, we consider the following statement. 
 
Let F be a countable field, and K be a subfield of 
F(x1,...,xn). Is the ring K ∩ F[x1,...,xn] finitely generated 
over F?  
 
This is a Π1

1 sentence. Can we put it in Π0
∞ form using 

basic algebraic principles? What about Π0
2 or even Π0

1? 
 
Nagata gave a negative answer to H14 in [Na59].  
 
[CT06] gives the following formulation of Hilbert's 14th 
problem:  
 
If an algebraic group G acts linearly on a polynomial 
algebra S, is the algebra of invariants SG finitely 
generated? 
 
According to [CT06], this has been proved for reductive G 
in [Hil1890], and for certain nonreductive groups in 
[Wei32]. Can this theorems, and related open questions, be 
put into Π0

∞, or even Π
0
2 or Π0

1 form? Are they implied by 
Π0

1 statements? 
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H15. Rigorous foundation of Schubert's enumerative calculus 
 
Hermann Schubert claimed some spectacular counts on the 
number of geometric objects satisfying certain conditions, 
using methods that were not rigorous even by 1900 



 242 

standards. Many of his claims have not been confirmed or 
denied.  
 
Hilbert asked for a rigorous foundation for Schubert's 
enumerative calculus. Independently of the search for 
foundations here, many, if not all, of his counts, when 
given rigorous treatments, fit into the framework of 
Tarski's decision procedure for the field of real numbers, 
[Ta51].  
 
As an example, it follows (based on work subsequent to 
Tarski), that there is an algorithm that takes any S ⊆ ℜn × 
ℜm presented with rational coefficients, and produces a 
number 0,1,...,∞, which counts the number of distinct cross 
sections of S (obtained by fixing the first argument, from 
ℜn). This can be applied in the many situations where one 
wants to count the number of nice objects satisfying some 
nice condition.  
 
This can be used to put various statements in Π0

1 form, or 
even in quantifier free form.   
 
H16. Problem of the topology of algebraic curves and 
surfaces 
 
In modern terms: describe relative positions of ovals 
originating from a real algebraic curve and as limit cycles 
of a polynomial vector field on the plane.  
 
Here a limit cycle of a polynomial vector field in the 
plane is a periodic orbit which can be separated from all 
other periodic orbits by placing a tube around it. Here it 
is understood that periodic orbits consist of more than one 
point.  
 
It has been shown in [Il91] and [Ec92] (or at least 
claimed) that every polynomial vector field in the plane 
has at most finitely many limit cycles.  
 
We can put this in the form  
 

(∀P)(∃n)(∀x1,...,xn)(x1,...,xn do not  
generate different limit cycles) 

 
which, unless some interesting mathematics comes to bear, 
is going to be Π1

3 and maybe a lot higher. Can we use 
perhaps even some elementary mathematics to reduce this 
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very sharply? Does the proof yield a stronger statement 
that is far more concrete? Perhaps Π0

2 or even Π0
1? 

 
A principal open question is whether there is a uniform 
bound on the number of limit cycles of a polynomial vector 
field in the plane that depends only on the degree of the 
polynomial. This takes the form  
 

(∀d)(∃n)(∀P of degree ≤ d)(∃x1,...,xn) 
(∀y)(if y is not on a limit cycle then x1,...,xn are on it) 
 
which also looks Π1

3 and maybe a lot higher, unless some 
interesting (perhaps elementary) mathematics is used to 
reduce the complexity.  
 
H17. Expression of definite forms by squares 
 
In modern terms, is every polynomial of several variables 
over the reals that assumes no negative values a sum of 
squares of rational functions?  
 
Emil Artin proved the assertion in [Art27]. The theorem 
takes the form  
 

(∀ polynomials P)(if P assumes no negative value then  
(∃ rational functions R1,...,Rk)(P = R12 + ... + Rk2 holds 

everywhere)) 
 
which is Π1

3 with no mathematical considerations. However, 
much sharper results have been proved which are much more 
concrete.  
 
Specifically, it is known that for each d,n, there exists r 
such that  
 

for all polynomials of degree ≤ d in n variables,  
if P assumes no negative value then  

P is the sum of at most r rational functions  
of degrees at most r. 

 
See [Day61], [Kre60], [Rob55], [Rob56], [DGL92]. In fact, a 
primitive recursive bound on r as a function of d,n is 
given in the first two references.  
 
Note that the displayed statement above is a sentence in 
the language of the field of real numbers, primitive 
recursively obtained from d,n. Using Tarski's decision 
procedure for the field of real numbers, [Ta51], we now see 



 244 

that this stronger result is Π0
2. In fact, given the above 

mentioned upper bound on r, we see that the strong form of 
this stronger result is in fact Π0

1.  
 
H18. Building up of space from congruent polyhedra 
 
In modern terms, there are three parts to the problem. 
 
The first part asks whether there are only finitely many 
essentially different space groups in n-dimensional 
Euclidean space.  
 
More formally, let E(n) be the group of all isometries of 
ℜn. We look for discrete subgroups Γ ⊆ E(n) such that there 
is a compact region D ⊆ ℜn where the various congruent 
copies of D cover ℜn and have only boundary points in 
common.  
 
Ludwig Bieberbach answered this question affirmatively by 
showing that there are only finitely many such Γ up to 
isomorphism. See [Bi11], [Bi12].  
 
The theorem takes the form: for some t, if  
 

if G1,...,Gt are discrete in E(n), and   
D1,...,Dt ⊆ ℜn are compact and congruent copies of Di under 

Gi  
that cover ℜn and have only boundary points in common,  

then there exists i ≠ j such that Gi and Gj are isomorphic. 
 
Using quantifier manipulations and a small dose of 
mathematics, we see that this is Π1

3. We expect that with 
some additional mathematics, this can be reduced to Π1

1. We 
also expect that from Bieberbach's work, we can find a 
stronger statement which is considerably more concrete. 
Possibly Π0

2 or even Π0
1.  

 
The second part of the problem asks whether there exists a 
polyhedron which tiles 3-dimensional Euclidean space but is 
not the fundamental region of any space group. Such tiles 
are called anisohedral.  
 
It is now known that there is an anisohedral tiling of even 
2-dimensional Euclidean space. See Heinrich Heesch's 
Tiling, http://www.spsu.edu/math/tiling/17.html 
 
The problem is in the form  
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(∃ polyhedon P)(P is not the fundamental region of any space 
group ∧ P tiles the plane) 

 
which appears to be around Σ12 with only simple mathematical 
considerations. But consider the stronger statement  
 

(∃ polyhedron P)(P is not the fundamental region of any 
space group ∧ P tiles the plane periodically). 

 
We can put this in the form: there exists r such that  
 
∃ polyhedron P with r sides)(P is not the fundamental region 

of any space group ∧ P tiles the plane periodically). 
 
We expect that the displayed property of r can be viewed as 
a sentence in the theory of the field of reals, so that we 
can apply Tarski's decision procedure [Ta51]. This results 
in a Σ01 sentence. 
 
The third part of the problem asks for the best way to pack 
congruent solids of a given form. In particular, spheres of 
equal radius in ℜ3. 
 
The Kepler Conjecture is the case of sphere packing: the 
usual way of packing spheres of equal size in ℜ3 is the 
best.  
 
Appropriate use of Tarski's decision procedure for the 
field of real numbers will show that the Kepler Conjecture 
- in various fully rigorous forms - is essentially Π0

1.  
 
Of course, Hales has reduced Kepler's Conjecture to a 
specific large computation, which is Π0

0. But that involves 
deep insights into the problem itself, and is not a generic 
reduction in the sense of using the decision procedure for 
the real numbers. 
 
H19. Are solutions of regular problems in the calculus of 
variations always necessarily analytic? 
 
H20. The general problem of boundary values 
 
H21. Proof of the existence of linear differential 
equations having a prescribed monodromic group 
 
H22. Uniformization of analytic relations by means of 
automorphic functions 
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H23. Further development of the methods of the calculus of 
variations  
 
H19-H23 involve statements of the following rough form (and 
sometimes simpler): 
 
(∀ continuous objects α)(if there exist continuous objects 

β  
such that P(α,β), then there exist continuous objects γ  

such that Q(α,γ), which is unique with respect to  
some equivalence relation R). 

 
Generally speaking, it is clear that statements of this 
kind are Π1

2. There is the opportunity for reduction from 
Π1

2 using some significant mathematics not presupposing the 
proof or refutation, if any exist at this time. But far 
more likely is that if such a statement is proved or 
refuted, then an interesting stronger statement is really 
what is proved or refuted, and that the interesting 
stronger statement is considerably more concrete - perhaps 
even Π0

2 or Π0
1.  

 
We may encounter statements with an additional logical 
complication: 
 
(∀ continuous objects α)(if there exist continuous objects 

β  
such that P(α,β), then there exist continuous objects γ  

such that Q(α,γ), which is related to all continuous objects 
γ' such that Q(α,γ) by some relation R). 

 
Because R may not be an equivalence relation (it may, for 
example, be a maximality condition), such a statement may 
be only Π1

3 or higher. Again, there are opportunities for 
reduction from Π1

3 (or higher), and particularly so in terms 
of finding an interesting stronger statement that is far 
more concrete.  
 
The many issues that arise in terms of a logical analysis 
of H19 - H23 are too varied and delicate to be 
appropriately dealt with here. 
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CHAPTER 1 
INTRODUCTION TO BRT 
 
1.1. General Formulation. 
1.2. Some BRT Settings. 
1.3. Complementation Theorems.  
1.4. Thin Set Theorems. 
 
1.1. General Formulation. 
 
Before presenting the precise formulation of Boolean 
Relation Theory (BRT), we give two examples of assertions 
in BRT that are of special importance for the theory. 
 
DEFINITION 1.1.1. N is the set of all nonnegative integers. 
A\B = {x: x ∈ A ∧ x ∉ B}. For x ∈ Nk, we let max(x) be the 
maximum coordinate of x. 
 
THIN SET THEOREM. Let k ≥ 1 and f:Nk → N. There exists an 
infinite set A ⊆ N such that f[Ak] ≠ N. 
 
COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk → N. Suppose 
that for all x ∈ Nk, f(x) > max(x). There exists an infinite 
set A ⊆ N such that f[Ak] = N\A. 
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These two theorems are assertions in BRT. In fact, the 
complementation theorem has the following sharper form. 
 
COMPLEMENTATION THEOREM (with uniqueness). Let k ≥ 1 and 
f:Nk → N. Suppose that for all x ∈ Nk, f(x) > max(x). There 
exists a unique set A ⊆ N such that f[Ak] = N\A. 
Furthermore, A is infinite. 
 
We will explore the Thin Set Theorem and the 
Complementation Theorem in sections 1.3, 1.4. At this point 
we analyze their logical structure.  
 
DEFINITION 1.1.2. A multivariate function on N is a 
function whose domain is some Nk and whose range is a subset 
of N. A strictly dominating function on N is a multivariate 
function on N such that for all x ∈ Nk, f(x) > max(x). We 
define MF as the set of all multivariate functions on N, SD 
as the set of all strictly dominating functions on N, and 
INF as the set of all infinite subsets of N.   
 
DEFINITION 1.1.3. Let f ∈ MF, where dom(f) = Nk. For A ⊆ N, 
we define fA = f[Ak].  
 
The notation fA is very convenient. It avoids the 
unnecessary use of explicit mention of arity or dimension. 
It is used throughout this book.  
 
Using this notation, we can restate our two theorems as 
follows.  
 
THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
Note that in the Thin Set Theorem, we use the family of 
multivariate functions MF, and the family of sets INF. In 
the Complementation Theorem, we use the family of 
multivariate functions SD, and the family of sets INF. 
 
In BRT terminology this will be expressed by saying that 
the Thin Set Theorem is an instance of IBRT (inequational 
BRT) on the BRT setting (MF,INF), and the Complementation 
Theorem is an instance of EBRT (equational BRT) on the BRT 
setting (SD,INF).  
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Note that we can regard the condition fA ≠ N as a Boolean 
inequation in fA,N. We also regard the condition fA = N\A 
as a Boolean equation in fA,N.  
 
Here N plays the role of the universal set in Boolean 
algebra. From this perspective, fA ≠ N is a Boolean 
inequation in fA, and fA = N\A is a Boolean equation in 
A,fA.  
 
The fact that N should play the role of the universal set 
can be read off from the BRT settings (MF,INF) and 
(SD,INF). See “Full BRT Semantics” below. 
 
EBRT stands for “equational Boolean relation theory”. IBRT 
stands for “inequational Boolean relation theory”.  
 
Thus we say that  
 
i. The Thin Set Theorem is an instance of: IBRT in fA on 
(MF,INF). 
ii. The Complementation Theorem is an instance of: EBRT in 
A,fA on (SD,INF). 
 
We now fully explain what we mean by such phrases as “IBRT 
in fA on (MF,INF)” and “EBRT in A,fA on (SD,INF)”. 
 
The principal BRT environments are  
 

IBRT 
EBRT 

 
defined below. We will mention one other (much richer) BRT 
environment below (PBRT), but in this book we stay within 
the environments IBRT and EBRT. 
 
We call the lists  
 

fA 
A,fA 

 
BRT signatures. In general, the BRT signatures will be 
substantially richer than the above two examples.  
 
We have already called the pairs 
 

(MF,INF) 
(SD,INF) 
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BRT settings. One other BRT setting plays a particularly 
important role in this book. This is the BRT setting 
(ELG,INF). See Definition 2.1.  
 
We are now prepared for the formal presentation of BRT.  
 

 
FULL BRT SYNTAX 

 
DEFINITION 1.1.4. The BRT set variables are the symbols 
A1,A2,... . The BRT function variables are the symbols 
f1,f2,... .  
 
In practice, we will use appropriate upper case and lower 
case letters without subscripts for these BRT variables.  
 
DEFINITION 1.1.5. The BRT terms are defined by  
 
i) every BRT set variable is a term; 
ii) ∅,U are BRT terms (U represents the universal set); 
iii) if s,t are BRT terms then (s ∪ t),(s ∩ t),(s\t) are 
BRT terms;  
iv) if f is a BRT function variable and t is a BRT term 
then ft is a BRT term. 
 
DEFINITION 1.1.6. The BRT equations are of the form s = t, 
where s,t are BRT terms. The BRT inequations are of the 
form s ≠ t, where s,t are BRT terms. The BRT inclusions are 
of the form s ⊆ t, where s,t are BRT terms.  
 
DEFINITION 1.1.7. The BRT formulas are defined by  
 
i) every BRT equation is a BRT formula; 
ii) if ϕ,ψ are BRT formulas then (¬ϕ),(ϕ ∨ ψ),(ϕ ∧ ψ),(ϕ → 
ψ),(ϕ ↔ ψ) are BRT formulas. 
 
We routinely omit parentheses when no ambiguity arises. We 
also adhere to the usual precedence table  
 

¬ 
∨ ∧ 

→  ↔ 
 
 

FULL BRT SEMANTICS 
 
DEFINITION 1.1.8. A multivariate function is a pair (f,k), 
where  
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i) f is a function in the standard sense of a univalent set 
of ordered pairs; 
ii) if k ≥ 2, then every element of dom(f) is a k-tuple. 
 
DEFINITION 1.1.9. We say that the arity of (f,k) is k. The 
domain of (f,k) is taken to be dom(f). 
 
We rely on the fact that for all 1 < i < j, no i-tuple is a 
j-tuple.  
 
Let f be a function (in the standard sense). Note that if f 
is empty then for all k ≥ 1, (f,k) is a multivariate 
function. Also, if f is nonempty then  
 
i) (f,1) is a multivariate function; 
ii) there is at most one k ≥ 2 such that (f,k) is a 
multivariate function. 
 
The explicit mention of k is intended to avoid the 
following type of ambiguity. A function f:N2 → N could be 
viewed as either a 1-ary multivariate function with domain 
N2, or a 2-ary multivariate function with domain N2. In our 
notation, the former would be written (f,1), and the latter 
would be written (f,2). Note that (f,3) is not a 
multivariate function. 
 
In practice, the intended arity k of functions is clear 
from context, and we generally ignore the above definition 
of multivariate function. However, we need the above 
definition for full rigor. 
 
DEFINITION 1.1.10. Let f = (f,k) be a multivariate function 
and E be a set. We define fE = f[Ek]) = {f(x1,...,xk): 
x1,...,xk ∈ E} = {y: (∃x1,...,xk ∈ E)(y = f(x1,...,xk)}. 
 
DEFINITION 1.1.11. A BRT setting is a pair (V,K), where V 
is a nonempty set of multivariate functions and K is a 
nonempty family of sets.  
 
DEFINITION 1.1.12. The BRT assertions are the assertions of 
the form (∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(ϕ) 
 
where n,m ≥ 1, B1,...,Bm are distinct BRT set variables, 
g1,...,gn are distinct BRT function variables, and ϕ is a 
BRT formula involving at most the variables 
B1,...,Bm,g1,...,gn.  
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Every BRT assertion gives rise to an actual mathematical 
statement provided we are also given a BRT setting (V,K). 
Specifically,  
 
DEFINITION 1.1.13. ∩ is interpreted as intersection, ∪ as 
union, \ as set theoretic difference, and ∅ as the empty 
set. ft is interpreted as the image of f on the 
interpretation of t, using Definition 1.10. U is 
interpreted as the least set U such that  
 
i) for all A ∈ K, A ⊆ U; 
ii) for all f ∈ V, fU ⊆ U. 
 
Note that U may or may not lie in K. 
 
An important special kind of BRT is obtained by requiring 
that the relevant sets form a tower under inclusion. 
Specifically,  
 
DEFINITION 1.1.14. The BRT,⊆ assertions are the assertions 
of the form 
(∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(ϕ) 
 
where n,m ≥ 1, B1,...,Bm are distinct BRT set variables, 
g1,...,gn are distinct BRT function variables, and ϕ is a 
BRT formula involving at most the variables 
B1,...,Bm,g1,...,gn. 
 
Here B1 ⊆ ... ⊆ Bm ∈ K means  
 

B1 ⊆ ... ⊆ Bm ∧ B1,...,Bm ∈ K. 
 
DEFINITION 1.1.15. We say that a BRT formula is BRT valid 
if and only if it is true on all BRT settings (V,K) under 
any assignment of elements of V to the function variables, 
and any assignment of elements of K to the set variables.  
 
DEFINITION 1.1.16. We say that a BRT formula is BRT,⊆ valid 
if and only if it is true on all BRT settings (V,K) under 
any assignment of elements of V to the function variables, 
and any assignment of elements of K to the set variables 
such that for all i ≤ j, the assignment to Ai is a subset of 
the assignment to Aj.  
 
DEFINITION 1.1.17. Let ϕ,ψ be BRT formulas. We say that ϕ,ψ 
are BRT (BRT,⊆) equivalent if and only if ϕ ↔ ψ is BRT 
(BRT,⊆) valid. This definition is extended to sets of BRT 
formulas in the obvious way.  
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BRT FRAGMENTS 
 
Obviously there are infinitely many BRT formulas. Results 
concerning all BRT formulas, even in very basic BRT 
settings, have been entirely inaccessible to us. The book 
will only be concerned with very modest fragments of BRT.  
 
DEFINITION 1.1.18. The BRT fragments are written  
 

[Environment] in [Signature] on [Setting]. 
 
It remains to say what the BRT Environments and Signatures 
are. The BRT Settings have already been defined.  
 
DEFINITION 1.1.19. There are three BRT environments: 
 
i) EBRT (equational BRT); 
ii) IBRT (inequational BRT); 
iii) PBRT (propositional BRT).  
 
DEFINITION 1.1.20. A core BRT term is a BRT term that is 
either a BRT set variable or begins with a BRT function 
variable. For example, f3(A1 ∪ A4) is a core BRT term, and A1 
∪ A4 is not a core BRT term. 
 
DEFINITION 1.1.21. A BRT signature is   
 
i) a finite list of one or more distinct core BRT terms; or 
ii) a finite list of one or more distinct core BRT terms, 
followed by the symbol ⊆. 
 
DEFINITION 1.1.22. The entries of a BRT signature are just 
its core BRT terms.  
 
Let α be a BRT fragment. I.e., let α = "[Environment] in σ 
on [Setting]" be a BRT fragment, where σ is a BRT 
signature.  
 
DEFINITION 1.1.23. The signature of α is σ. The α terms are 
defined by  
 
i) every entry of σ is an α term; 
ii) U,∅ are α terms; 
iii) if s,t are α terms then (s ∪ t),(s ∩ t),(s\t) are α 
terms. 
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The α terms are to be distinguished from the entries of σ, 
since we are closing the entries of σ under Boolean 
operations.  
 
DEFINITION 1.1.24. The α equations are the equations 
between α terms. The α inequations are the inequations (≠) 
between α terms. The α inclusions are the inclusions 
between α terms. 
 
DEFINITION 1.1.25. The α formulas are inductively defined 
by  
 
i) every α equation is an α formula; 
ii) if ϕ,ψ are α formulas, then (¬ϕ),(ϕ ∨ ψ),(ϕ ∧ ψ),(ϕ → 
ψ),(ϕ ↔ ψ) are α formulas. 
 
DEFINITION 1.1.26. The α basics are the α equations if the 
environment of α is EBRT; the α inequations if the 
environment of α is IBRT; the α formulas if the environment 
of α is PBRT. 
 
Suppose first that the signature σ of α does not end with 
⊆. Let the BRT setting of α be (V,K).  
 
DEFINITION 1.1.27. An α assignment is an assignment of an 
element of V to each function variable appearing in σ, and 
an element of K to each set variable appearing in σ.  
 
DEFINITION 1.1.28. The α assertions are assertions of the 
form  
 

(∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(ϕ) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and ϕ is an α basic. 
 
Now assume that σ ends with ⊆.  
 
DEFINITION 1.1.29. An α assignment is an assignment of an 
element of V to each function variable appearing in σ, and 
an element of K to each set variable appearing in σ, where 
if Ai,Aj appear in σ and 1 ≤ i ≤ j, then the set assigned to 
Ai is included in the set assigned to Aj.  
 
DEFINITION 1.1.30. The α assertions are assertions of the 
form  
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(∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(ϕ) 

 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and ϕ is an α basic. 
 
Thus if the environment of α is EBRT, then the α assertions 
are based on α equations ϕ. If the environment of α is 
IBRT, then the α assertions are based on α inequations ϕ. 
If the environment of α is PBRT, then the α assertions are 
based on α formulas ϕ. These hold regardless of whether the 
signature of α ends with ⊆.  
 
DEFINITION 1.1.31. We say that an α formula is α valid if 
and only if it holds for all α assignments. 
 
DEFINITION 1.1.32. Let ϕ,ψ be α formulas. We say that ϕ,ψ 
are α equivalent if and only if ϕ ↔ ψ is α valid. This 
definition is extended to sets of α formulas in the obvious 
way. 
 
This concludes the definition of BRT fragments, and their 
assertions. 
 
The above treatment of BRT fragments, α =  
 

[Environment] in [Signature] on [Setting] 
 
fully explains the titles of the Classification sections 
2.4  - 2.7. 
 
DEFINITION 1.1.33. The standard BRT signatures have the 
form  
 

A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn 
A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn,⊆ 

 
and are referred to as  
 

m functions and n sets. 
m functions and n sets/⊆. 

 
where n,m ≥ 1. A flat BRT signature is a BRT signature where 
every entry is either some Ai, or some fiAj, or some fiU. 
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DEFINITION 1.1.34. A standard BRT fragment is a BRT 
fragment whose environment is EBRT or IBRT, and whose 
signature is a standard BRT signature. A flat BRT fragment 
is a BRT fragment, with environment EBRT or IBRT, whose 
signature is flat.  
 
The BRT fragments considered in sections 2.2, 2.4-2.7, and 
Chapter 3, are all standard. In section 2.3, we work with 
the flat signature A,fA,fU. In Chapter 3, we are successful 
in analyzing a small part of the standard BRT fragment (see 
Definition 2.1) 
 

EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 
 
For example, in this book we do not consider such 
interesting BRT signatures as  
 

A,fA,ffA. 
A,fA,f(U\A). 

A,B,fA,fB,f(A∪B),⊆. 
 
none of which are flat. 
 
Let α be a standard BRT fragment with m functions and n 
sets, whose signature does not end with ⊆. Then the number 
of entries of the signature is n(m+1). So the number of α 
terms is 22^n(m+1) up to Boolean identities. Therefore the 
number of α basics is also 22^n(m+1) up to formal Boolean 
equivalence. This is also the number of α assertions up to 
formal Boolean equivalence. 
 
The number of α assertions, up to formal Boolean 
equivalence, grows very rapidly. For 1 function and 1 set, 
we have 22^2 = 16. For 1 function and 2 sets, we have 22^4 = 
216 = 65,536. For 1 function and 3 sets, we have 22^6 = 264. 
For 2 functions and 2 sets, we have 22^6 = 264. For the 
second, third, and fourth of these cases, we do not know if 
the α assertions on the basic BRT settings considered here 
include assertions independent of ZFC. We believe that they 
do not.  
 
The number of α assertions grows less rapidly, up to BRT 
equivalence, if the signature ends with ⊆. This reduction 
of complexity allows us to work successfully with EBRT in 
A,B,fA,fB,⊆ on various basic settings, in Chapter 2. 
 
For standard BRT fragments with 2 functions and 3 sets, 
without ⊆ in the signature, we have 22^9 = 2512 assertions. 
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The so called Principal Exotic Case lives in EBRT in the 
standard signature with 2 functions and 3 sets, on the BRT 
setting (ELG,INF). The Principal Exotic Case is Proposition 
A from Appendix A, and is the focus of Chapters 4 and 5 
where it is shown to be independent of ZFC (assuming SMAH = 
ZFC augmented with the existence of strongly Mahlo 
cardinals of each finite order, is consistent).  
 
The Principal Exotic Case lies formally in the standard BRT 
fragment  
 

EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 
 
In fact, the Principal Exotic Case lives in the 
considerably reduced flat BRT fragment  
 

EBRT in A,C,fA,fB,gB,gC on (ELG,INF). 
 
In fact, we can strengthen the Principal Exotic Case with A 
⊆ B ⊆ C, which now lives in the further reduced flat BRT 
fragment  
 

EBRT in A,C,fA,fB,gB,gC,⊆ on (ELG,INF). 
 
In Chapters 4 and 5, we show that both of these statements 
are provable using large cardinals, but not in ZFC 
(assuming ZFC is consistent). 
 
It is important to have a useful format for presenting BRT 
assertions. For the purposes of Chapter 2, this amounts to 
creating a useful format for presenting BRT equations. The 
most useful format is a set of pre elementary inclusions, 
or a set of elementary inclusions, defined below.  
 
Let α be a flat BRT fragment, with signature σ.  
 
DEFINITION 1.1.35. The α pre elementary inclusions are of 
the form  
 
i) t1 ∩ ... ∩ tn = ∅, where n ≥ 1, t1,...,tn are the entries 
of σ, in order of their appearance in σ; 
ii) t1 ∪ ... ∪ tn = U, where n ≥ 1, t1,...,tn are the 
entries of σ, in order of their appearance in σ; 
iii) r1 ∩ ... ∩ rp ⊆ s1 ∪ ... ∪ sq, where p,q ≥ 1, and 
r1,...,rp,s1,...,sq are a listing of all of the entries of σ 
without repetition, and r1,...,rp and s1,...,sq are both in 
order of their appearance in σ. 
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Note that if there are n entries of σ, then there are 2n α 
pre elementary inclusions.  
 
DEFINITION 1.1.36. Suppose σ does not end with ⊆. The α 
elementary inclusions are obtained from the σ pre 
elementary inclusions in the following way. If fU and some 
fAi appears in an intersection, then remove fU there. If fU 
appears in a union, then remove all fAi there. In order to 
be an elementary inclusion, we require that for every fA on 
the left, fU must not be on the right.  
 
Note that if fU is not an entry of the signature of α, then 
the elementary inclusions are just the pre elementary 
inclusions.  
 
Now suppose the signature of α ends with ⊆.  
 
DEFINITION 1.1.37. Suppose σ ends with ⊆. The α elementary 
inclusions are obtained from the α pre elementary 
inclusions in the following way. For any A appearing in an 
intersection, retain only the Ai where i is least. For any A 
appearing in a union, retain only the Ai where i is 
greatest. For any f appearing in an intersection, retain 
only the fAi where i is least (if only fU appears, then 
retain fU). For any f appearing in a union, retain the fAi 
where i is greatest (if fU appears, then retain only fU). 
In order to be an elementary inclusion, we require that for 
every fAi on the left, fU must not be on the right, and 
every fAj, j ≥ i, must not be on the right.  
 
DEFINITION 1.1.38. An α format is a set of α elementary 
inclusions.  
 
In case σ does not end with ⊆, our α formats take advantage 
of the fact that fAi ⊆ fU. In case σ ends with ⊆, our α 
formats take advantage of the fact that Ai ⊆ Aj and fAi ⊆ 
fAj ⊆ fU, for i < j.  
 
We need to verify that our reduction to α formats is valid; 
i.e., covers what we want. This amounts to verifying that 
every α equation is α equivalent to an α format. In fact, 
we show that every set of α inclusions is α equivalent to 
an α format.  
 
THEOREM 1.1.1. Let α be a flat BRT fragment. Every α 
inclusion is α equivalent to an α format. Every set of α 
inclusions is α equivalent to an α format. Every α format 
is α equivalent to an α inclusion, and an α equation. 



 259 

 
Proof: We first assume that the signature of α does not end 
with ⊆. 
 
For the first claim, let s ⊆ t be an α inclusion. Using 
standard Boolean algebra, write s as a union of 
intersections of entries and complements of entries of the 
signature σ. Write t as an intersection of unions of 
entries and complements of entries of σ. Here the 
complements are taken with respect to the universal set U. 
We allow the degenerate case where s is ∅,U, and t is ∅,U. 
Of course, intersections and unions of cardinality 1 are 
also allowed. 
 
We then obtain a set of inclusions s’ ⊆ t’, where the s’ 
are intersections of entries and complements of entries 
from σ, and the t’ are unions of entries and complements of 
entries of σ. Again, we allow the degenerate case of s’,t’ 
= ∅,U. We can remove all such degenerate cases except U ⊆ 
∅. 
 
We can now arrange for each of these inclusions to be of 
the forms  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm. 
U ⊆ ±t1 ∪ ... ∪ ±tm. 
±s1 ∩ ... ∩ ±sn ⊆ ∅. 

U ⊆ ∅. 
 
And then of the forms  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm. 
±t1 ∪ ... ∪ ±tm = U 
±s1 ∩ ... ∩ ±sn = ∅. 

U = ∅. 
 
Here n,m ≥ 1, and the s’s and t’s are entries in σ. We write 
+t for t and –t for U\t. We must allow for the possibility 
that there are no inclusions. This corresponds to the case 
where we have only U = U.  
 
We can also require that in each of these clauses, each si 
can appear only once, each –si can appear only once, and we 
cannot have si and –si appear. This is because of the 
Boolean equivalence 
 

X ∩ Y ⊆ Z ∪ -Y ↔ X ∩ Y ⊆ Z. 
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We now replace each of the above five forms with an 
equivalent set of inclusions in which all entries of σ 
appear (or their complement). Thus suppose  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm 
 
is missing ±r1,...,±rk. Then replace it with the set of all  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm ∪ β1 ∪ ... ∪ βk 
 
where each βi is ri or –ri.  
 
Suppose   
 

±t1 ∪ ... ∪ ±tm = U 
 
is missing entries ±r1,...,±rk. Then replace it with the set 
of all  
 

±t1 ∪ ... ∪ ±tm ∪ β1 ∪ ... ∪ βk = U 
 
where each βi is ri or –ri. 
 
Suppose  
 

±s1 ∩ ... ∩ ±sn = ∅. 
 
is missing entries ±r1,...,±rk. Then replace it with the set 
of all  
 

±s1 ∩ ... ∩ ±sn ⊆ β1 ∪ ... ∪ βk 
 
where each βi is ri or –ri.  
 
Replace U = ∅ with  
 

β1 ∪ ... ∪ βk = U 
 
where each βi = ri or –ri and r1,...,rk is a list without 
repetition of all entries of σ. 
 
We now have a set of what would be α pre elementary 
inclusions except for the fact that complements are 
present. However, we can eliminate the complements by 
shifting from one side to the other according to the 
following Boolean equivalences.  
 

X ⊆ Y ∪ U\Z ↔ X ∩ Z ⊆ Y. 
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X ∩ U\Y ⊆ Z ↔ X ⊆ Y ∪ Z. 
X ⊆ U\Z ↔ X ∩ Z = ∅. 
U\Y ⊆ Z ↔ Y ∪ Z = U. 

 
Thus we are left with a set (possibly empty) of α pre 
elementary inclusions.  
 
Recall the process of converting any α pre elementary 
inclusion to an α elementary inclusion. The given α pre 
elementary inclusion is obviously α equivalent to the 
resulting α elementary inclusion. Thus we are left with an 
α format.  
 
This establishes the first claim. The second claim follows 
immediately from the first claim since a finite set of α 
inclusions can be written as a single α inclusion.  
 
For the final claim, let {s1 ⊆ t1,...,sn ⊆ tn} be an α 
format, n ≥ 0. If n = 0, then take A ⊆ A, A = A, where A is 
an entry of σ. Suppose n > 0. Then use the Boolean 
equivalence  
 

s1 ⊆ t1 ∧ ... ∧ sn ⊆ tn ↔ 
s1\t1 ∪ ... ∪ sn\tn = ∅ ↔ 
s1\t1 ∪ ... ∪ sn\tn ⊆ ∅. 

 
We now assume that the signature of α does end with ⊆. Let 
α be α'⊆. For the first claim, let s ⊆ t be an α inclusion. 
As before, we obtain an equivalent set of pre elementary 
inclusions for α'. At this point, we perform the reductions 
that create an equivalent set of pre elementary inclusions 
for α. We then proceed as above to create an equivalent set 
of elementary inclusions for α.  
 
The second and third claims are proved as before. QED 
 
We will use Theorem 1.1.1 as follows. Let α be a flat BRT 
fragment with signature σ and BRT setting (V,K).  
 
Suppose the environment of α is EBRT, and α does not end 
with ⊆. By Theorem 1.1.1, the α assertions can be put into 
the form 
 

(∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
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increasing subscripts, and S is an α format, interpreted 
conjunctively.  
 
Suppose the environment of α is EBRT, and σ ends with ⊆. By 
Theorem 1.1.1, the α assertions can be put into the form 
 

(∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and S is an α format, interpreted 
conjunctively.  
 
Suppose the environment of α is IBRT, and σ does not end 
with ⊆. To avoid considering the very awkward negated 
formats, we work with the dual. Thus the inequation becomes 
an equation, so that we can apply Theorem 1.1.1. By Theorem 
1.1.1, the α assertions can be put into the form  
 

¬(∃g1,...,gn ∈ V)(∀B1,...,Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and S is an α format, interpreted 
conjunctively.  
 
Suppose the environment of α is IBRT, and σ does end with 
⊆. By Theorem 1.1.1, the α assertions can be put into the 
form  
 

¬(∃g1,...,gn ∈ V)(∀B1 ⊆ ... ⊆ Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and S is an α format, interpreted 
conjunctively.  
 
As indicated above, Theorem 1.1.1 tells us that we need 
only work with  
 

1) (∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(S). 
2) (∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(S). 

3) (∃g1,...,gn ∈ V)(∀B1,...,Bm ∈ K)(S). 
4) (∃g1,...,gn ∈ V)(∀B1 ⊆ ... ⊆ Bm ∈ K)(S). 
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where the g’s and B’s are as indicated earlier, and S is an 
α format. It will be seen to be very convenient to drop the 
negation signs in front of the last two of the above.  
 
DEFINITION 1.1.39. Let α be a flat BRT fragment. The α 
statements (rather than the α assertions) are statements of 
form 1) above if the environment of α is EBRT and the 
signature of α does not end with ⊆; 2) above if the 
environment of α is EBRT and the signature of α ends with 
⊆; 3) above if the environment of α is IBRT and the 
signature of α does not end with ⊆; 4) above if the 
environment of α is IBRT and the signature of α ends with 
⊆.   
 
DEFINITION 1.1.40. Let α be a flat BRT fragment. An α 
format S is said to be correct if and only if the α 
statement using S is true; incorrect otherwise. 
 
Informally speaking, a classification of a BRT fragment α 
amounts to a determination of all α correct α formats.   
 
As discussed earlier, the number of pre elementary 
inclusions in the standard signature  
 

A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn 
 
with m functions and n sets is 2n(m+1), and the number of 
formats is therefore 22^n(m+1).  
 
THEOREM 1.1.2. The number of elementary inclusions in 
A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn,⊆ is (n+1)m+1. 
Therefore the number of formats (or statements) is 2(n+1)^m+1. 
In the case of A,B,C,fA,fB,fC,gA,gB,gC,⊆, we have 64 and 
264. In the case of A,C,fA,fB,gB,gC,⊆, we have 27 and 227. In 
the case of A,B,fA,fB,⊆, we have 9 and 29.   
 
Proof: Let us first focus on the pattern of A's in 
elementary inclusions. Recall that the elementary 
inclusions are the immediate simplifications of the pre 
elementary inclusions, using A1 ⊆ ... ⊆ An. 
 
i. Ai on left, Ai-1 on right. 
ii. A1 on left, no Aj on right. 
iii. No Ai on left, An on right.  
 
There are n+1 among i-iii. The same count holds for the 
other m groups. So we obtain a total of (n+1)m+1 elementary 
inclusions. QED 
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For PBRT in σ on (V,K), where σ is based on m functions and 
n sets, we cannot specify the assertions by a single 
format. Instead, what is relevant is the number of all α 
formulas up to propositional and Boolean equivalence. The 
number of α equations, up to Boolean equivalence, is 
2^2^n(m+1), and so the number of α formulas up to 
propositional and Boolean equivalence is 2^2^2^2^n(m+1). 
This quantity is quite frightening. Even in one function 
and one set, this is 2^2^2^2^2 = 265,536. For one function 
and two sets, this is 2^2^2^2^4 = 22^65,636. These numbers do 
not address, say, two functions and three sets. We do not 
tackle PBRT in this book.  
 
In Chapter 2, we focus on the five basic BRT settings, 
(SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), and 
(MF,INF).  
 
In section 2.2, we classify EBRT/IBRT in A,fA on the five 
basic BRT settings, where the number of assertions is 22^2 = 
16. This is of course completely manageable, but still 
turns out to be substantial. Already, the significant Thin 
Set Theorem and Complementation Theorem appear among the 
16.  
 
In section 2.3, we classify EBRT/IBRT in A,fA,fU on the 
five basic BRT settings, where the number of statements is 
22^3 = 256, with considerable duplication due to equivalence 
on all BRT settings. This is still manageable.  
 
For EBRT/IBRT in A,B,fA,fB, the number of statements is 22^4 
= 216 = 65,536. This is rather daunting, but within 
manageability with a few years of effort. This optimism is 
based on the expectation that there will be a large 
proportion of trivial cases, and lots of relations between 
cases. This has been the experience with sections 2.4 and 
2.5.  
 
In sections 2.4 and 2.5, we classify EBRT in A,B,fA,fB,⊆ on 
the five basic settings excluding (MF,INF), where the 
number of statements is 29 = 512 (according to Theorem 
1.1.2). As can be seen from sections 2.6 and 2.7, we can go 
much further in the fifth basic BRT setting, (MF,INF), as 
well as in IBRT on all five basic settings.  
 
In sections 2.2 and 2.3, we make a brute force enumeration 
of cases. However, in sections 2.4 - 2.7, we prefer to use 
a treelike methodology. This treelike methodology is 
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presented in section 2.1, where we also develop the 
relevant theory.  
 
We see that all of the BRT statements that arise from the 
EBRT classifications in Chapter 2 are decided in RCA0, and 
all of the BRT statements that arise from the IBRT 
classifications in Chapter 2 are decided in ACA'.  
 
ZFC incompleteness arises somewhat later in the development 
of BRT, with EBRT in A,B,C,fA,fB,fC,gA,gB,gC on the BRT 
setting (ELG,INF). The Principal Exotic Case, also known as 
Proposition A in this book, lies within this BRT fragment 
(see Appendix A). Here we have 22^9 = 2512 statements. This 
is entirely unmanageable. It would take several major new 
ideas to make this manageable in any sense of the word. The 
same is true even for A,B,C,fA,fB,fC,gA,gB,gC,⊆, since by 
Theorem 1.1.2, this involves 264 statements. There is a lot 
of simplification coming from ⊆, but there does not seem to 
be nearly enough for manageability. 
 
However, the Principal Exotic Case lies within the much 
smaller fragment EBRT in A,C,fA,fB,gB,gC,⊆ on (ELG,INF). We 
expect to get enough substantive simplification from ⊆ to 
make A,C,fA,fB,gB,gC,⊆ as a manageable decade long project. 
According to Theorem 1.1.2, the relevant count is 227 before 
substantive simplifications. 
 
In section 3, we give a classification for a very 
restricted subclass of the statements for EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on the BRT setting (ELG,INF). The 
Principal Exotic Case lies within this very restricted 
subclass with 38 = 6561 statements.  
 
The Principal Exotic Case is shown in Chapters 4,5 to be 
provable using strongly Mahlo cardinals of all finite 
orders, yet not provable in ZFC (assuming ZFC is 
consistent).  
 
We have given only an informal account of what we mean by a 
classification for a BRT fragment. We now seek to be more 
formal. 
 
DEFINITION 1.1.41. Let α be a BRT fragment. A tabular 
classification for α is a table of the correct α formats.  
 
However, this definition does not take into account the 
background theory needed to document the table, which is of 
importance for BRT. 
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Let T be a formal system with an adequate definition of the 
BRT fragment α.  
 
DEFINITION 1.1.42. We say that an α format S is α,T correct 
if and only if the α statement using S is provable in T. We 
say that S is α,T incorrect if and only if the α statement 
using S is refutable in T.  
 
DEFINITION 1.1.43. We say that α is T secure if and only if 
every α format is α,T correct or α,T incorrect.  
 
DEFINITION 1.1.44. A tabular α,T classification consists of 
a table of all α formats, together with a proof or 
refutation of each of the corresponding α statements, 
within T. This is a rather direct demonstration that α is T 
secure.  
 
In sections 2.2, 2.3, we provide what amounts to a tabular 
α,T classification for some simple BRT fragments α, where T 
is RCA0 or a weak extension of RCA0. 
 
In Chapter 3, we provide what amounts to a tabular α,SMAH+ 
classification for a very limited subclass of the EBRT 
formats α in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). (For 
SMAH+, see Appendix A). 
 
But for some α, it is not reasonable to present such large 
tables. How do we show that α is T secure? What then do we 
mean by a classification of the α statements in T?  
 
In sections 2.4 - 2.7, we do not present tables, but 
instead use a treelike methodology. In section 2.1, we 
develop the theory of this methodology, showing how the 
analyses in sections 2.4 - 2.7 demonstrate that α is T 
secure, for various α,T.  
 
To give a classification of the α statements in T, it 
suffices to give a listing of the maximally α,T correct α 
formats; i.e., the α,T correct α formats that are not 
properly included in any other α,T correct format.  
 
In section 2.1, we define the T classifications, TREE, for 
α. We prove that there is a T classification for α if and 
only if α is T secure. We also give an algorithm for 
generating the maximally α,T correct α formats from TREE. 
We show that the number of maximally α,T correct α formats 
is at most the number of vertices in TREE.  
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In sections 2.4 - 2.7, T classifications for the relevant α 
are actually given in a style prescribed in section 2.1, 
where T = RCA0 and ACA'. 
 
The classifications given in Chapters 2 and 3 are rather 
limited in scope. For instance, we conjecture that  
 
i. EBRT in A,B,fA,fB,fN on any of the five basic BRT 
settings is RCA0 secure. 
 
ii. IBRT in A,B,fA,fB,fN on any of the five basic BRT 
settings is ACA’ secure. 
 
iii. EBRT/IBRT in A,B,C,fA,fB,fC,gA,gB,gC,fN,gN on any of 
the five basic BRT settings is SMAH+ secure. 
 
These conjectures are wide open. In fact, we have not even 
established any of i-iii for A,B,fA,fB. We have established 
i-iii for A,B,fA,fB,⊆.  
 
1.2. Some BRT settings. 
 
The BRT settings were defined in Definition 1.11.  
 
Most areas of mathematics have a naturally associated 
family of (multivariate) functions and sets. This usually 
forms a natural and interesting BRT setting.    
 
This book focuses on five basic BRT settings, as noted in 
section 1.1. These are formally introduced in Chapter 2. In 
fact, we have only been able to scratch the surface of BRT 
even on these basic BRT settings.  
 
In this section, we survey a huge range of mathematically 
interesting BRT settings. This will give the reader a sense 
of the unusual scope of BRT and a glimpse of what can be 
expected in the future development of BRT.  
 
We provide a plausible estimate that at least 1,000,000 of 
these mathematically interesting BRT settings represent 
significantly different BRT phenomena. Any substantial 
probing of BRT on these settings is beyond the scope of 
this book.  
 
In sections 1.3 and 1.4, we will investigate the status of 
the Complementation Theorem and the Thin Set Theorem in 
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some very modest sampling of the BRT settings presented in 
this section. This will give a modest indication as to the 
depth of BRT and its sensitivity to the choice of BRT 
setting. 
 

I. On N. 
 
We now consider a number of natural conditions on functions 
in MF. These conditions are of three kinds. 
 
1. Bounding conditions. 
2. Regularity conditions. 
3. Choice of norm. 
 
We propose the following basic lower bound conditions on f 
∈ MF. 
 
i. There exist c,d such that c op i, d op’ j, and for all x 
∈ dom(f), c|x|d op’’ f(x). Here op,op’ ∈ {<,>,≤,≥,=}, op’’ 
∈ {<,≤}, i,j ∈ {0,1/2,1,3/2,2}, and | | is the l∞ norm, the 
l1 norm, or the l2 norm.  
  
We propose the following basic upper bound conditions on f 
∈ MF.  
 
ii. There exist c,d such that c op i, d op’ j, such that 
for all x ∈ dom(f), c|x|d op’’ f(x). Here op,op’ ∈ 
{<,>,≤,≥,=}, op’’ ∈ {>,≥}, i,j ∈ {0,1/2,1,3/2,2}, and | | 
is the l∞ norm, the l1 norm, or the l2 norm.  
 
Each of these conditions in i,ii above results from the 
choice of 6 parameters: op,op',op'',i,j,| |. Note that some 
of the choices of parameters result in degenerate 
conditions.  
 
Each of these basic lower bound conditions and basic upper 
bound conditions can be modified by using “for all but 
finitely many x” instead of “for all x”. This doubles the 
number of lower and upper conditions, and the resulting 
conditions are called the lower bound conditions and the 
upper bound conditions.  
 
The bounding conditions consist of a conjunction of zero or 
more conditions, each of which is either a basic lower 
bound condition or a basic upper bound condition.  
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The five basic BRT settings formally introduced in Chapter 
2 are examples of classes of functions obeying bounding 
conditions.  
 
The basic regularity conditions that we propose on f ∈ MF 
are as follows. 
 
i. f is a linear function.  
ii. f is a polynomial of degree op d with integer (or 
rational) coefficients. Here op ∈ {=,≤,≥} and d ∈ 
{1,2,3,4}.  
iii. f is a polynomial with integer (or rational) 
coefficients. 
iv. f is given by an expression in some chosen subset of 
the operations 0,1,+,-,•,÷,↑,log,exp.  
v. f is a Presburger function; i.e., definable in (N,+). 
vi. f is a primitive recursive function. 
vii. f is a recursive function. 
viii. f is an arithmetic function. 
ix. f is a hyperarithmetic function. 
 
The class of functions BAF = EBAF introduced in section 5.1 
is an example of a set of functions obeying a basic 
regularity condition (see iv above). In Definition 5.1.1, 
we define 0,1,+,-,•,↑,log used in iv above. Here exp(n,m) = 
nm, where exp(n,0) = 1. Also x÷y is the floor of (x divided 
by y), where x÷0 is taken to be 0. 
 
We place two modifiers on the basic regularity conditions. 
One is that we allow finitely many exceptions in conditions 
i - iv above. The second is that we allow conditions i - iv 
above to merely hold piecewise. I.e., we modify each of 
conditions i - iv above, to assert only that the function 
obeys the condition on each of finitely many pieces, where 
each piece is given by a finite set of inequalities 
involving functions obeying that same condition. Note that 
these modifiers have no effect on conditions v - ix above. 
 
Finally, the conditions on f ∈ MF that we propose consist 
of the conjunction of zero or more conditions, each of 
which are either a bounding condition, or a regularity 
condition (perhaps modified).  
 
We now come to the proposed conditions on A ∈ INF.  
 
Firstly, we have the density conditions. 
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i. A has (upper, lower) density d ∈ ‘a,b’, where a ≤ b, a,b 
∈ {0,1/3,1/2,2/3,1}, and ‘ is ( or [, and ’ is ) or ]. 
 
Secondly, we have the arithmetic and geometric progression 
conditions. 
 
ii. A is (contains, is contained in, excludes) an 
arithmetic (geometric) progression.  
iii. Same as ii) with “eventually”. 
iv. A meets every arithmetic (geometric) progression.  
v. A contains infinitely many even (odd) elements.  
vi. A has arbitrarily long consecutive runs.  
 
Thirdly, we have the regularity conditions. 
 
vii. A is a Presburger set. 
viii. A is a primitive recursive set. 
ix. A is a recursive set. 
x. A is an arithmetic set. 
xi. A is a hyperarithmetic set. 
 
Finally, the conditions on A ∈ INF that we propose consist 
of zero or more conditions, each of which is either a 
density condition, an arithmetic/geometric progression 
condition, or a regularity condition.  
 
The BRT settings that we propose on N are the (V,K), where 
V is the set of all f ∈ MF obeying a condition in this part 
I, and K is the set of all A ∈ INF obeying a condition in 
this part I.    
 

II. On Z. 
 
The conditions on functions proposed in part I on functions 
from MF have natural counterparts as conditions on 
functions from MF(Z) = the class of all multivariate 
functions from Z into Z. Specifically, in the bounding 
conditions, we use |f(x)| instead of f(x). The basic 
regularity conditions extend to MF(Z) in obvious natural 
ways.   
 
Let INF(Z) be the set of all infinite subsets of Z. Every 
pair of conditions α,β on INF from part I generates 
conditions on A ∈ INF(Z) as follows.  
 
i. α holds of A ∩ N. 
ii. β holds of –A ∩ N. 
iii. α holds of A ∩ N and β holds of –A ∩ N.  
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Here are three particularly natural examples of such 
conditions on A ∈ INF(Z). 
 
i. No condition. I.e., A ∈ INF(Z). 
ii. A+ is infinite. 
iii. A+ and A- are infinite. 
 

III. On Q. 
 
We lift the conditions on Z to Q. We can additionally use 
“for all arguments of sufficiently large norm”, in addition 
to “for all but finitely many”.  
 
We can also place Lipshitz conditions everywhere, or merely 
for all arguments of sufficiently large norm. We can 
restrict attention to Lipshitz conditions involving c|x-y|d, 
where the constants c,d are treated in a manner similar to 
the way c,d were treated in connection with lower (and 
upper) bounds in A above.  
 
In the regularity conditions on functions, Presburger can 
be replaced by “definable in the ordered additive group of 
rationals”, or “definable in the ordered additive group of 
rationals with a predicate for the integers”.   
 
The density and arithmetic/geometric progression conditions 
on sets can be replaced by conditions involving the Jordan 
content of the subset of Q.  
 

IV. On ℜ. 
 
We can lift the conditions on Q to ℜ. We can additionally 
add pointwise continuity, uniform continuity, 
differentiability, and real analyticity conditions on the 
functions. 
 
We can use semialgebraic as a regularity condition on sets. 
We can also use open, closed, Fσ, and Gδ as regularity 
conditions. We can use Lebesgue measure instead of Jordan 
content.  
 

V. On C. 
 
We can of course treat the complex plane C like ℜ2 and lift 
the conditions on ℜ to conditions on C. But it is 
interesting to use analyticity and other important notions 
from complex analysis as regularity conditions.   
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VI. On L2. 

 
Here we should focus attention on the set V of all bounded 
linear operators on L2, and the set K of all nontrivial 
closed subspaces of L2. The invariant subspace problem for 
L2 is expressed as the followings instance of EBRT in A,fA 
on (V,K):  
 

(∀f ∈ V)(∃A ∈ K)(fA = A). 
 

We can obviously use other function spaces for BRT 
settings. 
 

VII. Topological BRT. 
 
Here we can extend the conditions used on ℜ above to 
various specific topological spaces. Being nonempty and 
open is a particularly natural condition on sets.  
 
It also makes sense to investigate those BRT statements 
that hold in the continuous functions and nonempty open 
sets, on all topological spaces obeying certain conditions. 
 
The above gives a mere indication of just some of the wide 
ranging natural BRT settings throughout mathematics.  
 
We believe that the truth value of BRT statements depend 
very delicately on the choice of BRT setting. In fact, we 
believe that this delicate relationship already manifests 
itself in EBRT and IBRT in A,B,C,fA,fB,fC,gA,gB,gC.  
 
Indications of this sensitivity are already present in our 
classifications of Chapter 2 as well as our results in 
section 1.4. 
 
In particular, we expect that for many pairs of settings 
presented in parts I-VII, both the EBRT and the IBRT 
statements in A,B,C,fA,fB,fC,gA,gB,gC differ. In fact, we 
suspect that this is true even for small fragments of 
A,B,C,fA,fB,fC,gA,gB,gC. 
 
We now give a very crude lower estimate on the number of 
settings presented in parts I-VII above, that we suspect 
have different BRT behavior. Note that we have been fully 
precise only in part I above concerning BRT settings on N. 
So we will only make a rough lower estimate of the number 
of specific BRT settings proposed on N.  



 273 

 
This will not take into account the greater richness that 
comes with working on other underlying sets, which are 
generally endowed with various structure, as in parts II-
VII above. 
 
In the basic lower bound conditions, there are 5 choices of 
op, 5 choices of op', 2 choices of op'', 5 choices of i, 5 
choices of j, and 3 choices of norm. This results in 5 x 5 
x 2 x 5 x 5 x 3 = 3750.  
 
A conservative lower estimate as to the number of these 
lower bound conditions that are substantially different for 
BRT purposes is sqrt(3750), which is approximately 60. 
 
Analogously, a conservative lower estimate for basic upper 
bound conditions is also 60. 
 
The choice of going from "for all x" to "for all but 
finitely many x" should double these numbers to 120. 
Conjuncting lower bound conditions and upper bound 
conditions could result in at least 120 x 120 = 14400 
bounding conditions. The interactions between the lower and 
upper bound conditions might not be all that strong, and so 
a conservative lower estimate for the bounding conditions 
for our purposes is 1000. 
 
There are 24 basic regularity conditions under ii above, in 
addition to 8 others. For BRT significance, we use the 
conservative estimate of 10. 
 
We have the two modifiers - finitely many exceptions and  
piecewiseness. This replaces 10 by 20, from a conservative 
point of view. 
 
Finally, the interaction of bounding conditions and 
regularity conditions should conservatively result in an 
estimate of 10,000 families of multivariate functions on N 
which are substantially different for BRT purposes.  
 
We now take the conditions on subsets of N into 
consideration. 
 
The density conditions have the upper/lower parameter, 15 
pairs a,b, and 4 choices of kinds of intervals. This 
results in 2 x 15 x 4 = 120 possibilities. Conservatively, 
we use the lower estimate of 25 for our purposes. 
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In the arithmetic and geometric progression conditions, 
items ii and iii each have 6 possibilities, items iv,v each 
have 2 possibilities, and one for vi, for a total of 17. We 
use the lower estimate of 8 for our purposes. 
 
There are 5 regularity conditions on sets. We 
conservatively estimate that 2 have substantial BRT 
significance. 
 
This results in a triple product 25 x 8 x 2 = 400. We use 
the conservative lower estimate of 100 for conditions on 
sets with substantial BRT significance. 
 
We have been sufficiently conservative and believe that our 
lower estimates for the conditions on multivariate 
functions, and conditions on sets, are rather lean and 
mean. Hence for our final estimate, we will simply multiply 
10,000 by 100. Thus our lower estimate on the number of 
interesting BRT settings on N that have been presented, 
that are BRT different in A,B,C,fA,fB,fC,gA,gB,gC, is 
1,000,000.  
 
It is beyond the scope of this book to provide substantive 
justification for this conjectured lower estimate.   
 
1.3. Complementation Theorems. 
 
Recall the Complementation Theorem from section 1.1. It 
first appeared in print in [Fr92], Theorem 3, p. 82, (in a 
slightly different form), where we presented some 
precursors of BRT. 
 
The Complementation Theorem is closely related to the 
standard Contraction Mapping Theorem. We discuss the 
connection below. 
 
The Complementation Theorem is also closely related to a 
well known theorem, due to von Neumann in [VM44], and 
subsequent developments in graph theory. We discuss this at 
the end of this section. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
COMPLEMENTATION THEOREM (with uniqueness). For all f ∈ SD 
there exists a unique A ⊆ N with fA = N\A. Moreover, A ∈ 
INF.  
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Before giving the proof of the Complementation Theorem 
(with uniqueness), we discuss some alternative 
formulations. 
 
The Complementation Theorem (without uniqueness) is written 
above as a statement of EBRT in A,fA on (SD,INF). Strictly 
speaking, we cannot express the uniqueness within BRT. 
 
DEFINITION 1.3.1. A ∪. B is the disjoint union of A and B, 
and is defined as A ∪ B if A,B are disjoint; undefined 
otherwise. E.g., A ∪. B = C if and only if A ∪ B = C ∧ A ∩ 
B = ∅. 
 
Note that there are other equivalent ways of writing fA = 
N\A. E.g., we can write 
 

fA = N\A. 
A = N\fA. 

A ∪. fA = N. 
 
The first evaluates the action of f on A.  
 
The second asserts that A is a fixed point (of the operator 
that sends each B to N\fB. 
 
The third asserts that N is partitioned into A and fA.  
 
Proof: Let f ∈ SD. Note that for all A ⊆ N, n ∈ fA if and 
only if n ∈ f(A ∩ [0,n)).  
 
We inductively define a set A ⊆ N as follows. Suppose n ≥ 0 
and we have defined membership in A for all 0 ≤ i < n. We 
then define n ∈ A if and only if n ∉ f(A ∩ [0,n)). Since f 
∈ SD, we have for all n, n ∈ A ↔ n ∉ fA as required.  
 
Now suppose fB = N\B. Let m be least such that A,B differ. 
Then m ∈ B ↔ m ∉ fB ↔ m ∉ f(B ∩ [0,m)), and m ∈ A ↔ m ∉ 
f(A ∩ [0,m)). Since A ∩ [0,m) = B ∩ [0,m), we  have m ∈ A 
↔ m ∈ B. This is a contradiction. Hence A = B.   
 
If A is finite then fA is finite and N\A is infinite. Hence 
A is infinite. QED 
 
It will be convenient to use the following terminology. Let 
f:Xk → X.  
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DEFINITION 1.3.2. Let f be a multivariate function with 
domain X (see Definitions 1.1.8 - 1.10). A complementation 
of f is a set A ⊆ X such that fA = X\A.  
 
Thus we can restate the Complementation theorem (with 
uniqueness) as follows.  
 
COMPLEMENTATION THEOREM (with uniqueness). Every f ∈ SD has 
a unique complementation.  
 
Note that we have proved the Complementation Theorem (with 
uniqueness) within the base theory RCA0 of Reverse 
Mathematics. See [Si99]. 
 
The Complementation Theorem is obviously a particularly 
simple way of encapsulating the essence of recursion along 
the natural numbers. It appears to have significant 
educational value.  
 
We now state a Complementation Theorem for well founded 
relations. We will be using this generalization in section 
4.2.  
 
DEFINITION 1.3.3. A binary relation is a set R of ordered 
pairs. We place no restriction on the coordinates of the 
elements of R. We write fld(R) = {x: (∃y ∈ R)(x is a 
coordinate of y)}.  
 
DEFINITION 1.3.4. We say that a binary relation R is well 
founded if and only if for all nonempty S ⊆ fld(R), there 
exists y ∈ S such that for all x ∈ S, (x,y) ∉ R. Thus well 
founded relations are irreflexive.  
 
DEFINITION 1.3.5. We say that f:fld(R)k → fld(R) is 
strictly dominating if and only if for all x ∈ fld(R)k, 
(x1,f(x)),...,(xk,f(x)) ∈ R.  
 
DEFINITION 1.3.6. We write SD(R) for the set of all 
strictly dominating functions whose domain is a Cartesian 
power of fld(R) and whose range is a subset of fld(R).  
 
THEOREM 1.3.1. COMPLEMENTATION THEOREM (for well founded 
relations, with uniqueness). If R is a well founded 
relation, then every f ∈ SD(R) has a unique 
complementation.  
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Proof: We want to be particularly careful because we are 
not assuming that R is transitive. Let the arity of f be k ≥ 
1.  
 
For all b ∈ fld(R), define b* to be the set of all x which 
ends a backward R chain of length ≥ 1 that starts with b. 
Thus b ∈ b*. 
 
We first make a coherence claim. Let b,b’ ∈ fld(R), and S,T 
⊆ fld(R), where  
 

S ⊆ b* ∧ (∀c ∈ b*)(c ∈ S ↔ c ∉ fS). 
T ⊆ b’* ∧ (∀c ∈ b’*)(c ∈ T ↔ c ∉ fT). 

 
Then  
 

(∀c ∈ b* ∩ b’*)(c ∈ S ↔ c ∈ T). 
 
Suppose this is false. By well foundedness, fix c such that  
 

c ∈ b* ∩ b’* ∧ (c ∈ S ↔ c ∉ T) 
(∀d)(R(d,c) → ¬(d ∈ b* ∩ b’* ∧ (d ∈ S ↔ d ∈ T))) 

 
and obtain a contradiction.  
 
We now claim that c ∈ fS ↔ c ∈ fT. For the forward 
direction, let c = f(d1,...,dk), d1,...,dk ∈ S. By f ∈ 
SD(R), we have R(d1,c),...,R(dk,c). Hence d1,...,dk ∈ T, and 
so c ∈ fT. The reverse direction is proved in the same way.  
 
Since c ∈ S ↔ c ∉ T, we have c ∉ fS ↔ c ∈ fT. This 
contradicts the above claim, and the coherence claim is 
established.  
 
We now claim that for all b ∈ fld(R), there exists Sb ⊆ b* 
such that (∀c ∈ b*)(c ∈ Sb ↔ c ∉ f(Sb)). To see this, 
suppose this is false, and fix b ∈ fld(R) such that  
 

(∀x)(R(x,b) → (∃S ⊆ x*)(∀c ∈ x*)(c ∈ S ↔ c ∉ fS)). 
¬(∃S ⊆ b*)(∀c ∈ b*)(c ∈ S ↔ c ∉ fS). 

 
By the coherence claim, for each x such that R(x,b), there 
is a unique set Sx ⊆ x* such that (∀c ∈ x*)(c ∈ Sx ↔ c ∉ 
f(Sx)).  
 
Furthermore, by the coherence claim, we have  
 

(∀x,y)((R(x,b) ∧ R(y,b)) →  
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(∀c ∈ x* ∩ y*)(c ∈ Sx ↔ c ∈ Sy)). 
 
Let V be the union of the Sx such that R(x,b). We claim that  
 

(∀c ∈ b*\{b})(c ∈ V ↔ c ∉ fV). 
 
To see this, let c ∈ b*\{b}. First assume c ∈ V, c ∈ fV. 
Fix x such that c ∈ Sx, R(x,b). Let c = f(d1,...,dk), 
d1,...,dk ∈ V. Then R(d1,c),...,R(dk,c). Hence d1,...,dk ∈ 
x*. By coherence, d1,...,dk ∈ Sx, since d1,...,dk ∈ V. Hence 
c ∈ Sx, c ∈ f(Sx), which contradicts the definition of Sx.  
 
Now assume c ∉ fV. Since c ∈ b*\{b}, let c ∈ x*, R(x,b). 
Then c ∈ Sx ↔ c ∉ f(Sx). Now c ∉ f(Sx). Hence c ∈ Sx. 
Therefore c ∈ V.  
 
The set V is not quite the same as the set Sb that we are 
looking for. We let Sb = V if b ∈ fV; V ∪ {b} otherwise. 
Then  
 

¬(∃S ⊆ b*)(∀c ∈ b*)(c ∈ S ↔ c ∉ fS). 
 
and so we have a contradiction. Hence the claim is 
established.  
 
To complete the proof, let S be the union of all Sb, b ∈ 
fld(R). By the same argument, we see that  
 

(∀c ∈ fld(R))(c ∈ S ↔ c ∉ fS). 
 
and so S is a complementation of f. S is unique by the 
argument given above for the coherence claim. QED 
 
DEFINITION 1.3.7. Let (V,K) be a BRT setting (see 
Definition 1.11). The Complementation Theorem for (V,K) 
asserts that (∀f ∈ V)(∃A ∈ K)(fA = U\A). The 
Complementation Theorem for (V,K) (with uniqueness) asserts 
that (∀f ∈ V)(∃!A ∈ K)(fA = U\A).  
 
We use POW(E) for the power set of E.  
 
Let < be a binary relation. Then (SD(<),POW(fld(<))) is a 
BRT setting, and its universal set U = fld(<). See 
Definition 1.13 for the definition of U.  
 
THEOREM 1.3.2. Let < be an irreflexive transitive relation 
with the upper bound condition (∀x,y)(∃z)(x,y < z). The 
following are equivalent. 
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1. The Complementation Theorem holds on 
(SD(<),POW(fld(<))). 
2. The Complementation Theorem (with uniqueness) holds on 
(SD(<),POW(fld(<))).  
3. < is well founded 
 
Proof: Obviously 3 → 2 → 1 follows immediately from 
Theorem 1.3.1, even for arbitrary relations <. Thus we have 
only to assume that < is non well founded, and give a 
counterexample to 1. 
 
Since < is irreflexive and transitive, < has no cycles. 
Since < is non well founded, < must have an infinite 
descending sequence. 
 
Let x1 > x2 > x3 > ... be an infinite descending sequence. 
Let f ∈ SD(<) have arity 2, where for all 0 < i < j, 
f(x2i,x2j-1) = x2i-1. For all other pairs y,z ∈ fld(<), let 
f(y,z) > x1,y,z. Then f ∈ SD(<). Let A ⊆ fld(<), fA = 
fld(<)\A. 
 
Clearly each x2i ∉ fA, and so each x2i ∈ A. Hence for all i 
> 0, x2i-1 ∈ fA ↔ (∃j > i)(x2j-1 ∈ A). Hence for all i > 0, 
x2i-1 ∈ A ↔ (∀j > i)(x2j-1 ∉ A).  
 
Let i > 0. Suppose (∀j > i)(x2j-1 ∉ A). Then (∀j > i+1)(x2j-1 
∉ A), and so x2i+1 ∈ A. This is a contradiction, using j = 
i+1.  
 
Hence for all i > 0, x2i-1 ∉ A. But then x1 ∉ fA, x1 ∈ A. 
This is a contradiction. Hence fA ≠ fld(<)\A. QED 
 
Transitivity cannot be removed from the hypotheses of 
Theorem 1.3.2, as indicated by the following example. 
 
THEOREM 1.3.3. Let R be the non well founded irreflexive 
binary relation on Z with the upper bound condition, given 
by x R y ↔ (x+1 = y ∨ (x < y ∧ y ≥ 0)). Then every f ∈ 
SD(R) has a complementation.  
 
Proof: Let f ∈ SD(R). We first define A ∩ Z- as follows. 
Let B = Z-\rng(f). We first put B ⊆ A.  
 
Now define membership in A in the open interval between any 
two numerically successive elements of B by induction. 
I.e., if n < m are two numerically successive elements of 
B, then for all 1 ≤ i ≤ m-n-1, put n+i in A if and only if 
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n+i ∉ fA. This is well defined because the truth value of 
n+i ∈ fA depends only on the truth value of n+i-1 ∈ A.  
 
If max(B) < 0 then define membership in A in the open 
interval between max(B) and 0 by induction in the same way.  
 
Now suppose that B has a least element, t. Put t-1 ∉ A, t-2 
∈ A, t-3 ∉ A, ..., alternating in the obvious way. If B = 
∅, put -1 ∉ A, -2 ∈ A, -3 ∉ A, ... .  
 
This completes the definition of A ∩ Z-. Note that for all n 
< 0, n ∈ A ↔ n ∉ fA.  
 
We can now define A ∩ N recursively as follows. For n ∈ N, 
take n ∈ A if and only if n ∉ fA. Then for all n ≥ 0, n ∈ A 
↔ n ∉ fA. Since for all n < 0, n ∈ A ↔ n ∉ fA, A is a 
complementation of f. QED 
 
We now consider the structure of the unique 
complementations, for various simple f ∈ SD. 
 
From examination of the construction of the unique 
complementation A, given in the proof of the 
Complementation Theorem above, we see that as more numbers 
are placed in A, more numbers appear in fA, and so fewer 
numbers are placed in A later. And as fewer numbers are 
placed in A later, fewer numbers appear in fA, and so more 
numbers are placed in A latter. So there is a tension 
between numbers going in and numbers staying out. 
 
There is the expectation that even for very simple f ∈ SD, 
the unique complementation A of f can be very complicated - 
and have an intricate structure well worth exploring.  
 
Let us consider some very basic examples.  
 
DEFINITION 1.3.8. We define Res(n,m) as the residue of n 
modulo m ≥ 1.   
 
THEOREM 1.3.4. Let f:Nk → N be given by f(n1,...,nk) = 
n1+...+nk+c, where c is a constant ≥ 1. Then the 
complementation of f is {n ≥ 0: Res(n,k(c-1)+c+1) < c}. Thus 
A is periodic with period k(c-1)+c+1.  
 
Proof: Let k,f,c be as given. Let A = {n ≥ 0: Res(n,k(c-
1)+c+1) < c}. Suppose n1,...,nk ∈ A. Then Res(n1,k(c-
1)+c+1),...,Res(nk,k(c-1)+c+1) < c. Hence 
Res(n1+...+nk+c,k(c-1)+c+1) ∈ [c,k(c-1)+c], because when we 
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add the residues of n1,...,nk,c, we stay below the modulus 
k(c-1)+c+1. Therefore n1+...+nk+c ∉ A. 
 
Suppose n ∉ A, n ≥ 0. Then p = Res(n,k(c-1)+c+1) ∈ [c,k(c-
1)+c] and n ≥ c. Hence p-c ∈ [0,k(c-1)], and so write p-c 
as a sum of k elements of [0,c-1]. Hence write p = 
t1+...+tk+c, where t1,...,tk ∈ [0,c-1]. Write n = (n-
p+t1)+t2+...+tk+c.  
 
By the definition of p, we have p ≤ n, and so n-p+t1 ≥ 0 and 
Res(n-p+t1,k(c-1)+c+1),Res(t1,k(c-1)+c+1),...,Res(tk,k(c-
1)+c+1) ∈ [0,c-1]. Hence n-p+t1,t2,...,tk ∈ A. QED 
 
We now come to a basic example where the function is unary 
and one-one. This is a very special case, and it lends 
itself to a general result of independent interest.  
 
Let f:X → X be one-one and k be an integer. For k ≥ 0 and x 
∈ X, let fk(x) = f...f(x), where there are k f's. Let f-k(x) 
be the unique y such that fk(y) = x, if y exists; undefined 
otherwise.  
 
LEMMA 1.3.5. Let f:X → X be one-one. Assume that for all x 
∈ X there exists k ≥ 1 such that f-k(x) does not exist. Then 
the unique complementation of f is X\fX ∪ f2(X\fX) ∪ 
f4(X\fX) ∪ ... .  
 
Proof: Let f be as given. We first claim that every x ∈ X 
can be written as fi(y), where i ≥ 0 and y ∈ X\fX. Suppose 
this is false for x. We show that by induction on i ≥ 1 that 
for all i ≥ 1, f-i(x) exists, contrary to the hypothesis on 
f. Clearly x ∈ fX, and so the case i = 1 is verified.  
 
Suppose f-i(x) exists. If f-i-1(x) does not exist then f-i(x) 
∈ X\fX, and so x ∈ fi(X\fX). This is a contradiction. Hence 
f-i-1(x) exists, completing the induction argument.  
 
We next claim that X is partitioned by the infinite 
disjoint union 
 

1) X\fX ∪. f(X\fX) ∪. f2(X\fX) ∪. ... . 
 
We have just shown that the union is X. To see that these 
sets are disjoint, let fi(x) = fj(y), where 0 ≤ i < j, and 
x,y ∈ X\fX. Since f is one-one, we have x = fj-i(y), and so 
x ∈ fX. This is a contradiction. 
 
We now see that X is partitioned by the two disjoint sets  
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X\fX ∪. f2(X\fX) ∪. f4(X\fX) ∪. ... . 

f(X\fX) ∪. f3(X\fX) ∪. f5(X\fX) ∪. ... . 
 
Also note that the forward image of f on the first set is 
the second set. Therefore the first set is a 
complementation of f.  
 
For uniqueness, suppose E is a complementation of f. Then 
obviously X\fX ⊆ E. Hence f(X\fX) ⊆ X\E. Therefore f2(X\fX) 
⊆ X. Continue in this way. This determines membership in X 
for all of 1), which is all of X. QED 
 
THEOREM 1.3.6. Let f:N → N be given by f(n) = an+b, where a 
≥ 2 and 0 < b < a. Then the unique complementation of f is a 
finite union of ranges of two variable expressions 
involving addition, subtraction, multiplication, unnested 
base a exponentiation, and constants. In particular, the 
unique complementation of f is {(an+k)a2i + b(a2i–1)/(a-1): 
n,i ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 
 
Proof: Let f,a,b be as given. Note that f is one-one. We 
apply Lemma 1.3.5.  
 
Let S = N\fN. Note that S = {an+k: n ≥ 0 ∧ k ∈ [0,a-
1]\{b}}. 
 
We claim that for all i ≥ 0,  
 

fiS = {(an+k)ai + b(ai–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
We prove this by induction. For i = 0, we must verify that  
 

f0S = S = {an+k: n ≥ 0 ∧ k ∈ [0,a-1]\{b}} 
 
which is obvious. Suppose  
 

fiS = {(an+k)ai + b(ai–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
Then  
 

fi+1S = {a[(an+k)ai + b(ai–1)/(a-1)] + b:  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}} = 

 
{(an+k)ai+1 + ab(ai–1)/(a-1) + b:  

n ≥ 0 ∧ k ∈ [0,a-1]\{b}} = 
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{(an+k)ai+1 + b(a(ai–1)/(a-1) + 1):  

n ≥ 0 ∧ k ∈ [0,a-1]\{b}} = 
 

{(an+k)ai+1 + b(ai+1–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
Obviously, the first disjoint union from Lemma 1.3.5, which 
is the unique complementation of f, is  
 

{(an+k)ai + b(ai–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b} ∧ i ∈ 2N} = 

 
{(an+k)a2i + b(a2i–1)/(a-1):  
n,i ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
QED  
 
We would like to consider any affine function f from a 
Cartesian power of N into N. The problem is that affine 
functions may not be in SD.  
 
DEFINITION 1.3.9. Let f be a multivariate function and A be 
a set. We define the “upper image” of f on A by 
 

f<A = {f(x1,...,xk):  
f(x1,...,xk) > max(x1,...,xk) and x1,...,xn ∈ A} 

 
where f has arity k. Obviously, if f ∈ SD then f<A = fA.  
 
DEFINITION 1.3.10. Let < be a binary relation and f be a 
multivariate function with domain fld(R). An upper 
complementation of f is a set A ⊆ X such that f<A = 
fld(R)\A.  
 
For upper complementations of f ∈ MF, it is understood that 
< is the usual ordering on N. 
 
UPPER COMPLEMENTATION THEOREM. Every f:Nk → Z has a unique 
upper complementation. This unique upper complement is 
infinite.  
 
In fact, this was the first form of the Complementation 
Theorem in print. See [Fr92], Theorem 3, p. 82. 
 
We continue with two more examples. 
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THEOREM 1.3.7. Let f:Nk → N be given by f(n1,...,nk) = 
n1+...+nk, k ≥ 2. Then the unique upper complementation of f 
is {n ≥ 0: Res(n,k) = 1} ∪ {0}. Thus the unique upper 
complementation is periodic with period k. If k = 1 then 
the unique upper complementation is N.  
 
Proof: Let k,f be as given. Let A = {n ≥ 0: Res(n,k) = 1} ∪ 
{0}. Let n = f<(n1,...,nk), n1,...,nk ∈ A. Then 
Res(n1+...+nk,k) = 0, and so n = f<(n1,...,nk) has residue 0 
mod k and is > 0 if defined. Hence n ∉ A if defined. 
 
Suppose n ∉ A, n ≥ 0. Then n > 1. Let p be largest such 
that p < n and Res(p,k) = 1. Since Res(n,k) ≠ 1, we have 0 
< n-p ≤ k-1. Let n1,...,nk-1 ∈ {0,1} be such that n1 + ... + 
nk-1 = n-p. Then n = p + n1 + ... + nk-1, and p,n1,...,nk-1 ∈ 
A. Also n > p,n1,...,nk-1. Hence n ∈ f<(p,n1,...,nk). 
Therefore n ∈ f<A. QED 
 
Robert Lubarsky considered the case of binary 
multiplication (private communication). Here is his result. 
 
THEOREM 1.3.8. Let f:N2 → N be given by f(n,m) = nm. Then 
the unique upper complementation of f is {n: n = 0 ∨ n = 1 
∨ n is the product of an odd number of primes}.  
 
Proof: Let f be as given. Let A = {n: n = 0 ∨ n = 1 ∨ n is 
the product of an odd number of primes}. Let n ∈ A, n ∈ 
f<A. Write n = mr, m,r ∈ A, n > m,r. Then m,r ≥ 2, and so 
m,r are each the product of an odd number of primes. 
Therefore n = mr is the product of an even number of 
primes, and hence n = mr ∉ A. This establishes that (∀n ∈ 
N)(n ∈ f<A → n ∉ A). 
 
Now let n ∉ A, n ≥ 0. Then n ≥ 2 and n is not the product 
of an odd number of primes. Hence n is the product of an 
even number, 2t, of primes, t ≥ 1. We can obviously write n 
= mr, where m,r are each the product of t primes. Hence we 
have written n = mr, where m,r ∈ A, and m,r ≥ 2. Therefore 
n ∈ f<A. QED 
 
To understand the complementation of a function like nm+1 
appears to be difficult. 
 
A challenge would be to understand the structure of the 
unique upper complementation of every affine function f:Nk 
→ Z with integer coefficients. In particular, can we 
estimate the number of elements below n of these unique 
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upper complementations? Can we algorithmically determine 
whether there are arbitrarily long blocks? 
 
Can we algorithmically determine the cardinalities of all 
finite Boolean combinations of the unique upper 
complementations of these f’s?  
 
We now wish to generalize the Complementation Theorem (for 
SD) in a different direction that will be used in section 
2.4. Recall the definition of BRT term in Definition 1.1.5.  
 
Note that one of the three forms of fA = N\A is A = N\fA, 
which converts the Complementation Theorem into a fixed 
point theorem.  
 
BRT FIXED POINT THEOREM. Let t be a BRT term in several set 
variables and several function variables, in which all 
occurrences of the set variable A lie within the scope of a 
function variable. Let us assume that the function 
variables have been assigned elements of SD, and the set 
variables other than A have been assigned subsets of N. 
Then there is a unique set A ⊆ N such that the BRT equation 
A = t holds.  
 
Proof: We first claim that if t is any BRT term, and an 
assignment for t is as stated, and A,A’ ⊆ N agree on [0,n), 
then n ∈ t(A) ↔ n ∈ t(A’). This claim is proved by 
induction on the BRT term t. We now follow the proof given 
above of the Complementation Theorem, building sets A0 ⊆ A1 
⊆ ... by induction, and setting A = ∪nAn. We use the claim 
to verify that A = t holds. Uniqueness is easily verified 
as before. QED 
 
The BRT fixed point theorem is closely associated with the 
standard contraction mapping theorem.  
 
CONTRACTION MAPPING THEOREM. Let (X,d) be a compact metric 
space, c ∈ [0,1), and T:X → X be continuous. Assume that 
for all x,y ∈ X, d(T(x),T(y)) ≤ c•d(x,y). Then T has a 
unique fixed point. 
 
We can apply the Contraction Mapping Theorem to prove the 
BRT Fixed Point Theorem, using the usual compact metric 
space on POW(N). This metric is given by  
 

d(B,C) = 2-min(BΔC) if B ≠ C; 0 otherwise. 
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The claim in the proof of the BRT Fixed Point Theorem 
establishes the required inequality for the mapping t(A) 
with constant c = 1/2. 
 
We now present a useful sufficient condition on f:Xk → X so 
that f has a unique complementation. The sufficiency of the 
criterion follows immediately from the Complementation 
Theorem (for well founded relations, with uniqueness) 
proved earlier in this section. 
 
DEFINITION 1.3.11. Define the relation R(f) on X by  
 

R(f)(x,y) if and only if 
y is the value of f at some arguments that include x. 

 
THEOREM 1.3.9. Every f:Xk → X, where R(f) is well founded, 
has a unique complementation. 
 
Proof: Let f:Xk → X, where R(f) is well founded. We claim 
that f ∈ SD(R). To see this, note that for all 1 ≤ i ≤ k, 
f(x1,...,xk) is the value of f at some arguments that 
include xi. Hence f has a unique complementation by Theorem 
1.3.1. QED 
 
Note that in Lemma 1.3.5, the f has a (very) well founded 
R(f). Hence the existence of a unique complementation in 
Lemma 1.3.5 follows immediately from Theorem 1.3.9.  
 
We now prove a Continuous Complementation Theorem.  
 
We say that f:Ek → ℜ, E ⊆ ℜ, is strictly dominating if and 
only if for all x ∈ Ek, |f(x)| > |x|. Here we take | | to be 
the sup norm. 
 
CONTINUOUS COMPLEMENTATION THEOREM (with uniqueness). Every 
strictly dominating continuous f:Ek → E, where E ⊆ ℜ is 
closed, has a unique complementation.  
 
Proof: Let f be as given. By Theorem 1.3.9 it suffices to 
prove that R(f) is well founded. Let ... x3 R(f) x2 R(f) x1 
be an infinite backwards chain living in E. Then |x1| > |x2| 
> ... . Let w1,w2,... ∈ Ek, where for all i ≥ 1, xi = f(wi) 
and xi+1 is a coordinate of wi. Then for all i ≥ 1, |xi| > 
|wi| ≥ |xi+1|. In particular, |w1| > |w2| > ... . Note that 
the |xi| = |f(wi)| and the |wi| are both strictly decreasing 
and have the same inf, α. Note that α is the unique limit 
point of the |f(wi)| and of the |wi|. Since the wi are 
bounded, let w be a limit point of the wi. Since E is 
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closed, w ∈ Ek. Clearly |w| = α. By continuity, f(w) is a 
limit point of the f(wi). Hence |f(w)| is a limit point of 
the |f(wi)|. Therefore |f(w)| = α. I.e., |f(w)| = |w| = α. 
This violates that f is strictly dominating. QED 
 
If we strengthen strictly dominating, then we no longer 
need continuity.  
 
DEFINITION 1.3.12. We say that f:Ek → ℜ, E ⊆ ℜ, is shift 
dominating if and only if there exists a constant c > 0 
such that for all x ∈ Ek, |f(x)| > |x| + c.  
 
SHIFT DOMINATING COMPLEMENTATION THEOREM (with uniqueness). 
Every shift dominating f:Ek → E, E ⊆ ℜ, has a unique 
complementation.  
 
Proof: Let f be as given. A backwards chain in R(f) creates 
vectors x1,x2,... such that each |xi| > |xi+1| + c. This is 
obviously impossible. Hence R(f) is well founded. Apply 
Theorem 1.3.9. QED 
 
The Complementation Theorem is closely related to an 
important development in digraph theory.  
 
DEFINITION 1.3.13. A digraph (directed graph) is a pair G = 
(V,E), where V = V(G) is a set of vertices and E = E(G) is 
a set of edges. E(G) ⊆ V2 is required. We say that x is G 
connected to y if and only if (x,y) ∈ E(G).  
 
The key definition is that of a kernel (see [Be85]) and its 
dual notion, dominator.  
 
DEFINITION 1.3.14. A kernel K of G is a subset of V(G) such 
that  
 
i. There is no edge connecting any two elements of K. In 
particular, there is no loop with vertex from K. 
ii. Every element of V(G)\K is G connected to an element of 
K. 
 
DEFINITION 1.3.15. A dominator D of G is a subset of V(G) 
such that  
 
i. There is no edge connecting any two elements of D. In 
particular, there is no loop with vertex from D. 
ii. Every element of D is G connected to an element of 
V(G)\D. 
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It is obvious that K is a kernel of G if and only if the 
following holds: 
 

x ∈ K if and only if  
x is not G connected to any element of K. 

 
Also D is a dominator of G if and only if the following 
holds: 
 

x ∈ D if and only if 
no element of D is G connected to x. 

 
Also let G be a digraph and G* be the dual of G; i.e., the 
same digraph with the arrows reversed. Then the kernels of 
G are the same as the dominators of G*, and the dominators 
of G are the same as the kernels of G*. 
 
Dominators are explicitly connected with the 
Complementation Theorem in the unary case f:X → X. We can 
think of f as a graph G whose vertex set is X and whose 
edges are the (x,f(x)). Then the complementations of f are 
the same as the dominators of G.   
 
DEFINITION 1.3.16. A dag is a directed acyclic graph. I.e., 
a digraph with no cycles. A cycle (in a digraph) is a 
finite path which starts and ends at the same place.  
 
The following is due to von Neumann in [VM44]. Also see 
[Be85].  
 
THEOREM 1.3.10. Every finite dag has a unique kernel and a 
unique dominator.  
 
Proof: Since the dual of an acyclic graph is acyclic, it 
suffices to prove that there is a unique kernel. 
 
Let (V,G) be a finite dag. We can assume that V(G) is 
nonempty. We inductively define V0,V1,V2,..., where for 
every i, Vi is the set of vertices outside V0 ∪ ...∪ Vi-1 
which G connect only to vertices in V0 ∪ ... ∪ Vi-1. In 
particular, V0 is the set of vertices that do not G connect 
to any vertex. Since G is a dag, V0 is nonempty. Obviously 
the V’s are eventually empty, and are pairwise disjoint. So 
we write V0,V1,...,Vn, n ≥ 0, where these V’s are nonempty 
and Vn+1 = ∅.  
 
We claim that V(G) = V0 ∪ ... ∪ Vn. Otherwise, let x ∉ V0 ∪ 
... ∪ Vn. Since x ∉ Vn+1, x G connects to some y ∉ V0 ∪ ... 
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∪ Vn. We can continue this process, obtaining an infinite 
chain of G connections. This contradicts that V(G) is 
finite. 
 
Now define K ∩ Vi by induction on i = 0,...,n. Take x ∈ K ∩ 
Vi if and only if x is not G connected to any element of V0 
∪ ... ∪ Vi-1. By the construction of the V’s, we see that x 
∈ K if and only if x is not G connected to any element of 
K. QED    
 
This is not true for arbitrary dag’s (as is well known). 
 
THEOREM 1.3.11. There is a countable dag without a kernel 
and without a dominator.  
 
Proof: We first construct a countable dag G without a 
kernel.  
 
Let G be the digraph with V(G) = N and whose edges are the 
(n,m) where n < m. Let K be a kernel of G. We have n ∈ K ↔ 
n is not connected to any element of K ↔ K has no element > 
n. If K is empty then 0 ∈ K. Hence K is nonempty. Let n ∈ 
K. Then K has no elements > n. In particular, n+1 ∉ K. 
Hence n+1 is G connected to some element of K. Therefore K 
has an element > n+1. This is a contradiction.  
 
For the final claim, let G* be the dual of G. Then G* has 
no dominator. Let H be the disjoint union of G and G*. 
I.e., V(H) = V(G) ∪ V(G*) and E(H) = E(G) ∪ E(G*), where we 
assume V(G) ∩ V(G*) = ∅. Then any kernel of H intersected 
with G is a kernel of G, and any dominator of H intersected 
with G* is a dominator of G. Therefore H is a countable dag 
without a kernel and without a dominator. QED 
 
We mention an old but rather striking result of [Ri46]. 
 
THEOREM 1.3.12. Every finite graph without cycles of odd 
length has a kernel and a dominator. 
 
Here we do not have uniqueness since the two vertex digraph 
with each vertex connected to the other, has no cycles of 
odd length, and two obvious kernels - the singletons – 
which are also dominators.   
 
The book [HHS98a] has an extensive bibliography that 
includes many papers on kernels in graphs. Also see 
[HHS98b], [GLP98]. 
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Theorem 1.3.10 has the following known extension to 
infinite digraphs. 
 
THEOREM 1.3.13. Every digraph without an infinite walk x0 → 
x1 → ...  has a unique kernel.  
 
Proof: We can either give a proof analogous to that of 
Theorem 1.3.1 (as a referee has done), or we can 
conveniently derive this from Theorem 1.3.1. Let G be a 
digraph with no infinite walk x0 → x1 → ... . Let R be the 
binary relation R(x,y) ↔ (y,x) ∈ E(G); i.e., y → x in G. 
Then R is well founded.  
 
In fact, we need to use an extension R' of R. We introduce 
a new copy of every vertex in G, and make all of these 
copies R' predecessors of every vertex in G. These copies 
have no R' predecessors. Also introduce new points 
∞,∞+1,∞+2,..., each an R' predecessor of the next, all of 
which are R' successors of all vertices in G and their 
copies. Note that any two elements of fld(R') have a common 
successor.  
 
Define f:fld(R')2 → V(G) by cases. 
 
case 1. x ∈ V(G), y is a copy of some z ∈ V(G) with R(x,z). 
Then define f(x,y) = z. 
 
case 2. otherwise. Define f(x,y) to be any R' successor of 
x,y.   
 
By Theorem 1.3.1, let A be a complementation of f. Note 
that all of the copies of vertices in G lie in A. Hence if 
x is G connected to an element of A then x ∈ fA, x ∉ A.  
 
On the other hand, suppose x ∈ V(G) is not G connected to 
any element of A. Then x ∉ fA, x ∈ A. This establishes that 
A ∩ V(G) is a kernel of G.  
 
To show that all kernels of G are the same, let K,K' be 
kernels of G. Assume that K Δ K' is nonempty, and choose x 
∈ K Δ K' such that x is not G connected to any element of K 
Δ K'. By symmetry, we can assume that x ∈ K, x ∉ K'. Then x 
is not G connected to any element of K, and x is G 
connected to some element y of K'. Clearly y ∉ K Δ K', y ∈ 
K. This is a contradiction. QED  
 
1.4. Thin Set Theorems. 
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Recall the Thin Set Theorem from section 1.1.  
 
THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N.   
 
The Thin Set Theorem as written above is a statement of 
IBRT in A,fA on (MF,INF). This specific statement is due to 
the present author, who studied it for its significance for 
Reverse Mathematics and recursion theory.  
 
A variant of this statement was already introduced much 
earlier in the literature on the (square bracket) partition 
calculus in combinatorial set theory, in [EHR65]. In their 
language, the Thin Set Theorem reads  
 

(∀n < ω)(ω → [ω]nω). 
 
The n indicates a coloring of the unordered n-tuples from 
the ω to the left of →, the lower ω indicates the number of 
colors, and the ω in [ ] indicates the cardinality of the 
“homogenous” set. But here [ ] indicates a weak form of 
homogeneity - that at least one color is omitted.  
 
The mathematical difference between this square bracket 
partition relation statement and the Thin Set Theorem is 
that the former involves unordered tuples, whereas the 
latter involves ordered tuples. However, see Theorem 1.4.2 
below for an equivalence proof in RCA0. Also see [EHMR84], 
Theorem 54.1. It was immediately recognized that this 
square bracket partition relation follows from the usual 
infinite Ramsey theorem, which is written in terms of the 
round parenthesis partition relation  
 

(∀n,m < ω)(ω → (ω)nm). 
 
Experience reveals that when the Thin Set Theorem is stated 
exactly in our formulation above (with ordered n tuples), 
mathematicians who are not experts in the partition 
calculus, do not recognize the Thin Set Theorem’s 
connection with the partition calculus and combinatorial 
set theory. They are struck by its fundamental character, 
and will not be able to prove it in short order. They 
apparently would have to rediscover the infinite Ramsey 
theorem, and in our experience, long before they invest 
that kind of effort, they demand a proof from us. 
The Thin Set Theorem - as an object of study in the 
foundations of mathematics - first appeared publicly in 
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[Fr00], and in print in [FS00], p. 139. There we remark 
that it trivially follows from the following well known 
Free Set Theorem for N. 
 
FREE SET THEOREM. Let k ≥ 1 and f:Nk → N. There exists 
infinite A ⊆ N such that for all x ∈ Ak, f(x1,...,xk) ∈ A → 
f(x1,...,xk) ∈ {x1,...,xk}.  
 
The implication is merely the observation that if A obeys 
the conclusion of the Free Set Theorem, then A\{min(A)} 
obeys the conclusion of the Thin Set Theorem (min(A) is not 
a value of f on (A\{min(A)})k).  
 
The Free Set Theorem is easily obtained from the infinite 
Ramsey theorem in a well known way. Choose infinite A ⊆ N 
such that the truth value of f(x1,...,xk) = y depends only 
on the order type of x1,...,xk,y, provided x1,...,xk,y ∈ A. 
If f(x1,...,xk) = y ∉ {x1,...,xk}, where x1,...,xk,y ∈ A, 
then we can move x1,...,xk,y around in A so that we have  
 

f(x1,...,xk) = y 
 f(x1,...,xk) = y' 

 
where y' is the element of A right after y. This is a 
contradiction. 
 
In [FS00], p. 139-140, we presented our proof that the Thin 
Set Theorem is not provable in ACA0. A proof of our result 
that the Thin Set Theorem for binary functions cannot be 
proved in WKL0 appears in [CGHJ05]. [CGHJ05] also contains 
an exposition of our proof that the Thin Set Theorem is not 
provable in ACA0. It is easy to see that the Free Set 
Theorem, and hence the Thin Set Theorem, for arity 1, is 
provable in RCA0.  
 
The metamathematical status of the Thin Set Theorem and the 
Free Set Theorem are not known.  
 
This is in sharp contrast to the well known status of the 
infinite Ramsey theorem. The infinite Ramsey theorem for 
any fixed exponent n ≥ 3 is provably equivalent to ACA0 over 
RCA0. The infinite Ramsey theorem stated for all exponents 
is provably equivalent to a system ACA’ over RCA0, defined 
as follows.  
 
DEFINITION 1.4.1. The system ACA’ is the system ACA0 
together with (∀n)(∀x ⊆ ω)(the n-th Turing jump of x 
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exists). This is logically equivalent to RCA0 + (∀n)(∀x ⊆ 
ω)(the n-th Turing jump of x exists).  
 
It is well known that ACA’ is a fragment of the system ACA, 
which is ACA0 together with full induction. See [Si99] for a 
discussion of ACA0 and other subsystems of second order 
arithmetic, including RCA0 (used throughout this book).  
 
We originally introduced ACA’ around the time we set up 
Reverse Mathematics (but after we introduced 
RCA0,ACA0,WKL0,ATR0,Π1

1-CA0), in order to analyze the usual 
infinite Ramsey theorem. We straightforwardly adapted part 
of the recursion theoretic treatment due to Carl Jockusch 
of Ramsey theorem to show that RT is provably equivalent to 
ACA’ over RCA0.  
 
It must be mentioned that the metamathematical status of 
the infinite Ramsey theorem for exponent 2 is not known, 
although there has been considerable progress on this. See 
[CJS01].  
 
The main metamathematical open questions concerning the 
Thin Set Theorem and the Free Set Theorem are these. Do 
they imply ACA0 over RCA0 for fixed exponents? Do they imply 
Ramsey’s theorem (when stated for arbitrary exponents)? By 
the previous remarks, these questions are equivalent to the 
following. For fixed exponents, are they equivalent to ACA0 
over RCA0? Are they equivalent to ACA’ over RCA0 (or over 
ACA0)? It is possible that the Free Set Theorem is stronger 
than the Thin Set Theorem over RCA0. 
 
We now present a proof of our Thin Set Theorem privately 
communicated to us by Jeff Remmel, that does not pass 
through the Free Set Theorem. 
 
DEFINITION 1.4.2. Let f:Nk → N. We define ot(k) to be the 
number of order types of k tuples from N.  
 
We now define a coloring of the k-tuples x from N according 
to the value f(x). Specifically, the color f(x) is assigned 
to x if f(x) ∈ [1,ot(k)], and the color 0 is assigned to x 
otherwise.  
 
By the usual infinite Ramsey theorem for k tuples, we 
obtain A ∈ INF such that for all m ∈ [0,ot(k)],  
 

(∀x,y ∈ Ak)(if x,y have the same order type then  
f(x) = m ↔ f(y) = m). 



 294 

 
It is clear that the x ∈ Ak of any given order type can only 
map to at most one element of [0,ot(k)]. Hence rng(f|Ak) ∩ 
[0,ot(k)] has at most ot(k) elements. Therefore rng(f|Ak) 
omits at least one element of [0,ot(k)].  
 
From this proof, we can conclude the following strong form 
of the Thin Set Theorem.  
 
THIN SET THEOREM ([0,ot(k)]). For all f:Nk → [0,ot(k)] 
there exists infinite A ⊆ N such that fA ≠ [0,ot(k)]. 
 
The function ot(k) has been well studied in the literature. 
Let ot(k) be the number of order types of elements of Nk. It 
is obvious that ot(k) ≤ kk (every element on Nk has the same 
order type as an element of [k]k), and a straightforward 
inductive argument shows that ot(k) ≤ 2k(k!). In [Gr62] it 
is shown that ot(k) is asymptotic to (k!/2) lnk+12. 
 
The metamathematical status of this form of the Thin Set 
Theorem can be easily determined as follows.   
 
THEOREM 1.4.1. Thin Set Theorem ([0,ot(k)]), for fixed 
exponents, or for exponent 3, is provably equivalent to ACA0 
over RCA0. Thin Set Theorem ([0,ot(k)]) is provably 
equivalent to ACA’ over RCA0. RCA0 refutes Thin Set Theorem 
([1,ot(k)]) in every exponent k.  
 
Proof: Evidently, Thin Set Theorem ([0,ot(k)]) for fixed 
exponent k is provable in ACA0. For general exponents k (as 
a free variable), it is provable from the infinite Ramsey 
theorem, and therefore in ACA’. 
 
We now argue in RCA0. Let k ≥ 2 (as a free variable). Assume 
the Thin Set theorem ([0,ot(k)]). We derive the infinite 
Ramsey theorem for exponent k and ot(k) ≥ 2 colors, as 
follows. Let f:[N]k → {0,1}, where [A]k is the set of all 
subsets of A of cardinality k. Let α1,...,αot(k) be an 
enumeration of all of the order types of k-tuples from N, 
where α1 is the order type of 1,2,...,k. We now define g:Nk 
→ [0,ot(k)] as follows.  
 
case 1. x1 < ... < xk. Set g(x1,...,xk) = f({x1,...,xk}). 
 
case 2. Otherwise. Let the order type of x1,...,xk be αi, 
and set g(x1,...,xk) = i ≥ 2. 
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Let A ⊆ N be infinite, where gA does not contain [0,ot(k)]. 
Clearly gA contains [2,ot(k)]. Since gA does not contain 
both 0,1, we see that f is constant on [A]k.  
 
If we fix k = 3 then we obtain the infinite Ramsey theorem 
for exponent 3 with 2 colors, and hence ACA0, over RCA0.  
 
If we use k as a free variable, then we obtain the infinite 
Ramsey theorem, and hence ACA’, over RCA0.  
 
For the final claim, use f:Nk → [1,ot(k)] by f(x1,...,xk) = 
i, where the order type of (x1,...,xk) is the i-th order 
type of elements of Nk. QED  
 
What if we use another, simpler, function of k? 
 
THIN SET THEOREM ([1,kk]). For all f:Nk → [1,kk] there 
exists infinite A ⊆ N such that fA ≠ [0,kk]. 
 
We do not know the status of THIN SET THEOREM ([1,kk]). It 
obviously follows from THIN SET THEOREM ([1,ot(k)]), 
exponent by exponent. 
 
From the point of view of the partition calculus, it is 
more natural to use [N]k instead of Nk. Here [N]k is the set 
of all subsets of N of cardinality k. The square bracket 
partition relation  
 

ω → [ω]kω 
 
can be stated as follows. Let [A]k be the set of all subsets 
of A of cardinality k. 
 
THIN SET THEOREM (unordered tuples). For all f:[N]k → N 
there exists infinite A ⊆ N such that f[[A]k] ≠ N. 
 
THEOREM 1.4.2. The Thin Set Theorem and the Thin Set 
Theorem (unordered tuples) are provably equivalent in RCA0.  
 
Proof: The forward direction is obvious. Now assume the 
Thin Set Theorem (unordered tuples). Let f:Nk → N, k ≥ 1. 
We will prove the existence of an infinite A ⊆ N such that 
fA ≠ N. 
 
We can assume that Ramsey’s theorem for two colors fails 
(arbitrary exponents), since otherwise we conclude the Thin 
Set Theorem. Let g:[N]r → {0,1} be a counterexample to 
Ramsey’s theorem. We construct a function h:[N]k+r•ot(k) → N 
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such that for all infinite A ⊆ N, fA ⊆ h[[A]k+r•ot(k)]. So if 
h[[A]k+r•ot(k)] ≠ N then fA ≠ N.  
 
Define h:[N]k+r•ot(k) → N as follows. Let x1 < ... xk < y1 < 
... yr•ot(k) be given. Apply g to the ot(k) successive blocks 
of length r in y1,...,yr•ot(k) to obtain ot(k) bits. Let t be 
the position of the first one of these bits that is 0. If 
they are all 1’s, then set t = 1. Clearly 1 ≤ t ≤ ot(k). Let 
α be the t-th order type of length k, in some prearranged 
listing of order types of elements of Nk. Let y ∈ 
{x1,...,xk}k be minimum (have minimum max) of order type α. 
Set h({x1,...,xk,y1,...,yr•ot(k)}) = f(y). By the Thin Set 
Theorem (unordered tuples), let A ∈ INF be such that 
h[[A]k+r•ot(k)] ≠ N. Since g is a counterexample to Ramsey’s 
theorem, all ot(k) length bit sequences appear in the 
construction of hA. Hence all length k order types are 
used. Therefore fA ⊆ h[[A]k+r•ot(k)] ≠ N. QED 
 
We now discuss some other kinds of strengthenings of the 
Thin Set Theorem. Let W ⊆ POW(N).  
 
THIN SET PROPERTY FOR W. For all f ∈ MF there exists A ∈ W 
such that fA ≠ N.  
 
DEFINITION 1.4.3. The upper density of A ⊆ N is given by  
 

lim supn→∞|A ∩ [0,n)|/n. 
 
DEFINITION 1.4.4. The upper logarithmic density of A ⊆ N is 
given by 
 

lim supn→∞log|A ∩ [0,n)|/n. 
 
THEOREM 1.4.3. The Thin Set Property fails for positive 
upper density. In fact, it fails for arity 3. 
 
Proof: Let f:N3 → N be defined by  
 

f(a,b,c) = (c-a)/(b-a) – 2 if this lies in N;  
0 otherwise. 

 
Let A ⊆ N have positive upper density. Szemeredi’s theorem, 
[Gow01], asserts that every set of positive upper density 
contains arbitrarily long arithmetic progressions. Let p ≥ 2 
and a,a+b,...,a+pb be an arithmetic progression in A of 
length p+1, where a ≥ 0 and b ≥ 1. Then f(a,a+b,a+pb) = 
(pb)/b – 2 = p-2. Hence fA = N. QED  
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We do not know if Theorem 1.4.3 can be improved to arity 2, 
and we do not know if the Thin Set Property holds for upper 
logarithmic density. We do not know any interesting 
necessary or sufficient conditions on W so that the Thin 
Set Property holds for W. 
 
DEFINITION 1.4.5. Let κ be an infinite cardinal. The Thin 
Set Property for κ asserts the following. For all f:κn → κ, 
there exists A ⊆ κ of cardinality κ such that fA ≠ κ.  
 
THEOREM 1.4.4. [To87], Theorem 5.2. The Thin Set Property 
fails for the successor of any regular cardinal. In fact, 
it fails even for unordered 2-tuples. In particular, it 
fails for unordered 2-tuples in the case of ω1. 
 
The Thin Set Property is well known to hold of all weakly 
compact cardinals, since it follows from κ → κnm. In fact, 
the Thin Set Property holds for weakly compact cardinals in 
the strong [0,ot(k)] form. For more on the Thin Set 
Property, see [BM90], Theorem 4.12, and [EHMR84], Theorem 
54.1. Also see [Sh95]. 
 
The Thin Set Theorem makes perfectly good sense in any BRT 
setting (V,K). It simply asserts that for all f ∈ V, there 
exists A ∈ K, such that fA ≠ U. Here U is the universal set 
associated with the BRT setting (V,K), as defined in 
section 1.1. 
 
We now explore the Thin Set Theorem on some BRT settings in 
real analysis. There have no intention of exhausting 
anything like a fully representative sample of all 
interesting BRT settings in real analysis. We only present 
a very limited sample. 
 
We will see that the Thin Set Theorem, which is the 
simplest nontrivial statement in all of BRT, depends very 
much on the choice of BRT setting. We expect that the same 
is true for a huge variety of statements in BRT, in a 
rather deep way. 
 
We first consider only unary functions from ℜ to ℜ. It is 
natural to extend the investigation to incorporate families 
of functions whose domains are of various kinds (open, 
semialgebraic, etc.). This is beyond the scope of this 
book. 
 
We now restrict attention to 8 families of functions from ℜ 
into ℜ, and 9 families of subsets of ℜ.  
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FCN(ℜ,ℜ). All functions from ℜ to ℜ. 
BFCN(ℜ,ℜ).  All Borel functions from ℜ to ℜ. 
CFCN(ℜ,ℜ). All continuous functions from ℜ to ℜ. 
C1FCN(ℜ,ℜ). All C1 functions from ℜ to ℜ. 
C∞FCN(ℜ,ℜ). All C∞ functions from ℜ to ℜ. 
RAFCN(ℜ,ℜ). All real analytic functions from ℜ to ℜ. 
SAFCN(ℜ,ℜ). All semialgebraic functions from ℜ to ℜ. 
CSAFCN(ℜ,ℜ). All continuous semialgebraic functions from ℜ 
to ℜ.  
 
cSUB(ℜ). All subsets of ℜ of cardinality c. 
UNCLSUB(ℜ). All uncountable closed subsets of ℜ. 
NOPSUB(ℜ). All nonempty open subsets of ℜ.  
UNOPSUB(ℜ). All unbounded open subsets of ℜ. 
DEOPSUB(ℜ). All open dense subsets of ℜ. 
FMOPESUB(ℜ). All open subsets of ℜ of full measure. 
CCOPSUB(ℜ). All open subsets of ℜ whose complement is 
countable. 
FCSUB(ℜ). All subsets of ℜ whose complement is finite. 
≤1CSUB(ℜ). All subsets of ℜ whose complement has at most 
one element. 
 
These two lists alone provide 8•9 = 72 BRT settings. We 
conjecture that there are substantial BRT differences 
between these 72, except that perhaps C1FCN(ℜ,ℜ) and 
C∞FCN(ℜ,ℜ) have the same BRT behavior. We won't venture an 
opinion on that.  
 
Note that here we only focus on just one statement of IBRT 
in one function and one set: the Thin Set Theorem.  
 
THEOREM 1.4.5. The Thin Set Theorem holds on 
(FCN(ℜ,ℜ),cSUB(ℜ)), (BFCN(ℜ,ℜ),UNCLSUB(ℜ)), 
(CFCN(ℜ,ℜ),FMOPSUB(ℜ)), (C1FCN(ℜ,ℜ),CCOPSUB(ℜ)), 
(SAFCN(ℜ,ℜ),FCSUB(ℜ)), (CSAFCN(ℜ,ℜ),≤1CSUB(ℜ)). 
 
Proof: Let f:ℜ → ℜ. We can assume that rng(f) = ℜ. Let A = 
f-1[0,1]. Then A has cardinality c and fA = [0,1] ≠ ℜ.  
 
Let f:ℜ → ℜ be Borel. According to [Ke94], exercise 19.8, 
there exists a nowhere dense perfect set P ⊆ ℜ such that f 
is either 1-1 continuous on P, or f is constant on P. In 
either case, fP is nowhere dense, and so fP ≠ ℜ. See 
Theorem 1.4.7 for the sharper multivariate form of this 
result.   
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Let f:ℜ → ℜ be continuous. Then there exists x ∈ ℜ such 
that f-1(x) is a closed set of measure 0. Let A = ℜ\f-1(x). 
Then A is an open subset of ℜ of full measure, and fA ≠ ℜ.  
 
Let f:ℜ → ℜ be C1. By Sard’s theorem, S = {f(x): f’(x) = 0} 
has measure zero. Suppose f-1(x) is uncountable. Then f-1(x) 
contains a limit u, where obviously f’(u) = 0. Hence f(u) ∈ 
S, and so x ∈ S. Thus {x: f-1(x) is uncountable} ⊆ S. Since 
S has measure zero, let x be such that f-1(x) is countable. 
Then ℜ\f-1(x) is an open subset A of ℜ whose complement is 
countable, and fA ≠ ℜ. (The use of Sard’s theorem here was 
suggested to the author by Gerald Edgar.) 
 
Let f:ℜ → ℜ be semialgebraic. Every f-1(x) is finite or 
contains a nonempty open interval. Hence some f-1(x) is 
finite. Let A = ℜ\f-1(x). Then A is a subset of ℜ whose 
complement is finite, and fA ≠ ℜ.  
 
Let f:ℜ → ℜ be continuous and semialgebraic. We can assume 
that rng(f) = ℜ. Hence there exists x > 0 such that  
 
f:[x,∞) → [f(x),∞) is strictly increasing and onto, and  
f:(-∞,-x] → (-∞,f(-x)] is strictly increasing and onto; or 
 
f:[x,∞) → (-∞,f(x)] is strictly decreasing and onto, and  
f:(-∞,-x] → [f(-x),∞) is strictly decreasing and onto. 
 
This can be proved using the well known structural 
properties of semialgebraic f:ℜ → ℜ as treated in [Dr98], 
Chapter 1. 
In the first case, choose y > max(f[(-∞,x]]), so that the 
value y is attained only on [x,∞), in which case f-1(y) has 
exactly one element. In the second case, choose y < 
min(f[(-∞,x]]), so that the value y is also attained only 
on [x,∞), in which case f-1(y) has exactly one element. In 
both cases, we can find y by the continuity of f. Let A = 
ℜ\f-1(y). Then A is a subset of ℜ whose complement has 
cardinality 1, where fA ≠ ℜ. QED  
 
THEOREM 1.4.6. The Thin Set Theorem fails on 
(FCN(ℜ,ℜ),UNCLSUB(ℜ)), (BFCN(ℜ,ℜ),NOPSUB(ℜ)), 
(CFCN(ℜ,ℜ),CCOPSUB(ℜ)), (RAFCN(ℜ,ℜ),FCSUB(ℜ)), 
(SAFCN(ℜ,ℜ),≤1CSUB(ℜ)). 
 
Proof: We first construct a function α which maps every 
uncountable closed subset of ℜ to a subset of cardinality 
c, such that A ≠ B → α(A) ∩ α(B) = ∅. This is done by a 
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transfinite construction of length c. We use an enumeration 
of the uncountable closed subsets of ℜ of length c.  
 
At any stage, we have a function β which maps every 
uncountable closed subsets of ℜ to a subset of cardinality 
< c, where < c uncountable closed subsets are assigned a 
nonempty subset. At the next stage, we can add one more 
point to each of the nonempty subsets thus far, and assign 
a subset of cardinality 1 to the first uncountable closed 
subset of ℜ that was previously assigned ∅. Since 
uncountable closed subsets of ℜ are of cardinality c, there 
is no problem making sure that the sets assigned are 
pairwise disjoint.    
 
For each uncountable closed A, map α(A) ⊆ A onto ℜ. By the 
disjointness of the α(A), we can take the union of these 
functions, and then extend this union arbitrary to f:ℜ → 
ℜ. Clearly for all uncountable closed A, we have fA = ℜ. 
This establishes the first claim. 
 
It is well known that there exists a continuous f:ℜ → ℜ 
such that each f-1(x) is uncountable. E.g., start with a 
continuous g:K → K such that each f-1(x), x ∈ K, is 
uncountable, where K is the Cantor set. (Take g(x) to be 
the real number whose base 3 expansion is digits number 
1,3,5,7,... in the base 3 expansion of x). Compose with a 
continuous map from K onto [0,1] to obtain a continuous h:K 
→ [0,1] such that each h-1(x), x ∈ [0,1], is uncountable. 
Then extend to a continuous J:[0,1] → [0,1] with this 
property. Then paste copies of the functions J+n, n ∈ Z, 
together with some filler, to obtain f:ℜ → ℜ such that 
each f-1(x) is uncountable. Let A ⊆ ℜ have countable 
complement. Then A must meet each f-1(x). Hence fA = ℜ.   
 
It is obvious that there exists real analytic f:ℜ → ℜ such 
that each f-1(x) is infinite - e.g., xsin(x). Let A ⊆ ℜ have 
finite complement. Then A must meet each f-1(x). Hence fA = 
ℜ. 
 
It is obvious that there are semialgebraic f:ℜ → ℜ such 
that each f-1(x) has at least 2 elements. Let A ⊆ ℜ omit at 
most one real number. Then A must meet each f-1(x). Hence fA 
= ℜ.  
 
It remains to treat (BFCN(ℜ,ℜ),NOPSUB(ℜ)). We define 
f:[0,1] → [0,1] and g:[0,1] → Z as follows. Let x ∈ [0,1] 
and let b1,b2,... be the base 2 expansion of x. Let x* be 
greatest m ≥ 1 such that b1,b2,...,bm = 
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b_8m+1,b_8m+3,...,b_8m+2m-1. If m does not exist, set f(x) = 
0. If m exists, set f(x) to be the real number 
b4m,b4m+4,b4m+8,... . Set |g(x)| to be the least i ≥ 0 such 
that b4m+4i+6 = 0 if it exists; 0 otherwise. Choose the sign 
of g(x) according to the bit b4m+2. 
 
We claim that for all nonempty open A ⊆ [0,1] and y ∈ [0,1] 
and k ∈ Z, there exists x ∈ A such that f(x) = y and g(x) = 
k.  
 
To see this, let A,y,k be as given. Let (p,q) ⊆ A be 
nondegenerate, where p,q are dyadic rationals, 0 ≤ p < q ≤ 
1. Let b1,...,bn,0,0,0,... be the base 2 expansion of p and 
c1,...,cn,0,0,0,... be the base 2 expansion of q. By 
continuing the base 2 expansion b1,...,bn, we can arrange 
that x* = m exists, m > n, without committing ourselves to 
any of the base 2 digits beyond bn in even positions. We 
then arrange b4m,b4m+4,b4m+8,... to be a binary expansion of y. 
We have thus arranged f(x) = y. We can also arrange g(x) = 
k.  
 
Finally, we define h:ℜ → ℜ by h(x) = f(x-x)+g(x-x). Here 
x is the floor of x, which is the greatest integer ≤ x.   
 
Now let A ⊆ ℜ be a nonempty open subset of ℜ and y ∈ ℜ. 
Let (p,q) + k be an open interval contained in A, where 0 < 
p < q < 1. We can find x ∈ (p,q) such that f(x) = y–y and 
g(x) = y. Then h(x+y) = f(x)+g(x) = y as required. QED 
 
Note that in the above development, we have not come across 
a distinction between C1FCN(ℜ,ℜ), C∞FCN(ℜ,ℜ), and 
RAFCN(ℜ,ℜ). We suspect that important distinctions will 
arise as we go deeper into BRT. 
 
We now consider the corresponding 8 families of 
multivariate functions from ℜ to ℜ. I.e., functions whose 
domain is some ℜn and whose range is a subset of ℜ. We use 
the same 9 families of subsets of ℜ. 
 
FCN(ℜ*,ℜ). All multivariate functions from ℜ to ℜ. 
BFCN(ℜ*,ℜ). All multivariate Borel functions from ℜ to ℜ. 
CFCN(ℜ*,ℜ). All multivariate continuous functions from ℜ to 
ℜ. 
C1FCN(ℜ*,ℜ). All multivariate C1 functions from ℜ to ℜ. 
C∞FCN(ℜ*,ℜ). All multivariate C∞ functions from ℜ to ℜ. 
RAFCN(ℜ*,ℜ). All multivariate real analytic functions from 
ℜ to ℜ. 



 302 

SAFCN(ℜ*,ℜ). All multivariate semialgebraic functions from 
ℜ to ℜ. 
CSAFCN(ℜ*,ℜ). All multivariate continuous semialgebraic 
functions from ℜ to ℜ. 
 
Here the domains of all functions considered are Cartesian 
powers of ℜ, and the ranges are all subsets of ℜ. 
 
THEOREM 1.4.7. The Thin Set Theorem holds on 
(BFCN(ℜ*,ℜ),UNCLSUB(ℜ)), (CFCN(ℜ*,ℜ),NOPSUB(ℜ)). If c is a 
real valued measurable cardinal then the Thin Set Theorem 
holds on (FCN(ℜ*,ℜ),cSUB(ℜ)). If κ is a weakly compact 
cardinal internal to a countable transitive model M of ZFC, 
and we force over M with finite partial functions from κ 
into {0,1} under inclusion, then the Thin Set Theorem holds 
on (FCN(ℜ*,ℜ),cSUB(ℜ)) in the generic extension. 
 
Proof: We start with the first claim. It is convenient to 
prove a somewhat stronger result: that the Thin Set Theorem 
holds on BFCN(ℜ*,ℜ) with the uncountable closed subsets of 
ℜ that are unbounded.  
 
We will rely on the well known adaptation of forcing 
technology for such applications. Let K be the usual Cantor 
space {0,1}N. We first show the following.  
 
#) Let α0,α1,... be Borel functions from Kn into K. There 
exists a perfect K’ ⊆ K such that each αi[K’n≠] is nowhere 
dense in K, where K’n≠ is the set of all n-tuples of 
distinct elements of K'.  
 
We fix a countable admissible set X containing a sequence 
of codes for the Borel functions α0,α1,... . We will freely 
use forcing over X.  
 
We write {0,1}<N = ∪{{0,1}i: i ≥ 0}. Here {0,1}i is the set 
of functions from i into {0,1}, where i = {0,...,i-1}.   
 
We use (f1,...,fn) as the name of an undetermined generic 
element of Kn. The statements we will force are of the form  
 

αi(f1,...,fn)(k) = j, 
 
where i,k ≥ 0 and j ∈ {0,1}. Forcing will be defined as 
usual over X for conditions p = (x1,...,xn) ∈ ({0,1}<N)n. The 
notion of generic (g1,...,gn) ∈ Kn is defined as usual using 
dense sets of conditions lying in X.  
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A 1-condition is an element of {0,1}<N. The conditions are 
of course n-tuples of 1-conditions.  
 
We will now build a perfect finite sequence tree T of 
conditions. The root is the empty sequence of conditions. 
The vertices will have the form <p1,...,pb>, p ≥ 0, where p1 
⊆ ... ⊆ pb are 1-conditions. Here b is the length of the 
vertex.  
 
At every level i in T, the 2i vertices will all have a 
common structure in that they will all have the form 
<p1,...,pi>, and any two of them, <p1,...,pi> ≠  
<p1’,...,pi’>, will have  
 

lth(p1) = lth(p1’). 
... 

lth(pi) = lth(pi’). 
pi ≠ pi’. 

 
Here p1,...,pi are 1-conditions with p1 ⊆ ... ⊆ pi. 
 
Let D1,D2,... be an enumeration of the dense sets of 
conditions lying in X, which are closed upward. Let 
w1,...,wn be the last terms of n distinct vertices at level 
i of T. These w’s are 1-conditions. We require that the 
condition (w1,...,wn) lie in D1 ∩ ... ∩ Di. This will 
guarantee that any sequence of n distinct infinite paths 
through T will be a generic element of Kn (when flattened 
out in the obvious way).  
 
Suppose we have constructed the i-th level of T, i ≥ 0. We 
now show how to construct the i+1-st level of T. Let 
w1,...,w2^i be the last terms of the vertices of T at the i-
th level. Recall that the w’s are distinct 1-conditions of 
the same lengths.  
 
Let i’ >> i. Before doing any splitting, first extend the 
w’s to w1*,...,w2^i* so that every sequence of distinct 
elements u1,...,un of {w1*,...,w2^i*} decides all forcing 
statements  
 

αs(f1,...,fn)(t) = 0, 0 ≤ s,t < i’. 
 
This will ensure that for all s ≥ 1, the number of possible 
first i’ bits of values of αs, at the n-tuples of distinct 
infinite paths through T, will be smaller than, say, the 
square root of 2i’. This will guarantee the desired nowhere 
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density of the set of all values of αs, at the n-tuples of 
distinct infinite paths through T. 
 
There is no problem meeting the earlier requirements by 
further extensions and by 2 splitting. This establishes #). 
We now sharpen #). 
 
##) Let α0,α1,... be Borel functions from Kn into K. There 
exists a perfect K’ ⊆ K such that each αiK’ is nowhere dense 
in K. In particular, ∪{αiK’: i ≥ 0} ≠ K. 
 
Let the α’s be as given. For each i ≥ 0 and 1 ≤ j1,...,jn ≤ 
n, put the function  
 

β(x1,...,xn) = αi(xj1,...,xjn) 
 
in a new list, and apply #) to these β’s. Let K’ be given by 
#). Then each αiK’ is a finite union of the various β[K’n≠], 
and is therefore nowhere dense in K.  
 
The final part of ##) is by the Baire category theorem for 
K. 
 
Now let f:ℜn → ℜ be Borel. We now think of K ⊆ ℜ by 
viewing each element of K as a base 3 expansion with only 
0’s and 2’s. Let h:ℜ → K be a Borel bijection.  
 
For all δ ∈ Nn, let gδ:K

n → K be defined by  
 

gδ(x) = h(f(x+δ)). 
 
By ##), let K’ ⊆ K be a perfect set such that ∪{gδK’: δ ∈ 
Nn} ≠ K. We claim that  
 

A = ∪{K’+i: i ≥ 0} ⊆ ℜ  
is uncountable, closed, and unbounded. 

fA ≠ ℜ. 
 
Since K’ ⊆ [0,1] is uncountable and closed, clearly, A is 
uncountable, closed, and unbounded.  
 
Let u ∈ K\∪{gδK’: δ ∈ N

n}. Then for all δ ∈ Nn, u ∉ gδK’. 
Hence for all δ ∈ Nn and x ∈ K', u ≠ gδx = h(f(x+δ)). 
Clearly, for all δ ∈ Nn and x ∈ K', h-1u ≠ f(x+δ). Hence for 
all i ≥ 0, h-1u ∉ f(K+i). Hence h-1u ∉ fA. 
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For the second claim of the Theorem, let f:ℜk → ℜ be 
continuous. Then f([0,1]) = f([0,1]k) is compact, and 
therefore not ℜ.  
 
The real valued measurable claim is proved in [So71], Lemma 
14, page 406.  
 
For the final claim, let M be a countable transitive model 
of ZFC with the internal weakly compact cardinal κ. We force 
to create a generic set a ⊆ κ using finite conditions. It 
is convenient to write this generic set as mutually generic 
subsets of ω, {aα ⊆ ω: α < κ}.  
 
Fix a generic extension M* = M[{aα ⊆ ω: α < κ}] using this 
notion of forcing. It suffices to show that in M*, for 
every f:℘(ω)n → ℘(ω) there exists A ⊆ ℘(ω) of cardinality 
κ such that fA ≠ ℘(ω).  
 
Let τ be a forcing term representing f in M*. Let p force 
τ:℘(ω)n → ℘(ω), where the condition p is compatible with 
the generic object.  
 
Since κ is a weakly compact cardinal in M, κ is strongly 
inaccessible, and κ → κnω in M. Let σ be one of the finitely 
many possible order types of tuples (α1,...,αn,γ) with γ ≠ 
α1,...,αn. Let E ∈ M, E ⊆ κ, E unbounded, be such that  
 

for all α1,...,αn,γ < κ, (α1,...,αn,γ) of type σ, 
τ(aα1,...,aαn) = aγ is not forced by any extension of p; or 

 
for all α1,...,αn γ < κ, (α1,...,αn,γ) of type σ, 

τ(aα1,...,aαn) = aγ is forced by some extension of p. 
 
Suppose that the latter holds. Let α1,...,αn,γ be of type σ, 
where there are uncountably many γ' such that (α1,...,αn,γ') 
has type σ. Then the corresponding extensions of p must be 
incompatible. This violates the fact that this notion of 
forcing has the countable chain condition in M.  
 
Hence we have  
 

for all α1,...,αn,γ < κ, (α1,...,αn,γ) of type σ, 
τ(aα1,...,aαn) = aγ is not forced by any extension of p 

 
assuming that σ is an order type with last term different 
than all earlier terms. Hence  
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for all α1,...,αn,γ < κ, if γ ≠ α1,...,αn then τ(aα_1,...,aα_n) 
= aγ is not forced by any extension of p. 

 
In M*,  
 

for all α1,...,αn < κ, f(aα_1,...,aα_n) ≠ aα_1,...,aα_n →  
(∀γ ≠ α1,...,αn)(f(aα_1,...,aα_n) ≠ aγ). 

 
Let A = {aα: α ∈ E}. Then in M*, |A| = κ, and  
 

for all x1,...,xn < κ, f(x1,...xn) ≠ x1,...,xn →  
f(x1,...,xn) ∉ A. 

 
Clearly min(A) ∉ f(A\{min(A)}). QED 
 
THEOREM 1.4.8. The Thin Set Theorem fails on 
(SAFCN(ℜ3,ℜ),NOPSUB(ℜ)), (CSAFCN(ℜ3,ℜ),UNOPSUB(ℜ)). If the 
continuum hypothesis holds then the Thin Set Theorem fails 
on (FCN(ℜ2,ℜ),cSUB(ℜ)). 
 
Proof: Let f:ℜ3 → ℜ be given by f(x,y,z) = 1/(x-y) + 1/(x-
z) if defined; 0 otherwise. Then f is semialgebraic. Let 
a,b ∈ ℜ, a < b. We claim that f[(a,b)] = ℜ. To see this, 
let u ∈ ℜ. Fix x ∈ (a,b). We can find y,z ∈ (a,b) such that 
1/(x-y) and 1/(x-z) are any two reals with sufficiently 
large absolute values. Hence we can find y,z ∈ (a,b) such 
that f(x,y,z) = u.  
 
Let f:ℜ3 → ℜ be given by x(y-z). Then f is continuous and 
semialgebraic. Let A be an unbounded open subset of ℜ. We 
claim that fS = ℜ. To see this, let u ∈ ℜ. Let (a,b) ⊆ A, 
where a < b. Choose z ∈ A such that |z| > |u/(b-a)|. Then 
|u/z| < b-a. Let x,y ∈ (a,b), where x-y = u/z. Then 
f(x,y,z) = u.  
 
The final claim is by Theorem 1.4.4. QED 
 
Note that the counterexamples above are in 3 dimensions. 
 
THEOREM 1.4.9. The Thin Set Theorem holds on 
(SAFCN(ℜ2,ℜ),UNOPSUB(ℜ)). The Thin Set Theorem fails on 
(CSAFCN(ℜ2,ℜ),DEOPSUB(ℜ)) and (RAFCN(ℜ2,ℜ),UNOPSUB(ℜ)). 
 
Proof: Let E ⊆ ℜ2 be semialgebraic. We say that A ⊆ ℜ2 is 
small if and only if (∀x >> 0)(∀y >> x)((x,y) ∉ A). We 
claim that for any disjoint semialgebraic A,B ⊆ ℜ2, A is 
small or B is small. 
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To see this, let A,B ⊆ ℜ2 be pairwise disjoint 
semiaglebraic sets, where A,B are not small. Then 
 

¬(∀x >> 0)(∀y >> x)((x,y) ∉ A). 
¬(∀x >> 0)(∀y >> x)((x,y) ∉ B). 

 
By the o-minimality of the field of real numbers, 
 

(∀x >> 0)¬(∀y >> x)((x,y) ∉ A). 
(∀x >> 0)¬(∀y >> x)((x,y) ∉ B). 

 
Again by o-minimality, 
 

(∀x >> 0)(∀y >> x)((x,y) ∈ A). 
(∀x >> 0)(∀y >> x)((x,y) ∈ B). 

 
This violates A ∩ B = ∅.  
 
For A ⊆ ℜ2, let rev(A) = {(x,y): (y,x) ∈ A}. 
 
We now claim that for any three pairwise disjoint 
semialgebraic A,B,C ⊆ ℜ2,  
 

A and rev(A) is small; or 
B and rev(B) is small; or 
C and rev(C) is small. 

 
To see this, by the previous claim, among every pair of 
sets drawn from A,B,C, at least one is small. Hence at 
least two among A,B,C are small. By symmetry, assume A,B 
are small. Note that rev(A),rev(B) are disjoint and 
semialgebraic. Hence rev(A) is small or rev(B) is small. 
This establishes the claim.  
 
For the first claim of the Theorem, let f:ℜ2 → ℜ be 
semialgebraic. Consider f-1(0),f-1(1),... . These sets are 
semialgebraic and pairwise disjoint. By the above, we see 
that there exist infinitely many i such that f-1(i) and 
rev(f-1(i)) are small.  
 
Also note that for all i ≥ 0, f-1(i) contains all (x,x), x 
sufficiently large, or excludes all (x,x), x sufficiently 
large. Because of mutual disjointness, all but at most one 
f-1(i) has the property that it excludes all (x,x), x 
sufficiently large.  
 
It is now clear that we can fix i such that  
 



 308 

f-1(i) is small. 
rev(f-1(i)) is small. 

f-1(i) excludes (x,x), x sufficiently large. 
 
Let B = f-1(i). We now construct an unbounded open A ⊆ ℜ 
which is disjoint from B.  
 
We have 
 

(∀x >> 0)(∀y >> x) 
(x,y) ∉ B ∧ (y,x) ∉ B ∧ (x,x) ∉ B. 

 
Fix b > 0 such that  
 

(∀x ≥ b)(∀y >> x) 
(x,y) ∉ B ∧ (y,x) ∉ B ∧ (x,x) ∉ B. 

 
Let f:(b,∞) → ℜ be semialgebraic such that  
 

1) (∀x ≥ b)(∀y ≥ f(x)) 
(x,y) ∉ B ∧ (y,x) ∉ B ∧ (x,x) ∉ B ∧ f(x) > x. 

 
Then f is eventually strictly increasing. Let f be strictly 
increasing on [c,∞), c > b.  
 
We now define real numbers c = c0 < c1 < ... as follows. 
 
Define c0 = c. Suppose c0 < ... < ci have been defined, i ≥ 
0. Define ci+1 = f(ci)+1.  
 
For all i ≥ 0, let ε(i) ∈ (0,1) be so small that B ∩ 
(ci,ci+ε(i))2 = ∅. We can find ε(i) since the ordered pair 
(ci,ci) ∉ B and B is closed.  
 
By 1), for all 0 ≤ i < j and x ∈ (ci,ci+1), y ∈ (cj,cj+1), we 
have (x,y) ∉ B ∧ (y,x) ∉ B ∧(y,y) ∉ B. Hence B is disjoint 
from A2, where A = (c0,c0+ε(0)) ∪ (c1,c1+ε(1)) ∪ ... is an 
unbounded open set.     
 
For the second claim of the Theorem, let A be a dense open 
subset of ℜ. It suffices to show that A-A = ℜ. Let x ∈ ℜ 
and [a,b] ⊆ A, a < b. Since A is dense, let y ∈ [a+x,b+x], 
y ∈ A.  Then y-x ∈ [a,b], and so y-x ∈ A. Hence x = y-(y-x) 
demonstrates that x ∈ A-A.  
 
For the final claim of the Theorem, let f:ℜ2 → ℜ be given 
by f(x,y) = x sin(xy). Then f is real analytic. Let A be an 
unbounded open subset of ℜ and z ∈ ℜ. Let (a,b) ⊆ A, a < 
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b. Choose x ∈ A with |x| > |z| so large that (xa,xb) ∪ 
(xb,xa) contains a closed interval of length 2π. Then as y 
varies in (a,b), the quantity sin(xy) takes on any value 
from –1 to 1. Hence as y varies in (a,b), x sin(xy) takes 
on any value from -|x| to |x|. In particular, it takes on 
the value z. Therefore fA = ℜ. QED    
 
Note that in the above development, no distinction between 
BFCN*(ℜ*,ℜ) and SAFCN(ℜ*,ℜ) has arisen. Also no 
distinction between C1FCN(ℜ*,ℜ), C∞FCN(ℜ*,ℜ), RAFCN(ℜ,ℜ), 
and CSAFCN(ℜ*,ℜ) has arisen. We suspect that important 
distinctions will arise as BRT is further developed. 
 
We provide a tabular display of the results in Theorems 
1.4.5-1.4.9. We first transcribed the information contained 
there, where + means that the Thin Set Theorem holds, - 
means that the Thin Set Theorem fails, and ? means that the 
Thin Set Theorem is independent of ZFC. We then filled in 
the remaining entries by immediate inference using obvious 
inclusion relations between the various classes of 
functions and the various classes of sets. 
 
     cSUB UNCLSUB  NOPSUB  UNOPSUB DEOPSUB FMOPESUB CCOPSUB FCSUB ≤1CSUB 
 
FCN(ℜ,ℜ)      +   -     -    -     -     -     -    -   -       
BFCN(ℜ,ℜ)     +   +     -    -     -     -     -    -   - 
CFCN(ℜ,ℜ)     +   +     +    +     +     +     -    -   - 
C1FCN(ℜ,ℜ)    +   +     +    +     +     +     +    -   - 
C∞FCN(ℜ,ℜ)    +   +     +    +     +     +     +    -   - 
RAFCN(ℜ,ℜ)    +   +     +    +     +     +     +    -   - 
SAFCN(ℜ,ℜ)    +   +     +    +     +     +     +    +   - 
CSAFCN(ℜ,ℜ)   +   +     +    +     +     +     +    +   + 
FCN(ℜ*,ℜ)     ?   -     -    -     -     -     -    -   - 
FCN(ℜ2,ℜ)     ?   -     -    -     -     -     -    -   - 
BFCN(ℜ*,ℜ)    +   +     -    -     -     -     -    -   -     
CFCN(ℜ*,ℜ)    +   +     +    -     -     -     -    -   - 
C1FCN(ℜ*,ℜ)   +   +     +    -     -     -     -    -   - 
C∞FCN(ℜ*,ℜ)   +   +     +    -     -     -     -    -   - 
RAFCN(ℜ*,ℜ)   +   +     +    -     -     -     -    -   - 
RAFCN(ℜ2,ℜ)   +   +     +    -     -     -     -    -   - 
SAFCN(ℜ*,ℜ)   +   +     -    -     -     -     -    -   - 
SAFCN(ℜ3,ℜ)   +   +     -    -     -     -     -    -   - 
SAFCN(ℜ2,ℜ)   +   +     +    +     -     -     -    -   - 
CSAFCN(ℜ*,ℜ)  +   +     +    -     -     -     -    -   -              
CSAFCN(ℜ3,ℜ)  +   +     +    -     -     -     -    -   - 
CSAFCN(ℜ2,ℜ)  +   +     +    +     -     -     -    -   - 
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CHAPTER 2 
CLASSIFICATIONS 
 
2.1. Methodology. 
2.2. EBRT, IBRT in A,fA. 
2.3. EBRT, IBRT in A,fA,fU. 
2.4. EBRT in A,B,fA,fB,⊆ on (SD,INF). 
2.5. EBRT in A,B,fA,fB,⊆ on (ELG,INF). 
2.6. EBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF). 
2.7. IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF),(ELG,INF), 
(MF,INF). 
 
In this Chapter, we treat several significant BRT 
fragments. For most of these BRT fragments, we show that 
every statement is either provable or refutable in RCA0. 
 
For the remainder of these BRT fragments, we show that 
every statement is either provable in RCA0, refutable in 
RCA0, or provably equivalent to the Thin Set Theorem of 
section 1.4 over RCA0. 
 
Thus in this Chapter, we do not run into any independence 
results from ZFC. In the classification of Chapter 3, we do 
run into a statement independent of ZFC, called the 
Principal Exotic Case, which is the focus of the remainder 
of the book.  
 
In this Chapter, we focus on five BRT settings (see 
Definition 1.1.11). These fall naturally, in terms of their 
observed BRT behavior, into three groups (see Definitions 
1.1.2, and 2.1): 
 

(SD,INF), (ELG ∩ SD,INF). 
(ELG,INF), (EVSD,INF). 

(MF,INF). 
 
The inclusion diagram for these five sets of multivariate 
functions is  
 

ELG ∩ SD 
SD ELG 
EVSD 
MF 
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Here each item in any row is properly contained in any item 
in any lower row. Multiple items on any row are 
incomparable under inclusion.  
 
(SD,INF), (ELG,INF), and (MF,INF) are the most natural of 
these five BRT settings. The remaining two BRT settings are 
closely associated, and serve to round out the theory. 
 
MF (multivariate functions), SD (strictly dominating), and 
INF (infinite) were defined in section 1.1 in connection 
with the Complementation Theorem and the Thin Set Theorem. 
 
DEFINITION 2.1. Let f ∈ MF. We say that f is of expansive 
linear growth if and only if there exist rational constants 
c,d > 1 such that for all but finitely many x ∈ dom(f), 
 

c|x| ≤ f(x) ≤ d|x| 
 
where |x| is the maximum coordinate of the tuple x. Let ELG 
be the set of all f ∈ MF of expansive linear growth.  
 
DEFINITION 2.2. Let f ∈ MF. We say that f is eventually 
strictly dominating if and only if for all but finitely 
many x ∈ dom(f), f(x) > |x|. We write EVSD for the set of 
all f ∈ MF that are eventually strictly dominating.  
 
In this Chapter, the two asymptotic BRT settings (ELG,INF), 
(EVSD,INF), have the same behavior, whereas the two non 
asymptotic BRT settings (SD,INF), (ELG ∩ SD,INF), also have 
the same behavior. In this Chapter, the behavior of 
(ELG,INF), (EVSD,INF) differs from the behavior of 
(SD,INF), (ELG ∩ SD,INF). In this Chapter, (MF,INF) behaves 
differently from the other four settings.  
 
2.1. Methodology. 
 
In this section, we use notation and terminology that was 
introduced in section 1.1.  
 
Recall the definitions of  
 
BRT fragment. Definition 1.1.18. 
BRT environment. Definition 1.1.19. 
BRT signature. Definition 1.1.21. 
flat BRT fragment. Definition 1.1.34. 
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In Definition 1.1.39, the flat BRT fragments were divided 
into these four mutually disjoint categories:  
 
1) EBRT in σ on (V,K), where σ does not end with ⊆. 
2) EBRT in σ on (V,K), where σ ends with ⊆. 
3) IBRT in σ on (V,K), where σ does not end with ⊆. 
4) IBRT in σ on (V,K), where σ ends with ⊆. 
 
Let α be a flat BRT fragment, and let S be an α format; 
i.e., a set of α elementary inclusions. According to 
Definition 1.39, we say that S is α correct if and only if  
 
1’) (∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(S). 
2’) (∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(S). 
3’) (∃g1,...,gn ∈ V)(∀B1,...,Bm ∈ K)(S). 
4’) (∃g1,...,gn ∈ V)(∀B1 ⊆ ... ⊆ Bm ∈ K)(S). 
 
where we use 1’),2’),3’),4’) according to whether α is in 
category 1),2),3),4).  
 
For example, the Thin Set Theorem is the negation of a 
statement of the form 3').  
 
In the case of EBRT and IBRT in A,fA on any given setting, 
there are 16 formats, and hence 16 statements of forms 
1',3', respectively, that have to be considered. This is 
such a small number that we can profitably list all of 
these statements, and determine their truth values. We do 
this in section 2.2. 
 
In the case of EBRT and IBRT on A,fA,fU on any given 
setting, there are 256 formats, and hence at most 256 
statements that have to be considered. Actually, a closer 
look shows that there are only 6 elementary inclusions, 
generating only 26 = 64 formats. In section 2.3, we list 
these formats in order of increasing cardinality. This 
avoids considerable duplication of work. This method of 
compilation is seen to be perfectly manageable in section 
2.3.  
 
In the case of EBRT and IBRT on A,B,fA,fB, there are 216 = 
65,536 formats, and hence 65,536 statements that have to be 
considered. We do not attempt to work with A,B,fA,fB here. 
 
In sections 2.4 - 2.7, we instead work with A,B,fA,fB,⊆. 
There are 9 elementary inclusions, and so 29 = 512 formats 
need be considered. This is considerably less than 65,536. 
Here a treelike methodology is preferable to the 
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enumeration procedure used in section 2.3. We expect the 
treelike methodology to be the method of choice when 
analyzing richer BRT fragments.  
 
We treat EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG,INF) in 
sections 2.4, 2.5. We treat EBRT in A1,...,Ak,fA1,...,fAk,⊆ 
on (MF,INF) in section 2.6. We treat IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG,INF), (MF,INF) in 
section 2.7.  
 
The most substantial uses of the treelike methodology are 
in sections 2.4 and 2.5. We believe that EBRT in A,B,fA,fB 
on (MF,INF), (SD,INF), (ELG,INF) can be treated using this 
treelike methodology, but with considerably more effort.  
 
In this section, we rigorously present this treelike 
methodology and establish some important facts about it. 
 
Fix a flat BRT fragment α. Let S be an α format. Let 1 ≤ i ≤ 
4 be such that α is in category i) above. We also fix a 
true formal system T that includes RCA0. We assume that α is 
given a description in T.   
 
According to Definition 1.1.42, we say that S is α,T 
correct if and only if T proves that S is α correct. We say 
that S is α,T incorrect if and only if T refutes that S is 
α correct.  
 
According to Definition 1.43, we say that α is T secure if 
and only if every α format is α,T correct or α,T incorrect.  
 
The goal of the treelike methodology is  
 
a) to show that α is T secure. 
b) to list all maximal α,T correct formats; i.e., α,T 
correct α formats that are not properly included in any α,T 
correct α format.  
 
Note the following obvious but crucial property of α,T 
correct/incorrect α formats: 
 

Every subset of an α,T correct α format is α,T correct.  
Every α format that contains an α,T incorrect format  

is α,T incorrect.  
 
Goal b) is preferable to listing all α,T correct α formats, 
as the latter may be uncomfortably numerous, or even 
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impractically enormous, whereas the former may be very 
manageable in size.  
 
The challenge is to show that our treelike methodology does 
in fact rigorously justify the claim that we have actually 
established a) and done b). In other words, we need to 
justify that  
 
i. The α formats listed under b) are indeed α,T correct, 
and are incomparable under inclusion. 
ii. Any α format not included in any of those listed under 
b) is α,T incorrect. 
 
Some readers may be content with examining the 
classifications made in sections 2.4, 2.5, and absorbing 
the methodology from the displays. When the significance of 
some features are not apparent, the reader can look at the 
formal treatment of the methodology presented below.  
 
Let α be a flat BRT fragment with BRT setting (V,K). Recall 
the definition of α formulas (Definition 1.1.25). 
 
DEFINITION 2.1.1. We say that an α formula is α,T valid if 
and only if, it is provable in T that it holds for all 
values of the function variables from V and all values of 
the set variables from K. In case the signature of α ends 
with ⊆, the values of the set variables, in increasing 
order of subscripts, are assumed to form a tower under 
inclusion.  
 
DEFINITION 2.1.2. An α worklist is a two part finite 
sequence  
 

(ϕ1,...,ϕr;ψ1,...,ψs) 
 
where r,s ≥ 0, and ϕ1,...,ϕr,ψ1,...,ψs are α inclusions.  
 
DEFINITION 2.1.3. The formats of an α worklist are the α 
formats that include {ϕ1,...,ϕr} and are included in 
{ϕ1,...,ϕr,ψ1,...,ψs).  
 
DEFINITION 2.1.4. We say that a worklist 
(ϕ1,...,ϕr;ψ1,...,ψs) is α,T secure if and only if for all 
{ϕ1,...,ϕr} ⊆ S ⊆ {ϕ1,...,ϕr,ψ1,...,ψs}, S is α,T correct or 
α,T incorrect.  
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Informally, the goal of an α worklist is to constructively 
verify that it is α,T secure, in the sense of determining 
the α,T correctness or α,T incorrectness of all α formats. 
 
Sometimes we want to replace one worklist with a simpler 
worklist, without altering its goal. Here are some 
reduction operations that are very useful.  
 
Let W = {ϕ1,...,ϕr;ψ1,...,ψs). 
 
i. We can replace ϕ1,...,ϕr with any ϕ1',...,ϕp' such that 
(ϕ1 ∧ ... ∧ ϕr) ↔ (ϕ1' ∧ ... ϕp') is α,T valid.   
 
ii. We can replace any ψi by ψi', where (ϕ1 ∧ ... ∧ ϕr) → 
(ψi ↔ ψi') is α,T valid.  
 
iii. We can remove any ψi such that (ϕ1 ∧ ... ∧ ϕr) → ψi is 
α,T valid. 
 
iv. We can remove any ψi such that (ϕ1,...,ϕr;ψi) is α,T-
incorrect. 
 
v. We can remove duplicates among ψ1,...,ψs. 
 
vi. We can permute the ψ1,...,ψs. 
 
DEFINITION 2.1.5. α,T reduction consists of performing any 
finite number of the above operations in succession.  
 
This notion of α,T reduction corresponds to what happens in 
the classifications in sections 2.4, 2.5. For instance, 
consider LIST 1.2.1 in section 2.4.  
 
Here the BRT fragment α is EBRT in A,B,fA,fB,⊆ on (SD,INF), 
and T is RCA0. This displays the worklist (A ∩ fA = ∅, A ∩ 
fB = ∅, fA ⊆ B; B ∪ fB = N, B ⊆ A ∪ fB, fB ⊆ B ∪ fA, B ∩ 
fB ⊆ A ∪ fA). This gets reduced to the worklist displayed 
by LIST 1.2.1.*, which is the worklist (A ∩ fA = ∅, A ∩ fB 
= ∅, fA ⊆ B; B ∪ fB = N, B ⊆ A ∪ fB, B ∩ fB ⊆ fA).   
 
Here we have merely eliminated fB ⊆ B ∪ fA from the second 
half of LIST 1.2.1, since Lemma 2.4.4 tells us that (A ∩ fB 
= ∅; fB ⊆ B ∪ fA) is α,T incorrect.   
 
LEMMA 2.1.1. Let α be a flat BRT fragment, and T be a true 
theory with a presentation of α. Suppose W = 
(ϕ1,...,ϕr;ψ1,...,ψs) α,T reduces to W' = 
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(ϕ1’,...,ϕp’;ψ1’,...,ψq’). Then W is α,T secure if and only 
if W' is α,T secure.  
 
Proof: It suffices to show that α,T security is preserved 
under each of the operations i-vi. Let one of the 
operations send worklist W to worklist W'. In cases 
i,ii,iii,v,vi, evidently every α format for W is α,T 
equivalent to some α format for W', and vice versa.  
 
It remains to consider operation iv. We have W = 
(ϕ1,...,ϕr;ψ1,...,ψs), W' = (ϕ1,...,ϕr;ψ1,...,ψi-

1,ψi+1,...,ψs), where W' is α,T secure. Let {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs}. If ψi ∈ S then S is α,T incorrect. If 
ψi ∉ S then S is a format for Wi', and so S is α,T correct 
or α,T incorrect. QED 
 
It is simpler to use sequences instead of sets. 
Accordingly, let W = (ϕ1,...,ϕr;ψ1,...,ψs) be an α worklist.  
 
DEFINITION 2.1.6. A subsequence for W is a subsequence of 
the sequence (ϕ1,...,ϕr,ψ1,...,ψs) that begins with 
ϕ1,...,ϕr, and which includes the underlying subsequence of 
positions 1,...,r,...,r+s. This is very useful for handling 
all sorts of repetitions in worklists.  
 
DEFINITION 2.1.7. A finite sequence of α elementary 
inclusions is said to be α,T correct (α,T incorrect) if and 
only if its set of terms is α,T-correct (α,T incorrect).    
 
LEMMA 2.1.2. Let α be a flat BRT fragment, and T be a true 
theory with a presentation of α. Let an α,T reduction of W 
= (ϕ1,...,ϕr;ψ1,...,ψs) to W' = (ϕ1',...,ϕp';ψ1,...,ψq') be 
given. Let the list of maximal α,T correct subsequences for 
W' be given (together with proofs in T). We can efficiently 
generate the list of maximal α,T correct subsequences for W 
(together with proofs in T). Furthermore, these two lists 
have the same number of sequences.  
 
Proof: We can assume that we have W = (ϕ1,...,ϕr;ψ1,...,ψs) 
that is α,T reduced to W' = (ϕ1',...,ϕp';ψ1',...,ψq') by any 
one of the reductions i-v. 
 
case i. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs) and W' = 
(ϕ1',...,ϕp';ψ1,...,ψs). Let f be the obvious one-one 
correspondence between subsequences for W and subsequences 
for W'. Then for every α sequence τ for W, τ and f(τ) are 
α,T equivalent. It is now evident that τ is α,T correct if 
and only if f(τ) is α,T correct. It is then evident that τ 
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is maximally α,T correct for W if and only if f(τ) is 
maximally α,T correct for W'.  
 
case ii. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs) and W' = 
(ϕ1,...,ϕr;ψ1,...,ψi-1,ψi',ψi+1,...,ψs). Let f be the obvious 
one-one correspondence between subsequences for W and 
subsequences for W', based on corresponding positions. Then 
for every α sequence τ for W, τ and f(τ) are α,T equivalent. 
As in case i, τ is maximally α,T correct for W if and only 
if f(τ) is maximally α,T correct for W'.  
 
case iii. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs), W' = 
(ϕ1,...,ϕr;ψ1,...,ψi-1,ψi+1,...,ψs). Let f be the obvious map 
from subsequences for W to subsequences for W' defined by 
ignoring ψi; i.e., as position r+i. Note that f is not one-
one. However, the restriction g of f to the τ with ψi (as 
position r+i) is one-one, and for all τ ∈ dom(g), τ and g(τ) 
are α,T equivalent. Since (ϕ1 ∧ ... ∧ ϕr) → ψi is α,T valid, 
all maximal α,T correct subsequences for W have ψi (as 
position r+i). It is now evident that g is a one-one 
correspondence between the maximal α,T correct subsequences 
for W and the maximal α,T correct subsequences for W'.  
 
case iv. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs), W' = 
(ϕ1,...,ϕr;ψ1,...,ψi-1,ψi+1,...,ψs). Note that the α,T correct 
subsequences for W are identical to the α,T correct 
subsequences for W', since ψi cannot be present.  
 
cases v-vi. Left to the reader.  
 
QED   
 
LEMMA 2.1.3. Let α be a flat BRT fragment, and T be a true 
theory with a presentation of α. Let an α,T reduction of W 
= (ϕ1,...,ϕr;ψ1,...,ψs) to W' = (ϕ1',...,ϕp';ψ1,...,ψq') be 
given. Let the list of maximal α,T correct formats for W' 
be given (together with proofs in T). We can efficiently 
generate the list of maximal α,T correct formats for W 
(together with proofs in T). Furthermore, these two lists 
have the same number of formats. W is α,T secure if and 
only if W' is α,T secure.  
 
Proof: This is the same as Lemma 2.1.2, except that we are 
using subsets (formats) instead of subsequences. It 
suffices to observe that the maximal α,T correct sequences 
for W are exactly the subsequences for W whose set of terms 
is an α,T correct format for W. The last claim is by Lemma 
2.1.2. QED 
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T CLASSIFICATIONS FOR BRT FRAGMENTS 

 
DEFINITION 2.1.8. The starred α worklists are the α 
worklists with a * appended at the end. 
 
DEFINITION 2.1.9. We say that TREE is a T classification 
for α if and only if α is a flat BRT fragment, T is a true 
theory extending RCA0 which adequately defines the BRT 
setting of α, and TREE is a finite labeled tree with the 
properties given below.   
 
1. The root of TREE is labeled by an α worklist 
(;δ1,...,δt), where the δ’s list all α elementary inclusions 
without repetition. 
 
2. Suppose a vertex v is labeled (ϕ1,...,ϕr;ψ1,...,ψs), where 
v is not terminal. Then v has exactly one son w. The label 
of w is some (ϕ1’,...,ϕp’;ψ1’,...,ψq’)*, where  
 

(ϕ1,...,ϕr;ψ1,...,ψs) is α,T reducible to 
(ϕ1’,...,ϕp’;ψ1’,...,ψq’). 

ϕ1',...,ϕp',ψ1',...,ψq' are distinct. 
 
In sections 2.4, 2.5, note that the worklists whose names 
don't end with * are immediately followed by those which 
do, and the succeeding worklists with * are obtained by α,T 
reduction.  
 
3. Suppose a vertex v is labeled (ϕ1,...,ϕr;ψ1,...,ψs)*, 
where v is not terminal. Then there exists 1 ≤ i ≤ s such 
that v has exactly i sons w1,...,wi, with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 

 
respectively, where wi is terminal, and w1,...,wi-1 are not 
terminal.  
 
4. Suppose the vertex v is terminal, with label 
(ϕ1,...,ϕr;ψ1,...,ψs) or (ϕ1,...,ϕr;ψ1,...,ψs)*. Then 
{ϕ1,...,ϕr,ψ1,...,ψs} is α,T correct. 
 
This completes Definition 2.1.7.  
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We want to show that if we have a T classification for α, 
then α is T secure.  
 
LEMMA 2.1.4. Let TREE be a T classification for α. Then α 
is T secure and the number of maximally α,T correct α 
formats is at most the number of terminal vertices of T.  
 
Proof: We prove the following by induction on TREE. Let v 
be a vertex of TREE whose label is the worklist W (or W*). 
Then W is α,T secure, and the number of maximal α,T correct 
formats for W is the number of terminal vertices from v; 
i.e., the number of terminal vertices that descend from v, 
including v.  
 
case 1. v is a terminal vertex of TREE. Let the label of v 
be (ϕ1,...,ϕr;ψ1,...,ψs) or (ϕ1,...,ϕr;ψ1,...,ψs)*. Then 
(ϕ1,...,ϕr,ψ1,...,ψs) is α,T correct. Hence 
{ϕ1,...,ϕr;ψ1,...,ψs) is α,T secure. The number of maximal 
α,T correct formats for (ϕ1,...,ϕr;ψ1,...,ψs) is 1.  
 
case 2. Suppose v has label (ϕ1,...,ϕr;ψ1,...,ψs), and is 
nonterminal. Then v has exactly one son, w, labeled 
(ϕ1’,...,ϕp’;ψ1’,...,ψq’)*. Suppose (ϕ1’,...,ϕp’;ψ1’,...,ψq’) 
is α,T secure. Suppose the number of maximal α,T correct 
formats for (ϕ1’,...,ϕp’;ψ1’,...,ψq’) is at most the number 
of terminal vertices from w. The label of w is some 
(ϕ1’,...,ϕp’;ψ1’,...,ψq’)*, where  
 

(ϕ1’,...,ϕp’;ψ1’,...,ψq’) is an α,T reduction of  
(ϕ1,...,ϕr;ϕ1,...,ϕs). 

 
By the induction hypothesis, (ϕ1’,...,ϕp’;ψ1’,...,ψq’) is 
α,T secure. Hence by Lemma 2.1.3, (ϕ1,...,ϕr;ψ1,...,ψs) is 
α,T secure. Also by Lemma 2.1.3, the number of maximal α,T 
correct formats is preserved.  
  
case 3. Suppose v has label (ϕ1,...,ϕr;ψ1,...,ψs)*, where v 
is not terminal. Let 1 ≤ i ≤ s, where v has exactly i sons, 
w1,...,wi, with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 

 
respectively, where wi is terminal. Suppose each of these 
labels is α,T secure. Suppose for each 1 ≤ j ≤ i, the number 
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of maximal α,T correct formats for (ϕ1,...,ϕr,ψj;ψj+1,...,ψs) 
is the number of terminal vertices from wj.  
 
Note that {ϕ1,...,ϕr,ψi;ψi+1,...,ψs} is α,T correct, and so 
automatically α,T secure. Also note that ϕ1,...,ϕr,ψ1,...,ψs 
are distinct.  
 
Let {ϕ1,...,ϕr} ⊆ S ⊆ {ϕ1,...,ϕr,ψ1,...,ψs}. Suppose first 
that S ∩ {ψ1,...,ψi} ≠ ∅. Let 1 ≤ j ≤ i be least such that 
ψj ∈ S. Then {ϕ1,...,ϕr,ψj} ⊆ S ⊆ {ϕ1,...,ϕr,ψj+1,...,ψs}. By 
the induction hypothesis, (ϕ1,...,ϕr,ψj;ψj+1,...,ψs) is α,T 
secure. Hence S is α,T correct or α,T incorrect.   
 
Now suppose that S ∩ {ψ1,...,ψi} = ∅. Then S ⊆ 
{ϕ1,...,ϕr,ψi+1,...,ψs}. Hence S is α,T correct.  
 
Now let S be maximal so that {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs} and S is α,T correct. Suppose first 
that S ∩ {ψ1,...,ψi} ≠ ∅. Let 1 ≤ j ≤ i be least such that 
ψj ∈ S. Then {ϕ1,...,ϕr,ψj} ⊆ S ⊆ {ϕ1,...,ϕr,ψj+1,...,ψs}. In 
fact, S is maximal such that {ϕ1,...,ϕr,ψj} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψj+1,...,ψs}.  
 
Now suppose that S ∩ {ψ1,...,ψi} = ∅. Then S ⊆ 
{ϕ1,...,ϕr,ψi+1,...,ψs}. Hence S = {ϕ1,...,ϕr,ϕi+1,...,ψs}.  
 
Hence the number of maximal α,T correct formats for 
(ϕ1,...,ϕr;ψ1,...,ψs) is at most the sum over 1 ≤ j ≤ i of 
the number of maximal α,T correct formats for the label of 
wj. By the induction hypothesis, the number of maximal α,T 
correct formats for the label of wj is at most the number of 
terminal vertices from wj. Hence the number of maximal α,T 
correct formats for (ϕ1,...,ϕr;ψ1,...,ψs) is at most the 
number of terminal vertices from v.  
 
This concludes the induction argument. Now apply the result 
to the label of the root. QED 
 
THEOREM 2.1.5. Let α be a flat BRT fragment, and T be a 
true theory with a presentation of α. Then α is T secure if 
and only if there is a T classification for α. Let TREE be 
a T classification for α. The number of maximally α,T 
correct α formats is at most the number of terminal 
vertices of T.  
 
Proof: Let α,T be as given. By Lemma 2.1.4, we need only 
show that if α is T secure, then there is a T 
classification for α.  
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Assume α is T secure. We build TREE as follows. The 
construction will be such that any vertex whose label is 
starred is not terminal.  
 
Create the root of T, with label (;δ1,...,δr), where δ1,...,δr 
is a listing, without repetition, of the α elementary 
inclusions.  
 
Suppose we have constructed the vertex v of TREE with label 
W = (ϕ1,...,ϕr;ψ1,...,ψs). If {ϕ1,...,ϕr,ψ1,...,ψs} is α,T 
correct, then v is terminal. Otherwise, we apply α,T 
reductions iii,iv,v to W, as much as possible, as well as 
removing duplicates among ϕ1,...,ϕr. Let the result be the 
worklist W'. We create the single son w of v, with label 
W*. Clearly W' is not α,T correct.  
 
Suppose we have constructed the vertex v of TREE with label 
W* = (ϕ1,...,ϕr;ψ1,...,ψs)*. If {ϕ1,...,ϕr,ψ1,...,ψs} is α,T 
correct then v is terminal. Suppose {ϕ1,...,ϕr,ψ1,...,ψs} is 
not α,T correct. Then v is not α,T correct. Clearly 
{ϕ1,...,ϕr,ψs} is α,T correct, since otherwise we could 
apply reduction operation iv to (ϕ1,...,ϕr;ψ1,...,ψs), 
contrary to W* being a label of a vertex in TREE.  
 
Let 2 ≤ i ≤ s be smallest such that {ϕ1,...,ϕr,ψi,...,ψs} is 
α,T correct. Create i sons with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 

 
respectively, where wi is terminal. Vertices w1,...,wi-1 are 
not terminal.  
 
This construction must terminate since  
 
a. The clause applying to non starred vertices that are not 
terminal, creates a single son whose label has the same 
number of entries to the right of the semicolon. 
 
b. The clause applying to starred vertices v that are not 
terminal, creates sons w1,...,wi, where for all j, the 
number of entries to the right of the label of wj is less 
than the number of entries to the right of the label of v. 
 
QED 
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THEOREM 2.1.6. Let α be a flat BRT fragment, and T be a 
true theory with a presentation of α. Let TREE be a T 
classification for α. We can efficiency list all of the 
maximal α,T correct formats.  
 
Proof: Let α,T,TREE be as given. For each worklist for 
vertices in TREE, (ϕ1,...,ϕr;ψ1,...,ψs), we construct a list 
of the maximal α,T correct formats S with {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs}. We do this by recursion, starting at 
the terminal vertices, towards the root, ending at the 
root. At terminal vertices, there is exactly one maximal 
α,T correct S. At nonterminal non starred vertices, apply 
the procedure from Lemma 2.1.3.  
 
Now let (ϕ1,...,ϕr;ψ1,...,ψs) be the worklist at a 
nonterminal starred vertex. Let 1 ≤ i ≤ s be such that the 
vertex has the i sons with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 

 
respectively, where wi is terminal. Vertices w1,...,wi-1 are 
not terminal.  
 
We already have the i lists of maximal α formats associated 
with each of the above i worklists. Clearly every maximal 
α,T correct format S with {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs} must appear in at least one of these 
lists. So we can simply merge these lists of α formats, and 
take their maximal elements. QED 
    
The tree methodology we have presented here is applicable 
to situations that do not involve BRT.  
 
An important application of this tree methodology occurs in 
section 2.7 (see Witness Set List), where we start with a 
list of sets V1,V2,...,Vk, and we want to determine which 
subsets of {V1,...,Vk} have nonempty intersection. Thus the 
notion of “correctness” of subsets of {V1,...,Vk} here is 
“having a nonempty intersection”.  
 
But what takes the place of the notion of reduction used in 
case 2? In the application in section 2.7, we only use the 
elimination of terms, from the second part of a worklist, 
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that is disjoint from the intersection of the terms from 
the first part of that worklist.  
 
This rather pure form of our tree methodology is used to 
prove Theorems 2.7.25 – 2.7.27. 
 
2.2. EBRT, IBRT in A,fA. 
 
This section is intended to be a particularly gentle 
introduction to BRT classification theory. It is wholly 
subsumed by section 2.3. 
 
Recall the five main BRT settings introduced at the 
beginning of this Chapter: (SD,INF), (ELG,INF), (MF,INF), 
(ELG ∩ SD,INF), (EVSD,INF). 
 
We begin with the BRT fragments α =  
 

EBRT in A,fA on these five BRT settings. 
 
As discussed in sections 1.1 and 2.1, classification of 
these BRT fragments amounts to a determination of the true 
α assertions, which take the form  
 

1) (∀f ∈ V)(∃A ∈ K)(ϕ) 
 
where ϕ is an α equation (since we are in the environment 
EBRT).  
 
As discussed in sections 1.1 and 2.1, we work, 
equivalently, with the α statements, which take the form  
 

1’) (∀f ∈ V)(∃A ∈ K)(S) 
 
where S is an α format, interpreted conjunctively.  
 
Recall that in EBRT, S is correct if and only if 1') holds. 
S is incorrect if and only if 1') fails. 
 
In this case of EBRT in A,fA, the number of elementary 
inclusions is 4, and the number of formats is 16.  
 
Since 16 is so small, we might as well list all of the 
formats S. It is most convenient to list the formats S in 
increasing order of their cardinality – which is 0–4.  
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The four A,fA elementary inclusions are as follows. See 
Definition 1.1.36. (These do not depend on the BRT 
environment or BRT setting). 
 

A ∩ fA = ∅. 
A ∪ fA = U. 

A ⊆ fA. 
fA ⊆ A. 

 
According to Definition 1.1.13 of the universal set U in 
BRT settings, we see that on our five BRT settings, U is N. 
 
Before beginning this tabular EBRT classification, we 
organize the nontrivial mathematical facts that we will 
use.  
 
THEOREM 2.2.1. Let f ∈ EVSD and E ⊆ A ⊆ N, where E is 
finite, A is infinite, and E ∩ fE = ∅. Also let D ⊆ N be 
infinite. There exists infinite B such that E ⊆ B ⊆ A, B ∩ 
fB = ∅, and neither A nor D are subsets of B ∪ fB. 
Moreover, this is provable in RCA0. 
 
Proof: Let f,E,A,D be as given. Let n ∈ D be such that  
n > max(E ∪ fE), and |x| ≥ n → f(x) > |x|. Let t > n, t ∈ 
A. We define an infinite strictly increasing sequence n1 < 
n2 ... by induction as follows.  
 
Define n1 = min{m ∈ A: m > t}. Suppose n1 < ... < nk have 
been defined, k ≥ 1. Define nk+1 to be the least element of A 
that is greater than nk and all elements of f(E ∪ 
{n1,...,nk}).  
 
Let B = E ∪ {n1,n2,...} ⊆ A. Clearly B ∩ fB = ∅. Also n,t ∉ 
B, and so A,D are not subsets of B ∪ fB. QED  
 
In the applications of Theorem 2.2.1 to the tabular EBRT  
classification below, we can ignore E,A,D. We just use that 
for all f ∈ EVSD, there exists infinite B ⊆ N such that B ∩ 
fB = ∅. 
 
Here is the other fact that we need. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
We proved the Complementation Theorem in section 1.3 within 
RCA0. 
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A,fA FORMAT OF CARDINALIY 0 
EBRT 
 
The empty format is obviously correct, on all five BRT 
settings. 
 
A,fA FORMATS OF CARDINALITY 1 
EBRT 
 
1.1. A ∩ fA = ∅.  
1.2. A ∪ fA = U. Correct on all five. Set A = N.  
1.3. A ⊆ fA. Incorrect on all five. Set f(x) = 2x+1. 
1.4. fA ⊆ A. Correct on all five. Set A = N.  
 
A,fA FORMATS OF CARDINALITY 2 
EBRT 
 
2.1. A ∩ fA = ∅, A ∪ fA = U. Equivalent to fA = U\A on all 
five.  
2.2. A ∩ fA = ∅, A ⊆ fA. Incorrect on all five. Contains 
1.3.  
2.3. A ∩ fA = ∅, fA ⊆ A. Incorrect on all five. 
2.4. A ∪ fA = U, A ⊆ fA. Incorrect on all five. Contains 
1.3. 
2.5. A ∪ fA = U, fA ⊆ A. Correct on all five. Set A = U.  
2.6. A ⊆ fA, fA ⊆ A. Incorrect on all five. Contains 1.3.  
 
A,fA FORMATS OF CARDINALITY 3 
EBRT 
 
3.1. A ∩ fA = ∅, A ∪ fA = U, A ⊆ fA. Incorrect on all 
five. Contains 1.3.   
3.2. A ∩ fA = ∅, A ∪ fA = U, fA ⊆ A. Incorrect on all 
five. Contains 2.3.  
3.3. A ∩ fA = ∅, A ⊆ fA, fA ⊆ A. Incorrect on all five. 
Contains 1.3. 
3.4. A ∪ fA = U, A ⊆ fA, fA ⊆ A. Incorrect on all five. 
Contains 1.3.  
 
A,fA FORMAT OF CARDINALITY 4 
EBRT 
 
4.1. A ∩ fA = ∅, A ∪ fA = U, A ⊆ fA, fA ⊆ A. Incorrect on 
all five. Contains 1.3.   
 
We now list all of the formats whose status has not been 
determined. We use any stated equivalences that hold on all 
five. 
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1.1. A ∩ fA = ∅. 
2.1. fA = U\A.  
 
We now indicate the status of 1.1, 1.2, for EBRT in A,fA on 
each of our five main BRT settings.  
 
We heavily use the fact that every function in our five 
main BRT settings, with the exception of MF, has infinite 
range. 
 
EBRT in A,fA on (SD,INF)/(ELG ∩ SD,INF) 
 
1.1. A ∩ fA = ∅. Correct on both. See Theorem 2.2.1. 
2.1. fA = U\A. Correct on both. The Complementation 
Theorem.  
 
EBRT in A,fA on (ELG,INF)/(EVSD,INF) 
 
1.1. A ∩ fA = ∅. Correct on both. See Theorem 2.2.1. 
2.1. fA = U\A. Incorrect on both. Let f(x) = 0 if x = 0; 
2x+1 otherwise.  
 
EBRT in A,fA on (MF,INF) 
 
1.1. A ∩ fA = ∅. Incorrect. Let f(x) = x.  
2.1. fA = U\A. Incorrect. Let f(x) = x.  
 
We now make a table from our findings. + indicates that the 
format along left column is α correct, where α is EBRT in 
A,fA on the setting across the top row. – indicates 
otherwise.  
 
               EBRT in A,fA on:  (SD,INF) (ELG ∩ SD,INF) (ELG,INF) (EVSD,INF) (MF,INF)  
 
∅                                 +       +             +         +       +  
A ∩ fA = ∅                        +       +             +         +       - 
A ∪ fA = U                         +        +             +         +       + 
A ⊆ fA                             -        -             -         -       - 
fA ⊆ A                             +        +             +         +       + 
A ∩ fA = ∅, A ∪ fA = U            +        +             -         -       - 
A ∩ fA = ∅, A ⊆ fA                -        -             -         -       - 
A ∩ fA = ∅, fA ⊆ A                -        -             -         -       - 
A ∪ fA = U, A ⊆ fA                  -        -            -         -      -  
A ∪ fA = U, fA ⊆ A                  +        +            +        +       +  
A ⊆ fA, fA ⊆ A                      -        -            -        -      -   
A ∩ fA = ∅, A ∪ fA = U, A ⊆ fA     -         -           -         -      - 
A ∩ fA = ∅, A ∪ fA = U, fA ⊆ A     -        -            -         -       -  
A ∩ fA = ∅, A ⊆ fA, fA ⊆ A         -        -            -         -       -    
A ∪ fA = U, A ⊆ fA, fA ⊆ A          -        -           -         -       - 
A ∩ fA = ∅,A ∪ fA = U,A ⊆ fA,fA ⊆ A -       -           -         -       -               
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THEOREM 2.2.2. EBRT in A,fA on (SD,INF),(ELG ∩ SD,INF) have 
the same correct formats (or, equivalently, true 
statements, or true assertions). So do EBRT in A,fA on 
(ELG,INF),(EVSD,INF). This is not true of EBRT in A,fA on 
any distinct pair of settings among 
(SD,INF),(ELG,INF),(MF,INF). EBRT in A,fA on all five 
settings, is RCA0 secure.  
 
Proof: Immediate from the above tabular classifications and 
their documentation. This uses the observation that Theorem 
2.2.1 and the Complementation Theorem are provable in RCA0. 
The counterexamples are very explicit. QED 
 
We now come to IBRT in A,fA on the same five BRT settings. 
We investigate the assertions  
 

2) (∀f ∈ V)(∃A ∈ K)(ϕ) 
 
where ϕ is an α inequation (since we are in the environment 
IBRT).  
 
As discussed in sections 1.1 and 2.1, we work, 
equivalently, with the α statements, which take the form  
 

2’) (∃f ∈ V)(∀A ∈ K)(S) 
 
where S is an α format, interpreted conjunctively.  
 
Recall that in IBRT, S is correct if and only if 2') holds. 
S is incorrect if and only if 2') fails. 
 
We again start with the same four A,fA elementary 
inclusions, as these do not depend on the environment.  
 
Before beginning this tabular EBRT classification, we 
organize the nontrivial facts that we will use. Recall the 
Thin Set Theorem from section 1.4. 
 
THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N. 
 
We also need the following variant. 
 
THIN SET THEOREM (variant). For all f ∈ MF there exists A ∈ 
INF such that A ∪ fA ≠ N. 
 
Proof: We derive this variant from the Thin Set Theorem 
(over RCA0). Let f:Nk → N. Define g:Nk+1 → N by 
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g(x1,...,xk+1) = f(x1,...,xk) if xk ≠ xk+1; xk otherwise. By 
the Thin Set Theorem, let A ∈ INF, gA ≠ N. Then gA = A ∪ fA 
≠ N. QED  
 
By the above proof, it is clear that the Thin Set Theorem 
and the Thin Set Theorem (variant) are provably equivalent 
in RCA0.  
 
The system ACA’ (see Definition 1.4.1) is sufficient to 
prove the Thin Set Theorem. Here are the four A,fA 
elementary inclusions. 
 

A ∩ fA = ∅. 
A ∪ fA = U. 

A ⊆ fA. 
fA ⊆ A. 

 
A,fA FORMAT OF CARDINALIY 0 
IBRT 
 
The empty format is obviously correct, on all five BRT 
settings. 
 
A,fA FORMATS OF CARDINALITY 1 
IBRT 
 
1.1. A ∩ fA = ∅. Incorrect on all five. Set A = N. 
1.2. A ∪ fA = U. Incorrect on all five. Thin Set Theorem 
(variant). 
1.3. A ⊆ fA.  
1.4. fA ⊆ A.  
 
A,fA FORMATS OF CARDINALITY 2 
IBRT 
 
2.1. A ∩ fA = ∅, A ∪ fA = U. Incorrect on all five. 
Contains 1.1.  
2.2. A ∩ fA = ∅, A ⊆ fA. Incorrect on all five. Contains 
1.1.   
2.3. A ∩ fA = ∅, fA ⊆ A. Incorrect on all five. Contains 
1.1  
2.4. A ∪ fA = U, A ⊆ fA. Incorrect on all five. Contains 
1.2. 
2.5. A ∪ fA = U, fA ⊆ A. Incorrect on all five. Contains 
1.2. 
2.6. A ⊆ fA, fA ⊆ A. Equivalent to fA = A on all five.  
 
A,fA FORMATS OF CARDINALITY 3 



 329 

IBRT 
 
3.1. A ∩ fA = ∅, A ∪ fA = U, A ⊆ fA. Incorrect on all 
five. Contains 1.1. 
3.2. A ∩ fA = ∅, A ∪ fA = U, fA ⊆ A. Incorrect on all 
five. Contains 1.1.  
3.3. A ∩ fA = ∅, A ⊆ fA, fA ⊆ A. Incorrect on all five. 
Contains 1.1. 
3.4. A ∪ fA = U, A ⊆ fA, fA ⊆ A. Incorrect on all five. 
Contains 1.2.  
 
A,fA FORMAT OF CARDINALITY 4 
IBRT 
 
A ∩ fA = ∅, A ∪ fA = U, A ⊆ fA, fA ⊆ A. Incorrect on all 
five. Contains 1.1. 
 
These are the only formats whose status has not been 
determined. We use equivalences that hold on all five. 
 
1.3. A ⊆ fA.  
1.4. fA ⊆ A. 
2.6. fA = A.  
 
We now indicate the status of 1.3, 1.4, 1.6, for IBRT in 
A,fA on each of our five main BRT settings.  
 
IBRT in A,fA on (SD,INF),(ELG ∩ 
SD,INF),(ELG,INF),(EVSD,INF) 
 
1.3. A ⊆ fA. Incorrect on all four. Theorem 2.2.1.    
1.4. fA ⊆ A. Incorrect on all four. Theorem 2.2.1.  
2.6. fA = A. Incorrect on all four. Theorem 2.2.1. 
 
IBRT in A,fA on (MF,INF) 
 
1.3. A ⊆ fA. Correct. Set f(x) = x.  
1.4. fA ⊆ A. Correct. Set f(x) = x.  
2.6. fA = A. Correct. Set f(x) = x.  
 
Recall that the instances of 2’) are in dual form. I.e., 
they are the negations of the IBRT in A,fA assertions. In 
particular, the Thin Set Theorem and the Thin Set Theorem 
(variant) are assertions in IBRT in A,fA on (MF,INF), and 
therefore negations of statements in IBRT in A,fA on 
(MF,INF).  
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We now make a table from our findings. + indicates that the 
format along left column is α correct, where α is IBRT in 
A,fA on the setting across the top row. – indicates 
otherwise.  
 
               IBRT in A,fA on:  (SD,INF) (ELG ∩ SD,INF) (ELG,INF) (EVSD,INF) (MF,INF)  
 
∅                                 +       +             +         +       +  
A ∩ fA = ∅                        -       -             -         -       - 
A ∪ fA = U                        -        -             -         -       - 
A ⊆ fA                             -        -             -         -      + 
fA ⊆ A                            -        -             -         -       + 
A ∩ fA = ∅, A ∪ fA = U            -        -             -         -       - 
A ∩ fA = ∅, A ⊆ fA                -        -             -         -       - 
A ∩ fA = ∅, fA ⊆ A                -        -             -         -       - 
A ∪ fA = U, A ⊆ fA                  -        -            -         -      -  
A ∪ fA = U, fA ⊆ A                 -        -            -        -       -  
A ⊆ fA, fA ⊆ A                      -        -            -        -      +   
A ∩ fA = ∅, A ∪ fA = U, A ⊆ fA     -         -           -         -      - 
A ∩ fA = ∅, A ∪ fA = U, fA ⊆ A     -        -            -         -       -  
A ∩ fA = ∅, A ⊆ fA, fA ⊆ A         -        -            -         -       -    
A ∪ fA = U, A ⊆ fA, fA ⊆ A          -        -           -         -       - 
A ∩ fA = ∅,A ∪ fA = U,A ⊆ fA,fA ⊆ A -       -           -         -       - 
 
THEOREM 2.2.3. For IBRT in A,fA on (SD,INF),(ELG ∩ SD,INF), 
(ELG,INF),(EVSD,INF), the only correct format is ∅. This is 
not true of IBRT in A,fA on (MF,INF). IBRT in A,fA on each 
of (SD,INF),(ELG ∩ SD,INF),(ELG,INF),(EVSD,INF) is RCA0 
secure. IBRT in A,fA on (MF,INF) is ACA' secure, but not 
ACA0 secure. Every correct format in A,fA on (MF,INF) is 
RCA0 correct. We can replace ACA' here by RCA0 + Thin Set 
Theorem.  
 
Proof: The first two claims are immediate from the given 
tabular classifications. For the third claim, it suffices 
to verify that the incorrectness of 1.1,1.2,1.3,1.4,2.6 on 
these four settings is provable in RCA0. For 1.1, this is 
trivial. For 1.3, 1.4, 2.6, this is from the provability of 
Theorem 2.2.1 in RCA0. For 1.2, this is also from the 
provability of Theorem 2.2.1 in RCA0.  
 
For the fourth claim, note that all correctness 
determinations in IBRT in A,fA on (MF,INF) were given in 
RCA0, and all incorrectness determinations in α = IBRT in 
A,fA on (MF,INF) were given in RCA0 + Thin Set Theorem 
(variant). Thus α is RCA0 + Thin Set Theorem (variant) 
secure, and hence ACA' secure. Since the incorrectness of 
1.2 in α is equivalent, over RCA0, to Thin Set Theorem 
(variant), α is not ACA0 secure. This is because of the 
unprovability of the Thin Set Theorem in ACA0 (see [FS00], 
[CGHJ05]).  
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For the fifth claim, α is RCA0 + Thin Set Theorem secure, 
because of the proof given above of Thin Set Theorem 
(variant) from Thin Set Theorem (over RCA0). QED 
 
An interesting issue is the effect of the arity of the 
functions. The classes SD, ELG ∩ SD, ELG, EVSD, and MF use 
functions of every arity k ≥ 1.  
 
LEMMA 2.2.4. The Thin Set Theorem (variant) for exponent 1 
is provable in RCA0. 
 
Proof: Let f:N → N. If {n: f(n) = 0} is infinite then set A 
= {n: f(n) = 0}. If not, let n > 0 be such that f is 
nonzero on [n,∞). Set A = [n,∞). Then A ∪ fA ≠ N. QED  
 
DEFINITION 2.2.1. For k ≥ 1, let SD[k], (ELG ∩ SD)[k], 
ELG[k], EVSD[k], MF[k] be the restrictions of SD, ELG ∩ SD, 
ELG, EVSD, MF to functions whose domain is Nk.   
 
THEOREM 2.2.5. Let k ≥ 1. EBRT in A,fA on SD[k], (ELG ∩ 
SD)[k], ELG[k], EVSD[k], MF[k], and IBRT in A,fA on SD[k], 
(ELG ∩ SD)[k], ELG[k], EVSD[k], are RCA0 secure. IBRT in 
A,fA on MF[k] is ACA0 secure. IBRT in A,fA on MF[1] is RCA0 
secure. EBRT and IBRT in A,fA on SD[k], (ELG ∩ SD)[k], 
ELG[k], EVSD[k], MF[k] have the same correct formats as 
EBRT and IBRT in SD, ELG ∩ SD, ELG, EVSD, MF, respectively.  
 
Proof: An examination of the arguments immediately reveals 
that all of the incorrectness determinations given for EBRT 
involve unary functions only, and all of the correctness 
determinations given for IBRT also involve unary functions 
only. We can obviously pad these unary functions as k-ary 
functions. IBRT in A,fA on MF[k] is ACA0 secure since the 
Thin Set Theorem (variant) is provable in ACA0 for k-ary 
functions, using the infinite Ramsey theorem for k-tuples. 
By Lemma 2.2.4, IBRT in A,fA on MF[1] is RCA0 secure. QED  
 
2.3. EBRT, IBRT in A,fA,fU. 
 
We redo section 2.2 for the signature A,fA,fU, with the 
same five BRT settings (SD,INF), (ELG ∩ SD,INF), (ELG,INF), 
(EVSD,INF), (MF,INF).  
 
After we treat these five BRT settings, we then treat the 
five corresponding unary BRT settings (SD[1],INF), (ELG[1] 
∩ SD[1],INF), (ELG[1],INF), (EVSD[1],INF), (MF[1],INF). 
These are the same except that we restrict to the 1-ary 
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functions only. There is quite a lot of difference between 
the unary settings and the multivariate settings; this was 
not the case in section 2.2, with just A,fA.  
 
We begin with EBRT in A,fA,fU. The 8 A,fA,fU pre elementary 
inclusions are as follows (see Definition 1.1.35). 
 
A ∩ fA ∩ fU = ∅. 
A ∪ fA ∪ fU = U. 
A ⊆ fA ∪ fU. 
fA ⊆ A ∪ fU. 
fU ⊆ A ∪ fA. 
A ∩ fA ⊆ fU. 
A ∩ fU ⊆ fA. 
fA ∩ fU ⊆ A. 
 
The 6 A,fA,fU elementary inclusions are as follows (see 
Definition 1.1.36). 
 
A ∩ fA = ∅. 
A ∪ fU = U. 
A ⊆ fU. 
fU ⊆ A ∪ fA. 
A ∩ fU ⊆ fA. 
fA ⊆ A.  
 
We will use Theorem 2.2.1, and the Complementation Theorem 
from section 1.3. In fact, we need the following 
strengthening of the Complementation Theorem.  
 
THEOREM 2.3.1. Let f ∈ SD and B ∈ INF. There exists A ∈ 
INF, A ⊆ B, such that A ∩ fA = ∅ and B ⊆ A ∪ fA. Moreover, 
this is provable in RCA0. 
 
Proof: Let f,B be as given. We inductively define A ⊆ B as 
follows. Suppose the elements of A from 0,1,...,n-1 have 
been defined, n ≥ 0. We put n in A if and only if n ∈ B and 
n is not the value of f at arguments from A less than n. 
Then A is as required, using f ∈ SD. QED   
 
THEOREM 2.3.2. For all f ∈ EVSD there exists A ∈ INF such 
that A ∩ fA = ∅, A ∪ fN = N. Moreover, this is provable in 
RCA0. 
 
Proof: Let f ∈ EVSD be k-ary. Let n be such that |x| ≥ n → 
f(x) ≥ |x|. We define A inductively. First put [0,n]\fN in 
A. For m > n, put m in A if and only if m = f(x) for no |x| 
< m. Then [n+1,∞) ⊆ A ∪ fA. Also [0,n] ⊆ A ∪ fA. Hence A ∪ 
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fN = N. Suppose m ∈ A ∩ fA. If m ≤ n then by construction, 
m ∈ [0,n]\fN, contradicting m ∈ fA. Hence m > n. Let m = 
f(x), x ∈ Ak. If |x| ≥ m then f(x) > |x| ≥ m, which is a 
contradiction. Hence |x| < m, and so m ∉ A by construction. 
This contradicts m ∈ A. QED  
 
THEOREM 2.3.3. Let k ≥ 2. There exists k-ary f ∈ ELG ∩ SD 
such that N\fN = {0}. There exists k-ary f ∈ ELG such that 
fN = N.  
 
Proof: For all n ≥ 1, let fn:[2n,2n+1)k → [2n+1,2n+2) be onto. 
Let f be the union of the fn extended as follows. For x not 
yet defined, set f(x) = 1 if |x| = 0; 2 if |x| = 1; 3 if 
|x| = 2; 2|x| if |x| ≥ 3. Then fN = N\{0} and f ∈ ELG ∩ SD. 
Let g be the union of the fn extended as follows. For x not 
yet defined, set f(x) = 0 if |x| = 0; 1 if |x| = 1; 2 if 
|x| = 2; 3 if |x| = 3; 2|x| if |x| ≥ 4. Then fN = N and f ∈ 
ELG. QED 
 

SETTINGS: (SD,INF), (ELG ∩ SD,INF),  
(ELG,INF), (EVSD,INF), (MF,INF). 

 
A,fA,fU FORMAT OF CARDINALITY 0 
EBRT 
 
The empty format is obviously correct, for all five BRT 
settings. 
 
A,fA,fU FORMATS OF CARDINALITY 1 
EBRT 
 
1.1. A ∩ fA = ∅.  
1.2. A ∪ fU = U. Correct on all five. Set A = N.  
1.3. A ⊆ fU.  
1.4. fU ⊆ A ∪ fA. Correct on all five. Set A = N.  
1.5. A ∩ fU ⊆ fA. Correct on all five. Set A = N.  
1.6. fA ⊆ A. Correct on all five. Set A = N.  
 
A,fA,fU FORMATS OF CARDINALITY 2 
EBRT 
 
2.1. A ∩ fA = ∅, A ∪ fU = U.  
2.2. A ∩ fA = ∅, A ⊆ fU.  
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA.  
2.4. A ∩ fA = ∅, A ∩ fU ⊆ fA. Equivalent on all five to A 
∩ fU = ∅. Incorrect on all five. Theorem 2.3.3.  
2.5. A ∩ fA = ∅, fA ⊆ A. Equivalent on all five to fA = ∅. 
Incorrect on all five using any f. 
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2.6. A ∪ fU = U, A ⊆ fU. Equivalent on all five to fU = U. 
Incorrect on all five. Set rng(f) ≠ N. 
2.7. A ∪ fU = U, fU ⊆ A ∪ fA. Correct on all five. Set A = 
N. 
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. Correct on all five. Set A = 
N.  
2.9. A ∪ fU = U, fA ⊆ A. Correct on all five. Set A = N.  
2.10. A ⊆ fU, fU ⊆ A ∪ fA.  
2.11. A ⊆ fU, A ∩ fU ⊆ fA. Equivalent on all five to A ⊆ 
fA. Incorrect on all five. Set f(x) = 2x+1. 
2.12. A ⊆ fU, fA ⊆ A.  
2.13. fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Correct on all five. Set A 
= N. 
2.14. fU ⊆ A ∪ fA, fA ⊆ A. Correct on all five. Set A = N.  
2.15. A ∩ fU ⊆ fA, fA ⊆ A. Correct on all five. Set A = N.  
 
A,fA,fU FORMATS OF CARDINALITY 3 
EBRT 
 
3.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU. Incorrect on all 
five. Contains 2.6.  
3.2. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA. Equivalent to A 
∩ fA = ∅, A ∪ fA = U on all five.   
3.3. A ∩ fA = ∅, A ∪ fU = U, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.4. 
3.4. A ∩ fA = ∅, A ∪ fU = U, fA ⊆ A. Incorrect on all 
five. Contains 2.5. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA.  
3.6. A ∩ fA = ∅, A ⊆ fU, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.11. 
3.7. A ∩ fA = ∅, A ⊆ fU, fA ⊆ A. Incorrect on all five. 
Contains 2.5. 
3.8. A ∩ fA = ∅, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Incorrect on 
all five. Contains 2.4. 
3.9. A ∩ fA = ∅, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on all 
five. Contains 2.5. 
3.10. A ∩ fA = ∅, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on all 
five. Contains 2.5.  
3.11. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect on all 
five. Contains 2.6. 
3.12. A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.6. 
3.13. A ∪ fU = U, A ⊆ fU, fA ⊆ A. Incorrect on all five. 
Contains 2.6. 
3.14. A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Correct on all 
five. Set A = N.  
3.15. A ∪ fU = U, fU ⊆ A ∪ fA, fA ⊆ A. Correct on all five. 
Set A = N. 
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3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. Correct on all five. 
Set A = N.  
3.17. A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.11.   
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A.  
3.19. A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on all five. 
Contains 2.11.  
3.20. fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. Correct on all 
five. Set A = N.  
 
A,fA,fU FORMATS OF CARDINALITY 4 
EBRT 
 
4.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA. 
Incorrect on all five. Contains 2.6. 
4.2. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.6.  
4.3. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fA ⊆ A. Incorrect  on 
all five. Contains 2.5. 
4.4. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.4. 
4.5. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
4.6. A ∩ fA = ∅, A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
4.7. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.11.  
4.8. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on 
all five. Contains 2.5.  
4.9. A ∩ fA = ∅, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on 
all five. Contains 2.5.  
4.10. A ∩ fA = ∅, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
4.11. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.6.  
4.12. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.6.  
4.13. A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.6. 
4.14. A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Correct on all five. Set A = N.  
4.15. A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.11.  
 
A,fA,fU FORMATS OF CARDINALITY 5 
EBRT 
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5.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU 
⊆ fA. Incorrect on all five. Contains 2.6.  
5.2. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5. 
5.3. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
5.4. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA 
⊆ A. Incorrect on all five. Contains 2.5.   
5.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5. 
5.6. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.6.  
 
A,fA,fU FORMATS OF CARDINALITY 6 
EBRT 
 
6.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU 
⊆ fA, fA ⊆ A. Incorrect on all five. Contains 2.5.  
 
We now list all of the formats whose status has not been 
determined. We use any stated equivalences that hold on all 
five.  
 
1.1. A ∩ fA = ∅.  
1.3. A ⊆ fU.  
2.1. A ∩ fA = ∅, A ∪ fU = U.  
2.2. A ∩ fA = ∅, A ⊆ fU.  
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. 
2.10. A ⊆ fU, fU ⊆ A ∪ fA.  
2.12. A ⊆ fU, fA ⊆ A. 
3.2. A ∩ fA = ∅, A ∪ fA = U.  
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. 
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. 
 
We now settle the status of each of these formats on the 
various settings. 
 
EBRT in A,fA,fU on (SD,INF),(ELG ∩ SD,INF) 
 
1.1. A ∩ fA = ∅. Correct on both. See Theorem 2.2.1.   
1.3. A ⊆ fU. Correct on both. Set A = fN.   
2.1. A ∩ fA = ∅, A ∪ fU = U. Correct on both. The 
Complementation Theorem (section 1.3). 
2.2. A ∩ fA = ∅, A ⊆ fU. Correct on both. Theorem 2.2.1.  
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. Correct on both. The 
Complementation Theorem. 
2.10. A ⊆ fU, fU ⊆ A ∪ fA. Correct on both. Set A = fN. 
2.12. A ⊆ fU, fA ⊆ A. Correct on both. Set A = fN. 
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3.2. A ∩ fA = ∅, A ∪ fA = U. Correct on both. 
Complementation Theorem.  
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. Correct on both. 
Theorem 2.3.1 with B = fU. 
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Correct on both. Set A = 
fN.   
 
EBRT in A,fA,fU on (ELG,INF),(EVSD,INF) 
 
1.1. A ∩ fA = ∅. Correct on both. See Theorem 2.2.1.  
1.3. A ⊆ fU. Correct on both. Set A = fN. 
2.1. A ∩ fA = ∅, A ∪ fU = U. Correct on both.  
Theorem 2.3.2. 
2.2. A ∩ fA = ∅, A ⊆ fU. Correct on both. Theorem 2.2.1. 
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. Incorrect on both. Set f(x) 
= 2x. 
2.10. A ⊆ fU, fU ⊆ A ∪ fA. Correct on both. Set A = fN.  
2.12. A ⊆ fU, fA ⊆ A. Correct on both. Set A = fN. 
3.2. A ∩ fA = ∅, A ∪ fA = U. Incorrect on both. Set f(x) = 
2x. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect on both. 
Set f(x) = 2x. 
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Correct on both. Set A = 
fN.   
 
From the above, we see a difference between (SD,INF) and 
(EVSD,INF) with regard to 2.3, 3.2, 3.5.  
 
EBRT in A,fA,fU on (MF,INF) 
 
1.1. A ∩ fA = ∅. Incorrect. Set f(x) = x.  
1.3. A ⊆ fU. Incorrect. Set f(x) = 0. 
2.1. A ∩ fA = ∅, A ∪ fU = U. Incorrect. Set f(x) = x.  
2.2. A ∩ fA = ∅, A ⊆ fU. Incorrect. Set f(x) = x.   
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. Incorrect. Set f(x) = x.  
2.10. A ⊆ fU, fU ⊆ A ∪ fA. Incorrect. Set f(x) = 0. 
2.12. A ⊆ fU, fA ⊆ A. Correct on both. Set A = fN. 
Incorrect. Set f(x) = 0. 
3.2. A ∩ fA = ∅, A ∪ fA = U. Incorrect. Set f(x) = x. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect. Set f(x) 
= x. 
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect. Set f(x) = 0.   
 
THEOREM 2.3.4. EBRT in A,fA,fU on (SD,INF),(ELG ∩ SD,INF) 
have the same correct formats. So do EBRT in A,fA,fU on 
(ELG,INF),(EVSD,INF). This is not true of EBRT in A,fA,fU 
on any distinct pair of settings among 



 338 

(SD,INF),(ELG,INF),(MF,INF). EBRT in A,fA on all five 
settings, is RCA0 secure. 
 
Proof: Immediate from the above tabular classifications and 
their documentation. Format 2.3 provides a difference 
between A,fA,fU on (SD[1],INF) and (ELG[1],INF), and on 
(SD,INF) and (MF,INF). Format 1.3 proves a difference 
between A,fA,fU on (ELG,INF) and (MF,INF). QED 
 
We now turn to IBRT in A,fA,fU on the same five BRT 
settings. 
 
We will use the Thin Set Theorem (variant) from section 
2.2, as well as Theorem 2.2.1, and previous results of this 
section.  
 

SETTINGS: (SD,INF), (ELG ∩ SD,INF),  
(ELG,INF), (EVSD,INF), (MF,INF). 

 
A,fA,fU FORMAT OF CARDINALITY 0 
IBRT 
 
The empty format is obviously correct, for all five BRT 
settings. 
 
A,fA,fU FORMATS OF CARDINALITY 1 
IBRT 
 
1.1. A ∩ fA = ∅. Incorrect on all five. Set A = N. 
1.2. A ∪ fU = U.  
1.3. A ⊆ fU.  
1.4. fU ⊆ A ∪ fA.  
1.5. A ∩ fU ⊆ fA.  
1.6. fA ⊆ A.  
 
A,fA,fU FORMATS OF CARDINALITY 2 
IBRT 
 
2.1. A ∩ fA = ∅, A ∪ fU = U. Incorrect on all five. 
Contains 1.1. 
2.2. A ∩ fA = ∅, A ⊆ fU. Incorrect on all five.  
Contains 1.1. 
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. Incorrect on all five. 
Contains 1.1. 
2.4. A ∩ fA = ∅, A ∩ fU ⊆ fA. Incorrect on all five. 
Contains 1.1. 
2.5. A ∩ fA = ∅, fA ⊆ A. Incorrect on all five.  
Contains 1.1. 
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2.6. A ∪ fU = U, A ⊆ fU. Equivalent on all five to fU = U.  
2.7. A ∪ fU = U, fU ⊆ A ∪ fA. Equivalent on all five to A 
∪ fA = U. Incorrect on all five. Thin Set Theorem 
(variant).  
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. 
2.9. A ∪ fU = U, fA ⊆ A. 
2.10. A ⊆ fU, fU ⊆ A ∪ fA. Incorrect on all five. Suppose 
fN ≠ N. Set A = N. Suppose fN = N. Thin Set Theorem 
(variant). 
2.11. A ⊆ fU, A ∩ fU ⊆ fA. Equivalent on all five to A ⊆ 
fA. 
2.12. A ⊆ fU, fA ⊆ A. 
2.13. fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Equivalent on all five to 
fU = fA.  
2.14. fU ⊆ A ∪ fA, fA ⊆ A. Equivalent on all five to fU ⊆ 
A. Incorrect on all five. 
2.15. A ∩ fU ⊆ fA, fA ⊆ A.  
 
A,fA,fU FORMATS OF CARDINALITY 3 
IBRT 
 
3.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU. Incorrect on all 
five. Contains 1.1. 
3.2. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA. Incorrect on all 
five. Contains 1.1. 
3.3. A ∩ fA = ∅, A ∪ fU = U, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 1.1. 
3.4. A ∩ fA = ∅, A ∪ fU = U, fA ⊆ A. Incorrect on all 
five. Contains 1.1. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect on all 
five. Contains 1.1. 
3.6. A ∩ fA = ∅, A ⊆ fU, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 1.1. 
3.7. A ∩ fA = ∅, A ⊆ fU, fA ⊆ A. Incorrect on all five. 
Contains 1.1. 
3.8. A ∩ fA = ∅, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Incorrect on 
all five. Contains 1.1. 
3.9. A ∩ fA = ∅, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on all 
five. Contains 1.1. 
3.10. A ∩ fA = ∅, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on all 
five. Contains 1.1. 
3.11. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect on all 
five. Contains 2.7. 
3.12. A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA. Equivalent on all 
five to fU = U, A ⊆ fA. 
3.13. A ∪ fU = U, A ⊆ fU, fA ⊆ A. Equivalent on all five to 
fU = U, fA ⊆ A. 
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3.14. A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Incorrect on 
all five. Contains 2.7.  
3.15. A ∪ fU = U, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on all 
five. Contains 2.7. 
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A.  
3.17. A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.10.  
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on all five. 
Contains 2.10.  
3.19. A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Equivalent on all five 
to fA = A. 
3.20. fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on all 
five. Contains 2.14.  
 
A,fA,fU FORMATS OF CARDINALITY 4 
IBRT 
 
4.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA. 
Incorrect on all five. Contains 1.1. 
4.2. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 1.1. 
4.3. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fA ⊆ A. Incorrect on 
all five. Contains 1.1. 
4.4. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 1.1. 
4.5. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, fA ⊆ A. 
Incorrect on all five. Contains 1.1. 
4.6. A ∩ fA = ∅, A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 1.1. 
4.7. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 1.1. 
4.8. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on 
all five. Contains 1.1. 
4.9. A ∩ fA = ∅, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on 
all five. Contains 1.1. 
4.10. A ∩ fA = ∅, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 1.1. 
4.11. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.7. 
4.12. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.7. 
4.13. A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Equivalent 
on all five to fU = U, fA = A.  
4.14. A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.7. 
4.15. A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.10. 
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A,fA,fU FORMATS OF CARDINALITY 5 
IBRT 
 
5.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU 
⊆ fA. Incorrect on all five. Contains 1.1. 
5.2. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. 
Incorrect on all five. Contains 1.1. 
5.3. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 1.1. 
5.4. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA 
⊆ A. Incorrect on all five. Contains 1.1. 
5.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 1.1. 
5.6. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.7. 
 
A,fA,fU FORMATS OF CARDINALITY 6 
IBRT 
 
6.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU 
⊆ fA, fA ⊆ A. Incorrect on all five. Contains 1.1. 
 
We now list all of the formats whose status has not been 
determined. We use any stated equivalences that hold on all 
five.  
 
1.2. A ∪ fU = U.  
1.3. A ⊆ fU.  
1.4. fU ⊆ A ∪ fA.  
1.5. A ∩ fU ⊆ fA.  
1.6. fA ⊆ A.  
2.6. fU = U.  
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. 
2.9. A ∪ fU = U, fA ⊆ A. 
2.11. A ⊆ fA. 
2.12. A ⊆ fU, fA ⊆ A. 
2.13. fU = fA. 
2.15. A ∩ fU ⊆ fA, fA ⊆ A.  
3.12. fU = U, A ⊆ fA. 
3.13. fU = U, fA ⊆ A. 
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A.  
3.19. fA = A. 
4.13. fU = U, fA = A.  
 
We now determine the status of the above formats on the 
five settings. 
 
IBRT in A,fA,fU on (SD,INF),(ELG ∩ SD,INF) 
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1.2. A ∪ fU = U. Incorrect on both. Set A = N\{0}.   
1.3. A ⊆ fU. Incorrect on both. Set A = N.  
1.4. fU ⊆ A ∪ fA. Incorrect on both. Theorem 2.2.1.  
1.5. A ∩ fU ⊆ fA. Incorrect on both. Set A = [min(fU),∞).  
1.6. fA ⊆ A. Incorrect on both. Theorem 2.2.1. 
2.6. fU = U. Incorrect on both. 
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. Incorrect on both.  
Contains 1.2.  
2.9. A ∪ fU = U, fA ⊆ A. Incorrect on both. Contains 1.6. 
2.11. A ⊆ fA. Incorrect on both. Set A = N.   
2.12. A ⊆ fU, fA ⊆ A. Incorrect on both. Contains 1.3.  
2.13. fU = fA. Incorrect on both. See 1.4.  
2.15. A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on both.  
Contains 1.6.   
3.12. fU = U, A ⊆ fA. Incorrect on both. Contains 2.6. 
3.13. fU = U, fA ⊆ A. Incorrect on both. Contains 2.6.  
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on both. 
Contains 1.6. 
3.19. fA = A. Incorrect on both. See 1.6.  
4.13. fU = U, fA = A. Incorrect on both. Contains 2.6.    
 
IBRT in A,fA,fU on (ELG,INF),(EVSD,INF) 
 
1.2. A ∪ fU = U. Correct on both. Theorem 2.3.3.  
1.3. A ⊆ fU. Correct on both. Theorem 2.3.3.  
1.4. fU ⊆ A ∪ fA. Incorrect on both. Theorem 2.2.1.  
1.5. A ∩ fU ⊆ fA. Incorrect on both. Set A = [n,∞), where n 
is a sufficiently large element of fU. 
1.6. fA ⊆ A. Incorrect on both. Theorem 2.2.1.  
2.6. fU = U. Correct on both. Theorem 2.3.3. 
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. Incorrect on both.  
Contains 1.5.  
2.9. A ∪ fU = U, fA ⊆ A. Incorrect on both. Contains 1.6.  
2.11. A ⊆ fA. Incorrect on both. Theorem 2.2.1.   
2.12. A ⊆ fU, fA ⊆ A. Incorrect on both. Contains 1.6.  
2.13. fU = fA. Incorrect on both. Use Theorem 2.2.1 with D 
= fN. Obtain infinite A where fN ¬⊆ A ∪ fA.    
2.15. A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on both.  
Contains 1.6. 
3.12. fU = U, A ⊆ fA. Incorrect for both. Contains 2.11.  
3.13. fU = U, fA ⊆ A. Incorrect for both. Contains 1.6.  
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect for both. 
Contains 1.6.  
3.19. fA = A. Incorrect for both. See 1.6.   
4.13. fU = U, fA = A. Incorrect for both. See 1.6.   
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Note the difference between (SD,INF) and (ELG,INF). E.g., 
1.3 is incorrect on (SD,INF) but correct on (ELG,INF). 
 
IBRT in A,fA,fU on (MF,INF) 
 
1.2. A ∪ fU = U. Correct. Set f(x) = x.  
1.3. A ⊆ fU. Correct. Set f(x) = x. 
1.4. fU ⊆ A ∪ fA. Correct. Set f(x) = 0.  
1.5. A ∩ fU ⊆ fA. Correct. Set f(x) = x.  
1.6. fA ⊆ A. Correct. Set f(x) = x.   
2.6. fU = U. Correct. Set f(x) = x. 
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. Correct. Set f(x) = x.  
2.9. A ∪ fU = U, fA ⊆ A. Correct. Set f(x) = x. 
2.11. A ⊆ fA. Correct. Set f(x) = x. 
2.12. A ⊆ fU, fA ⊆ A. Correct. Set f(x) = x. 
2.13. fU = fA. Correct. Set f(x) = 0.  
2.15. A ∩ fU ⊆ fA, fA ⊆ A. Correct. Set f(x) = x.    
3.12. fU = U, A ⊆ fA. Correct. Set f(x) = x. 
3.13. fU = U, fA ⊆ A. Correct. Set f(x) = x. 
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. Correct. Set f(x) = 
x. 
3.19. fA = A. Correct. Set f(x) = x. 
4.13. fU = U, fA = A. Correct. Set f(x) = x. 
 
THEOREM 2.3.5. For IBRT in A,fA,fU on (SD,INF) and (ELG ∩ 
SD,INF), the only correct format is ∅. This is not true of 
IBRT in A,fA on (ELG,INF),(EVSD,INF),(MF,INF). IBRT in 
A,fA,fU on (ELG,INF) and (EVSD,INF) have the same correct 
formats. IBRT in A,fA,fU on (ELG,INF) and on (MF,INF) have 
different correct formats. IBRT in A,fA,fU on each of 
(SD,INF),(ELG ∩ SD,INF),(ELG,INF),(EVSD,INF) is RCA0 secure. 
IBRT in A,fA,fU on (MF,INF) is ACA' secure, but not ACA0 
secure. Every correct format in A,fA,fU on (MF,INF) is RCA0 
correct. We can replace ACA' here by RCA0 + Thin Set 
Theorem.  
 
Proof: The first four claims are immediate from the given 
tabular classifications. For the fifth claim, it suffices 
to verify that the incorrectness of formats 
2.7,2.10,3.11,3.14,3.15,3.17,3.18, 4.11,4.12,4.14,4.15,5.6 
on these four settings is provable in RCA0. These are the 
places where we have used Thin Set Theorem. In fact, it 
suffices to show incorrectness of 2.7 and 2.10 only, within 
RCA0. But 2.7 and 2.10 each contain 1.4, which was shown to 
be incorrect in all four settings by Theorem 2.2.1. IBRT in 
A,fA,fU on (MF,INF) is ACA' secure since we only use the 
Thin Set Theorem (variant), which is provable in ACA'. Note 
that all arguments for IBRT correctness in these settings 
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are very explicit, easily conducted in RCA0.The last claim 
is by Theorem 2.2.3. QED  
 
THEOREM 2.3.6. Let k ≥ 2. EBRT in A,fA,fU on SD[k], (ELG ∩ 
SD)[k], ELG[k], EVSD[k], MF[k], and IBRT in A,fA,fU on 
SD[k], (ELG ∩ SD)[k], ELG[k], EVSD[k], are RCA0 secure. IBRT 
in A,fA,fU on MF[k] is ACA0 secure. EBRT and IBRT in A,fA on 
SD[k], (ELG ∩ SD)[k], ELG[k], EVSD[k], MF[k] have the same 
correct formats as EBRT and IBRT in SD, ELG ∩ SD, ELG, 
EVSD, MF, respectively. 
 
Proof: An examination of the arguments immediately reveals 
that all of the incorrectness determinations given for 
EBRT, and all of the correctness determinations given for 
IBRT, involve unary and binary functions only. We can 
obviously pad these unary functions as k-ary functions. It 
is clear that the Thin Set Theorem (variant) for any fixed 
k ≥ 1 is provable in ACA0, since it relies on Ramsey’s 
theorem for a fixed exponent. QED 
 
We now classify EBRT and IBRT in A,fA,fU on (SD[1],INF), 
(ELG[1] ∩ SD[1],INF), (ELG[1],INF), (EVSD[1],INF), 
(MF[1],INF). Much of the work is the same, but there are 
substantial differences that are embodied in the following 
results.  
 
THEOREM 2.3.7. Let f ∈ ELG[1]. Then N\fN is infinite. 
 
Proof: Let c be a real constant > 1. Let t ≥ 1 be such that 
for all n ≥ t, f(n) ≥ cn. We show that N\fN is infinite. 
Note that we are using only the lower bound provided by 
membership in ELG. 
 
Let r ≥ 0 and s > (r+t+1)/(1 - 1/c). Then f-1[r,s] ⊆ [0,s/c] 
∪ [0,t]. Hence f-1[r,s] has at most s/c + 1+t+1 = t+2 + s/c 
elements. Hence f assumes at most t+2 + s/c values in 
[r,s]. But by elementary algebra, t+2 + s/c < s-r+1. Hence 
f must assume fewer than s-r+1 values in [r,s]. Hence f 
omits a value in [r,s]. Since r is arbitrary and s can be 
taken to be a function of r (t,c are fixed), we see that f 
omits infinitely many values. QED  
 
Contrast Theorem 2.3.7 with Theorem 2.3.3.  
 
LEMMA 2.3.8. No element of EVSD[1] is surjective. 
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Proof: Let f ∈ EVSD. Let n be such that f is strictly 
dominating on [n,∞). Then f-1[0,n] ⊆ [0,n-1]. By counting, 
there exists 0 ≤ i ≤ n such that i ∉ fN. QED 
 
Contrast Lemma 2.3.8 with Theorem 2.3.3. 
 

SETTINGS: (SD[1],INF), (ELG[1] ∩ SD[1],INF),  
(ELG[1],INF), (EVSD[1],INF), (MF[1],INF). 

 
A,fA,fU FORMAT OF CARDINALITY 0 
EBRT 
 
The empty format is obviously correct, on all five. 
 
A,fA,fU FORMATS OF CARDINALITY 1 
EBRT 
 
1.1. A ∩ fA = ∅.  
1.2. A ∪ fU = U. Correct on all five. Set A = N.  
1.3. A ⊆ fU.  
1.4. fU ⊆ A ∪ fA. Correct on all five. Set A = N.  
1.5. A ∩ fU ⊆ fA. Correct on all five. Set A = N.  
1.6. fA ⊆ A. Correct on all five. Set A = N.  
 
A,fA,fU FORMATS OF CARDINALITY 2 
EBRT 
 
2.1. A ∩ fA = ∅, A ∪ fU = U.  
2.2. A ∩ fA = ∅, A ⊆ fU.  
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA.  
2.4. A ∩ fA = ∅, A ∩ fU ⊆ fA. Equivalent on all five to A 
∩ fU = ∅.  
2.5. A ∩ fA = ∅, fA ⊆ A. Equivalent on all five to fA = ∅. 
Incorrect on all five. Use any f.  
2.6. A ∪ fU = U, A ⊆ fU. Equivalent on all five to fU = U. 
Incorrect on all five. Set rng(f) ≠ N.  
2.7. A ∪ fU = U, fU ⊆ A ∪ fA. Correct on all five. Set A = 
N. 
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. Correct on all five. Set A = 
N.  
2.9. A ∪ fU = U, fA ⊆ A. Correct on all five. Set A = N.  
2.10. A ⊆ fU, fU ⊆ A ∪ fA.  
2.11. A ⊆ fU, A ∩ fU ⊆ fA. Equivalent on all five to A ⊆ 
fA. Incorrect on all five. Set f(x) = 2x+1. 
2.12. A ⊆ fU, fA ⊆ A.  
2.13. fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Correct on all five. Set A 
= N. 
2.14. fU ⊆ A ∪ fA, fA ⊆ A. Correct on all five. Set A = N.  
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2.15. A ∩ fU ⊆ fA, fA ⊆ A. Correct on all five. Set A = N.  
 
 
A,fA,fU FORMATS OF CARDINALITY 3 
EBRT 
 
3.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU. Incorrect on all 
five. Contains 2.6.  
3.2. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA. Equivalent to A 
∩ fA = ∅, A ∪ fA = U on all five.   
3.3. A ∩ fA = ∅, A ∪ fU = U, A ∩ fU ⊆ fA. Equivalent to A 
∩ fU = ∅, A ∪ fU = U on all five. Equivalent to A = U\fU on 
all five.  
3.4. A ∩ fA = ∅, A ∪ fU = U, fA ⊆ A. Incorrect on all 
five. Contains 2.5. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA.   
3.6. A ∩ fA = ∅, A ⊆ fU, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.11. 
3.7. A ∩ fA = ∅, A ⊆ fU, fA ⊆ A. Incorrect on all five. 
Contains 2.5. 
3.8. A ∩ fA = ∅, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Equivalent to A 
∩ fA = ∅, fU ⊆ fA, A ∩ fU = ∅. Incorrect on all five. Set 
f(x) = 2x+1.  
3.9. A ∩ fA = ∅, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on all 
five. Contains 2.5. 
3.10. A ∩ fA = ∅, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on all 
five. Contains 2.5.  
3.11. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect on all 
five. Contains 2.6. 
3.12. A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.6. 
3.13. A ∪ fU = U, A ⊆ fU, fA ⊆ A. Incorrect on all five. 
Contains 2.6. 
3.14. A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Correct on all 
five. Set A = N. 
3.15. A ∪ fU = U, fU ⊆ A ∪ fA, fA ⊆ A. Correct on all five. 
Set A = N. 
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. Correct on all five. 
Set A = N. 
3.17. A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. Incorrect on all 
five. Contains 2.11.   
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A.  
3.19. A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on all five. 
Contains 2.11.  
3.20. fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. Correct on all 
five. Set A = N. 
 
A,fA,fU FORMATS OF CARDINALITY 4 
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EBRT 
 
4.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA. 
Incorrect on all five. Contains 2.6. 
4.2. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.6.  
4.3. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fA ⊆ A. Incorrect on 
all five. Contains 2.5. 
4.4. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Equivalent to A = U\fU on all five. Same as 3.3 on all 
five.  
4.5. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
4.6. A ∩ fA = ∅, A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
4.7. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.11.  
4.8. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect on 
all five. Contains 2.5.  
4.9. A ∩ fA = ∅, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on 
all five. Contains 2.5.  
4.10. A ∩ fA = ∅, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
4.11. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA. 
Incorrect on all five. Contains 2.6.  
4.12. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.6.  
4.13. A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.6. 
4.14. A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Correct on all five. Set A = N.  
4.15. A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect 
on all five. Contains 2.11.  
 
A,fA,fU FORMATS OF CARDINALITY 5 
EBRT 
 
5.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU 
⊆ fA. Incorrect on all five. Contains 2.6.  
5.2. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5. 
5.3. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5.  
5.4. A ∩ fA = ∅, A ∪ fU = U, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA 
⊆ A. Incorrect on all five. Contains 2.5.   
5.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.5. 
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5.6. A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU ⊆ fA, fA ⊆ A. 
Incorrect on all five. Contains 2.6.  
 
A,fA,fU FORMATS OF CARDINALITY 6 
EBRT 
 
6.1. A ∩ fA = ∅, A ∪ fU = U, A ⊆ fU, fU ⊆ A ∪ fA, A ∩ fU 
⊆ fA, fA ⊆ A. Incorrect on all five. Contains 2.5.  
 
We now list all of the formats whose status has not been 
determined. We use any stated equivalences that hold on all 
five.  
 
1.1. A ∩ fA = ∅. 
1.3. A ⊆ fU. 
2.1. A ∩ fA = ∅, A ∪ fU = U. 
2.2. A ∩ fA = ∅, A ⊆ fU. 
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA.  
2.4. A ∩ fU = ∅.  
2.12. A ⊆ fU, fA ⊆ A. 
3.2. A ∩ fA = ∅, A ∪ fA = U.  
3.3. A = U\fU. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA.  
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. 
 
We now settle the status of each of these formats on the 
various settings. 
 
EBRT in A,fA,fU on (SD[1],INF),(ELG[1] ∩ SD[1],INF) 
 
1.1. A ∩ fA = ∅. Correct on both. Theorem 2.2.1. 
1.3. A ⊆ fU. Correct on both. Set A = fN. 
2.1. A ∩ fA = ∅, A ∪ fU = U. Correct on both. 
Complementation Theorem. 
2.2. A ∩ fA = ∅, A ⊆ fU. Correct on both. Theorem 2.2.1. 
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. Correct on both. 
Complementation Theorem. 
2.4. A ∩ fU = ∅. Incorrect on (SD[1],INF). Set f(x) = x+1. 
Correct on (ELG[1] ∩ SD[1],INF). Theorem 2.3.7.  
2.12. A ⊆ fU, fA ⊆ A. Correct on both. Set A = fN. 
3.2. A ∩ fA = ∅, A ∪ fA = U. Correct on both. 
Complementation Theorem. 
3.3. A = U\fU. Incorrect on (SD[1],INF). Set f(x) = x+1. 
Correct on (ELG[1] ∩ SD[1],INF). Theorem 2.3.7.  
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. Correct on both. 
Theorem 2.3.1 with B = fN.  
 
EBRT in A,fA,fU on (ELG[1],INF),(EVSD[1],INF) 
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1.1. A ∩ fA = ∅. Correct on both. Theorem 2.2.1.  
1.3. A ⊆ fU. Correct on both. Set A = fN. 
2.1. A ∩ fA = ∅, A ∪ fU = U. Correct on both.  
Theorem 2.3.2.  
2.2. A ∩ fA = ∅, A ⊆ fU. Correct on both. Theorem 2.2.1. 
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. Incorrect on both. Set f(x) 
= 2x.   
2.4. A ∩ fU = ∅. Incorrect on (EVSD[1],INF). Set f(x) = 
x+1. Correct on (ELG[1],INF). Theorem 2.3.7.  
3.2. A ∩ fA = ∅, A ∪ fA = U. Incorrect on both. Set f(x) = 
2x. 
3.3. A = N\fU. Incorrect on (EVSD[1],INF). Set f(x) = x+1. 
Correct on (ELG[1],INF). Theorem 2.3.7. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect on both. 
Set f(x) = 2x.  
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Correct on both. Set A = 
fN.   
 
EBRT in A,fA,fU on (MF[1],INF) 
 
1.1. A ∩ fA = ∅. Incorrect. Set f(x) = x. 
1.3. A ⊆ fU. Incorrect. Set f(x) = 0. 
2.1. A ∩ fA = ∅, A ∪ fU = U. Incorrect. Set f(x) = x. 
2.2. A ∩ fA = ∅, A ⊆ fU. Incorrect. Set f(x) = x. 
2.3. A ∩ fA = ∅, fU ⊆ A ∪ fA. Incorrect. Set f(x) = x.   
2.4. A ∩ fU = ∅. Incorrect. Set f(x) = x. 
2.12. A ⊆ fU, fA ⊆ A. Incorrect. Set f(x) = 0. 
3.2. A ∩ fA = ∅, A ∪ fA = U. Incorrect. Set f(x) = x.   
3.3. A = N\fU. Incorrect. Set f(x) = x. 
3.5. A ∩ fA = ∅, A ⊆ fU, fU ⊆ A ∪ fA. Incorrect. Set f(x) 
= x.   
3.18. A ⊆ fU, fU ⊆ A ∪ fA, fA ⊆ A. Incorrect. Set f(x) = 0.   
 
THEOREM 2.3.9. EBRT in A,fA,fU on the ten BRT settings 
(SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), (MF,INF). 
(SD[1],INF), (ELG[1] ∩ SD[1],INF), (ELG[1],INF), 
(EVSD[1],INF), (MF[1],INF), are RCA0 secure. They also have 
different correct formats, with the following exceptions. 
(SD,INF), (ELG ∩ SD,INF), (SD[1],INF) have the same; 
(ELG,INF), (EVSD,INF), (EVSD[1],INF) have the same; 
(MF,INF), (MF[1],INF) have the same. In particular, 
(SD[1],INF), (ELG[1] ∩ SD[1],INF), (ELG[1],INF), 
(EVSD[1],INF), (MF[1],INF), all differ on EBRT in A,fA,fU.  
 
Proof: Our entire analysis of EBRT in this section takes 
place in RCA0. To compare the multivariate settings with the 
unary settings, we have only to examine where we use a 
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function that is not unary for an incorrectness 
determination in the multivariate setting. 
 
(SD,INF), (SD[1],INF). In 2.4, 3.3, 4.4, we use Theorem 
2.3.3, which involves functions that are not unary. 
However, we can instead use f(x) = x+1, which lies in 
SD[1].  
 
(EVSD,INF), (EVSD[1],INF). In 2.4, 3.3, 4.4, we use Theorem 
2.3.3, which involves functions that are not unary. 
However, we can instead use f(x) = x+1, which lies in 
EVSD[1]. 
 
(MF,INF), (MF[1],INF). In 2.4, 3.3, 4.4, we use Theorem 
2.3.3, which involves functions that are not unary. 
However, we can instead use f(x) = x+1, which lies in 
MF[1]. 
 
It suffices to verify that EBRT in A,fA,fU pairwise differ 
on 
 
(SD,INF). 
(ELG,INF). 
(MF,INF). 
(ELG[1] ∩ SD[1],INF). 
(ELG[1],INF) 
 
(ELG[1] ∩ SD[1],INF) and (ELG[1],INF) both differ from 
(SD,INF), (ELG,INF), (MF,INF) at 2.4. (ELG[1] ∩ SD[1],INF) 
and (ELG[1],INF) differ at 2.3. From Theorem 2.3.4, we know 
that (SD,INF), (ELG,INF), (MF,INF) differ. QED 
 
We now come to IBRT in the five unary settings. First note 
that in the earlier table of formats of cardinalities 0–6 
on IBRT in A,fA,fU, compiled earlier, the only 
determinations were of incorrectness. Obviously those 
determinations still apply. So we can jump ahead to where 
we list the formats that remain undetermined: 
 
1.2. A ∪ fU = U.  
1.3. A ⊆ fU.  
1.4. fU ⊆ A ∪ fA.  
1.5. A ∩ fU ⊆ fA.  
1.6. fA ⊆ A.  
2.6. fU = U.  
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. 
2.9. A ∪ fU = U, fA ⊆ A. 
2.11. A ⊆ fA. 
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2.12. A ⊆ fU, fA ⊆ A. 
2.13. fU = fA. 
2.15. A ∩ fU ⊆ fA, fA ⊆ A.  
3.12. fU = U, A ⊆ fA. 
3.13. fU = U, fA ⊆ A. 
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A.  
3.19. fA = A. 
4.13. fU = U, fA = A.  
 
We now determine the status of the above formats on the 
five unary settings.  
 
IBRT in A,fA,fU on (SD[1],INF),(ELG[1] ∩ SD[1],INF) 
 
Since the only correct format for IBRT in A,fA,fU on 
(SD[1],INF), (ELG[1] ∩ SD[1],INF) is ∅, the only correct 
format for IBRT in A,fA,fU on (SD,INF), (ELG ∩ SD,INF) is 
∅. 
 
IBRT in A,fA,fU on (ELG[1],INF),(EVSD[1],INF) 
 
1.2. A ∪ fU = U. Incorrect on both. Lemma 2.3.8.  
1.3. A ⊆ fU. Incorrect on both. Lemma 2.3.8.  
1.4. fU ⊆ A ∪ fA. Incorrect on both. Theorem 2.2.1.  
1.5. A ∩ fU ⊆ fA. Incorrect on both. FIX!!! Use Theorem 
2.2.1 with D = fN. Obtain infinite A disjoint from fA, 
where fN ¬⊆ A ∪ fA. If A ∩ fN ⊆ fA then fN ⊆ fA.  
1.6. fA ⊆ A. Incorrect on both. Theorem 2.2.1.  
2.6. fU = U. Incorrect on both. Lemma 2.3.8. 
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. Incorrect on both.  
Contains 1.5.  
2.9. A ∪ fU = U, fA ⊆ A. Incorrect on both. Contains 1.6.  
2.11. A ⊆ fA. Incorrect on both. Theorem 2.2.1.   
2.12. A ⊆ fU, fA ⊆ A. Incorrect on both. Contains 1.6.  
2.13. fU = fA. Incorrect on both. Use Theorem 2.2.1 with D 
= fU.  
2.15. A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on both.  
Contains 1.6. 
3.12. fU = U, A ⊆ fA. Incorrect on both. Contains 2.11.  
3.13. fU = U, fA ⊆ A. Incorrect on both. Contains 1.6.  
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. Incorrect on both. 
Contains 1.6.  
3.19. fA = A. Incorrect on both. See 1.6.   
4.13. fU = U, fA = A. Incorrect on both. See 1.6.   
 
We now see that in IBRT on SD[1],INF), (ELG[1] ∩ 
SD[1],INF), (ELG[1],INF), (EVSD[1],INF), every format is 
incorrect.  
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IBRT in A,fA,fU on (MF[1],INF) 
 
1.2. A ∪ fU = U. Correct. Set f(x) = x.  
1.3. A ⊆ fU. Correct. Set f(x) = x. 
1.4. fU ⊆ A ∪ fA. Correct. Set f(x) = 0.  
1.5. A ∩ fU ⊆ fA. Correct. Set f(x) = x.  
1.6. fA ⊆ A. Correct. Set f(x) = x.   
2.6. fU = U. Correct. Set f(x) = x. 
2.8. A ∪ fU = U, A ∩ fU ⊆ fA. Correct. Set f(x) = x.  
2.9. A ∪ fU = U, fA ⊆ A. Correct. Set f(x) = x. 
2.11. A ⊆ fA. Correct. Set f(x) = x. 
2.12. A ⊆ fU, fA ⊆ A. Correct. Set f(x) = x. 
2.13. fU = fA. Correct. Set f(x) = 0.  
2.15. A ∩ fU ⊆ fA, fA ⊆ A. Correct. Set f(x) = x.    
3.12. fU = U, A ⊆ fA. Correct. Set f(x) = x. 
3.13. fU = U, fA ⊆ A. Correct. Set f(x) = x. 
3.16. A ∪ fU = U, A ∩ fU ⊆ fA, fA ⊆ A. Correct. Set f(x) = 
x. 
3.19. fA = A. Correct. Set f(x) = x. 
4.13. fU = U, fA = A. Correct. Set f(x) = x. 
 
THEOREM 2.3.10. IBRT in A,fA,fU on (SD,INF), (ELG ∩ 
SD,INF), (SD[1],INF),(ELG[1] ∩ SD[1],INF), (ELG[1],INF), 
(EVSD[1],INF), (SD[1],INF), (ELG[1] ∩ SD[1],INF) have only 
the correct format ∅. IBRT in A,fA,fU on (MF,INF) and 
(MF[1],INF) have the same correct formats. IBRT in A,fA,fU 
on (SD[1],INF), (ELG[1] ∩ SD[1],INF),  (ELG[1],INF), 
(EVSD[1],INF), (MF[1],INF) are RCA0 secure.  
 
Proof: By inspection. Also, Thin Set Theorem (variant) is 
provable in RCA0 by Lemma 2.2.4 QED 
 
Note that by Theorem 2.3.10, there are exactly five 
different behaviors of the ten BRT settings (SD,INF), (ELG 
∩ SD,INF), (ELG,INF), (EVSD,INF), (MF,INF). (SD[1],INF), 
(ELG[1] ∩ SD[1],INF), (ELG[1],INF), (EVSD[1],INF), 
(MF[1],INF) under EBRT in A,fA,fU. By Theorem 2.3.10, there 
are three under IBRT in A,fA,fU. 
 
 
2.4. EBRT in A,B,fA,fB,⊆ on (SD,INF). 
 
In this section, we use the tree methodology described in 
section 2.1 to classify EBRT in A,B,fA,fB,⊆ on (SD,INF) and 
(ELG ∩ SD,INF). We handle both BRT settings at once, as 
they behave the same way for EBRT in A,B,fA,fB,⊆. In 
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particular, we show that they are RCA0 secure (see 
Definition 1.1.43). 
 
We begin with a list of five Lemmas that we will need for 
documenting the classification.  
 
LEMMA 2.4.1. Let f ∈ SD. There exist infinite A ⊆ B ⊆ N 
such that B ∪. fA = N and A = B ∩ fB.  
 
Proof: By the BRT Fixed Point Theorem, section 1.3, let A 
be the unique A ⊆ N such that A = N\fA ∩ f(N\fA). Let B = 
N\fA. Clearly A ⊆ B and B ∪. fA = N. Also B ∩ fB = N\fA ∩ 
f(N\fA) = A.   
 
Suppose A is finite. Then N\fA is cofinite and f(N\fA) is 
infinite. Hence their intersection is infinite, and so A is 
infinite. So we conclude that A is infinite. QED 
 
LEMMA 2.4.2. Let f ∈ SD. There exist infinite A ⊆ B ⊆ N 
such that A ∪. fB = N, fA ⊆ B, and B ∩ fB ⊆ fA. 
 
Proof: By the BRT Fixed Point Theorem, section 1.3, let B 
be the unique B ⊆ N such that B = N\fB ∪ f(N\fB). Let A = 
N\fB. Then A ⊆ B, fA ⊆ B. Now B ∩ fB = (N\fB ∪ f(N\fB)) ∩ 
fB = f(N\fB) ∩ fB ⊆ fA. Suppose A is finite. Then B = A ∪ 
fA is finite. Hence N\fB = A is infinite, which is a 
contradiction. Hence A is infinite. Therefore fA,B are 
infinite. QED 
 
The following is a sharpening of the Complementation 
Theorem. 
 
LEMMA 2.4.3. Let f ∈ SD and X ⊆ N. There exists a unique A 
such that A ⊆ X ⊆ A ∪. fA.  
 
Proof: We will give a direct argument from scratch. Let f,X 
be as given. Define membership in A inductively as follows. 
Suppose membership in A for 0,...,n-1 has been defined. 
Define n ∈ A if and only if n ∈ X and n ∉ fA thus far. The 
construction is unique. QED 
 
LEMMA 2.4.4. The following is false. For all f ∈ ELG ∩ SD 
there exist infinite A ⊆ B ⊆ N such that A ∩ fB = ∅ and fB 
⊆ B. 
 
Proof: Let f be given by Lemma 3.2.1, and let A ⊆ B ⊆ N, A 
∩ fB = ∅, and fB ⊆ B, where A is infinite. Just using fB ⊆ 
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B, B ≠ ∅, we see that fB is cofinite, and hence A is 
finite. This is the desired contradiction. QED  
 
LEMMA 2.4.5. Let f ∈ SD. There is no nonempty A ⊆ N such 
that A ⊆ fA.  
 
Proof: Let n be the least element of A. Then n ∉ fA. QED 
 
Note that in the proofs of Lemmas 2.4.1, 2.4.2, 2.4.3, 
2.4.5, we never used the fact that f is everywhere defined. 
Hence these Lemmas hold even for partially defined f. We 
will use Lemma 2.4.2 for partial f in section 2.5.  
 
The 16 A,B,fA,fB pre elementary inclusions are as follows 
(see Definition 1.1.35). 
  
A ∩ B ∩ fA ∩ fB = ∅. 
A ∪ B ∪ fA ∪ fB = N. 
A ⊆ B ∪ fA ∪ fB. 
B ⊆ A ∪ fA ∪ fB. 
fA ⊆ A ∪ B ∪ fB. 
fB ⊆ A ∪ B ∪ fA. 
A ∩ B ⊆ fA ∪ fB. 
A ∩ fA ⊆ B ∪ fB. 
A ∩ fB ⊆ B ∪ fA. 
B ∩ fA ⊆ A ∪ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ∩ fB ⊆ A ∪ B. 
A ∩ B ∩ fA ⊆ fB. 
A ∩ B ∩ fB ⊆ fA. 
A ∩ fA ∩ fB ⊆ B. 
B ∩ fA ∩ fB ⊆ A. 
 
The 9 A,B,fA,fB,⊆ elementary inclusions are as follows (see 
Definition 1.1.37). 
 
A ∩ fA = ∅. 
B ∪ fB = N. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
 
Our classification provides a determination of the subsets 
S of the above nine inclusions for which  



 355 

 
(∀f ∈ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG ∩ SD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively. 
 
We now build an RCA0 classification for α (see Definition 
2.1.9), where α is the BRT fragment: EBRT in A,B,fA,fB,⊆ on 
(SD,INF).  
 
Recall that RCA0 classifications for α are trees whose 
vertices are labeled with worklists. Our presentation of 
such trees in text, presents each vertex with a numerical 
label and the worklist label. (There are two special 
exceptions to this - see two paragraphs down).  
 
The numerical label consists of finite sequences of small 
positive integers, in lexicographic order, reflecting the 
tree structure. The worklist label is presented as a list 
of elementary inclusions, where the items in the first part 
of the worklist end with colons, and the items in the 
second part of the worklist end with periods.  
 
We begin with the presentation of the root of the 
classification tree, which does not have a numerical label, 
but instead has a label stating the BRT fragment(s) we are 
classifying. Its worklist label is a list of the elementary 
inclusions. It is immediately followed by the unique son of 
the root, with the same non numerical label appending with 
*, and its worklist label is a permutation of the list of 
the elementary inclusions. Note that these elementary 
inclusions end with periods because the first part of the 
worklist is empty. 
 
If a presented vertex is terminal, then it must be 
documented that it is entirely α,T correct, in the sense 
that the format obtained by ignoring the colons of the 
worklist is α,T correct.  
 
If a worklist has numerical label n1.n2. ... nk., then 
either this worklist is terminal (no sons), or it has a 
unique son labeled n1.n2. ... nk.*. In the latter case, 
there is a documented α,RCA0 reduction from the former's 
worklist to the latter's worklist (see Definition 2.1.5).  
 
If a worklist is labeled n1.n2. ... nk.*, then it is either 
terminal, or has one or more sons, none of which end with 
*. The worklist of the last son is terminal.  
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The symbols # k that appear right under the label of a 
vertex with a starred label indicates the number of sons. 
These # k are placed under the numerical label. 
 
We begin with the root worklist. It consists of the 9 
A,B,fA,fB,⊆ elementary inclusions above.  
 
The root worklist is followed by an α,RCA0 reduction, which 
permutes the entries in a perhaps strategic way. This 
starred worklist has five sons, as indicated by # 5.   
 
EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ SD,INF). 
 
A ∩ fA = ∅. 
B ∪ fB = N. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A. 
 
EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ SD,INF).* 
# 5 
 
A ∩ fA = ∅.  
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.  
 
A ∩ fA = ∅: 
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
A ∩ fB ⊆ fA. A ∩ fB = ∅.  
B ∩ fA ⊆ A. B ∩ fA = ∅.  
B ∩ fB ⊆ A ∪ fA.   
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LIST 1*. 
# 5 
 
A ∩ fA = ∅: 
B ∩ fA = ∅.  
A ∩ fB = ∅.  
fA ⊆ B. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA.   
 
LIST 1.1. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅.  
fA ⊆ B. B ∩ fA = fA = ∅. No. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ A. 
 
LIST 1.1.* 
# 3 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅.  
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. 
 
LIST 1.1.1. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅:  
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. B ∩ fB = ∅. 
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LIST 1.1.1.* 
# 0 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅:  
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB = ∅. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A.  
 
LIST 1.1.2. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ⊆ fB: 
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.   
B ∩ fB ⊆ A.  
 
LIST 1.1.2.* 
# 0 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ⊆ fB: 
B ∪ fB = N. 
fB ⊆ B ∪ fA.   
B ∩ fB ⊆ A.  
 
Entirely RCA0 correct. By Lemma 2.4.1, let A ⊆ B ⊆ N, B ∪. 
fA = N, A = B ∩ fB. 
 
LIST 1.1.3. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.   
B ∩ fB ⊆ A. 
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Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A. 
 
LIST 1.2. 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B. 
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ fA.  
 
LIST 1.2.* 
# 2 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA.  
 
LIST 1.2.1. 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. fB ⊆ B. No. Lemma 2.4.4.  
B ∩ fB ⊆ fA.  
 
LIST 1.2.1.* 
# 0 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
B ∩ fB ⊆ fA.  
 
Entirely RCA0 correct. By Lemma 2.4.2, let A ⊆ B ⊆ N, A ∪. 
fB = N, fA ⊆ B, B ∩ fB ⊆ fA.  
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LIST 1.2.2. 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A. 
 
LIST 1.3. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.* 
# 2 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.1. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB: 
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.1.* 
# 0 
 
A ∩ fA = ∅: 
fA ⊆ B: 
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A ⊆ fB: 
B ∪ fB = N. 
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. By Lemma 2.4.3, let A ⊆ fN ⊆ A ∪. 
fA. Set B = N.   
 
LIST 1.3.2. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB. 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = N.  
 
LIST 1.4. 
 
A ∩ fA = ∅: 
A ⊆ fB: 
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA.   
 
LIST 1.4.* 
# 0 
 
A ∩ fA = ∅: 
A ⊆ fB: 
B ∪ fB = N. 
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA.   
 
Entirely RCA0 correct. By Lemma 2.4.3, let A ⊆ fN ⊆ A ∪. 
fA. Set B = N. 
 
LIST 1.5. 
 
A ∩ fA = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
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Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A.   
 
LIST 2. 
 
B ∪ fB = N: 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. A ∪ fB = N. 
fB ⊆ B ∪ fA. B ∪ fA = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.* 
# 2 
 
B ∪ fB = N: 
A ⊆ fB. 
fA ⊆ B. 
A ∪ fB = N. 
B ∪ fA = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1. 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B. 
A ∪ fB = N. fB = N. No. Lemma 2.4.5. 
B ∪ fA = N.  
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.   
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.* 
# 2 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B. 
B ∪ fA = N.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
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LIST 2.1.1. 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B: 
B ∪ fA = N. B = N.   
B ∩ fA ⊆ A. fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.1.* 
# 0 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B: 
B = N.   
fA ⊆ A. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N. 
 
LIST 2.1.2. 
 
B ∪ fB = N: 
A ⊆ fB: 
B ∪ fA = N:  
B ∩ fA ⊆ A. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Let B = N, A = fN.  
 
LIST 2.2. 
 
B ∪ fB = N: 
fA ⊆ B: 
A ∪ fB = N. 
B ∪ fA = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N.  
 
LIST 3. 
 
fA ⊆ B: 
A ⊆ fB. 
B ⊆ A ∪ fB. 
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fB ⊆ B ∪ fA. fB ⊆ B.  
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A. fA ⊆ A. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3*. 
# 3 
 
fA ⊆ B: 
fA ⊆ A. 
A ⊆ fB. 
B ⊆ A ∪ fB. 
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3.1. 
 
fA ⊆ B: 
fA ⊆ A: 
A ⊆ fB. 
B ⊆ A ∪ fB.  
fB ⊆ B.  
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ A.  
 
LIST 3.1.* 
# 2 
 
fA ⊆ B: 
fA ⊆ A: 
A ⊆ fB. 
B ⊆ A ∪ fB.  
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A.  
 
LIST 3.1.1. 
 
fA ⊆ B: 
fA ⊆ A: 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5. 
B ∩ fB ⊆ A.  
 
LIST 3.1.1.* 
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# 0 
 
fA ⊆ B: 
fA ⊆ A: 
A ⊆ fB: 
fB ⊆ B. 
B ∩ fB ⊆ A.  
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 3.1.2. 
 
fA ⊆ B: 
fA ⊆ A: 
B ⊆ A ∪ fB:  
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A. 
 
Entirely RCA0 correct. Set A = B = N. 
 
LIST 3.2. 
 
fA ⊆ B: 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5. 
B ∩ fB ⊆ A ∪ fA.  
 
LIST 3.2.* 
# 0 
 
fA ⊆ B: 
A ⊆ fB: 
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA.  
 
Entirely RCA0 correct. Set A = fN, B = N.   
 
LIST 3.3. 
 
fA ⊆ B: 
B ⊆ A ∪ fB:  
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A ∪ fA.  
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Entirely RCA0 correct. Set A = B = N.  
 
LIST 4. 
 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 4.* 
# 0 
 
A ⊆ fB: 
fB ⊆ B ∪ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 5. 
 
B ⊆ A ∪ fB: 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N. 
 
THEOREM 2.4.6. EBRT in A,B,fA,fB,⊆ on (SD,INF) and (ELG ∩ 
SD,INF) have the same correct formats. EBRT in A,B,fA,fB,⊆ 
on (SD,INF) and (ELG ∩ SD,INF) are RCA0 secure. 
 
Proof: We have presented an RCA0 classification of EBRT in 
A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ SD,INF) in the sense of the 
tree methodology of section 2.1. All of the documentation 
works equally well on (SD,INF) and (ELG ∩ SD,INF), and we 
have remained within RCA0. QED 
 
THEOREM 2.4.7. There are at most 18 maximally α correct α 
formats, where α is EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ 
SD,INF).  
 
Proof: Here is the list of numerical labels of terminal 
vertices in the RCA0 classification of EBRT in A,B,fA,fB,⊆ 
on (SD,INF), (ELG ∩ SD,INF) given above: 
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1.1.1.* 
1.1.2.* 
1.1.3. 
1.2.1.* 
1.2.2. 
1.3.1.* 
1.3.2. 
1.4.* 
1.5. 
2.1.1.* 
2.1.2. 
2.2. 
3.1.1.* 
3.1.2. 
3.2.* 
3.3. 
4.* 
5. 
The count is 18. Apply Theorem 2.1.5. QED 
 
 
2.5. EBRT in A,B,fA,fB,⊆ on (ELG,INF). 
 
In this section, we use the tree methodology described in 
section 2.1 to analyze EBRT in A,B,fA,fB,⊆ on (ELG,INF) and 
(EVSD,INF). We handle both BRT settings at once, as they 
behave the same way for EBRT in A,B,fA,fB,⊆. In particular, 
we show that they are RCA0 secure (see Definition 1.1.43). 
 
Some of this treatment is the same as for EBRT in 
A,B,fA,fB,⊆ on (SD,INF) given in section 2.4. However, many 
new features appear that makes this section considerably 
more involved than section 2.4.  
 
A key difference between EBRT in A,B,fA,fB,⊆ on (SD,INF) 
and on (ELG,INF) is that the Compelmentation Theorem holds 
on (SD,INF), yet fails on (ELG,INF). E.g., it fails for 
f(x) = 2x. 
 
Let f:Nk → N be partial. Define the following series of 
sets by induction i ≥ 1. 
 

S1 = N. 
Si+1 = N\fSi. 

 
LEMMA 2.5.1. S2 ⊆ S4 ⊆ S6 ⊆ ... ⊆ ... ⊆ S5 ⊆ S3 ⊆ S1. I.e., 
for all i ≥ 1, S2i ⊆ S2i+2 ⊆ S2i+1 ⊆ S2i-1. 
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Proof: We argue by induction on i ≥ 1. The basis case is  
 

S2 ⊆ S4 ⊆ S3 ⊆ S1. 
 
To see this, clearly 
 
S3 ⊆ S1. 
N\S1 ⊆ N\S3. 
S2 ⊆ S4. 
S2 ⊆ S1. 
N\S1 ⊆ N\S2. 
S2 ⊆ S3. 
fS2 ⊆ fS3. 
N\fS3 ⊆ N\fS2. 
S4 ⊆ S3.  
 
Now assume the induction hypothesis  
 

S2i ⊆ S2i+2 ⊆ S2i+1 ⊆ S2i-1. 
 
Then  
 

fS2i ⊆ fS2i+2 ⊆ fS2i+1 ⊆ fS2i-1. 
N\fS2i-1 ⊆ N\fS2i+1 ⊆ N\fS2i+2 ⊆ N\fS2i. 

S2i ⊆ S2i+2 ⊆ S2i+3 ⊆ S2i+1. 
fS2i ⊆ fS2i+2 ⊆ fS2i+3 ⊆ fS2i+1. 

N\fS2i+1 ⊆ N\fS2i+3 ⊆ N\fS2i+2 ⊆ N\fS2i. 
S2i+2 ⊆ S2i+4 ⊆ S2i+3 ⊆ S2i+1. 

 
QED 
 
LEMMA 2.5.2. Let f:Nk → N be partial, where each f-1(n) is 
finite. Let A = S2 ∪ S4 ∪ ..., and B = S1 ∩ S3 ∩ ... . Then 
A ⊆ B, A = N\fB, B = N\fA. 
 
Proof: Let A,B be as given. By Lemma 2.5.1, A ⊆ B.  
 
Fix i ≥ 1. S2i = N\fS2i-1, S2i ∩ fS2i-1 = ∅, S2i ∩ fB = ∅. 
Since i ≥ 1 is arbitrary, A ∩ fB = ∅. I.e., A ⊆ N\fB.  
 
Since S2i+1 = N\fS2i, we see that for all j ≥ i, S2i+1 ∩ fS2j = 
∅. Hence S2i+1 ∩ fA = ∅. Since i ≥ 1 is arbitrary, B ∩ fA = 
∅. I.e., B ⊆ N\fA. 
 
Now let n ∈ N\fB. We claim that for some j ≥ 0, n ∉ fS2j+1. 
Suppose that for all j ≥ 0, n ∈ fS2j+1. Since f-1(n) is 
finite, there exists x ∈ f-1(n) which lies in infinitely 
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many S2j+1. Hence there exists x ∈ f-1(n) such that x ∈ B. 
Therefore n ∈ fB. This establishes the claim. Fix j ≥ 0 
such that n ∉ fS2j+1. Then n ∈ S2j+2, and so n ∈ A. This 
establishes that A = N\fB. 
 
Finally, let n ∈ N\fA. Then for all i, n ∉ fS2i. Hence for 
all j, n ∈ S2j+1. Therefore n ∈ B. This estabslihes that B = 
N\fA. QED 
 
LEMMA 2.5.3. Let f:[0,n]k → [0,n] be partial, n ≥ 0. There 
exist A ⊆ B ⊆ [0,n] such that A = [0,n]\fB and B = 
[0,n]\fA.  
 
Proof: Let n,f be as given. Obviously f:Nk → N is partial, 
and each f-1(n) is finite. By Lemma 2.5.2, let A = S2 ∪ S4 ∪ 
..., and B = S1 ∩ S3 ∩ ... . Then A ⊆ B, A = N\fB, B = 
N\fA. Note that A ∩ [0,n] ⊆ B ∩ [0,n], A ∩ [0,n] = 
[0,n]\fB, B ∩ [0,n]\fA. QED 
 
LEMMA 2.5.4. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that B ∪. fA = A ∪ fB = N. 
 
Proof: Let f ∈ EVSD. Let n ≥ 1 be such that |x| ≥ n → f(x) 
> |x|. Let f’ be the restriction of f to those elements of 
[0,n-1]k whose value lies in [0,n-1]. Then f’:[0,n-1]k → 
[0,n-1] is partial.  
 
By Lemma 2.5.3, let A’ ⊆ B’ ⊆ [0,n-1], where A’ = [0,n-
1]\f’B’ and B’ = [0,n-1]\f’A’.  
 
We now define the required A,B by induction. Membership in 
A,B for m < n is just membership in A’,B’. Thus for all m < 
n, 
 

m ∈ B ↔ m ∈ B’ ↔ m ∉ f’A’ ↔ m ∉ fA. 
m ∈ A ↔ m ∈ A’ ↔ m ∉ f’B’ ↔ m ∉ fB. 

 
Now suppose membership in A,B has been defined for all 0 ≤ i 
< m, where m ≥ n, and we have A ⊆ B thus far.  
 
case 1. m ∉ fA thus far. Put m ∈ A,B.  
case 2. m ∈ fA thus far. Put m ∉ A,B. 
 
This defines membership of m in A,B. NOte that we still 
have A ⊆ B.  
 
Now let A,B be the result of this inductive construction. 
Note that by the choice of n, all of the “thus far” remain 
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true of the actual A,B, where m ≥ n. Thus we have for all m 
≥ n,  
 

A ⊆ B. 
m ∉ fA ↔ m ∈ A ↔ m ∈ B. 
m ∉ A → m ∈ fA → m ∈ fB. 

 
Hence for all m ≥ n, m ∈ B ∪. fA and m ∈ A ∪ fB. Since this 
also holds for m < n, this holds for all m ∈ N.  
 
Finally, suppose A is finite. Then fA is finite, and so 
eventually all m are placed in A. Thus A is infinite. Hence 
A is infinite. QED 
 
LEMMA 2.5.5. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that A ∪. fB = N and B ∩ fA = ∅.  
 
Proof: Let f ∈ EVSD. Let n,A’,B’ be as in the first 
paragraph of the proof of Lemma 2.5.4.  
 
We now define the required A,B by induction. Membership in 
A,B for m < n is just membership in A’,B’. Thus for all m < 
n,  
 

m ∈ B ↔ m ∈ B’ ↔ m ∉ f’A’ ↔ m ∉ fA. 
m ∈ A ↔ m ∈ A’ ↔ m ∉ f’B’ ↔ m ∉ fB. 

 
Now suppose membership in A,B has been defined for all i < 
m, where m ≥ n, and we have A ⊆ B thus far.  
 
case 1. m ∉ fB thus far. Put m ∈ A,B.  
case 2. m ∈ fB thus far. Put m ∉ A,B. 
 
This defines membership of m in A,B. Note that we still 
have A ⊆ B.  
 
Now let A,B be the result of this inductive construction. 
Note that by the choice of n, all of the “thus far” remain 
true of the actual A,B, where m ≥ n. Thus we have for all m 
≥ n,  
 

A ⊆ B. 
m ∉ fB ↔ m ∈ A ↔ m ∈ B. 
m ∈ B → m ∉ fB → m ∉ fA. 

 
Hence for all m ≥ n, m ∈ A ∪. fB and m ∉ B ∩ fA. Since this 
also holds for m < n, this holds for all m ∈ N.  
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Finally, suppose A is finite. Then eventually all m are 
placed in fB. Hence eventually all m are placed outside B. 
Hence B is finite. So fB is finite. Then eventually all m 
are put in A,B. This is a contradiction. QED  
 
LEMMA 2.5.6. There exists f ∈ ELG such that f-1(0) = 
{(0,...,0)}, f(N\{0}) ⊆ 2N+1, and for all A ⊆ N containing 
0, fA ∩ 2N ⊆ A → fA is cofinite. 
 
Proof: Let g ∈ ELG ∩ SD be given by Lemma 3.2.1. We define 
4-ary f ∈ ELG as follows. f(0,0,0,0) = 0. f(0,n,m,r) = 
g(n,m,r) if (n,m,r) ≠ (0,0,0). f(t,n,m,r) = 2|t,n,m,r|+1 if 
t ≠ 0. Obviously f ∈ ELG ∩ SD, f(N\{0}) ⊆ 2N+1, and f-1(0) = 
{(0,0,0,0)}.  
 
Now let A ⊆ N, 0 ∈ A, where fA ∩ 2N ⊆ A. Since gA ⊆ fA, we 
have gA ∩ 2N ⊆ A, and so by Lemma 3.2.1, gA is cofinite. 
Hence fA is cofinite. QED     
 
LEMMA 2.5.7. The following is false. For all f ∈ ELG there 
exist infinite A ⊆ B ⊆ N such that A ∩ fB = ∅, B ∪ fB = N, 
and fB ⊆ B ∪ fA.  
 
Proof: Let f ∈ ELG be given by Lemma 2.5.6. Let A ∩ fB = ∅, 
B ∪ fB = N, and fB ⊆ B ∪ fA, where A is infinite. Now 0 ∈ B 
∨ 0 ∈ fB. Since  
f-1(0) = {(0,0,0,0)}, we have 0 ∈ B, 0 ∈ fB, 0 ∉ A. 
Therefore fA ⊆ 2N+1. Since fB ⊆ B ∪ fA, we have fB ∩ 2N ⊆ 
B. Therefore fB is cofinite. This contradicts A ∩ fB = ∅. 
QED  
 
LEMMA 2.5.8. The following is false. For all f ∈ ELG there 
exist infinite A ⊆ B ⊆ N such that B ∪. fA = N and A ∩ fB = 
∅. 
 
Proof: Let f be as given by Lemma 2.5.6. Let A ⊆ B ⊆ N, B 
∪. fA = N, A ∩ fB = ∅, where A is infnite. Since 0 ∈ B ∪. 
fA, we have 0 ∈ B ∨ 0 ∈ fA. If 0 ∈ fA then 0 ∈ A,B, because 
f-1(0) = {(0,0,0,0)}. Hence 0 ∉ fA, 0 ∉ A. Therefore fA ⊆ 
2N+1. Since B ∪ fA = N, we have 2N ⊆ B.  By Lemma 3.2.1, fB 
is cofinite. By A ∩ fB = ∅, A is finite. But A is infinite. 
QED 
 
LEMMA 2.5.9. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that B ∪. fA = N and A ⊆ fB.  
 
Proof: Let n be such that |x| ≥ n → f(x) > |x|. We can use 
Lemma 2.4.1 with N replaced by [n,∞). Let A,B ⊆ [n,∞), A ⊆ 
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B, B ∪. fA = [n,∞) and A = B ∩ fB, where A is infinite. 
Then B ∪. fA = [n,∞), A ⊆ fB. Replace B with B ∪ [0,n-1]. 
QED 
 
LEMMA 2.5.10. The following is false. For all f ∈ ELG there 
exist infinite A ⊆ B ⊆ N such that A ∩ fA = ∅, B ∪ fB = N, 
B ∩ fB ⊆ A ∪ fA. 
 
Proof: Let f be as given by Lemma 2.5.6. Let A ⊆ B ⊆ N such 
that A ∩ fA = ∅, B ∪ fB = N, B ∩ fB ⊆ A ∪ fA, where A,B 
are infinite. Then 0 ∈ B ∪ fB, and so 0 ∈ B ∩ fB. Hence 0 
∈ A ∪ fA, in which case 0 ∈ A ∩ fA. QED 
 
LEMMA 2.5.11. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that A ∪. fB = N and fA ⊆ B.  
 
Proof: Let f’ be the restriction of f to {x: f(x) > |x|}. 
Then f’ is defined at all but finitely many elements of 
dom(f). As remarked right after Lemma 2.4.5, Lemma 2.4.2 
holds even for partial functions, and so in particular for 
f’. Let A ⊆ B ⊆ N, where A ∪. f’B = N and f’A ⊆ B and A is 
infinite. Let A’ = N\fB ⊆ A. Since f’B contains all but 
finitely many elements of fB, we see that A’ remains 
infinite. Then A’,B are as required. QED  
 
LEMMA 2.5.12. Let f ∈ EVSD. There exist infinite A ⊆ B ⊆ N 
such that fB ⊆ B ∪. fA and A = B ∩ fB.  
 
Proof: Let n be such that |x| ≥ n → f(x) > |x|. We can use 
Lemma 2.4.1 with N replaced by [n,∞). Let A,B ⊆ [n,∞), A ⊆ 
B, B ∪. fA = [n,∞), and A = B ∩ fB, where A is infinite. 
Since fB ⊆ [n,∞), the proof is complete. QED    
 
LEMMA 2.5.13. Let f ∈ EVSD. There exist infinite A ⊆ N such 
that A ∩ f(A ∪ fA) = ∅.   
 
Proof: Let n be such that |x| ≥ n → f(x) > |x|. Define n0 < 
n1 < ... by induction as follows. Let n0 = n. Suppose ni has 
been defined, i ≥ 0. Let ni+1 be greater than all elements of 
f(A ∪ fA), thus far. Finally, let A = {n0,n1,...}. QED 
 
LEMMA 2.5.14. Let f ∈ EVSD and let X ⊆ N, where min(X) is 
sufficiently large. There exists a unique A such that A ⊆ X 
⊆ A ∪. fA. If X is infinite then A is infinite.  
 
Proof: Let f,X be as given. Then |x| ≥ min(X) → f(x) > |x|. 
We can use Lemma 2.4.3 with N replaced by [min(X),∞). Let A 
⊆ X ∩ [min(X),∞) ⊆ A ∪. fA.  
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For uniqueness, suppose A ⊆ X ⊆ A ∪. fA, A' ⊆ X ⊆ A' ∪. 
fA', and let n = min(A Δ A'). Since f ∈ SD, clearly n ∈ fA 
↔ n ∈ fA'. This is a contradiction. QED  
 
As in section 2.4, we start with the 9 elementary 
inclusions in A,B,fA,fB,⊆. 
 
EBRT in A,B,fA,fB,⊆ on (ELG,INF), (EVSD,INF). 
 
A ∩ fA = ∅. 
B ∪ fB = N. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
 
Our classification amounts to a determination of the 
subsets S of the above nine inclusions for which  
 
(∀f ∈ ELG)(∃A ⊆ B from INF)(S) 
(∀f ∈ EVSD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively. 
  
EBRT in A,B,fA,fB,⊆ on (ELG,INF), (EGS ∩ SD,INF).* 
# 5 
 
A ∩ fA = ∅.  
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.  
 
A ∩ fA = ∅: 
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB.  
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fB ⊆ B ∪ fA.  
A ∩ fB ⊆ fA. A ∩ fB = ∅.  
B ∩ fA ⊆ A. B ∩ fA = ∅.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1*. 
# 6 
 
A ∩ fA = ∅: 
B ∩ fA = ∅.  
A ∩ fB = ∅.  
fA ⊆ B. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.1. 
 
A ∩ fA = ∅: Redundant.  
B ∩ fA = ∅:  
A ∩ fB = ∅.  
fA ⊆ B. No. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ A. 
 
LIST 1.1.* 
# 4 
 
B ∩ fA = ∅:  
A ∩ fB = ∅.  
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. 
 
LIST 1.1.1. 
 
B ∩ fA = ∅:  
A ∩ fB = ∅:  
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
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fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. B ∩ fB = ∅. 
 
LIST 1.1.1.* 
# 2 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB = ∅. 
 
LIST 1.1.1.1. 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N. 
fB ⊆ B ∪ fA. B ∪ fA = N. No. Lemma 2.5.8.  
B ∩ fB = ∅. No. Lemma 2.5.10. 
 
LIST 1.1.1.1.* 
# 0 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ∪ fB = N: 
A ∪ fB = N. 
 
Entirely RCA0 correct. Lemma 2.5.5. 
 
LIST 1.1.1.2. 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ⊆ A ∪ fB:  
fB ⊆ B ∪ fA.  
B ∩ fB = ∅.  
 
Entirely RCA0 correct. Set A ∩ fA = ∅, B = A.  
 
LIST 1.1.2. 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No.  
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fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A.  
 
LIST 1.1.2.* 
# 2 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N. 
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A.  
 
LIST 1.1.2.1. 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B ∪ fA. B ∪ fA = N.  
B ∩ fB ⊆ A. No. Lemma 2.5.10. 
 
LIST 1.1.2.1.* 
# 0 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N: 
B ∪ fA = N.  
 
Entirely RCA0 correct. Lemma 2.5.9. 
 
LIST 1.1.2.2. 
 
B ∩ fA = ∅:  
A ⊆ fB:  
fB ⊆ B ∪ fA:  
B ∩ fB ⊆ A.  
 
Entirely RCA0 correct. Lemma 2.5.12. 
 
LIST 1.1.3.  
 
B ∩ fA = ∅:  
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B ∪ fA. B ∪ fA = N.   
B ∩ fB ⊆ A. No. Lemma 2.5.10. 
 
LIST 1.1.3.* 
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# 0 
 
B ∩ fA = ∅:  
B ∪ fB = N: 
A ∪ fB = N.  
B ∪ fA = N.   
 
Entirely RCA0 correct. Lemma 2.5.4. 
 
LIST 1.1.4. 
 
B ∩ fA = ∅: 
B ⊆ A ∪ fB: 
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A.  
 
Entirely RCA0 correct. Set A ∩ fA = ∅, B = A.  
 
LIST 1.2.  
 
A ∩ fA = ∅: Redundant.  
A ∩ fB = ∅: 
fA ⊆ B. 
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ fA. 
 
LIST 1.2.* 
# 3 
 
A ∩ fB = ∅: 
fA ⊆ B. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA. 
 
LIST 1.2.1. 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. fB ⊆ B. No. Lemma 2.4.4.  
B ∩ fB ⊆ fA. 
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LIST 1.2.1.* 
# 2 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
B ∩ fB ⊆ fA. 
 
LIST 1.2.1.1. 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
B ∩ fB ⊆ fA. No. Lemma 2.5.10. 
 
LIST 1.2.1.1.* 
# 0 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
 
Entirely RCA0 correct. See Lemma 2.5.11.  
 
LIST 1.2.1.2. 
# 0 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ⊆ A ∪ fB: 
B ∩ fB ⊆ fA.  
 
Entirely RCA0 correct. Le A be given by Lemma 2.5.13. Set B 
= A ∪ fA.  
 
LIST 1.2.2. 
 
A ∩ fB = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B ∪ fA. No. Lemma 2.5.7.  
B ∩ fB ⊆ fA. No. Lemma 2.5.10. 
 
LIST 1.2.2.* 
# 0 
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A ∩ fB = ∅: 
B ∪ fB = N: 
A ∪ fB = N. 
 
Entirely RCA0 correct. Lemma 2.5.5.  
 
LIST 1.2.3. 
 
A ∩ fB = ∅: 
B ⊆ A ∪ fB: 
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA. 
 
Entirely RCA0 correct. Set A ∩ fA = ∅, B = A.  
 
LIST 1.3.  
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB.  
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.* 
# 3 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB.  
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.1. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA.  
 
LIST 1.3.1.* 



 380 

# 2 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
B ∪ fB = N. 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA.  
 
LIST 1.3.1.1. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.3.1.1.* 
# 0 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B.  
 
Entirely RCA0 correct. Let A be given by Lemma 2.4.3 with A 
⊆ fN ⊆ A ∪. fA. Set B = N.  
 
LIST 1.3.1.2. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
fB ⊆ B:  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Let B = [n,∞), n sufficiently large. 
By Lemma 2.5.14, let A ⊆ fB ⊆ A ∪. fA. 
 
LIST 1.3.2. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B. B = N.   



 381 

B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.3.2.* 
# 0 
 
A ∩ fA = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
A ∪ fB = N.  
B = N.   
 
Entirely RCA0 correct. Set A = N\fN, B = N.  
 
LIST 1.3.3. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
B ⊆ A ∪ fB:  
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA.  
 
Entirely RCA0 correct. Let B = [n,∞) for n sufficiently 
large. Let A ⊆ B ⊆ A ∪. fA, by Lemma 2.5.14.  
 
LIST 1.4.  
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.4.* 
# 2 
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N. 
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.4.1.  
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B ∪ fA. 
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B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.4.1.* 
# 0  
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B ∪ fA.  
 
Entirely RCA0 correct. Let A ⊆ fN ⊆ A ∪. fA be given by 
Lemma 2.4.3. Set B = N.  
 
LIST 1.4.2. 
 
A ∩ fA = ∅: 
A ⊆ fB:  
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Lemma 2.5.12.  
 
LIST 1.5.  
 
A ∩ fA = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB.   
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.5.* 
# 0 
 
A ∩ fA = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
 
Entirely RCA0 correct. Lemma 2.5.4.  
 
LIST 1.6.  
 
A ∩ fA = ∅: 
B ⊆ A ∪ fB:   
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA.  
 
Entirely RCA0 correct. Let A ∩ fA = ∅, B = A.  
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LIST 2.  
 
B ∪ fB = N: 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B ∪ fA. B ∪ fA = N.  
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.*  
# 3 
 
B ∪ fB = N: 
fA ⊆ B. 
A ⊆ fB. 
A ∪ fB = N.  
B ∪ fA = N.  
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1. 
 
B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB. 
A ∪ fB = N.  
B ∪ fA = N. B = N.   
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A. fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.* 
# 2 
 
B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB. 
A ∪ fB = N.  
B = N.   
A ∩ fB ⊆ fA.  
fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.1. 
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B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB: 
A ∪ fB = N. fB = N. No. Lemma 2.4.5. 
B = N.   
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.1.* 
# 0 
 
B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB: 
B = N.   
fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 2.1.2. 
 
B ∪ fB = N: 
fA ⊆ B: 
A ∪ fB = N. 
B = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N. 
 
LIST 2.2. 
 
B ∪ fB = N: 
A ⊆ fB: 
A ∪ fB = N. Yes. 
B ∪ fA = N. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.2.* 
# 0 
 
B ∪ fB = N: 
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A ⊆ fB: 
fB ⊆ B ∪ fA. B ∪ fA = N. 
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N. 
 
LIST 2.3. 
 
B ∪ fB = N: 
A ∪ fB = N. 
B ∪ fA = N. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N. 
 
LIST 3.  
 
fA ⊆ B: 
A ⊆ fB. 
B ⊆ A ∪ fB.   
fB ⊆ B ∪ fA.   
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3*. 
# 2 
 
fA ⊆ B: 
A ⊆ fB. 
B ⊆ A ∪ fB.   
fB ⊆ B ∪ fA.   
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3.1. 
 
fA ⊆ B: 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.    
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
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LIST 3.1.* 
# 0 
 
fA ⊆ B: 
A ⊆ fB: 
fB ⊆ B ∪ fA.    
B ∩ fA ⊆ A.    
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 3.2. 
 
fA ⊆ B: 
B ⊆ A ∪ fB:   
fB ⊆ B ∪ fA.     
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = fN. 
 
LIST 4. 
 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.   
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 4.* 
# 0 
 
A ⊆ fB: 
fB ⊆ B ∪ fA.   
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N. 
 
LIST 5. 
 
B ⊆ A ∪ fB:  
fB ⊆ B ∪ fA.   
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  



 387 

B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N. 
 
THEOREM 2.5.15. EBRT in A,B,fA,fB,⊆ on (ELG,INF), 
(EVSD,INF) have the same correct formats. EBRT in 
A,B,fA,fB,⊆ on (ELG,INF) and (EVSD,INF) are RCA0 secure. 
 
Proof: We have presented an RCA0 classification of EBRT in 
A,B,fA,fB,⊆ on (ELG,INF), (EVSD,INF) in the sense of the 
tree methodology of section 2.1. All of the documentation 
works equally well on (ELG,INF) and (EVSD,INF). We have 
stayed within RCA0. QED 
 
THEOREM 2.5.16. There are at most 26 maximal α correct α 
formats, where α is EBRT in A,B,fA,fB,⊆ on (ELG,INF), 
(EVSD,INF).  
 
Proof: Here is the list of numerical labels of terminal 
vertices in the RCA0 classification of EBRT in A,B,fA,fB,⊆ 
on (ELG,INF), (EVSD,INF) given above: 
1.1.1.1.* 
1.1.1.2. 
1.1.2.1.* 
1.1.2.2. 
1.1.3.* 
1.1.3. 
1.2.1.1.* 
1.2.1.2. 
1.2.2.* 
1.2.3. 
1.3.1.1.* 
1.3.1.2. 
1.3.2.* 
1.3.3. 
1.4.1.* 
1.4.2. 
1.5.* 
1.6. 
2.1.1.* 
2.1.2. 
2.2.* 
2.3. 
3.1.* 
3.2. 
4.* 
5. 
The count is 26. Apply Theorem 2.1.5. QED 
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2.6. EBRT in A1,...,Ak,fA1,...,fAk,⊆ on 
(MF,INF). 
 
In this section, we use the tree methodology presented in 
section 2.1 to analyze EBRT in A1,...,Ak,fA1,...,fAk,⊆ on 
(MF,INF). This turns out to be very easy, and we obtain the 
same classification if we replace MF by any subset of MF 
satisfying some weak conditions. In particular, we show 
that EBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) is RCA0 
secure.  
 
Note that in sections 2.4 and 2.5, we have stayed within 
EBRT in A,B,fA,fB,⊆. EBRT in A,B,fA,fB on (SD,INF),(ELG ∩ 
SD,INF), (ELG,INF),(EVSD,INF), is a major additional 
undertaking, and is beyond the scope of this book. The same 
can be said for various fragments of EBRT in 
A,B,C,fA,fB,fC,⊆ on (SD,INF),(ELG ∩ 
SD,INF),(ELG,INF),(EVSD,INF). 
 
However, EBRT on (MF,INF) is considerably easier to 
analyze, due to the presence of constant functions and 
projection functions.  
 
As usual, we start with the list of all 
A1,...,Ak,fA1,...,fAk,⊆ elementary inclusions. 
 
EBRT in A1,...,Ak,fA1,...,fAk on (MF,INF).  
 
Ai = ∅. No. 
fAi = ∅. No. Set f(x) = 0. 
Ai ∩ fAj = ∅. No. Set f(x) = x. 
Ai = N. 
fAi = N. No. Set f(x) = 0.  
Ai ∪ fAj = N. 
Ai ⊆ Aj, j < i.  
Ai ⊆ fAj. No. Set f(x) = 0.  
Ai ⊆ Aj ∪ fAp, j < i. 
fAi ⊆ Aj. 
fAi ⊆ fAj, j < i. 
fAi ⊆ Aj ∪ fAp, p < i.  
Ai ∩ fAj ⊆ Ap, p < i. 
Ai ∩ fAj ⊆ fAp, p < j. 
Ai ∩ fAj ⊆ Ap ∪ fAq, p < i and q < j. 
 
EBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF).*  
# 0 
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Ai = N. 
Ai ∪ fAj = N. 
Ai ⊆ Aj, j < i.  
Ai ⊆ Aj ∪ fAk, j < i. 
fAi ⊆ Aj. 
fAi ⊆ fAj, j < i. 
fAi ⊆ Aj ∪ fAp, p < i.  
Ai ∩ fAj ⊆ Ap, p < i. 
Ai ∩ fAj ⊆ fAp, p < j. 
Ai ∩ fAj ⊆ Ap ∪ fAq, p < i and q < j. 
 
Entirely RCA0 correct. Set A1 = ... = Ak = N.  
 
THEOREM 2.6.1. The following is provable in RCA0. Let V ⊆ MF 
contain at least one constant function of some arity, and 
at least one projection function of some arity. For all k ≥ 
1, EBRT in A1,...,Ak,fA1,...,fAk,⊆ on (V,INF) and (MF,INF) 
have the same correct formats. For all k ≥ 1, EBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) is RCA0 secure.  
 
Proof: We can use any constant function and any projection 
function in place of the unary functions f(x) = 0 and f(x) 
= x that were used above. RCA0 suffices due to the obvious 
explicitness of the classification. QED 
 
THEOREM 2.6.2. There is an algorithm for determining the 
truth value of any statement in EBRT in any 
A1,...,Ak,fA1,...,Ak,⊆ on (MF,INF). In fact, an algorithm can 
be given that can be proved to work in RCA0. 
 
Proof: The result follows from the explicitness of the 
classification, the algorithm presented in section 2.1, and 
Theorem 2.1.4. QED 
 
2.7. IBRT in A1,...,Ak,fA1,...,fAk,⊆. 
 
In this section, we analyze IBRT in A1,...,Ak,fA1,...,fAk,⊆ 
on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), and 
(MF,INF). We show that for all k ≥ 1, IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on each of (SD,INF), (ELG ∩ SD,INF), 
(ELG,INF), (EVSD,INF) is RCA0 secure. We show that IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) is ACA' secure (see 
Definition 1.4.1). We also show that the only correct 
format for IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG 
∩ SD,INF), (ELG,INF), (EVSD,INF) is ∅. This is not true on 
(MF,INF).  
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We begin with (MF,INF), for some fixed k ≥ 1. We need to 
analyze all statements of the form 
 

#) (∃f ∈ MF)(∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ϕ). 
 
where ϕ is an A1,...,Ak,fA1,...,fAk,⊆ format. Recall that the 
instances of #) are Boolean equivalent to the assertions of 
IBRT in A1,...,Ak,fA1,...,fAk,⊆, and the negations of the 
statements in IBRT in A1,...,Ak,fA1,...,fAk,⊆.  
 
Recall the list of all A1,...,Ak,fA1,...,fAk,⊆ elementary 
inclusions that were used in section 2.6: 
 
1. Ai = ∅.  
2. fAi = ∅. 
3. Ai ∩ fAj = ∅.  
4. Ai = N.  
5. fAi = N.   
6. Ai ∪ fAj = N. 
7. Ai ⊆ Aj, j < i.  
8. Ai ⊆ fAj.  
9. Ai ⊆ Aj ∪ fAp, j < i.  
10. fAi ⊆ Aj.  
11. fAi ⊆ fAj, j < i.  
12. fAi ⊆ Aj ∪ fAp, p < i.  
13. Ai ∩ fAj ⊆ Ap, p < i.  
14. Ai ∩ fAj ⊆ fAp, p < j. 
15. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i and q < j.  
 
For each of these elementary inclusions, ρ, we will provide 
a useful description of the witness set for ρ, in the 
following sense: The set of all f ∈ MF such that  
 

(∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ρ). 
 
To analyze formats, we analyze the intersections of these 
witness sets, determining which intersections are nonempty. 
I.e., a format is correct if and only if the intersection 
of the set of witnesses of each element is nonempty (in 
IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF)).  
 
We also use this technique for the other four BRT settings. 
Thus a format is correct if and only if the intersection of 
the set of witnesses of each element meets V (in IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (V,INF), V ⊆ MF)). 
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Each numbered entry in the list represents several 
inclusions. In some numbered entries, all of the inclusions 
will have the same witness set. We call such an entry 
uniform. Unfortunately, some of the numbered entries are 
not uniform. 
 
We shall see that entries 1-7,11 are uniform. We now 
determine their witnesses sets. 
 
LEMMA 2.7.1. The inclusions in clauses 1-7 each have no 
witnesses. I.e., their witness sets are ∅.  
 
Proof: Let f ∈ MF. We show that f is not a witness. For 
1,2,3, let A1 = ... = Ak = N. For 4,5,6 take A1 = ... = Ak = 
∅. For 7, take each Ai = {i}. QED 
 
LEMMA 2.7.2. Let f ∈ MF and j < i. f witnesses fAi ⊆ fAj if 
and only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,j,i be as given. Let f witness fAi ⊆ fAj. Let B 
∈ INF. Set A1 = ... = Aj = B, Aj+1 = ...= Ak = N. Then fN = 
fB. For the converse, assume (∀B ∈ INF)(fB = fN). Let A1 ⊆ 
... ⊆ Ak ⊆ N, where A1 is infinite. Then fAi = fN = fAj. QED 
 
We now break the remaining numbered entries into uniform 
parts as follows.  
 
8a. Ai ⊆ fAj, i ≤ j. 
8b. Ai ⊆ fAj, j < i.  
9a. Ai ⊆ Aj ∪ fAp, j,p < i.  
9b. Ai ⊆ Aj ∪ fAp, j < i ≤ p. 
10a. fAi ⊆ Aj, i ≤ j. 
10b. fAi ⊆ Aj, j < i. 
12a. fAi ⊆ Aj ∪ fAp, p,j < i.  
12b. fAi ⊆ Aj ∪ fAp, p < i ≤ j. 
13a. Ai ∩ fAj ⊆ Ap, p < i,j. 
13b. Ai ∩ fAj ⊆ Ap, j ≤ p < i. 
14a. Ai ∩ fAj ⊆ fAp, p < i,j. 
14b. Ai ∩ fAj ⊆ fAp, i ≤ p < j. 
15a. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i ≤ q < j. 
15b. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < i ≤ j. 
15c. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < i ≤ j. 
15d. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q = i < j. 
15e. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < j ≤ i. 
15f. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < j ≤ i. 
15g. Ai ∩ fAj ⊆ Ap ∪ fAq, q < j ≤ p < i. 
15h. Ai ∩ fAj ⊆ Ap ∪ fAq, q < p = j < i.   
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We need to show that this list includes all of 8-10,12-15 
from the original list. This is evident by inspection for 
all but 15 = 15a-15h. Here we need Lemma 2.7.4 below. 
 
LEMMA 2.7.3. Suppose p < i and q < j. Then at least one of 
the following holds. 
p ≤ i ≤ q ≤ j. 
p ≤ q ≤ i ≤ j.  
q ≤ p ≤ i ≤ j. 
p ≤ q ≤ j ≤ i. 
q ≤ p ≤ j ≤ i. 
q ≤ j ≤ p ≤ i. 
 
Proof: Let p < i and q < j. Obviously, at least one of the 
4! = 24 four term inequalities with ≤ separating the four 
variables i,j,p,q, must hold. In any such true four term 
inequality with ≤, p must come before i and q must come 
before j. Of the 4! = 24 permutations of the letters 
i,j,p,q, exactly 1/4 of them have p before i and q before 
j. Since the above lists 6 such, the above list must be 
complete. QED 
 
LEMMA 2.7.4. Suppose p < i and q < j. Then at least one of 
the following holds. 
p < i ≤ q < j 
p < q < i ≤ j 
q ≤ p < i ≤ j 
p < q = i < j 
p < q < j ≤ i 
q ≤ p < j ≤ i 
q < j ≤ p < i 
q < p = j < i. 
 
Proof: We use Lemma 2.7.3, which provides six cases.  
 
Suppose p ≤ i ≤ q ≤ j. Then p < i ≤ q < j.  
 
Suppose p ≤ q ≤ i ≤ j. If p < q then p < q < i ≤ j ∨ p < q = 
i < j. If p = q then p = q < i ≤ j, and so q ≤ p < i ≤ j. 
 
Suppose q ≤ p ≤ i ≤ j. Then q ≤ p < i ≤ j.  
 
Suppose p ≤ q ≤ j ≤ i. If p < q then p < q < j ≤ i. If p = q 
then p = q < j ≤ i, and so q ≤ p < j ≤ i.  
 
Suppose q ≤ p ≤ j ≤ i. If p < j then q ≤ p < j ≤ i. If p = j 
then q ≤ p = j < i, and hence q < p = j < i (using q < j).  
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Suppose q ≤ j ≤ p ≤ i. Then q < j ≤ p < i. QED   
 
We are now prepared to make the determination of witnesses 
for each of the entries 8a – 15h.  
 
WITNESS SET ASSIGNMENT LIST 
 
1-7. None. Lemma 2.7.1. 
8a. Ai ⊆ fAj, i ≤ j. (∀B ∈ INF)(B ⊆ fB). Lemma 2.7.5. 
8b. Ai ⊆ fAj, j < i. None. Lemma 2.7.6. 
9a. Ai ⊆ Aj ∪ fAp, j,p < i. None. Lemma 2.7.7.   
9b. Ai ⊆ Aj ∪ fAp, j < i ≤ p. (∀B ∈ INF)(B ⊆ fB).  
Lemma 2.7.8. 
10a. fAi ⊆ Aj, i ≤ j. (∀B ∈ INF)(fB ⊆ B). Lemma 2.7.9.  
10b. fAi ⊆ Aj, j < i. None. Lemma 2.7.10. 
11. fAi ⊆ fAj, j < i. (∀B ∈ INF)(fB = fN). Lemma 2.7.2. 
12a. fAi ⊆ Aj ∪ fAp, p,j < i. (∀B ∈ INF)(fB = fN).  
Lemma 2.7.11. 
12b. fAi ⊆ Aj ∪ fAp, p < i ≤ j. (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Lemma 2.7.12. 
13a. Ai ∩ fAj ⊆ Ap, p < i,j. None. Lemma 2.7.13. 
13b. Ai ∩ fAj ⊆ Ap, j ≤ p < i. (∀B ∈ INF)(fB ⊆ B).  
Lemma 2.7.14. 
14a. Ai ∩ fAj ⊆ fAp, p < i,j. (∀B ∈ INF)(fB = fN).  
Lemma 2.7.15. 
14b. Ai ∩ fAj ⊆ fAp, i ≤ p < j. (∀B ∈ INF)(B ∩ fN ⊆ fB). 
Lemma 2.7.16. 
15a. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i ≤ q < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.17. 
15b. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < i ≤ j. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.18.  
15c. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < i ≤ j. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.19.  
15d. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q = i < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.20. 
15e. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < j ≤ i. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.21.  
15f. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < j ≤ i. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.22. 
15g. Ai ∩ fAj ⊆ Ap ∪ fAq, q < j ≤ p < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.23. 
15h. Ai ∩ fAj ⊆ Ap ∪ fAq, q < p = j < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.24. 
   
LEMMA 2.7.5. Let f ∈ MF and i ≤ j. f witnesses Ai ⊆ fAj if 
and only if (∀B ∈ INF)(B ⊆ fB). 
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Proof: Let f,i,j be as given. Assume f witnesses Ai ⊆ fAj. 
Let B ∈ INF. Set A1 = ... = Ak = B. Then B ⊆ fB. For the 
converse, assume (∀B ∈ INF)(B ⊆ fB) and let A1 ⊆ ... Ak ⊆ 
N, where A1 is infinite. Then Ai ⊆ fAi ⊆ fAj. QED 
 
LEMMA 2.7.6. Ai ⊆ fAj, j < i, has no witnesses.  
 
Proof: Let f witness Ai ⊆ fAj, j < i. By the Thin Set 
Theorem, let fB ≠ N. Set A1 = ... = Aj = B, Aj+1 = ... = Ak = 
N. Then Ai ⊆ fAj is false. QED 
 
LEMMA 2.7.7. Ai ⊆ Aj ∪ fAp, j,p < i, has no witnesses. 
 
Proof: Let f witness Ai ⊆ Aj ∪ fAp, j,p < i. By the Thin Set 
Theorem (variant), let B ∈ INF where B ∪ fB ≠ N. Set A1 = 
... = Ai-1 = B, Ai = ... = Ak = N. Then Ai ⊆ Aj ∪ fAp is 
false. QED 
 
LEMMA 2.7.8. Let f ∈ MF and j < i ≤ p. f witnesses Ai ⊆ Aj ∪ 
fAp if and only if (∀B ∈ INF)(B ⊆ fB). 
 
Proof:  Let f,i,j,p be as given. Let f witness Ai ⊆ Aj ∪ 
fAp. Let B ∈ INF. Suppose B ⊆ fB fails, and let r ∈ B\fB. 
Set A1 = ... = Aj = B\{r}, Aj+1 = ... = Ak = B. Then B ⊆ 
B\{r} ∪ fB, which contradicts the choice of r. Hence B ⊆ 
fB. For the converse, assume (∀B ∈ INF)(B ⊆ fB). Let A1 ⊆ 
... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ⊆ fAi ⊆ fAp ⊆ Aj 
∪ fAp. QED 
 
LEMMA 2.7.9. Let f ∈ MF and i ≤ j. f witnesses fAi ⊆ Aj if 
and only if (∀B ∈ INF)(fB ⊆ B). 
 
Proof: Let f,i,j be as given. Let f witness fAi ⊆ Aj. Let B 
∈ INF. Set A1 = ... = Ak = B. Then fB ⊆ B. For the converse, 
assume (∀B ∈ INF)(fB ⊆ B). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 
is infinite. Then fAi ⊆ Ai ⊆ Aj. QED 
 
LEMMA 2.7.10. fAi ⊆ Aj, j < i, has no witnesses.  
 
Proof: Let f witness fAi ⊆ Aj, j < i. Let r ∈ fN. Set A1 = 
... = Aj = N\{r}, Aj+1 = ... Ak = N. Then fAi ⊆ Aj is false. 
QED 
 
LEMMA 2.7.11. Let p,j < i. f witnesses fAi ⊆ Aj ∪ fAp if and 
only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,i,j,p be as given. Let f witness fAi ⊆ Aj ∪ 
fAp. Let B ∈ INF. Suppose fB ⊆ fN fails. Let r ∈ fN\fB. Set 
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A1 = ... = Ai-1 = B\{r}, Ai = ... = Ak = N. Then fN ⊆ B\{r} ∪ 
f(B\{r}), which is a contradiction. For the converse, 
assume (∀B ∈ INF)(fB = fN). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 
is infinite. Then fAi = fN ⊆ Aj ∪ fN = Aj ∪ fAp. QED 
 
LEMMA 2.7.12. Let f ∈ MF and p < i ≤ j. f witnesses fAi ⊆ Aj 
∪ fAp if and only if (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB).  
 
Proof: Let f,i,j,p be as given. Let f witness fAi ⊆ Aj ∪ 
fAp. Let B ⊆ C ⊆ N, where B is infinite. Set A1 = ...  = Ap 
= B, Ap+1 = ... = Ak = C. Then fC ⊆ C ∪ fB. For the 
converse, assume (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). Let A1 
⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then fAi ⊆ Ai ∪ fAp ⊆ 
Aj ∪ fAp. QED 
 
LEMMA 2.7.13. Ai ∩ fAj ⊆ Ap, p < i,j, has no witnesses. 
 
Proof: Let p < i,j. Let f witness Ai ∩ fAj ⊆ Ap. Let r ∈ fN. 
Let A1 = ... = Ap = N\{r}, Ap+1 = ... = Ak = N. Then Ai ∩ fAj 
⊆ Ap is false. QED 
 
LEMMA 2.7.14. Let f ∈ MF and j ≤ p < i. f witnesses Ai ∩ fAj 
⊆ Ap if and only if (∀B ∈ INF)(fB ⊆ B). 
 
Proof: Let f,i,j,p be as given. Let f witness Ai ∩ fAj ⊆ Ap. 
Let B ∈ INF. Set A1 = ... = Ai-1 = B, Ai = ... = Ak = N. Then 
fB ⊆ B. For the converse, assume (∀B ∈ INF)(fB ⊆ B). Let A1 
⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ fAj ⊆ Ai ∩ 
Aj = Aj ⊆ Ap.  QED 
 
LEMMA 2.7.15. Let f ∈ MF and p < i,j. f witnesses Ai ∩ fAj ⊆ 
fAp if and only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,i,j,p be as given. Let f witness Ai ∩ fAj ⊆ 
fAp. Let B ∈ INF. Set A1 = ... = Ap = B, Ap+1 = ... = Ak = N. 
Then fN ⊆ fB. For the converse, assume (∀B ∈ INF)(fB = fN). 
Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ fAj ⊆ 
fN = fAp.  QED 
 
LEMMA 2.7.16. Let f ∈ MF and i ≤ p < j. f witnesses Ai ∩ fAj 
⊆ fAp if and only if f witnesses Ai ∩ fAj ⊆ fAp if and only 
if (∀B ∈ INF)(B ∩ fN ⊆ fB). 
 
Proof: Let f,i,j,p be as given. Let f witness Ai ∩ fAj ⊆ 
fAp. Let B ∈ INF. Set A1 = ... = Aj-1 = B, Aj = ... = Ak = N. 
Then B ∩ fN ⊆ fB. For the converse, assume (∀B ∈ INF)(B ∩ 
fN ⊆ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then 
Ai ∩ fAj ⊆ Ai ∩ fN ⊆ fAi ⊆ fAp. QED 



 396 

 
LEMMA 2.7.17. Let f ∈ MF and p < i ≤ q < j. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(B ∩ fN ⊆ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose B ∩ fN ⊆ fB is false. Let r 
∈ B,fN, r ∉ fB. Set A1 = ... = Ai-1 = B\{r}, Ai = ... = Aj-1 = 
B, Aj = ... = Ak = N. Then B ∩ fN ⊆ B\{r} ∪ fB. This is a 
contradiction. For the converse, assume (∀B ∈ INF)(B ∩ fN ⊆ 
fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ 
fAj ⊆ Ai ∩ fN ⊆ fAi ⊆ fAq. QED 
 
LEMMA 2.7.18. Let f ∈ MF and p < q < i ≤ j. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fB = fN).  
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose fB ≠ fN. Let r ∈ fN\fB. Set 
A1 = ... = Aq-1 = B\{r}, Aq = ... = Ai-1 = B, Ai = ... = Ak = 
N. Then fN ⊆ B\{r} ∪ fB. This is a contradiction. 
Conversely, assume (∀B ∈ INF)(fB = fN). Let A1 ⊆ ... ⊆ Ak ⊆ 
N, where A1 is infinite. Then Ai ∩ fAj ⊆ fN = fAq ⊆ Ap ∪ fAq. 
QED 
 
LEMMA 2.7.19. Let f ∈ MF and q ≤ p < i ≤ j. f witnesses Ai ∩ 
fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fN ⊆ B ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Set A1 = ... = Ai-1 = B, Ai = ... = Ak = N. Then fN 
⊆ B ∪ fB. Conversely, assume (∀B ∈ INF)(fN ⊆ B ∪ fB). Let 
A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ fAj ⊆ fN 
⊆ Aq ∪ fAq ⊆ Ap ∪ fAq. QED  
 
LEMMA 2.7.20. Let f ∈ MF and p < q = i < j. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(B ∩ fN ⊆ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose B ∩ fN ⊆ fB is false. Let r 
∈ B,fN, r ∉ fB. Set A1 = ... = Ap = B\{r}, Ap+1 = ... = Aq = 
B, Aq+1 = ... = Ak = N. Then B ∩ fN ⊆ B\{r} ∪ fB. This is a 
contradiction.  For the converse, assume (∀B ∈ INF)(B ∩ fN 
⊆ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai 
∩ fAj ⊆ Ai ∩ fN ⊆ fAi = fAq ⊆ Ap ∪ fAq. QED 
 
LEMMA 2.7.21. Let f ∈ MF and p < q < j ≤ i. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose fN ≠ fB. Let r ∈ fN\fB. Set 
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A1 = ... = Ap = B\{r}, Ap+1 = ... = Aq = B, Aq+1 = ... = Ak = 
N. Then fN ⊆ B\{r} ∪ fB. This is a contradiction. For the 
converse, assume (∀B ∈ INF)(fN = fB). Let A1 ⊆ ... ⊆ Ak ⊆ 
N, where A1 is infinite. Then Ai ∩ fAj ⊆ fN = fAq ⊆ Ap ∪ fAq. 
QED 
 
LEMMA 2.7.22. Let f ∈ MF and q ≤ p < j ≤ i. f witnesses Ai ∩ 
fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fN ⊆ B ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Set A1 = ... = Aj-1 = B, Aj = ... = Ak 
= N. Then fN ⊆ B ∪ fB. For the converse, assume (∀B ∈ 
INF)(fN ⊆ B ∪ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is 
infinite. Then Ai ∩ fAj ⊆ fN ⊆ Aq ∪ fAq ⊆ Ap ∪ fAq. QED 
 
LEMMA 2.7.23. Let f ∈ MF and q < j ≤ p < i. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B,C ∈ INF)(B ⊆ C → fC ⊆ 
C ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ⊆ C ⊆ N, where B is infinite. Set A1 = ... = 
Aq = B, Aq+1 = ... = Ap = C, Ap+1 = ... = Ak = N. Then fC ⊆ C 
∪ fB. For the converse, assume (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai 
∩ fAj ⊆ fAj ⊆ Aj ∪ fAq ⊆ Ap ∪ fAq. QED 
 
LEMMA 2.7.24. Let f ∈ MF and q < p = j < i. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B,C ∈ INF)(B ⊆ C → fC ⊆ 
C ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ⊆ C ⊆ N, where B is infinite. Set A1 = ... = 
Aq = B, Aq+1 = ... = Ap = C, Ap+1 = ... = Ak = N. Then fC ⊆ C 
∪ fB. For the converse, assume (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai 
∩ fAj ⊆ Aj ∪ fAq = Ap ∪ fAq. QED 
 
We now remove entries with no witnesses from the Witness 
Set Assignment List. 
 
PRUNED WITNESS SET ASSIGNMENT LIST 
 
8a. Ai ⊆ fAj, i ≤ j. (∀B ∈ INF)(B ⊆ fB). Lemma 2.7.5. 
9b. Ai ⊆ Aj ∪ fAp, j < i ≤ p. (∀B ∈ INF)(B ⊆ fB).  
Lemma 2.7.8. 
10a. fAi ⊆ Aj, i ≤ j. (∀B ∈ INF)(fB ⊆ B). Lemma 2.7.9.  
11. fAi ⊆ fAj, j < i. (∀B ∈ INF)(fB = fN). Lemma 2.7.2. 
12a. fAi ⊆ Aj ∪ fAp, p,j < i. (∀B ∈ INF)(fB = fN).  
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Lemma 2.7.11. 
12b. fAi ⊆ Aj ∪ fAp, p < i ≤ j. (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Lemma 2.7.12. 
13b. Ai ∩ fAj ⊆ Ap, j ≤ p < i. (∀B ∈ INF)(fB ⊆ B).  
Lemma 2.7.14. 
14a. Ai ∩ fAj ⊆ fAp, p < i,j. (∀B ∈ INF)(fB = fN).  
Lemma 2.7.15. 
14b. Ai ∩ fAj ⊆ fAp, i ≤ p < j. (∀B ∈ INF)(B ∩ fN ⊆ fB). 
Lemma 2.7.16. 
15a. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i ≤ q < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.17. 
15b. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < i ≤ j. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.18.  
15c. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < i ≤ j. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.19.  
15d. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q = i < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.20. 
15e. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < j ≤ i. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.21.  
15f. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < j ≤ i. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.22. 
15g. Ai ∩ fAj ⊆ Ap ∪ fAq, q < j ≤ p < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.23. 
15h. Ai ∩ fAj ⊆ Ap ∪ fAq, q < p = j < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.24. 
 
Exactly six sets of witnesses appear in the Witness Set 
Assignment List. 
 
WITNESS SET LIST (FOR MF). 
 
(∀B ∈ INF)(fB = fN).  
(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ⊆ fB).  
(∀B ∈ INF)(fB ⊆ B).  
(∀B ∈ INF)(B ∩ fN ⊆ fB). 
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
We have only to determine which subsets of the above list 
have a common witness; i.e., which subsets have nonempty 
intersection. For this purpose, we use the “pure” 
application of the Tree Methodology mentioned at the very 
end of section 2.1. 
 
WITNESS SET LIST*. 
# 3 
 
(∀B ∈ INF)(fB = fN).  
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(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ⊆ fB).  
(∀B ∈ INF)(fB ⊆ B).  
(∀B ∈ INF)(B ∩ fN ⊆ fB). 
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
LIST 1. 
 
(∀B ∈ INF)(fB = fN):  
(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ⊆ fB). fN = N. No. By the Thin Set Theorem, 
let fB ≠ N. Hence fN ≠ N. 
(∀B ∈ INF)(fB ⊆ B). No. Let B = N\{r}, r ∈ fN.   
(∀B ∈ INF)(B ∩ fN ⊆ fB).  
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB).  
 
LIST 1.*  
# 0 
 
(∀B ∈ INF)(fB = fN):  
(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ∩ fN ⊆ fB).  
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB).  
 
Nonempty intersection. Let f(x) = 0. 
 
LIST 2.  
 
(∀B ∈ INF)(fN ⊆ B ∪ fB):  
(∀B ∈ INF)(B ⊆ fB). fN = N. No. By the Thin Set Theorem 
(variant), let B ∪ fB ≠ N. Since fN ⊆ B ∪ fB, we have fN ≠ 
N. 
(∀B ∈ INF)(fB ⊆ B). (∀B ∈ INF)(fN ⊆ B). No. Let B = N\{r}, 
r ∈ fN.   
(∀B ∈ INF)(B ∩ fN ⊆ fB).   
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
LIST 2.*  
# 0 
 
(∀B ∈ INF)(fN ⊆ B ∪ fB):  
(∀B ∈ INF)(B ∩ fN ⊆ fB).   
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
Nonempty intersection. Let f(x) = 0. 
 
LIST 3.  
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(∀B ∈ INF)(B ⊆ fB):  
(∀B ∈ INF)(fB ⊆ B).  
(∀B ∈ INF)(B ∩ fN ⊆ fB).   
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
Nonempty intersection. Let f(x) = x. 
 
THEOREM 2.7.25. For all k ≥ 1, IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) is ACA’ secure.  
 
Proof: Let S be a format in this BRT fragment α. Then S is 
a set of elementary inclusions in α, which are compiled in 
the first list of this section, 1-15. Correctness of S is 
equivalent to the existence of f ∈ MF satisfying (∀A1,...,Ak 
∈ INF)(A1 ⊆ ... ⊆ Ak → S). This can be rewritten in the 
following form:  
 

the intersection of the witness sets 
{f ∈ MF: (∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ϕ)}, 

ϕ ∈ S, is nonempty. 
 
A complete analysis of the non emptiness of these 
intersection has been presented. This analysis is explicit, 
except for the use of the Thin Set Theorem and Thin Set 
Theorem (variant). Recall from section 1.4 that the Thin 
Set Theorem and the Thin Set Theorem (variant) are provable 
in ACA’. QED 
 
We now consider IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), 
(ELG ∩ SD,INF), (ELG,INF), and (EVSD,INF). We shall see 
that it suffices to consider only (EVSD,INF). 
 
This amounts to determining which subsets of the Witness 
Set List have a common element from EVSD. For this purpose, 
we repeat the Tree Methodology on the witness list, this 
time with reference to EVSD only. 
 
WITNESS SET LIST. (FOR EVSD).  
 
(∀B ∈ INF)(fB = fN). No. By Theorem 2.2.1, let fN not be a 
subset of B ∪ fB. 
(∀B ∈ INF)(fN ⊆ B ∪ fB). No. Theorem 2.2.1.  
(∀B ∈ INF)(B ⊆ fB). No. By Theorem 2.2.1, let B ∩ fB = ∅.  
(∀B ∈ INF)(fB ⊆ B). No. By Theorem 2.2.1.  
(∀B ∈ INF)(B ∩ fN ⊆ fB). No. By Theorem 2.2.1, let B ⊆ fN, 
B ∩ fB = ∅.  
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). No. Lemma 2.7.26. 
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LEMMA 2.7.26. There is no f ∈ EVSD such that (∀B,C ∈ INF)(B 
⊆ C → fC ⊆ C ∪ fB). 
 
Proof: Let f ∈ EVSD. By Theorem 2.2.1, let C ∈ INF, where C 
∩ fC = ∅. We now apply Theorem 2.2.1, with A = C and D = 
fC. Let B ⊆ C, B infinite, where fC ⊆ fB fails. Then fC ⊆ C 
∪ fB also fails. QED 
 
THEOREM 2.7.27. The following is provable in RCA0. For all k 
≥ 1, IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG ∩ 
SD,INF), (ELG,INF), (EVSD,INF), have no correct formats 
other than ∅. They are all RCA0 secure. 
 
Proof: First note that EVSD contains SD, ELG ∩ SD, and ELG.  
 
The above analysis is explicit, except for the use of the 
Thin Set Theorem and Thin Set Theorem (variant). But we 
need only apply the Thin Set Theorem (variant) to functions 
from EVSD. By Theorem 2.2.1, there exists infinite B such 
that B ∩ fB = ∅, and so fB ≠ N. Now use the fact that 
Theorem 2.2.1 is provable in RCA0. QED 
 
It is clear that IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) 
has correct formats other than ∅. In particular,  
 

(∃f ∈ MF)(∀A ∈ INF)(fA = A) 
 
by setting f(x) = x.  
 
 

CHAPTER 3 
6561 CASES OF EQUATIONAL 
BOOLEAN RELATION THEORY 
 
3.1. Preliminaries. 
3.2. Some Useful Lemmas. 
3.3. Single Clauses (duplicates). 
3.4. AAAA. 
3.5. AAAB. 
3.6. AABA. 
3.7. AABB. 
3.8. AABC. 
3.9. ABAB. 
3.10. ABAC. 
3.11. ABBA. 
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3.12. ABBC. 
3.13. ACBC. 
3.14. Annotated Table.  
3.15. Some Observations.  
 
In this Chapter, we study 6561 = 38 assertions of EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) of a particularly 
simple form. We cannot come close to analyzing all 
assertions of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF), 
or even of EBRT in A,B,C,fA,fB,gB,gC,⊆ on (ELG,INF).  
 
Recall the notation A ∪. B, introduced in Definition 1.3.1. 
Thus  
 

A ∪. B ⊆ C ∪. D 
 
means  
 

A ∩ B = ∅ ∧ C ∩ D = ∅ ∧ A ∪ B ⊆ C ∪ D. 
 
This is a very natural concept, and is illustrated by the 
following diagram. 
 
 
 ______________________________ 
| C                            | 
|                              | 
|        ______________        | 
|       | A     | B    |       | 
|       |       |      |       | 
|_______|_______|______|_______|  
| D     |       |      |       | 
|       |       |      |       | 
|       |_______|______|       | 
|                              | 
|                              | 
|______________________________| 
 
 
Our 6561 = 38 cases take the following form. 
 
TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 
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Here X,Y,V,W,P,R,S,T are among the three letters A,B,C. We 
refer to the statements X ∪. fY ⊆ V ∪. gW, for X,Y,V,W ∈ 
{A,B,C}, as clauses.   
 
In this Chapter, we determine the truth values of all of 
these 6561 statements. We prove a number of specific 
results about the Template. Here “Temp” is read “Template”. 
 
TEMP 1. Every assertion in the Template is either provable 
or refutable in SMAH+. There exist 12 assertions in the 
Template, provably equivalent in RCA0, such that the 
remaining 6549 assertions are each provable or refutable in 
RCA0. Furthermore, these 12 are provably equivalent to the 
1-consistency of SMAH over ACA’ (Theorem 5.9.11).  
 
We can be specific about the 12 exceptional cases.  
 
DEFINITION 3.1.1. The Principal Exotic Case is Proposition 
A below. It is an instance of the Template. 
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
In Chapter 4, we prove Proposition A in SMAH+. In Chapter 5, 
we show that Proposition A is provably equivalent to 1-
Con(SMAH) over ACA’.  
 
DEFINITION 3.1.2. The Exotic Cases consist of the 12 
variants of Proposition A where we (optionally) interchange 
the two clauses, and (optionally) permute the three letters 
A,B,C. 
 
The Principal Exotic Case is among the Exotic Cases.  
 
The Template is based on the BRT setting (ELG,INF). What if 
we use (ELG ∩ SD,INF), (SD,INF), (EVSD,INF)?  
 
TEMP 2. Every one of the 6561 assertions in the Template, 
other than the 12 Exotic Cases, are provably equivalent to 
the result of replacing ELG by any of ELG ∩ SD, SD, EVSD. 
All 12 Exotic Cases are refutable in RCA0 if ELG is replaced 
by SD or EVSD (Theorem 6.3.5).  
 
TEMP 3. The Template behaves very differently for MF. For 
example, the Template is true (even provable in RCA0) with A 
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∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gB, yet false (even 
refutable in RCA0) with ELG replaced by MF. 
 
DEFINITION 3.1.3. The “template attributes” are as follows. 
Below, α,β are clauses in the sense of the Template. 
 
INF(α,β). For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that α,β hold. 
 
AL(α,β). For all f,g ∈ ELG and n ≥ 0, there exist A,B,C ⊆ 
N, each with at least n elements (possibly infinite), such 
that α,β holds. Here AL is read “arbitrarily large”.  
 
ALF(α,β). For all f,g ∈ ELG and n ≥ 0, there exist finite 
A,B,C ⊆ N, each with at least n elements, such that α,β 
holds. Here ALF is read “arbitrarily large finite”.  
 
FIN(α,β). For all f,g ∈ ELG there exist nonempty finite 
A,B,C ⊆ N such that α,β holds. Here FIN is read “nonempty 
finite”. 
 
NON(α,β). For all f,g ∈ ELG there exist nonempty A,B,C ⊆ N 
such that α,β hold. Here NON is read “nonempty”.  
 
Note that the Template is based on INF(α,β).  
 
We write ¬INF(α,β), ¬AL(α,β), ¬ALF(α,β), ¬FIN(α,β), 
¬NON(α,β) for the negations of the template attributes.  
 
We analyze the following Extended Template based on the 
template attributes. 
 
EXTENDED TEMPLATE. X(α,β), where X ∈ {INF, AL, ALF, FIN, 
NON}, and α,β are among the X ∪. fY ⊆ V ∪. gW, with X,Y,V,W 
∈ {A,B,C}.  
 
Every assertion in the Template is an assertion in the 
Extended Template, using X = INF. The number of assertions 
in the Extended Template is obviously 5(81)(81) = 32,805.   
 
We determine the truth value of every one of these 32,805 
assertions in this Chapter.  
 
Now 32,805 is a rather daunting number, and we take full 
advantage of an obvious symmetry and some general facts in 
order to carry out such a large tabular classification. 
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The obvious symmetry is that we can permute any two 
clauses, and also permute the three letters A,B,C. This 
results in an obvious equivalence relation on the ordered 
pairs of clauses, where the equivalence classes have at 
most 12 elements. In fact, the typical equivalence class 
has 12 elements, and we compute that there are exactly 574 
equivalence classes under this equivalence relation. This 
equivalence relation is called the pair equivalence 
relation, and is introduced formally in Definition 3.1.1. 
 
Thus, in this Chapter, we will be making a total of 5(574) 
= 2870 determinations up to pair equivalence.  
 
Here is one of our main results of this Chapter. “ETEMP” is 
read “Extended Template”.  
 
ETEMP. Every assertion in the Extended Template, other than 
the 12 Exotic Cases with INF, is provable or refutable in 
RCA0.  
 
The determination of the truth value of all assertions in 
the Extended Template is presented in section 3.14 as an 
annotated table.  
 
The annotated table lists a representative from all 574 of 
the equivalence classes of the ordered pairs of clauses. To 
its right is the sequence of template attributes INF, ALF, 
ALF, FIN, NON, where none, some, or all appear with a 
negation sign in front. There are 5(574) = 2870 entries in 
the annotative table. 
 
The 12 Exotic Cases then appear as entry 28 under ACBC, in 
the annotated table: 
 
28. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 

FIN. NON. 
 
This is the Principal Exotic Case. The justification of 
this single entry (with INF only) uses SMAH+, and is given 
in Chapter 4.  
 
In section 3.15, we make some observations about the 
classification in the annotated table of section 3.14. The 
most important is "BRT Transfer", which tells us that for 
the purposes of this Chapter, INF and ALF are equivalent.  
 
We shall see that BRT Transfer is itself provably 
equivalent to the 1-consistency of SMAH over ACA'.  
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3.1. Preliminaries. 
 
We begin with two background Theorems which show the 
equivalence of  
 

ELG and ELG ∩ SD. 
SD and EVSD. 

 
for the Extended Template.  
 
THEOREM 3.1.1. Suppose that for all f,g ∈ ELG ∩ SD there 
exist A,B,C ∈ INF such that X ∪. fY ⊆ V ∪. gW and P ∪. fR 
⊆ S ∪. gT. Then for all f,g ∈ ELG there exist A,B,C ∈ INF 
such that X ∪. fY ⊆ V ∪. gW and P ∪. fR ⊆ S ∪. gT. The 
same is true if we replace “A,B,C ∈ INF” by “arbitrarily 
large A,B,C ⊆ N”, “arbitrarily large finite A,B,C ⊆ N”, 
“nonempty finite A,B,C ⊆ N”, or “nonempty A,B,C ⊆ N”.  
 
Proof: Assume the hypothesis. Let f,g ∈ ELG, with arities 
p,q, respectively. Let f,g be strictly dominating on [n,∞)p 
and [n,∞)q, respectively.  
 
Let f’,g’ be defined by f’(x) = f(x+n)-n and g’(y) = 
g(y+n)-n. We claim that f’,g’ ∈ ELG ∩ SD. To see this, 
first note that f’(x) = f(x+n)-n > |x+n|-n = |x|, and g’(y) 
= g(y+n)-n > |y+n|-n = |y|. Hence f’,g’ ∈ SD. Now let 1 < c 
< d be such that  
 

c|x| ≤ f(x) ≤ d|x| 
c|y| ≤ g(y) ≤ d|y| 

 
hold for all |x|,|y| > t. Then  
 

c|x+n| ≤ f(x+n) = f’(x)+n ≤ d|x+n| 
c|y+n| ≤ g(y+n) = g’(y)+n ≤ d|y+n| 

 
hold for all |x|,|y| > t. Hence  
 

c|x+n|-n ≤ f’(x) ≤ d|x+n|-n 
c|y+n|-n ≤ g’(y) ≤ d|y+n|-n 

 
hold for all |x|,|y| > t.  
 
Hence  
 

c|x| ≤ f’(x) ≤ d(|x|+n)-n = d|x|+(d-1)n ≤ (d+dn)|x| 
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c|y| ≤ g’(y) ≤ d(|y|+n)-n = d|y|+(d-1)n ≤ (d+dn)|y| 
 
hold for all |x|,|y| > t. Hence f’,g’ ∈ ELG. So f’,g’ ∈ ELG 
∩ SD. 
 
Applying the hypothesis to f’,g’, let A,B,C ∈ INF, where X 
∪. f'Y ⊆ V ∪. g'W and P ∪. fR ⊆ S ∪. gT. Let A’ = A+n, B’ 
= B+n, C’ = C+n. Obviously A’,B’,C’ ∈ INF, and 
X’,Y’,V’,W’,P’,R’,S’,T’ = X+n,Y+n,V+n,W+n,P+n,R+n,S+n,T+n, 
respectively, also lie in INF.  
 
We claim that for all E ⊆ N, f(E+n) = (f’E)+n. To see this, 
note that r ∈ f(E+n) ↔ (∃x ∈ E)(r = f(x+n)) ↔ (∃x ∈ E)(r-n 
= f(x+n)-n) ↔ (∃x ∈ E)(r-n = f’(x)) ↔ r-n ∈ f’E ↔ r ∈ 
(f’E)+n. Analogously, g(E+n) = (g'E)+n.  
 
We now have  
 
X’ ∪ fY’ = X+n ∪ f(Y+n) = X+n ∪ (f’Y)+n = (X ∪ f’Y)+n ⊆ (V 
∪ g’W)+n = V+n ∪ (g’W)+n = V+n ∪ g(W+n) = V’ ∪ gW’.  
 
X’ ∩ fY’ = X+n ∩ f(Y+n) = X+n ∩ (f’Y)+n = (X ∩ f’Y)+n = ∅. 
V’ ∩ gW’ = V+n ∩ g(W+n) = V+n ∩ (g’W)+n = (V ∩ g’W)+n = ∅. 
 
The second clause  
 

P’ ∪. fR’ ⊆ S’ ∪. gT’ 
 
is verified in the same way.  
 
For the other four attributes, note that for all E ⊆ N, E 
and E+n have the same cardinality. QED  
 
Theorem 3.1.1 does not mean that ELG and ELG ∩ SD behave 
the same way in other BRT contexts - e.g., in EBRT in A,fA. 
Nor does it mean that EVSD and SD behave the same way in 
other BRT contexts, either.  
 
In fact, consider the equation A ∪. fA = U (the 
Complementation Theorem). This equation is correct in EBRT 
in A,fA on (SD,INF), but incorrect in EBRT in A,fA on 
(ELG,INF). The function f(x) = 2x serves as a 
counterexample.    
 
THEOREM 3.1.2. Suppose that for all f,g ∈ SD there exist 
A,B,C ∈ INF such that X ∪. fY ⊆ V ∪. gW and P ∪. fR ⊆ S ∪. 
gT. Then for all f,g ∈ EVSD there exist A,B,C ∈ INF such 
that X ∪. fY ⊆ V ∪. gW and P ∪. fR ⊆ S ∪. gT. The same is 
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true if we replace “A,B,C ∈ INF” by “arbitrarily large 
A,B,C ⊆ N”, “arbitrarily large finite A,B,C ⊆ N”, “nonempty 
finite A,B,C ⊆ N”, or “nonempty A,B,C ⊆ N”.  
 
Proof: Follow the proof of Theorem 3.1.1. The only 
difference between the proofs is that here we need only 
verify that if f,g ∈ EVSD then f',g' ∈ SD. QED 
 
We have observed that ELG, ELG ∩ SD, SD, EVSD behave the 
same with regard to the Template (i.e., with INF), except 
for the Exotic Cases (see Theorem 6.3.5). Thus in this 
Chapter, we will be using EVSD whenever we are proving INF. 
 
We know that ELG (or equivalently, ELG ∩ SD) and SD (or 
equivalently EVSD) do behave differently on some of the 
five attributes, even with the non Exotic Cases. See 
Theorem 3.3.10 for an example with the attribute AL. 
 
Note that there are exactly 81 clauses and 812 = 38 = 6561 
ordered pairs of clauses used in the Template. This is a 
large number of cases to analyze, and so we will take full 
advantage of whatever shortcuts we can find.  
 
The main shortcut that we use very effectively is syntactic 
equivalence. We also need to make sure that we in fact 
determine all 6561 truth values, without leaving any cases 
out. This requires some effective organization of the work.   
 
DEFINITION 3.1.4. We say that (α,β) and (γ,δ) are pair 
equivalent if and only if there is a permutation π of 
{A,B,C} such that  
 

i) πα = γ ∧ πβ = δ; or 
ii) πα = δ ∧ πβ = γ. 

 
Obviously, if two ordered pairs of clauses are pair 
equivalent then the truth values of the corresponding 
Template statements are the same.  
 
In this section, we generate a unique set of 
representatives for all the equivalence classes under the 
ordered pair equivalence relation. These representatives 
are organized into 11 groups that correspond to sections 
3.3 - 3.13.  
 
We find that there are a total of 574 equivalence classes 
under the pair equivalence relation. In sections 3.3 - 
3.13, we determine the truth values of the 574 
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corresponding Template statement, within RCA0, with the one 
exception of the Exotic Cases.  
 
Section 3.14 annotates the set of representatives 
constructed in this section with these truth values. 
Section 3.15 is devoted to observed facts about the 
classification in section 3.14. 
 
LEMMA 3.1.3. The following is provable in RCA0. Let 
(α,β),(γ,δ) be two pair equivalent ordered pairs of clauses, 
and let P be any one of our five attributes INF, AL, ALF, 
FIN, NON. Then P(α,β) ↔ P(γ,δ). Moreover, if α = β then 
P(α) ↔ P(β) ↔ P(α,α) ↔ P(β,β). 
 
Proof: Obvious. QED 
 
Let the ordered pair of clauses  
 

α = X ∪. fY ⊆ V ∪. gW 
β = P ∪. fR ⊆ S ∪. gT 

 
be given.  
 
DEFINITION 3.1.5. The inner (outer) trace of (α,β) is YVRS 
(XWPT).  
 
We also consider traces independently of ordered pairs of 
clauses.  
 
DEFINITION 3.1.6. A trace is a length 4 string from 
{A,B,C}. There are 34 = 81 traces. 
 
DEFINITION 3.1.7. Let XYVW be a trace. The reverse of XYVW 
is VWXY.  
 
Any permutation π of {A,B,C} transforms any trace XYVW to 
the trace πXπYπVπW.  
 
DEFINITION 3.1.8. Two traces are equivalent if and only if 
there is a permutation that transforms the first into the 
second, or a permutation that transforms the first into the 
reverse of the second.  
 
Equivalence of inner (outer) traces is easily seen to be an 
equivalence relation. 
 
LEMMA 3.1.4. If two ordered pairs of clauses are pair 
equivalent, then their inner (outer) traces are equivalent.  
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Proof: Obvious. QED 
 
LEMMA 3.1.5. Every trace is equivalent to exactly one of 
the following traces.  
1. AAAA. 
2. AAAB. 
3. AABA. 
4. AABB. 
5. AABC. 
6. ABAB. 
7. ABAC. 
8. ABBA. 
9. ABBC. 
10. ABCB. 
 
Proof: We first show that every trace is equivalent to at 
least one of these 10. Let α be a trace. We go through a 
series of steps resulting in one of these 10. 
 
First permute α so that the first term is A. Next, if the 
second term is C, interchange C with B so that the first 
two terms are AB. Note that the first two terms are AA or 
AB. 
 
We now split into cases according to the first three terms. 
 
case 1. AAA. Note that AAAA and AAAB are already on the 
list. AAAC is equivalent to AAAB. 
 
case 2. AAB. Note that all three continuations are on the 
list. 
 
case 3. AAC. Permute C and B, and apply case 2. 
 
case 4. ABA. ABAB and ABAC are on the list. ABAA is the 
reversal of AAAB, and hence ABAA is equivalent to AAAB. 
AAAB is on the list.  
 
case 5. ABB. ABBA and ABBC are on the list. ABBB is 
equivalent to BBAB and to AABA, which is on the list. 
 
case 6. ABC. ABCA is equivalent to CAAB and to ABBC, which 
is on the list. ABCB is on the list. ABCC is equivalent to 
CCAB and to AABC, which is on the list.   
 
Now we show that all 10 are inequivalent. 
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1. AAAA. This has the following property preserved under 
equivalence: just one letter is used. The remaining 9 do 
not have this property. 
2. AAAB. This has the following property preserved under 
equivalence: there are exactly three equal letters and the 
first and third letters are the same. The remaining 9 do 
not have this property. 
3. AABA. This has the following property preserved under 
equivalence: there are exactly three equal letters and the 
first and third letters are different. The remaining 9 do 
not have this property. 
4. AABB. This has the following property preserved under 
equivalence: the first two letters equal, the last two 
letters are equal, and not all letters are equal. The 
remaining 9 do not have this property. 
5. AABC. This has the following property preserved under 
equivalence: all three letters are used, and either the 
first two letters are the same, or the last two letters are 
the same. The remaining 9 do not have this property. 
6. ABAB. This has the following property preserved under 
equivalence: the first and third letters are the same, the 
second and fourth letters are the same, and not all letters 
are equal. The remaining 9 do not have this property. 
7. ABAC. This has the following property preserved under 
equivalence: all three letters are used, where the first 
and third letters are equal. The remaining 9 do not have 
this property. 
8. ABBA. This has the following property preserved under 
equivalence: the first and last letters are equal, the 
middle two letters are equal, and not all letters are 
equal. The remaining 9 do not have this property. 
9. ABBC. This has the following property preserved under 
equivalence: all three letters are used, where the two 
middle letters are equal, or the first and last letters are 
equal. The remaining 9 do not have this property. 
10. ABCB. This has the following property preserved under 
equivalence: all three letters are used, where the second 
and fourth letters are equal. The remaining 9 do not have 
this property. 
 
QED 
 
LEMMA 3.1.6. Every ordered pair of clauses is pair 
equivalent to an ordered pair of clauses whose inner trace 
is among  
1. AAAA. 
2. AAAB. 
3. AABA. 
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4. AABB. 
5. AABC. 
6. ABAB. 
7. ABAC. 
8. ABBA. 
9. ABBC. 
10. ACBC. 
 
Proof: Immediate from Lemma 3.1.5. Note that we have 
changed item 10 from Lemma 1.3 by interchanging B and C. 
The reason for this change is that the inner trace of the 
ordered pair of clauses in Proposition A is ACBC, and we 
like the exact choice of letters in Proposition A. QED 
 
In section 3.3 we handle all of the duplicates (α,α). We 
remove these duplicates from consideration in sections 3.4 
and 3.9 where they arise. Obviously, they do not arise in 
the remaining sections. 
 
We now wish to give the unique set of representatives of 
the pair equivalence classes of the ordered pairs of 
clauses that we use to tabulate our results in the 
annotated tables of section 3.14.  
 
To support our choice of unique representatives, we 
establish a number of facts. 
 
We have been working with pair equivalence, and inner 
(outer) traces, for ordered pairs of clauses. It is 
convenient to have these notions for a single clause:  
 
DEFINITION 3.1.9. Two individual clauses are considered 
equivalent if and only if there is a permutation of {A,B,C} 
then sends one to the other. The inner (outer) trace of the 
single clause X ∪. fY ⊆ V ∪. gW. is defined to be YV, XW, 
respectively. 
 
LEMMA 3.1.7. Every clause is equivalent to a clause where  
i) the inner trace is AA; or 
ii) the inner trace is AB. 
No clause in one of these two categories is equivalent to 
any clause in the other of these two categories.  
 
Proof: If the inner trace begins with B or C, then permute 
it with A, so that the inner trace now begins with A. If 
the inner trace is AC, then permute C and B, so that the 
inner trace is now AB.  
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Let π be a permutation of {A,B,C}. It is clear that π must 
map any clause with inner trace AA to a clause with trace 
XX. Hence no clause in category i) can be equivalent to a 
clause in category ii). Also, π must map any clause with 
inner trace AB to a clause with inner trace XY, X ≠ Y. Hence 
no clause in category ii) can be equivalent to a clause in 
category i). QED 
 
Lemma 3.1.7 supports the unique set of representatives of 
individual clauses (or, equivalently, duplicates), 
presented in the following way.  
 
We list all individual clauses according to Lemma 3.1.7, 
ordered first by the two categories i),ii), and then 
lexicographically (reading the four letters from left to 
right). These are consecutively numbered starting with 1. 
But if a clause is equivalent to some earlier clause, then 
we label it with an x, and also point to the earlier 
numbered clause to which it is equivalent. 
 
SINGLE CLAUSES (14) 
 
1. A ∪. fA ⊆ A ∪. gA. 
2. A ∪. fA ⊆ A ∪. gB. 
x. A ∪. fA ⊆ A ∪. gC. ≡ 2. 
 
3. B ∪. fA ⊆ A ∪. gA. 
4. B ∪. fA ⊆ A ∪. gB.  
5. B ∪. fA ⊆ A ∪. gC.  
 
x. C ∪. fA ⊆ A ∪. gA. ≡ 3. 
x. C ∪. fA ⊆ A ∪. gB. ≡ 5.  
x. C ∪. fA ⊆ A ∪. gC. ≡ 4. 
 
6. A ∪. fA ⊆ B ∪. gA. 
7. A ∪. fA ⊆ B ∪. gB. 
8. A ∪. fA ⊆ B ∪. gC. 
 
9. B ∪. fA ⊆ B ∪. gA. 
10. B ∪. fA ⊆ B ∪. gB.  
11. B ∪. fA ⊆ B ∪. gC.  
 
12. C ∪. fA ⊆ B ∪. gA. 
13. C ∪. fA ⊆ B ∪. gB. 
14. C ∪. fA ⊆ B ∪. gC. 
 
The numbered part of this table, annotated, appears in 
section 3.14. 
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DEFINITION 3.1.10. An AAAA ordered pair is an ordered pair 
of distinct clauses whose inner trace is AAAA. We also use 
this terminology for the other 9 traces in Lemma 3.1.6 
(which are the titles of sections 3.5 - 3.13).  
 
Thus we are using the ten inner traces of Lemma 3.1.6 to 
divide the (non duplicate) ordered pairs mod pair 
equivalence into ten more manageable categories. The 
ordered pairs within each category have different outer 
traces.  
 
LEMMA 3.1.8. Every AAAA ordered pair is pair equivalent to 
an AAAA ordered pair whose outer trace   
i) uses exactly A,B; or 
ii) uses exactly B,C, with outer trace beginning with B; or 
iii) uses exactly A,B,C, whose outer trace begins with 
AA,AB, or B. 
No ordered pair of clauses in any one of these three 
categories is pair equivalent to any ordered pair of 
clauses in any other of these categories.  
 
Proof: Let α be an AAAA ordered pair. The outer trace of α 
cannot use exactly one letter, since then the items in the 
ordered pair would be identical.  
 
Suppose the outer trace of α uses exactly B or exactly C. 
Then the two components of β are the same, which is 
impossible.  
 
Suppose the outer trace of α uses exactly A,C. By 
interchanging B,C, we obtain an AAAA ordered pair whose 
outer trace uses exactly A,B.  
 
Suppose the outer trace of α uses exactly B,C, with outer 
trace beginning with C. By interchanging B,C, we obtain an 
AAAA ordered pair whose outer trace uses exactly B,C, and 
which begins with B. 
 
Suppose the outer trace of α uses exactly A,B,C, and begins 
with C. By interchanging B,C, we obtain an AAAA ordered 
pair whose outer trace uses exactly A,B,C, and which begins 
with B.  
 
Suppose the outer trace of α uses exactly A,B,C, and begins 
with AC. By interchanging B,C, we obtain an AAAA ordered 
pair whose outer trace uses exactly A,B,C, and which begins 
with AB.  
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Note that categories i)-iii) list all possibilities other 
than the ones in the previous five paragraphs. Hence i)-
iii) is inclusive. 
 
Now suppose α ≠ β be pair equivalent AAAA ordered pairs. Let 
π transform α to β. Then πA = A. Clearly π cannot take us 
from an ordered pair in any category i)-iii) to any ordered 
pair in a different category i)-iii). This establishes the 
final claim. QED 
 
Lemma 3.1.8 supports the unique set of representatives for 
AAAA ordered pairs, presented in the following way. 
 
We list all ordered pairs of clauses according to Lemma 
3.1.8, ordered first by the four categories i)-iii), and 
then lexicographically (reading the eight letters from left 
to right). These are consecutively numbered starting with 
1. But if an ordered pair is pair equivalent to some 
earlier ordered pair, then we label it with an x, and also 
point to the earlier numbered ordered pair of clauses to 
which it is pair equivalent.  
 
In fact, the previous paragraph describes exactly how we 
will present the ordered pairs according to later Lemmas.  
 
AAAA (20) 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gB. 
2. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gA. 
3. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB. 
 
x. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gA. ≡ 1. 
4. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gA. 
5. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gB. 
 
x. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gA. ≡ 2. 
x. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gB. ≡ 4. 
6. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB. 
 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gA. ≡ 3. 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gB. ≡ 5. 
x. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gA. ≡ 6. 
 
7. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC. 
8. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB. 
9. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. 
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x. B ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ A ∪. gB. ≡ 7. 
10. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gB.  
x. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gC. ≡ 8. 
 
11. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC. 
x. A ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB. ≡ 11. 
 
12. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gC. 
13. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC. 
14. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gA. 
15. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB. 
16. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. 
 
x. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gC. ≡ 14. 
17. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC. 
18. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gA. 
19. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB. 
20. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gC. 
 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gC. ≡ 16. 
x. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gA. ≡ 20. 
 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ A ∪. gA. ≡ 11. 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ A ∪. gB. ≡ 13. 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ A ∪. gC. ≡ 15.  
x. B ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ A ∪. gA. ≡ 17. 
x. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gA. ≡ 19. 
 
The numbered part of this AAAA table, annotated, appears in 
section 3.14. 
 
LEMAM 3.1.9. No AAAB ordered pair is pair equivalent to any 
other AAAB ordered pair. All 81 AAAB ordered pairs are pair 
inequivalent.   
 
Proof: Let α ≠ β be AAAB ordered pairs. First suppose π 
transforms α to β. Then πA = A and πB = B. Hence π is the 
identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is an ABAA ordered pair. Then πA = A and πA 
= B, which is impossible. QED 
 
Since all 81 AABA ordered pairs are pair inequivalent, 
there is no point in listing them here. The annotated AAAB 
table appears in section 3.14.  
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LEMMA 3.1.10. No AABA ordered pair is pair equivalent to 
any other AABA ordered pair. All 81 AABA ordered pairs are 
pair inequivalent.   
 
Proof: Let α ≠ β be AABA ordered pairs. First suppose π 
transforms α to β. Then πA = A and πB = B. Hence π is the 
identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is a BAAA ordered pair. Then πA = B and πA 
= A, which is impossible. QED 
 
The AABA table, annotated, appears in section 3.14.  
 
LEMMA 3.1.11. Every AABB ordered pair is pair equivalent to 
an AABB ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly C; or 
iii) uses exactly A,B; or  
iv) uses exactly A,C; or 
v) uses exactly A,B,C.  
No ordered pair in any one of these 5 categories is pair 
equivalent to a ordered pair in any other category.  
 
Proof: Let α be an AABB ordered pair. Suppose the outer 
trace of α uses exactly B. By interchanging A,B, we obtain 
a BBAA ordered pair β whose outer trace uses exactly A. Note 
that the reverse of β is an AABB ordered pair whose outer 
trace uses exactly A.  
 
Suppose the outer trace of α uses exactly B,C. By 
interchanging A,B, we obtain a BBAA ordered pair β whose 
outer trace uses exactly A,C. Note that the reverse of β is 
an AABB ordered pair whose outer trace uses exactly A,C. 
 
Note that categories i)-v) list all possibilities other 
than exactly B, exactly B,C, and so i)-v) is inclusive. 
 
Now suppose α ≠ β be pair equivalent AABB ordered pairs. Let 
π transform α to β. Then πA = A, πB = B, and so π is the 
identity Hence α = β, which is impossible. Let π transform α 
to the reverse of β. Then π interchanges A,B. Clearly π 
cannot take us from an ordered pair in any category i)-v) 
to any ordered pair in a different category i)-v). This 
establishes the final claim. QED 
 
We now list the AABB ordered pairs in our by now standard 
way.  
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AABB (45) 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. 
2. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC. 
 
3. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. 
4. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gA. 
5. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gB. 
 
6. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA.  
7. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gB.  
8. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gA. 
x. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gB. ≡ 4. 
 
9. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. 
10. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. 
x. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gA. ≡ 7. 
x. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gB. ≡ 3. 
 
11. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA. 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gB. ≡ 9.  
x. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gA. ≡ 6. 
 
12. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC. 
13. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. 
14. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. 
 
15. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA.  
16. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC.  
17. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. 
18. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC. 
 
19. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. 
20. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC. 
21. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. 
22. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. 
 
23. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA. 
24. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC. 
25. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. 
 
26. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gC. 
27. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. 
 
28. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC.  
29. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gC.  
30. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA.  
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31. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gB.  
32. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gC.  
 
33. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gB.  
x. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gA. ≡ 29.  
x. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gB. ≡ 26.  
34. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gC.  
35. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gB. 
 
36. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC.  
x. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gC. ≡ 33. 
37. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA.  
38. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB.  
39. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC.  
 
40. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC. 
41. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. 
 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA. ≡ 40.  
x. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gB. ≡ 36. 
42. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC.  
x. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gA. ≡ 28.  
43. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. 
 
x. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. ≡ 38.  
x. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gA. ≡ 31. 
x. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gB.  ≡ 27. 
x. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gC. ≡ 35. 
44. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. 
 
x. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA. ≡ 41.  
x. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gB. ≡ 37.   
x. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC. ≡ 43. 
x. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gA. ≡ 30.  
45. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. 
 
x. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gB. ≡ 39.   
x. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gA. ≡ 32. 
 
The numbered part of this AABB table, annotated, appears in 
section 3.14. 
 
LEMMA 3.1.12. No AABC ordered pair is pair equivalent to 
any other AABC ordered pair. All 81 AABC ordered pairs are 
pair inequivalent. 
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Proof: Let α ≠ β be AABC ordered pairs. First suppose π 
transforms α to β. Then πA = A, πB = B, πC = C. Hence π is 
the identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is a BCAA ordered pair. Then πA = B and πA 
= C, which is impossible. QED 
 
The AABC table, annotated, appears in section 3.14.  
 
LEMMA 3.1.13. Two distinct ABAB ordered pairs α,β are pair 
equivalent if and only if the reverse of α is β. 
 
Proof: Let α ≠ β be pair equivalent ABAB ordered pairs. Let 
π transform α to β. Then πA = A, πB = B, and so π is the 
identity. Hence α = β, 
 
Now suppose π transforms α to the reverse of β. Then again π 
is the identity, and so α is the reverse of β. QED 
 
ABAB (36) 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. 
2. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. 
3. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gA. 
4. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. 
5. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. 
6. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. 
7. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. 
8. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. 
 
x. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gA. ≡ 1.  
9. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. 
10. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gA. 
11. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gB. 
12. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. 
13. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. 
14. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. 
15. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. 
 
x. A ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gA. ≡ 2. 
x. A ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gB. ≡ 9.  
16. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gA. 
17. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gB. 
18. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gC. 
19. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. 
20. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. 
21. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. 
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x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gA. ≡ 3. 
x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ≡ 10.  
x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. ≡ 16.  
22. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. 
23. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. 
24. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. 
25. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. 
26. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. 
 
x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gA. ≡ 4. 
x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gB. ≡ 11.  
x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. ≡ 17. 
x. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gA. ≡ 22.   
27. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. 
28. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. 
29. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. 
30. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. 
 
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gA. ≡ 5.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gB. ≡ 12.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gC. ≡ 18. 
x. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gA. ≡ 23.  
x. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gB. ≡ 27. 
31. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. 
32. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. 
33. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. 
 
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gA. ≡ 6.  
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ≡ 13.  
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. ≡ 19. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gA. ≡ 24.  
x. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. ≡ 28. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. ≡ 31. 
34. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. 
35. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. 
 
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gA. ≡ 7.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gB. ≡ 14.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. ≡ 20. 
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gA. ≡ 25.  
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gB. ≡ 29.  
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. ≡ 32. 
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. ≡ 34. 
36. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. 
 
x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gA. ≡ 8.  
x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gB. ≡ 15.  
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x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gC. ≡ 21.  
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gA. ≡ 26.  
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gB. ≡ 30. 
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gC. ≡ 33. 
x. C ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. ≡ 35. 
x. C ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. ≡ 36.  
 
The numbered part of this ABAB table, annotated, appears in 
section 3.14.  
 
LEMMA 3.1.14. Every ABAC ordered pair is pair equivalent to 
an ABAC ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly B; or 
iii) uses exactly A,B; or 
iv) uses exactly B,C; or 
v) uses exactly A,B,C. 
No ordered pair in any one of these 5 categories is pair 
equivalent to an ordered pair in any other category.  
 
Proof: Let α be an ABAC ordered pair. Suppose the outer 
trace of α uses exactly C. By interchanging B,C, we obtain 
a pair equivalent ACAB ordered pair whose outer trace uses 
exactly B. Its reverse is a pair equivalent ABAC ordered 
pair whose outer trace uses exactly B. 
 
Suppose the outer trace of α uses exactly A,C. By 
interchanging B,C, we obtain a pair equivalent ACAB ordered 
pair whose outer trace uses exactly A,B. Its reverse is a 
pair equivalent ABAC ordered pair whose outer trace uses 
exactly A,B. 
 
Note that categories i)-v) list all possibilities other 
than exactly C, exactly A,C, and so i)-v) is inclusive. 
 
Now suppose α ≠ β are pair equivalent ABAC ordered pairs. 
Let π transform α to β. Then πA = A, πB = B, πC = C, and so 
π is the identity. Hence α = β, which is impossible. Let π 
transform α to the reverse of β. Then π interchanges B,C. 
Clearly π cannot take us from an ordered pair in any 
category i)-v) to any ordered pair in a different category 
i)-v). This establishes the final claim. QED 
 
ABAC (45) 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. 
2. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB.  
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3. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB.  
4. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA.  
5. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. 
 
6. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. 
7. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB.  
8. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA.  
9. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB. 
 
10. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. 
11. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB.  
12. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA.  
13. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. 
 
14. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. 
15. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB.  
16. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA.  
 
17. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC. 
18. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB.  
19. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC.  
 
20. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB. 
21. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. 
22. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB.  
x. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gC. ≡ 18.  
 
23. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB. 
24. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC. 
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB. ≡ 21.  
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC. ≡ 17.   
 
25. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB. 
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. ≡ 23. 
x. C ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB. ≡ 20. 
 
26. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. 
27. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. 
 
28. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC.  
29. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC.  
30. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gA.  
31. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB. 
32. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC.  
 
33. A ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gB.  
34. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA.  
35. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB.  
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36. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. 
37. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB. 
 
x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gC. ≡ 30. 
38. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC.  
39. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gA.  
40. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. 
41. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gC.  
 
x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC. ≡ 32. 
x. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gA. ≡ 41. 
 
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gA. ≡ 27.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gB. ≡ 37.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gC. ≡ 31.  
42. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA. 
x. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gA. ≡ 40.  
 
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB. ≡ 34. 
43. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA.  
44. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB.  
45. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. 
x. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. ≡ 42.  
 
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. ≡ 26.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB. ≡ 36.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC. ≡ 29.  
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA. ≡ 45.  
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gA. ≡ 38.  
 
x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gB. ≡ 35.  
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA. ≡ 44. 
 
The numbered part of this ABAC table, annotated, appears in 
section 3.14. 
 
LEMMA 3.1.15. Every ABBA ordered pair is pair equivalent to 
an ABBA ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly C; or 
iii) uses exactly A,B; or  
iv) uses exactly A,C; or 
v) uses exactly A,B,C.  
No ordered pair in any one of these 5 categories is pair 
equivalent to an ordered pair in any other category. Two 
distinct ABBA ordered pairs are pair equivalent if and only 
if the result of interchanging A,B in α is the reverse of β. 
 



 425 

Proof: Let α be an ABBA ordered pair. Suppose the outer 
trace of α uses exactly B. By interchanging A,B, we obtain 
a pair equivalent BAAB ordered pair whose outer trace uses 
exactly A. Its reverse is a pair equivalent ABBA ordered 
pair whose outer trace uses exactly A. 
 
Suppose the outer trace of α uses exactly B,C. By 
interchanging A,B, we obtain a pair equivalent BAAB ordered 
pair whose outer trace uses exactly A,C. Its reverse is a 
pair equivalent ABBA ordered pair whose outer trace uses 
exactly A,C. 
 
Note that categories i)-v) list all possibilities other 
than exactly B, exactly B,C, and so i)-v) is inclusive. 
 
Let α ≠ β be pair equivalent ABBA ordered pairs. Let π be a 
permutation of {A,B,C} that transforms α to β. Then πA = A, 
πB = B, and so π is the identity. Hence α = β, which is 
impossible. Suppose π transforms α to the reverse of β. Then 
β is a BAAB ordered pair, and so πA = B, πB = A. Clearly π 
cannot take us from an ordered pair in any category i)-v) 
to any ordered pair in a different category i)-v). This 
establishes the final claim. QED 
 
ABBA (45) 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. 
2. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. 
 
3. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. 
4. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. 
5. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. 
 
6. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA.  
7. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gB.  
8. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. 
x. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gB. ≡ 4. 
 
9. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. 
10. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. 
x. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. ≡ 7. 
x. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. ≡ 3. 
 
11. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA. 
x. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gB. ≡ 9.  
x. B ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. ≡ 6. 
 
12. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC. 
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13. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. 
14. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. 
 
15. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA.  
16. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC.  
17. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. 
18. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. 
 
19. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. 
20. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC. 
21. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. 
22. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. 
 
23. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA. 
24. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC. 
25. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. 
 
26. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. 
27. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. 
 
28. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC.  
29. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gC.  
30. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA.  
31. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gB.  
32. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gC.  
 
33. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gB.  
x. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gA. ≡ 29.  
x. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gB. ≡ 26.  
34. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gC.  
35. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gB. 
 
36. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC.  
x. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. ≡ 33. 
37. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA.  
38. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB.  
39. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC.  
 
40. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC. 
41. B ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. 
 
x. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA. ≡ 40.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gB. ≡ 36. 
42. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC.  
x. B ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gA. ≡ 28.  
43. B ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. 
 
x. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. ≡ 38.  
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x. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. ≡ 31. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. ≡ 27. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. ≡ 35. 
44. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. 
 
x. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA. ≡ 41.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gB. ≡ 37.   
x. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC. ≡ 43. 
x. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. ≡ 30.  
45. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. 
 
x. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gB. ≡ 39.   
x. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gA. ≡ 32. 
 
The numbered part of this ABBA list, annotated, appears in 
section 3.14. 
 
LEMMA 3.1.16. No ABBC ordered pair is pair equivalent to 
any other ABBC ordered pair. All 81 ABBC ordered pairs are 
pair inequivalent.  
 
Proof: Let α ≠ β be ABBC ordered pairs. First suppose π 
transforms α to β. Then πA = A, πB = B, πC = C. Hence π is 
the identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is a BCAB ordered pair. Then πB = C, πB = 
A, which is a contradiction. QED 
 
The ABBC table, annotated, appears in section 3.14. 
 
LEMMA 3.1.17. Every ACBC ordered pair is pair equivalent to 
an ACBC ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly C; or  
iii) uses exactly A,C; or  
iv) uses exactly A,B; or  
v) uses exactly A,B,C. 
No ordered pair in any one of these 5 categories is pair 
equivalent to an ordered pair in any other category.  
 
Proof: Let α be an ACBC ordered pair. Suppose the outer 
trace of α uses exactly B. By interchanging A,B, we obtain 
a pair equivalent BCAC ordered pair whose outer trace uses 
exactly A. Its reverse is a pair equivalent ACBC ordered 
pair whose outer trace uses exactly A. 
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Suppose the outer trace of α uses exactly B,C. By 
interchanging A,B, we obtain a pair equivalent BCAC ordered 
pair whose outer trace uses exactly A,C. Its reverse is a 
pair equivalent ACBC ordered pair whose outer trace uses 
exactly A,C. 
 
Note that categories i)-v) list all possibilities other 
than exactly B, exactly B,C, and so i)-v) is inclusive. 
 
Let α ≠ β be pair equivalent ACBC ordered pairs. Let π be a 
permutation of {A,B,C} that transforms α to β. Then πA = A, 
πC = C, and so π is the identity. Hence α = β, which is 
impossible. Suppose π transforms α to the reverse of β. Then 
β is a BCAC ordered pair, and so πA = B, πB = A. Clearly β 
cannot transform any ordered pair in any category 1)-v) to 
any ordered pair in any different category i)-v). This 
establishes the final claim. QED 
 
ACBC (45) 
 
1. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. 
2. C ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gC. 
 
3. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. 
4. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. 
5. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. 
 
6. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. 
7. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. 
8. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. 
9. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gC. 
 
10. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. 
11. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. 
12. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. 
13. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. 
 
14. C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. 
15. C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. 
16. C ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. 
 
17. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. 
18. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. 
19. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. 
 
20. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. 
21. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. 
22. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. 
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x. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gB. ≡ 18. 
 
23. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. 
24. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. 
x. B ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. ≡ 21. 
x. B ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. ≡ 17. 
 
25. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. 
x. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. ≡ 23.  
x. B ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. ≡ 20. 
 
26. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. 
27. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. 
 
28. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. 
29. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gC. 
30. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. 
31. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gB. 
32. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gC. 
 
33. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. 
x. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ≡ 29. 
x. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gB. ≡ 26.  
34. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gC. 
35. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gB. 
 
36. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. 
x. B ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. ≡ 33.  
37. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. 
38. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. 
39. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. 
 
40. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. 
41. B ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. 
 
x. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ≡ 40. 
x. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. ≡ 36.  
42. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. 
x. B ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ≡ 28. 
43. B ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. 
 
x. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. ≡ 38. 
x. C ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. ≡ 31.  
x. C ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. ≡ 27. 
x. C ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. ≡ 35.  
44. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. 
 
x. C ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. ≡ 41.  
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x. C ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. ≡ 37.  
x. C ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. ≡ 43.  
x. C ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. ≡ 30. 
45. C ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. 
 
C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. ≡ 39. 
C ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ≡ 32. 
 
The numbered part of this ACBC table, annotated, appears in 
section 3.14.  
 
THEOREM 3.1.18. There are exactly 574 ordered pairs of 
clauses up to pair equivalence.  
 
Proof: From the above tables and lemmas, we have the 
following counts.  
 
SINGLE CLAUSES (DUPLICATES). 14. 
AAAA. 20. 
AAAB. 81. 
AABA. 81. 
AABB. 45. 
AABC. 81. 
ABAB. 36. 
ABAC. 45. 
ABBA. 45. 
ABBC. 81. 
ACBC. 45.  
 
This adds up to a total of 574 ordered pairs up to 
equivalence (including the 14 duplicates). As expected, 
this number is a bit larger than 6561/12 = 546.75, since 
the overwhelmingly majority of equivalence classes have 12 
elements, with a few exceptions. QED 
 
3.2. Some Useful Lemmas. 
 
DEFINITION 3.2.1. The standard pairing function on N is the 
function P:N2 → N due (essentially) to Cantor: 
 

P(n,m) = (n2+m2+2nm+n+3m)/2 ≥ n,m. 
 
It is well known that P is a bijection, and also that for 
all n ≥ 0, [0,n(n+1)/2) ⊆ P[[0,n)2]. In addition, P is 
strictly increasing in each argument. 
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Let T:N2 → N be such that T(2n,2m) = P(n,m), T(2n,2m+1) = 
T(2n+1,2m) = T(2n+1,2m+1) = 2n+2m+2. Then for all n ≥ 0, 
[0,n(n+1)/2) ⊆ T[([0,2n) ∩ 2N)2]. Hence for all n ≥ 8, 
every element of [0,n2/8) is realized as a value of T at 
even pairs from [0,n).  
 
It is clear that T(2n,2m) ≥ (n2+2n)/2,(m2+2m)/2 ≥ 2n,2m. 
Hence for n,m ≥ 2, T(n,m) ≥ n,m.   
 
LEMMA 3.2.1. There exists 3-ary f ∈ ELG ∩ SD such that the 
following holds. Let A ⊆ N be nonempty, where fA ∩ 2N ⊆ A. 
Then fA is cofinite. We can also require that for all n ≥ 0, 
f(n,n,n) ∈ 2N. 
 
Proof: We define f ∈ ELG ∩ SD as follows. Let p,q ∈ 
[2n,2n+1), n ≥ 0. Define f(2n,p,q) = min(2n+1+T(p-2n,q-
2n),2n+2). Note that for n ≥ 8, as p,q vary over the even 
elements of [2n,2n+1), every value in [2n+1,2n+2) is realized. 
Also note that for all n ≥ 0, f(2n,2n,2n) = 2n+1.    
 
For all n > 0, define f(n,n,n) to be the least 2k ≥ 2n; 
f(0,0,0) = 2.  
 
For all n < m < r, define f(r,n,n) = 2r+1, f(r,n,m) = 2r+2, 
f(r,n,r) = 2r+3, f(r,m,n) = 2r+4, f(r,r,n) = 2r+5. For all 
triples a,b,c, if f(a,b,c) has not yet been defined, define 
f(a,b,c) = 2|a,b,c|+1.   
 
It is obvious that f ∈ SD. To see that f ∈ ELG, we need 
only examine the definition of f(2n,p,q), p,q ∈ [2n,2n+1), 
where n is sufficiently large. If p,q ∈ [2n,2n+2n-1), then 
obviously f(2n,p,q) ≥ 2n+1 ≥ 4|2n,p,q|/3. If p,q ∉ [2n,2n+2n-
1), then f(2n,p,q) ≥ 2n+1+T(p-2n,q-2n) ≥ 2n+1 + 2n-1 ≥ 
5p/4,5q/4. Also,f(2n,p,q) ≤ 2n+2 ≤ 2p,2q. Therefore f ∈ ELG. 
 
Let A ⊆ N be nonempty, where fA ∩ 2N ⊆ A. Let 
f(min(A),min(A),min(A)) = 2k ≥ 2. Then 2k ∈ fA ∩ 2N. 
Therefore 2k ∈ A.   
 
Suppose j ≥ k and 2j ∈ A. Then f(2j,2j,2j) = 2j+1 ∈ fA. We 
have thus established by induction that for all j ≥ k, 2j ∈ 
A.  
 
We now fix t such that t > 8,min(A), and 2t ∈ A. Then min(A) 
< 2t < 2t+1 are all in A. Hence {2t+2,2t+2+5] ⊆ fA.  
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We inductively define α(0) = 6, α(i+1) = min((α(i)2-
1)/8,2t+i+3). Note that for all sufficiently large i, α(i) = 
2t+i+2.  
 
We now prove by induction on i that for all i ≥ 0, 
 
1) [2t+i+2,2t+i+2 + α(i)) ⊆ fA. 
 
We have already established that this is true for i = 0. 
Suppose this is true for a particular i ≥ 0. We claim that  
 
2) [2t+i+2,2i+t+2 + α(i)) ⊆ fA. 
3) [2t+i+2,2i+t+2 + α(i)) ∩ 2N ⊆ A. 
4) [2t+i+3,2t+i+3 + α(i+1)) ⊆ f(([2t+i+2,2t+i+2 + α(i)) ∩ 2N)2) ⊆ 
fA. 
 
2) is the induction hypothesis. 3) follows from 2) and fA ∩ 
2N ⊆ A.  
 
For 4), let x ∈ [2t+i+3,2t+i+3 + α(i+1)) ⊆ [2t+i+3,2t+i+4). Then 0 
≤ x-2t+i+3 < α(i+1) ≤ (α(i)2-1)/8. By the choice of T, let a,b 
< α(i), T(a,b) = x-2t+i+3, where a,b are even. Let p = 2t+i+2 + 
a, q = 2t+i+2 + b. Then p,q ∈ [2t+i+2,2t+i+2 + α(i)), p,q are 
even, and f(2t+2i+2,p,q) = x. 
 
This establishes that [2t+i+3,2t+i+3 + α(i+1)) ⊆ f[([2t+i+2,2t+i+1 
+ α(i)) ∩ 2N)2]. f[([2t+i+2,2t+i+1 + α(i)) ∩ 2N)2] ⊆ fA is 
immediate from [2t+i+2,2i+t+2 + α(i)) ∩ 2N ⊆ A.  
 
This concludes the inductive argument for 1). Since for 
sufficiently large i, α(i) = 2t+i+2, we see that fA is 
cofinite. QED 
 
We will need the following technical refinement of Lemma 
3.2.1.  
 
LEMMA 3.2.2. There exists 4-ary g ∈ ELG ∩ SD such that the 
following holds. Let A ⊆ N have at least two elements, 
where (∀n ∈ gA ∩ 2N)(4n+3 ∈ gA → n ∈ A). Then gA is 
cofinite. We can also require that for all n ∈ N, 
g(n,n,n,n) ∈ 2N. 
 
Proof: Let f:N3 → N be as given by Lemma 3.2.1. We define 
g:N4 → N as follows. Let x ∈ N3. If n = |x| then define 
g(n,x) = f(x). If n < |x| then define g(n,x) = 4f(x)+3. If 
n > |x| then define g(n,x) = 2n+1. Note that g(n,n,n,n) = 
f(n,n,n) ∈ 2N. Also, if n < |m,r,s| then g(n,m,r,s) ≥ 
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f(m,r,s) > m,r,s, and if n > m,r,s, then g(n,m,r,s) > 
n,m,r,s. Hence g ∈ ELG ∩ SD.  
 
Let A be as given. Let A’ = A\{min(A)}. Then A’ is 
nonempty. Let n ∈ fA’ ∩ 2N. Let n = f(x), x ∈ A'3. Hence 
4n+3 ∈ gA using min(A) as the first argument for g. 
Therefore n ∈ A, and so n ∈ A’.  
 
We have thus shown that fA’ ∩ 2N ⊆ A’. By Lemma 3.2.1, fA’ 
is cofinite. Hence gA is cofinite. QED 
 
We will need a refinement of Lemma 3.2.1 in a different 
direction (Lemma 3.2.4).  
 
LEMMA 3.2.3. Let f ∈ ELG ∩ SD have arity p. There exists 
g,h1,h2 ∈ ELG ∩ SD, with arities 2p,1,1 respectively, such 
that f(x1,...,xp) = g(h1(x1),...,h1(xp),h2(x1),...,h2(xp)) 
holds, with finitely many exceptional p-tuples. We can also 
require that rng(h1),rng(h2) ⊆ 2N, and each g(n,...,n) is 
even. 
 
Proof: Let f,p be as given. Let c,d > 1 be rational 
constants such that  
 

c|x| ≤ f(x) ≤ d|x| 
 
holds with finitely many exceptions. Let t be sufficiently 
large relative to c,d. We can assume that 1 < c < 2 < d. 
 
We first define h1,h2:[t,∞) → N by  
 

h1(x) = the first integer > c1/3x that is divisible by 4.  
h2(x) = h1(x) + 4(x mod 8) + 4. 

 
To see that h(x) = (h1(x),h2(x)) is one-one on [t,∞), 
suppose h1(x) = h1(y) and h2(x) = h2(y) and x < y. By 
subtraction, 4(x mod 8) + 4 = 4(y mod 8) + 4, x ≡ y mod 8, 
and so y ≥ x+8. Hence the first integer > c1/3y is at least 
the first integer > c1/3x, plus 8. Hence h1(x) ≠ h1(y).  
 
Extend h1,h2 on [0,t) by  
 

h1(x) = h2(x) = 2x+2. 
 
Note that 
 

c1/3x ≤ h1(x),h2(x) ≤ 2x+2. 
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Hence h1,h2 ∈ ELG ∩ SD, rng(h1) ∪ rng(h2) ⊆ 2N, and h is 
one-one. Also h1(x) ≤ h1(x+1), and h1(x) < h2(x) ≤ h1(x) + 
36.  
 
We define g:N2p → N as follows. 
 
case 1. (y1,z1),...,(yp,zp) ∈ rng(h), and 
|y1,...,yp,z1,...,zp| > ct. Set g(y1,...,yp,z1,...,zp) = f(h-
1(y1,z1),...,h-1(yp,zp)).  
 
case 2. Otherwise. Set g(y1,...,yp,z1,...,zp) = 
2|y1,...,yp,z1,...,zp|+2.  
 
We claim that g ∈ ELG ∩ SD. To see this, note that g 
restricted to case 2 lies in ELG ∩ SD. So it remains to 
consider case 1.  
 
Let h(x1) = (y1,z1),...,h(xp) = (yp,zp). Then for all i, 
 

h1(xi) = yi, h2(xi) = zi. 
yi,zi ≥ xi. 

 
Also let j be such that xj is largest. Then xj = |y1,...,yj| 
≥ t, and so xj ≥ |y1,...,yp,z1,...,zp| - 36. Hence  
 

xj ≥ c-1/3|yj,zj| ≥ c-1/2|y1,...,yp,z1,...,zp|. 
 

g(y1,...,yp,z1,...,zp) = f(x1,...,xp) ≤ d|x1,...,xp|  
≤ d|y1,...,yp,z1,...,zp|. 

 
g(y1,...,yp,z1,...,zp) = f(x1,...,xp) ≥ c|x1,...,xp| = cxj  
≥ cc-1/2|y1,...,yp,z1,...,zp| ≥ c1/2|y1,...,yp,z1,...,zp|. 

 
Hence g ∈ ELG ∩ SD. Note that the case g(n,...,n) must lie 
in case 2. Hence g(n,...,n) ∈ 2N.  
 
Finally,  
 

f(x1,...,xp) = g(h1(x1),...,h1(xp),h2(x1),...,h2(xp)) 
 
holds according to case 1. The only exceptions are if 
|h1(x1),...,h1(xp),h2(x1),...,h2(xp)| ≤ ct. But that is at 
most finitely many exceptions. QED 
 
LEMMA 3.2.4. There exists a 8-ary F ∈ ELG ∩ SD such that 
the following holds. Let A ⊆ N be nonempty, where F(FA ∩ 
2N) ∩ 2N ⊆ A. Then FA is cofinite. 
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Proof: Let f:N3 → N be as given by Lemma 3.2.1. By Lemma 
3.2.3, let g,h1,h2 ∈ ELG ∩ SD, with arities 6,1,1 
respectively, such that  
 

f(x,y,z) = g(h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)) 
 
with finitely many exceptions, where rng(h1),rng(h2) ⊆ 2N, 
and each g(n,...,n) ∈ 2N. 
 
We now define F:N8 → N by cases. 
 
case 1. x1 = x2 = |x3,...,x8|. Set F(x1,...,x8) = 
g(x3,...,x8). 
 
case 2. x1 = x2 < x3 = ... = x8. Set F(x1,...,x8) = h1(x3). 
 
case 3. x1 < x2 < x3 = ... = x8. Set F(x1,...,x8) = h2(x3). 
 
case 4. x2 < x1 < |x3,x4,x5| = |x1,...,x8|. Set F(x1,...,x8) = 
f(x3,x4,x5). 
 
case 5. Otherwise. Set F(x1,...,x8) = 2|x1,...,x8|+1.   
 
It is obvious that F ∈ ELG ∩ SD.  
 
Assume F(FA ∩ 2N) ∩ 2N ⊆ A, where A is nonempty. Let n ∈ A. 
Then F(n,...,n) ∈ 2N, and we can keep applying F to 
diagonals, thereby obtaining an infinite subset of A ∩ 2N.  
 
Let A’ be the tail of A whose least element is greater than 
exactly two elements of A.  
 
We claim that fA’ ⊆ F(FA’ ∩ 2N). To see this, let n < m be 
the first two elements of A. Then by cases 2 and 3 above, 
for all r ∈ A’, h1(r),h2(r) ∈ FA ∩ 2N. Let x,y,z ∈ A'. Now 
f(x,y,z) = g(h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)) = 
F(p,p,h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)) ∈ F(FA ∩ 2N), 
where p = |h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)|.  
 
In particular, fA’ ∩ 2N ⊆ F(FA ∩ 2N) ∩ 2N ⊆ A. Since f is 
strictly dominating, fA’ ∩ 2N ⊆ A’. By Lemma 3.2.1, fA’ is 
cofinite. 
 
Clearly fA’ ⊆ FA by case 4. Hence FA is cofinite. QED   
 
Let f1,...,fk be indeterminate functions from EVSD. We 
consider the class of f1,...,fk,A-terms defined as follows. 
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i. A is an f1,...,fk,A-term. 
ii. If s,t are f1,...,fk,A-terms, then s ∪ t is an 
f1,...,fk,A-term. 
iii. If s is an f1,...,fk,A-term, then each fis is an 
f1,...,fk,A-term.   
 
LEMMA 3.2.5. Let k ≥ 1, f1,...,fk ∈ EVSD, and t1,...,tr be 
f1,...,fk,A-terms. There exists A ∈ INF such that each A ∩ 
ti = ∅. We can require that min(A) be any given 
sufficiently large integer. 
 
Proof: Let f1,...,fk ∈ EVSD. Write each ti = ti(f1,...,fk,A). 
Let n be sufficiently large. We define integers n0 < n1 < 
...  as follows. Let n0 = n. Suppose nj has been defined, j 
≥ 0. Let nj+1 to be such that  
 

nj+1 is greater than nj and all elements of each 
ti(f1,...,fk,{n0,...,nj}). 

 
Take A = {nj: j ≥ 0}. QED 
 
3.3. Single Clauses (duplicates). 
 
In this section we handle the relatively easy case of 
ordered pairs α,β of clauses, where α = β. We these 
duplicate ordered pairs as single clauses, α. 
 
As we shall see, several single clauses have ¬NON, and so 
any ordered pair of clauses, at least one of which is such 
a clause, also has ¬NON, and does not have to be further 
considered. This will allow us to cut down significantly on 
the number of pairs of clauses that have to be considered 
in sections 3.4 - 3.13.  
 
By Lemma 3.1.5, we see that every clause is equivalent to a 
clause whose inner signature is AA or AB. 
 
Here are what we call the AA and AB tables, together with 
the outcomes of our five attributes, INF, AL, ALF, FIN, 
NON, introduced in section 3.1. These entries are justified 
by the Lemmas that follow. 
 
AA 
 
1. A ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
3. A ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
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4. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
7. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
8. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
9. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
AB 
 
1. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
4. B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
5. B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
6. B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
7. C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
8. C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
9. C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
 
According to the procedure specified at the beginning of 
this Chapter, in order to validate TEMP 3, we use EVSD for 
the positive entries with attribute INF (other than the 
Exotic Case). Otherwise, we will always use ELG.   
 
The following pertains to AA 1-3. Note that in the 
statement of Lemma 3.3.1, we use X as an unknown 
representing A,B, or C. We will make use of this convention 
throughout this Chapter. 
 
LEMMA 3.3.1. A ∪. fA ⊆ A ∪. gX has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. Let f(n) = 2n, g(n) = 
2n+1. Let A ∪. fA ⊆ A ∪. gX, where A,X are nonempty. Let n 
∈ A. Then 2n ∈ fA, 2n ∈ A. This contradicts A ∩ fA = ∅. 
QED 
 
The following pertains to AA 4-9.  
 
LEMMA 3.3.2. X ∪. fA ⊆ A ∪. gY has ¬INF, ¬FIN.  
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
defined by g(n) = 2n+1. Suppose X ∪. fA ⊆ A ∪. gY, where 
X,A,Y are nonempty. Then fA ∩ 2N ⊆ A. Hence fA is cofinite. 
Since X ∩ fA = ∅, we have that A is infinite and X is 
finite. This establishes that ¬INF, ¬FIN. QED 
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LEMMA 3.3.3. Let g ∈ EVSD. Let n be sufficiently large. For 
all S ⊆ [n,∞), there exists a unique A ⊆ S ⊆ A ∪. gA. 
Furthermore, if S is infinite then A is infinite.  
 
Proof: This is a variant of the Complementation Theorem 
from Section 1.3. Since n is sufficiently large, g is 
strictly dominating at all tuples x with |x| ≥ n. 
 
We define A ⊆ S by induction on k ∈ S. Suppose membership 
in A for all i ∈ S ∩ [n,k) has been determined, where k ∈ 
S. We put k in A if and only if k is not yet a value of g 
at arguments from A. Note that if k is not yet a value of g 
at arguments from A, then k will never become a value of g 
at arguments from A. Hence S ⊆ A ∪. gA. It is clear from 
this inclusion that if S is infinite, then A is infinite.  
 
For uniqueness, let A ⊆ S ⊆ A ∪. gA and B ⊆ S ⊆ B ∪. gB. 
Let k be least such that k ∈ A ↔ k ∉ B. Obviously, k ∈ S 
and 
 

k ∈ A ↔ k ∉ gA. 
k ∈ B ↔ k ∉ gB. 

 
Since g is strictly dominating on [n,∞), A,B ⊆ [n,∞), and k 
≥ n, we see that  
 

k ∈ gA ↔ k ∈ g(A ∩ [0,k)). 
k ∈ gB ↔ k ∈ g(B ∩ [0,k)). 

 
Hence  
 

k ∈ A ↔ k ∉ g(A ∩ [0,k)). 
k ∈ B ↔ k ∉ g(B ∩ [0,k)). 

 
Since A ∩ [0,k) = B ∩ [0,k), we have  
 

k ∈ A ↔ k ∈ B 
 
contradicting the choice of k. QED 
 
The following pertains to AA 4. 
 
LEMMA 3.3.4. B ∪. fA ⊆ A ∪. gA has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let n be sufficiently 
large. Then [n,n +p] ∉ f[[n,∞)] ∪ g[[n,∞)]. By Lemma 3.3.3, 
let A ⊆ [n,∞) ⊆ A ∪. gA. Then [n,n+p] ⊆ A. Let B = 
[n,n+p]. QED  
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The following pertains to AA 5. 
 
LEMMA 3.3.5. B ∪. fA ⊆ A ∪. gB has AL.  
 
Proof:  Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n 
is sufficiently large. Let A = [n,∞)\gB. Since B ∪ fA ⊆ 
[n,∞), we have B ∪ fA ⊆ A ∪ gB. Also B ∩ f([n,∞)) = ∅. QED  
 
The following pertains to AA 4 - 9. 
 
LEMMA 3.3.6. X ∪. fA ⊆ A ∪. gY has AL, provided X ∈ {B,C}. 
 
Proof: Let f,g ∈ ELG and p > 0. By Lemma 3.3.4, let A,B 
have at least p elements, where B ∪. fA ⊆ A ∪. gA. By 
setting C = B, we see that AA 7 has AL.  
 
By Lemma 3.3.5, let A,B have at least p elements, where B 
∪. fA ⊆ A ∪. gB. By setting C = B, we see that AA 6,8,9 
have AL. QED  
 
The following pertains to AB 4 - 6.  
 
LEMMA 3.3.7. B ∪. fA ⊆ B ∪. gX has ¬NON. 
 
Proof: Define f,g ∈ ELG by f(n) = 2n, g(n) = 2n+1. Let B ∪. 
fA ⊆ B ∪. gX, where A,B,X are nonempty. Let n ∈ A. Then 2n 
∈ fA, 2n ∈ B. This contradicts B ∩ fA = ∅. QED 
 
The following pertains to AB 1,3,7,9. 
 
LEMMA 3.3.8. X ∪. fA ⊆ B ∪. gY has INF, ALF, provided X,Y ∈ 
{A,C}, even for EVSD.  
 
Proof: Let f,g ∈ EVSD. By Theorem 3.2.5, let A be infinite, 
where A ∩ fA = A ∩ gA = ∅. Let C = A and B = (A ∪ fA)\gA. 
Then A ⊆ B, and so A,B,C are infinite. This establishes 
INF. 
 
For ALF, let p > 0. Let A be the first p elements of the 
above A, where A ∩ fA = A ∩ gA = ∅. Let C = A and B = (A ∪ 
fA)\gA. Then A ⊆ B, and so |B| ≥ p and A,B,C are finite. 
QED 
 
The following pertains to AB 2,8. 
 
LEMMA 3.3.9. X ∪. fA ⊆ B ∪. gB has INF, ALF, provided X ∈ 
{A,C}, even for EVSD. 
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Proof: Let f,g ∈ EVSD and n be sufficiently large. By 
Theorem 3.2.5, let A ⊆ [n,∞) be infinite, where A ∩ fA = A 
∩ gA = ∅. By Lemma 3.3.3, let B be unique such that B ⊆ A 
∪ fA ⊆ B ∪. gB. Let C = A. Since A ∪ fA is infinite, B is 
infinite. This establishes INF. 
 
Now let p > 0 be given. Let A be the first p elements of 
the above A. Then A ∩ fA = A ∩ gA = ∅. Let B be the unique 
B ⊆ A ∪ fA such that A ∪ fA ⊆ B ∪. gB. Let C = A. Since A 
∩ gB = ∅, we have A ⊆ B. This establishes ALF. QED 
 
The information contained in these Lemmas is sufficient to 
justify all determinations made on the AA and AB tables, 
using the obvious implications 
 

ALF → AL → NON. 
ALF → FIN → NON. 
INF → AL → NON. 

 
and contrapositives. 
 
Lemma 3.3.7 is particularly useful. It allows us to remove 
a large number of pairs of clauses in sections 3.4 - 3.13 
(e.g., see the reduced AA table at the beginning of section 
3.4). Also, it allows us to automatically annotate a very 
large number of entries in the annotated tables of section 
3.14.  
 
We now illustrate a difference between ELG and SD with 
respect to AL. We have the following, in contrast to Lemma 
3.3.4.  
 
THEOREM 3.3.10. There exist f,g ∈ SD such that the 
following holds. Let B ∪. fA ⊆ A ∪. gA. If A is nonempty 
then B has at most one element. In particular, this clause 
for SD has attribute ¬AL, and this clause for ELG has 
attribute AL (Lemma 3.3.4). 
 
Proof: For n < m, let f(n,n) = n+1, f(n,m) = m+1, f(m,n) = 
m+2. Let g(n) = 2n+3. Let B ∪. fA ⊆ A ∪. gA, where A is 
nonempty. Let n = min(A). Then n+1 ∈ A ∪ gA, n+1 ∉ gA, n+1 
∈ A.  
 
We claim that [n+1,∞) ⊆ fA. Since n ∈ A, clearly n+1 ∈ fA. 
Hence n+1 ∈ A ∪ gA. Now n+1 ∈ gA is impossible since n = 
min(A). Hence n+1 ∈ A, n+2 ∈ fA.  
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Now let [n+1,m] ⊆ fA, m ≥ n+2. To establish the claim, it 
suffices to prove that m+1 ∈ fA. Now m ∈ fA, m ∈ A ∪ gA. If 
m ∈ A then m+1 ∈ fA. So it suffices to assume that m ∈ gA. 
Hence m is odd. Also m-1 ∈ fA, m-1 ∈ A ∪ gA. Since m-1 is 
even, m-1 ∈ A. Let r < m-1, r ∈ A. Then f(m-1,r) = m+1 ∈ 
fA. 
 
We have thus established that [n+1,∞) ⊆ fA.  
 
Now let r ∈ B. By the above claim, r ≤ n, r ∈ A ∪ gA, r ∈ 
A, r = n. Hence B has exactly one element. QED 
 
3.4. AAAA. 
 
Recall the AA table from section 3.3. 
 
AA 
 
1. A ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
3. A ∪. fA ⊆ A ∪. gC  ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
4. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
7. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
8. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
9. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
It is clear that there is no reason to further consider 
clauses 1-3 from the AA table, as all of our five 
proposition attributes already come out false. So we 
instead work with the following reduced AA table. Note that 
we have renumbered the clauses. 
 
REDUCED AA 
 
1. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
2. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
3. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
We need only consider ordered pairs of these clauses i,j, 
where i < j. 
 
1,2. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB.  
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1,3. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC.  
1,4. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gA.  
1,5. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB.  
1,6. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gC.  
2,3. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC.  
2,4. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gA. Equivalent to 
1,6.  
2,5. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB.  
2,6. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC.  
3,4. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gA. Equivalent to 
1,5.  
3,5. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gB.  
3,6. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gC. Equivalent to 
2,5.  
4,5. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB. Equivalent to 
1,3. 
4,6. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gC. Equivalent to 
1,2.  
5,6. C ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. Equivalent to 
2,3.   
 
Thus we need only examine  
 
REDUCED AAAA 
 
1,2. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,3. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
1,4. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
1,5. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,6. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,3. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
2,5. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
2,6. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
3,5. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
 
Note that we have used an entirely different method for 
compiling the ordered pairs to be analyzed than the purely 
syntactic method used in section 3.1 to compile the master 
list for AAAA that is used in the Annotated Table, section 
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3.14. Here we take full advantage of the fact that ¬NON 
implies ¬INF, ¬AL, ¬ALF, ¬FIN. The result is that on the 
master list for AAAA, there are 20 entries, whereas on the 
above Reduced AAAA list, there are only 9 entries. 
 
The same considerations apply in sections 3.5 – 3.13, where 
the number of ordered pairs actually requiring analysis is 
considerably smaller than the number of ordered pairs in 
the relevant part of the Annotated Table.  
 
By the reduced AA table, we see that all of these pairs 
must have ¬INF, ¬ALF, ¬FIN. It remains to determine the 
status of AL and NON. 
 
In the next Lemma, we use this method of substitution: 
Suppose α,β are pairs of clauses, where β is the result of 
substituting one letter by another letter in α. Then any of 
our five attributes that holds of β also holds of α. As a 
consequence, if the negation of any of our five attributes 
holds of α then that negation also holds of β. 
 
LEMMA 3.4.1. 1,3, 1,4 have AL.   
 
Proof: From the reduced AA table, B ∪. fA ⊆ A ∪. gA has AL. 
In the cited ordered pairs, replace C by A, and C by B, 
respectively. QED 
 
The following pertains to 1,2, 1,5, 1,6. 
 
LEMMA 3.4.2. fX ⊆ A ∪. gA, fA ⊆ A ∪. gY, Y ∩ fA = ∅ has 
¬NON. 
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
defined by g(n) = 2n+1. Let fX ⊆ A ∪. gA, fA ⊆ A ∪. gY, Y 
∩ fA = ∅, where A,B,C are nonempty. 
 
Let n ∈ fA ∩ 2N. Then n ∈ A. Hence fA ∩ 2N ⊆ A. By Lemma 
3.2.1, fA is cofinite. Since Y ∩ fA = ∅, Y is finite. Hence 
A is cofinite. This contradicts A ∩ gA = ∅. QED 
 
The following pertains to 2,3, 2,5, 2,6. 
 
LEMMA 3.4.3. B ∪. fA ⊆ A ∪. gB, X ∪. fA ⊆ A ∪. gY has AL, 
provided X,Y ∈ {B,C}.  
 
Proof: From the reduced AA table, B ∪. fA ⊆ A ∪. gB has AL. 
In the cited ordered pairs, replace C by B. QED 
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The following pertains to 3,5.  
 
LEMMA 3.4.4. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gX has AL, 
provided X ∈ {B,C}. 
 
Proof: From the reduced AA table, B ∪. fA ⊆ A ∪. gB has AL. 
In the cited ordered pair, replace C by B. QED 
 
3.5. AAAB. 
 
Recall the reduced AA table from section 3.4. 
 
REDUCED AA 
 
1. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
2. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
3. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
Recall the AB table from section 3.3. 
 
AB 
 
1. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
4. B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
5. B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
6. B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
7. C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
8. C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
9. C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
 
Here is the reduced AB table, renumbered with ’ to 
distinguish it from the reduced AA table above.  
 
REDUCED AB  
 
1’. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
2’. A ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
3’. A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
4’. C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
5’. C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
6’. C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
 



 445 

We consider all 36 ordered pairs, arranged in cases 
according to the first clause of the ordered pair. 
   
As before, we need only obtain the status of AL and NON for 
the ordered pairs, because of the reduced AA table. 
 
part 1. B ∪. fA ⊆ A ∪. gA. 
 
1,1’. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
1,2’. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
1,3’. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
1,4’. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
1,5’. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
1,6’. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
 
The following pertains to 1,1’ - 1,6’. 
 
LEMMA 3.5.1. fA ⊆ A ∪. gX, fA ⊆ B ∪. gY, Z ∩ fA = ∅ has 
¬NON, where X,Y ∈ {A,B,C} and Z ∈ {A,B}. 
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
defined by g(n) = 2n+1. Let fA ⊆ A ∪. gX, fA ⊆ B ∪. gY, Z 
∩ fA = ∅, where A,B,C are nonempty. Let n ∈ fA ∩ 2N. Then 
n ∈ A. Hence fA ∩ 2N ⊆ A. So fA is cofinite. Hence A is 
infinite. Also fA ∩ 2N ⊆ B, and so B is infinite. Hence Z 
is infinite. This contradicts Z ∩ fA = ∅. QED 
 
part 2. B ∪. fA ⊆ A ∪. gB. 
 
2,1’. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
2,2’. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
2,3’. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
2,4’. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
2,5’. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
2,6’. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
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LEMMA 3.5.2. 2,1’ - 2,6’ have ¬NON. 
 
Proof: By Lemma 3.5.1. QED 
  
part 3. B ∪. fA ⊆ A ∪. gC. 
 
3,1’. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
3,2’. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
3,3’. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.      
3,4’. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
3,5’. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
3,6’. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
 
LEMMA 3.5.3. 3,1’ - 3,6’ have ¬NON. 
 
Proof: By Lemma 3.5.1. QED    
 
part 4. C ∪. fA ⊆ A ∪. gA.  
 
4,1’. C ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,2’. C ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,3’. C ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,5’. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,6’. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.5.4. 4,1’ - 4.3’ have ¬NON. 
 
Proof: By Lemma 3.5.1. QED 
 
LEMMA 3.5.5. 4,4’, 4,5’ have AL. 
 
Proof: From the reduced AA table, C ∪. fA ⊆ A ∪. gA has AL. 
In the cited ordered pairs, replace B by A. QED  
 
The following pertains to 4,6’. 
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LEMMA 3.5.6. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let C = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let A be unique such 
that A ⊆ [n,∞) ⊆ A ∪. gA. Let B = (C ∪ fA)\gC.  
 
Note that fA ⊆ [n,∞), and so C ∪ fA ⊆ A ∪ gA. Also C ∩ fA 
= C ∩ gA = C ∩ gC = ∅. Hence C ⊆ A,B, and so A,B,C have at 
least p elements. QED 
 
part 5. C ∪. fA ⊆ A ∪. gB. 
 
5,1’. C ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,2’. C ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,3’. C ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,4’. C ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,5’. C ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,6’. C ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.5.7. 5,1’ - 5,3’ have ¬NON.  
 
Proof: By Lemma 3.5.1. QED 
 
LEMMA 3.5.8. 5,4’, 5,5’ have AL.  
 
Proof: From the reduced AA table, C ∪. fA ⊆ A ∪. gA has AL. 
In the cited ordered pairs, replace B by A. QED 
 
The following pertains to 5,6’. 
 
LEMMA 3.5.9. C ∪. fA ⊆ A ∪. gX, C ∪. fA ⊆ B ∪. gY has AL, 
provided X ∈ {B,C} and Y ∈ {A,C}. 
 
Proof: Let f,g ∈ ELG and p > 0. Let C = [n,n+p], where n is 
sufficiently large. Let A = [n,∞)\gX. Let B = [n,∞)\gY. 
These are ordinary explicit definitions provided X ≠ A and 
Y ≠ B.  
 
Clearly C ∩ fA = C ∩ gA = C ∩ gB = C ∩ gC = ∅. Hence C ⊆ 
A,B, and so |A|,|B| ≥ p. Since C ∪ fA ⊆ [n,∞), we have C ∪ 
fA ⊆ A ∪. gX, C ∪ fA ⊆ B ∪ gY. QED 
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part 6. C ∪. fA ⊆ A ∪. gC. 
 
6,1’. C ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,2’. C ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,3’. C ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,4’. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gA. ¬INF, AL, 
¬ALF, ¬FIN. NON. 
6,5’. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF, AL, 
¬ALF, ¬FIN. NON. 
6,6’. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gC. ¬INF, AL, 
¬ALF, ¬FIN. NON. 
 
LEMMA 3.5.10. 6,1’ - 6,3’ have ¬NON.  
 
Proof: By Lemma 3.5.1. QED 
 
The following pertains to 6,6’. 
 
LEMMA 3.5.11. C ∪ fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gC has AL. 
 
Proof: From the reduced AA table, C ∪. fA ⊆ A ∪. gC has AL. 
In the cited ordered pair, replace B by A. QED 
 
The following pertains to 6,4’. 
 
LEMMA 3.5.12. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gA has AL. 
 
Proof: By Lemma 3.5.9. QED  
 
The following pertains to 6,5’. 
 
LEMMA 3.5.13. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gB has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let C = [n,n+p], where n is 
sufficiently large. Let A = [n,∞)\gC. By Lemma 3.3.3, let B 
be unique such that B ⊆ C ∪ fA ⊆ B ∪. gB. 
 
Clearly C ∩ fA = C ∩ gB = C ∩ gC = ∅ and C ⊆ A,B. Hence 
|A|,|B| ≥ p. Also C ∪ fA ⊆ B ∪ gB, and C ∪ fA ⊆ [n,∞) ⊆ A 
∪ gC. QED 
 
3.6. AABA. 
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Recall the reduced AA table from section 3.4. 
 
REDUCED AA 
 
1. B ∪. fA ⊆ A ∪. gA.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
2. B ∪. fA ⊆ A ∪. gB.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
3. B ∪. fA ⊆ A ∪. gC.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. C ∪. fA ⊆ A ∪. gA.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
Recall the reduced AB table from section 3.5. 
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The reduced BA table is obtained from the reduced AB table 
by switching A,B. We use 1’-6’ to avoid any confusion. 
 
REDUCED BA 
 
1’. B ∪. fB ⊆ A ∪. gB. INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ A ∪. gA. INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ A ∪. gC. INF. AL. ALF. FIN. NON. 
4’. C ∪. fB ⊆ A ∪. gB. INF. AL. ALF. FIN. NON. 
5’. C ∪. fB ⊆ A ∪. gA. INF. AL. ALF. FIN. NON. 
6’. C ∪. fB ⊆ A ∪. gC. INF. AL. ALF. FIN. NON. 
 
We consider all 36 pairs, arranged in cases according to 
the first clause of the ordered pair. 
 
The status of all of our proposition attributes are 
determined by the reduced AA table except AL and NON. Thus, 
we need only obtain the status of AL and NON. 
 
part 1. B ∪. fA ⊆ A ∪. gA.  
 
1,1’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
1,2’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
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1,3’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
1,4’. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
1,5’. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
1,6’. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.1. There exists g ∈ ELG ∩ SD such that the 
following holds. Suppose A ∪ gB is cofinite and A ∩ gA = ∅. 
Then A ⊆ B. We can require that rng(g) ⊆ 2N+1. Furthermore, 
we can require that for all X and n, 4n+3 ∈ gX ↔ n ∈ X. 
 
Proof: Define g ∈ ELG ∩ SD as follows. For all m > n, 
define  
 

g(n,4m2+4n+1) = 16m2+4n+1. 
 
For all other pairs p,q, define  
 

g(p,q) = 4|p,q|+3. 
 
Let A ∪ gB be cofinite and A ∩ gB = ∅. Let n ∈ A\B. We 
derive a contradiction.  
 
Note that the last two requirements on g hold. 
 
We first claim that  
 

m > n → 4m2+4n+1 ∉ gB. 
 
To see this, let m > n, 4m2+4n+1 ∈ gB. Note that 4m2+4n+1 ≡ 
1 mod 4. Hence for some n’,m’ ∈ B, m’ > n’, we have  
 

4m2+4n+1 = g(n’,m’) = 16m’2+4n’+1. 
 
Since n ∉ B and n’ ∈ B, we have n ≠ n’. Also  
 

16m’2 - 4m2 = 4n - 4n’. 
4m’2 - m2 = n - n’. 

(2m’ - m)(2m’ + m) = n - n’. 
2m’ - m ≠ 0. 

2m’ + m > 2n’ + n. 
2n’ + n < |(2m’ - m)(2m’ + m)| = |n - n’| ≤ n + n’. 

n’ < 0. 
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Now fix m > n, where 4m2+4n+1, 16m2+4n+1 ∈ A ∪ gB. By the 
first claim applied to m and to 2m, we have 
 

4m2+4n+1, 16m2+4n+1 ∉ gB. 
4m2+4n+1, 16m2+4n+1 ∈ A. 

n ∈ A. 
g(n,4m2+4n+1) = 16m2+4n+1 ∈ gA. 

 
This contradicts A ∩ gA = ∅. QED 
 
LEMMA 3.6.2. B ∪. fA ⊆ X ∪. gX, fB ⊆ X ∪. gB has ¬AL.  
 
Proof: Let f be given by Lemma 3.2.2. Let g be as given by 
Lemma 3.6.1. Let B ∪. fA ⊆ X ∪. gX, fB ⊆ X ∪. gB, where 
A,B,C have at least two elements. We now use Lemma 3.2.2 to 
show that fB is cofinite. 
 
Let n ∈ fB ∩ 2N, 4n+3 ∈ fB. Then n ∈ X, 4n+3 ∈ gX, 4n+3 ∉ 
X. Since 4n+3 ∈ fB, we have 4n+3 ∈ gB. Hence n ∈ B. We have 
thus established that (∀n ∈ fB ∩ 2N)(4n+3 ∈ fB → n ∈ B). 
By Lemma 3.2.2, fB is cofinite. 
 
We have thus established that X ∪ gB is cofinite and X ∩ gX 
= ∅. By Lemma 3.6.1, X ⊆ B. By Lemma 3.2.2, fA has an even 
element 2r. Hence 2r ∈ X, 2r ∈ B. This contradicts B ∩ fA = 
∅. QED  
 
LEMMA 3.6.3. 1,1’, 1,4’ have ¬AL. 
 
Proof: By Lemma 3.6.2, setting X = A. QED 
 
The following pertains to 1,6’. 
 
LEMMA 3.6.4. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 4m+5, g(n) = 2n+1. Let B 
∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC, where A,B,C have at 
least two elements. Let n < m be from B. 
 
Clearly 2m+2,4m+5 ∈ fB, 2m+2 ∉ C, 4m+5 ∉ gC, 4m+5 ∈ A, 4m+5 
∉ gA, 2m+2 ∉ A, 2m+2 ∈ gC. This is impossible since g is 
odd valued. QED 
 
The following pertains to 1,2’, 1,5’. 
 
LEMMA 3.6.5. X ∪. fA ⊆ A ∪. gA, Y ∪. fB ⊆ A ∪. gA has AL, 
provided X,Y ∈ {B,C}. 
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Proof: Let f,g ∈ ELG and p > 0. Let B = C = [n,n+p], where 
n is sufficiently large. By Lemma 3.3.3, let A be unique 
such that A ⊆ [n,∞) ⊆ A ∪. gA.  
 
Obviously X ∩ fA = X ∩ gA = A ∩ gA = Y ∩ fB = ∅. Hence B,C 
⊆ A. Also fA,fB ⊆ [n,∞) ⊆ A ∪ gA. QED 
 
The following pertains to 1,3’. 
 
LEMMA 3.6.6. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC has AL. 
 
Proof: By Lemma 3.6.5, B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. 
gA has AL. Replace C by A in the cited pair. QED 
 
LEMMA 3.6.7. X ∪. fA ⊆ A ∪. gA, Y ∪. fZ ⊆ A ∪. gW has NON, 
provided X,Y,Z,W ∈ {B,C}. 
 
Proof: Let f,g ∈ ELG. Let n be sufficiently large.  
 
case 1. f(n,...,n) = g(n,...,n). Let A = B = C = {n}.  
 
case 2. f(n,...,n) ≠ g(n,...,n). Let B = C = {n}. By Lemma 
3.3.3, let A be unique such that A ⊆ [f(n,...,n),∞) ∪ {n} ⊆ 
A ∪. gA. 

 
In case 1, both inclusions have the same left and right 
sides, and are easily verified.  
 
We assume case 2 holds. Obviously B ∩ fA = B ∩ fB = A ∩ gA 
= ∅. Also n ∈ A, and hence X ⊆ A and Y ⊆ A. Since 
g(n,...,n) ∈ gA, we have g(n,...,n) ∉ A. Hence A ∩ gB = A ∩ 
gC = ∅.  
 
We have thus shown that X ∩ fA = A ∩ gA = Y ∩ fZ = A ∩ gW 
= ∅. 
 
Note that f(n,...,n) ∉ gA. To see this, let f(n,...,n) = 
g(b1,...,br), b1,...,br ∈ A. Clearly not every bi is n. Hence 
some bi is at least f(n,...,n). This is a contradiction.  
 
Since f(n,...,n) ∉ gA, we see that f(n,...,n) ∈ A. Hence fZ         
⊆ A. Also fA ⊆ [f(n,...,n),∞) ⊆ A ∪ gA. QED 
 
LEMMA 3.6.8. 1,1’, 1,4’, 1,6’ have NON. 
 
Proof: Immediate from Lemma 3.6.7. QED  
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part 2. B ∪. fA ⊆ A ∪. gB.  
 
2,1’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,2’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,3’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,4’. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,5’. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
The following pertains to 2,1’, 2,3’, 2,4’, 2,6’. 
 
LEMMA 3.6.9. X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ A ∪. gW has AL, 
provided X,Y,Z,W ∈ {B,C}. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = C = [n,n+p], where 
n is sufficiently large. Let A = [n,∞)\gB. Then A is 
infinite.  
 
Clearly B ∩ fA = C ∩ fA = B ∩ fB = C ∩ fB = A ∩ gB = A ∩ 
gC = B ∩ gB = C ∩ gB = ∅. Hence B,C ⊆ A. Also fA,fB ⊆ 
[n,∞) ⊆ A ∪ gB = A ∪ gC. QED 
 
LEMMA 3.6.10. fA ⊆ A ∪. gB, B ∩ fA = A ∩ gA = ∅ has ¬NON. 
 
Proof: Let f be given by Lemma 3.2.1. Define g ∈ ELG by 
g(n) = 2n+1. Let fA ⊆ A ∪. gB, B ∩ fA = A ∩ gA = ∅, where 
A,B,C are nonempty. 
 
Obviously fA ∩ 2N ⊆ A. By Lemma 3.2.1, fA is cofinite. 
Since A ∩ gA = ∅, we see that A is not cofinite. Since fA ⊆ 
A ∪ gB and fA is cofinite, we see that gB is infinite. 
Hence B is infinite. This contradicts B ∩ fA = ∅. QED 
 
LEMMA 3.6.11. 2,2’, 2,5’ have ¬NON. 
 
Proof: Immediate from Lemma 3.6.10. QED 
 
part 3. B ∪. fA ⊆ A ∪. gC. 
 
3.1’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
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3,2’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,3’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,4’. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,5’. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,6’. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.12. 3,1’, 3,3’, 3,4’, 3,6’ have AL.  
 
Proof: By Lemma 3.6.9. QED 
 
The following pertains to 3,2’. 
 
LEMMA 3.6.13. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA has AL. 
 
Proof: By Lemma 3.6.5, B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. 
gA has AL. Replace C by A in the cited ordered pair. QED 
 
The following pertains to 3,5’. 
 
LEMMA 3.6.14. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA has 
¬NON. 
 
Proof: For n < m, define f(n,n,n) = 2n+2, f(n,m,m) = 4m+5, 
f(n,n,m) = 2m+1, f(m,n,n) = 8m+9. Define f(a,b,c) = 
2|a,b,c|+1 for all other triples a,b,c. Define g(n) = 4n+5. 
Obviously f,g ∈ ELG.  
 
Let B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA, where A,B,C ⊆ N 
are nonempty. Let n ∈ B. Then n ∈ A ∪ gC.  
 
case 1. n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A, 8n+13 ∈ fA,gA, 
8n+13 ∉ A, 8n+13 ∈ gC, 2n+2 ∈ C, 2n+2 ∈ fB. This 
contradicts C ∩ fB = ∅. 
 
case 2. n ∈ gC. Let n = 4m+5, m ∈ C. Then m ∈ A ∪ gA.  
 
case 2a. m ∈ A. Then 2m+2 ∈ fA, 2m+2 ∈ A, 4m+5 ∈ fA, 4m+5 = 
n ∈ B. This contradicts B ∩ fA = ∅.    
 
case 2b. m ∈ gA. Let m = 4r+5, r ∈ A. Then 2r+2 ∈ fA, 2r+2 
∈ A. Since n = 4m+5 and m = 4r+5, we have n = 16r+25. Hence 
n = f(2r+2,r,r) ∈ fA, n ∈ B. This contradicts B ∩ fA = ∅. 
QED   
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part 4. C ∪. fA ⊆ A ∪. gA.     
 
4,1’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
4,2’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,3’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
4,4’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,5’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,6’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
 
The following pertains to 4,1’. 
 
LEMMA 3.6.15. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let fA ⊆ 
A ∪. gA, B ∪. fB ⊆ A ∪. gB, where A,B,C have at least two 
elements. Let n < m be from B. 
 
Note that 2m ∈ fB, 2m ∈ A, 2m ∉ B, 4m+1 ∉ gB, 4m+1 ∈ fB, 
4m+1 ∈ A, 4m+1 ∈ gA. This contradicts A ∩ gA = ∅. QED  
 
LEMMA 3.6.16. 4,2’, 4,5’ have AL. 
 
Proof: By Lemma 3.6.5. QED 
 
The following pertains to 4,3’. 
 
LEMMA 3.6.17. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = 4m, f(m,n) = 8m+1, g(n) = 2n+1. Let C 
∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC, where A,B,C have at 
least two elements. Let n < m be from B. 
 
Clearly 2m ∈ fB, 2m ∈ A, 2m ∉ B, 4m ∈ fB, 4m ∈ A, 4m ∉ B, 
8m+1 ∈ gA, 8m+1 ∉ A, 8m+1 ∈ fB, 8m+1 ∈ gC, 4m ∈ C, 4m ∈ 
fA. This contradicts C ∩ fA = ∅. QED  
 
The following pertains to 4,4’. 
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LEMMA 3.6.18. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB has AL. 
 
Proof: From the reduced AA table, C ∪. fA ⊆ A ∪. gA has AL. 
Replace B by A in the cited ordered pair. QED 
 
The following pertains to 4,6’.  
 
LEMMA 3.6.19. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC, where A,B,C have at least 
two elements. Let n < m be from B. 
 
Clearly 2m ∈ fB, 2m ∈ A, 4m+1 ∈ gA, 4m+1 ∉ A, 4m+1 ∈ fB, 
4m+1 ∈ gC, 2m ∈ C. This contradicts C ∩ fB = ∅. QED   
 
LEMMA 3.6.20. 4,1’, 4,3’, 4,6’ have NON. 
 
Proof: By Lemma 3.6.7, X ∪. fA ⊆ A ∪. gA, Y ∪. fZ ⊆ A ∪. 
gW has NON, provided X,Y,Z,W ∈ {B,C}. QED 
 
part 5. C ∪. fA ⊆ A ∪. gB. 
 
5,1’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,2’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,3’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,4’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,5’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,6’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.21. 5,1’, 5,3’, 5,4’, 5,6’ have AL. 
 
Proof: By Lemma 3.6.9, X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ A ∪. 
gW has AL, provided X,Y,Z,W ∈ {B,C}. QED 
 
The following pertains to 5,5’. 
 
LEMMA 3.6.22. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA has AL. 
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Proof: From the reduced table for AA, we see that C ∪. fA ⊆ 
A ∪. gA has AL. In the cited ordered pair, replace B by A. 
QED 
 
The following pertains to 5,2’.  
 
LEMMA 3.6.23. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(m,n) = f(n,m) = 2m+1, g(n) = 2n+1. Let fA 
⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA, where A,B are nonempty.  
 
Let n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A, 4n+5 ∈ gA, 4n+5 ∉ A. 
Since n < 2n+2 are from A, we have 4n+5 ∈ fA, 4n+5 ∈ gB, 
2n+2 ∈ B, 4n+6 ∈ fB, 4n+6 ∈ A. Since n < 4n+6 are from A, 
we have 8n+13 ∈ fA, 8n+13 ∈ gA, 8n+13 ∉ A, 8n+13 ∈ gB, 4n+6 
∈ B. This contradicts B ∩ fB = ∅. QED 
 
part 6. C ∪. fA ⊆ A ∪. gC. 
 
6,1’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
6,2’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,3’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
6,4’. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
6,5’. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,6’. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.24. 6,1’, 6,3’, 6,4’, 6,6’ have AL. 
 
Proof: By Lemma 3.6.9, X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ A ∪. 
gW has AL, provided X,Y,Z,W ∈ {B,C}. QED 
 
The following pertains to 6,2’ and 6,5’. 
 
LEMMA 3.6.25. C ∪. fA ⊆ A ∪. gC, A ∩ gA = ∅ has ¬NON. 
 
Proof: Let f be as given by Lemma 3.2.1. Define g ∈ ELG by 
g(n) = 2n+1. Let C ∪. fA ⊆ A ∪. gC, A ∩ gA = ∅, where 
A,B,C are nonempty.  
 
We claim that fA ∩ 2N ⊆ A. To see this, let n ∈ fA ∩ 2N. 
Then n ∉ gC, and so n ∈ A.  
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By Lemma 3.2.1, fA is cofinite. Hence C is finite. 
Therefore gC is finite. Hence A is cofinite. Therefore gA 
is infinite. This contradicts A ∩ gA = ∅. QED 
 
3.7. AABB. 
 
Recall the reduced AA table from section 3.4. 
 
REDUCED AA 
 
1. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
2. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
3. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
The reduced BB table is obtained from the reduced AA table 
by interchanging A,B. We use 1'-6' to avoid any confusion. 
We use 1’-6’ to avoid any confusion. 
 
REDUCED BB 
 
1’. A ∪. fB ⊆ B ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
2’. A ∪. fB ⊆ B ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
3’. A ∪. fB ⊆ B ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
4’. C ∪. fB ⊆ B ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5’. C ∪. fB ⊆ B ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6’. C ∪. fB ⊆ B ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
LEMMA 3.7.1. X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ B ∪. gW has 
¬NON, provided X = B or Z = A. 
 
Proof: Let f be as given by Lemma 3.2.1. Define g ∈ ELG by 
g(n) = 2n+1. Let X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ B ∪. W, 
where A,B,C are nonempty. Assume X = B or Z = A.  
 
Clearly fA ∩ 2N ⊆ A and fB ∩ 2N ⊆ B. By Lemma 3.2.1, fA and 
fB are cofinite. Hence A,B are infinite. Since X ∩ fA = ∅, 
we see that X is finite. Since Z ∩ fB = ∅, we see that Z is 
finite. Hence A is finite or B is finite. This is a 
contradiction. QED 
 
By Lemma 3.7.1, we can eliminate B ∪. fA ⊆ A ∪. gX from 
consideration. For the same reason, we can eliminate A ∪. 
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fB ⊆ B ∪. gX from consideration. Thus we need only handle 
the two tables 
 
4. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
and  
 
4’. C ∪. fB ⊆ B ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5’. C ∪. fB ⊆ B ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6’. C ∪. fB ⊆ B ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
It is clear by switching A,B, that i,j’ and i’,j are 
equivalent, where 4 ≤ i,j ≤ 6. Hence we need only consider 
i,j’, where i ≤ j’.  
 
4,4’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,5’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,6’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,5’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,6’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
6,6’. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
As before, all proposition attributes are determined from 
the above tables, except for AL and NON. So we merely have 
to determine the status of AL and NON. 
 
LEMMA 3.7.2. 4,4’, 4,5’, 5,5’ have AL. 
 
Proof: From the reduced AA table, C ∪. fA ⊆ A ∪. gA has AL. 
In the cited pairs, replace B by A. QED 
 
The following pertains to 4,6’. 
 
LEMMA 3.7.3. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG be given and p > 0. Let C = [n,n+p], 
where n is sufficiently large. By Lemma 3.3.3, let A be 
unique such that A ⊆ [n,∞) ⊆ A ∪. gA. Let B = [n,∞)\gC. 
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Clearly C ∩ fA = C ∩ fB = C ∩ gA = C ∩ gC = ∅. Hence C ⊆ 
A,B. Also A ∩ gA = B ∩ gC = ∅.  
 
Clearly C ∪ fB ⊆ [n,∞) = B ∪ gC. Also C ∪ fA ⊆ [n,∞) = A ∪ 
gA. QED  
 
The following pertains to 5,6’. 
 
LEMMA 3.7.4. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG(N) and p > 0. Let C = [n,n+p], where n 
is sufficiently large. Let B = [n,∞)\gC and A = [n,∞)\gB. 
 
Obviously C ∩ fA = C ∩ fB = C ∩ gC = C ∩ gB = A ∩ gB = B ∩ 
gC = ∅. Hence C ⊆ A,B. Furthermore, fA ⊆ [n,∞) ⊆ A ∪ gB, 
and fB ⊆ [n,∞) ⊆ B ∪ gC. QED 
 
The following pertains to 6,6’. 
 
LEMMA 3.7.5. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC has AL.  
 
Proof: From the reduced AA table, C ∪. fA ⊆ A ∪. gC has AL. 
Replace B by A in the cited ordered pair. QED 
 
3.8. AABC. 
 
Recall the reduced AA table from section 3.4. 
 
REDUCED AA 
 
1. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
2. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
3. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
Recall the reduced AB table from section 3.5. 
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
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The reduced BC table is obtained from the reduced AB table 
via the permutation sending A to B, B to C, C to A. We use 
1'-6' to avoid any confusion.  
 
REDUCED BC 
 
1’. B ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
4’. A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
5’. A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
6’. A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
 
All attributes are determined from the reduced AA table, 
except for AL and NON. So we merely have to determine the 
status of AL and NON. 
 
part 1. B ∪. fA ⊆ A ∪. gA. 
 
1,1’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
1,2’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
1,3’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
1,4’. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,5’. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,6’. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 1,1’, 1,3’.  
 
LEMMA 3.8.1. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gX has AL, 
provided X ∈ {A,B}. 
 
Proof: Let f,g ∈ ELG(N) and p > 0. Let B = [n,n+p], where n 
is sufficiently large. By Lemma 3.3.3, let A be unique such 
that A ⊆ [n,∞) ⊆ A ∪. gA. Let C = [n,∞)\gX.  
 
Note that B ∩ fA = B ∩ fB = B ∩ gA = A ∩ gA = B ∩ gB = C ∩ 
gX = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gA, and B 
∪ fB ⊆ [n,∞) ⊆ C ∪ gX. QED 
 
The following pertains to 1,2’. 
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LEMMA 3.8.2. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let A be unique such 
that A ⊆ [n,∞) ⊆ A ∪. gA. By Lemma 3.3.3, let C be unique 
such that C ⊆ B ∪ fB ⊆ C ∪. gC.  
 
Note that B ∩ fA = B ∩ fB = B ∩ gC = B ∩ gA = A ∩ gA = C ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gA. QED 
 
The following pertains to 1,4’, 1,5’, 1,6’. 
 
LEMMA 3.8.3. B ∪. fA ⊆ A ∪. gA, A ∩ fB = ∅ has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+1, g(n) = 4n+5. Let B 
∪. fA ⊆ A ∪. gA, A ∩ fB = ∅, where A,B,C are nonempty. 
 
We claim that gA ⊆ fA. I.e., n ∈ A → 4n+5 ∈ fA. To see 
this, let n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 
are from A, we have 4n+5 ∈ fA.  
 
We claim that B ⊆ A. To see this, let n ∈ B\A. Then n ∈ A ∪ 
gA, n ∈ gA, n ∈ fA. This contradicts B ∩ fA = ∅.  
 
Now let n ∈ B. Then n ∈ A, 2n+2 ∈ fA, 2n+2 ∈ A, 2n+2 ∈ fB. 
This contradicts A ∩ fB = ∅. QED  
 
part 2. B ∪. fA ⊆ A ∪. gB. 
 
2,1’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,2’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,3’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,4’. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,5’. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 2,1’, 2,3’. 
 
LEMMA 3.8.4. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gX has AL, 
provided X ∈ {A,B}. 
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Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. Let A = [n,∞)\gB. Let C = [n,∞)\gX.  
 
Note that B ∩ fA = B ∩ fB = B ∩ gB = B ∩ gA = A ∩ gB = C ∩ 
gX = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gB, and B 
∪ fB ⊆ [n,∞) = C ∪ gX. QED 
 
The following pertains to 2,2’. 
 
LEMMA 3.8.5. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. Let A = [n,∞)\gB. Let C ⊆ [n,∞) ⊆ C ∪. 
gC. 
 
Note that B ∩ fA = B ∩ fB = B ∩ gC = B ∩ gB = A ∩ gB = C ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gB, and B 
∪ fB ⊆ [n,∞) = C ∪ gC. QED 
 
The following pertains to 2,4’ - 2,6’. 
 
LEMMA 3.8.6. B ∪. fA ⊆ A ∪. gB, A ∩ fB = ∅ has ¬NON.  
 
Proof: Let f,g ∈ ELG be defined as follows. For all n, f(n) 
= 2n, g(n) = 2n+1. Let B ∪. fA ⊆ A ∪. gB, A ∩ fB = ∅, 
where A,B are nonempty. 
 
Let n = min(B). Then n ∈ B, n ∉ gB, n ∈ A, 2n ∈ fA, 2n ∈ A, 
2n ∈ fB. This contradicts A ∩ fB = ∅. QED   
 
part 3. B ∪. fA ⊆ A ∪. gC. 
 
3,1’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,2’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,3’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,4’. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,5’. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,6’. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
The following pertains to 3,1’. 
 
LEMMA 3.8.7. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB has AL. 
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Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. Let C = [n,∞)\gB, A = [n,∞)\gC.  
 
Note that B ∩ fA = B ∩ fB = A ∩ gC = C ∩ gB = B ∩ gB = B ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gC and B 
∪ fB ⊆ [n,∞) ⊆ C ∪ gB. QED 
 
The following pertains to 3,2’. 
 
LEMMA 3.8.8. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let C be unique such 
that C ⊆ B ∪ fB ⊆ C ∪. gC. Let A = [n,∞)\gC.  
 
Note that B ∩ fA = B ∩ fB = A ∩ gC = C ∩ gC = B ∩ gB = B ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gC and B 
∪ fB ⊆ C ∪ gC. QED 
 
The following pertains to 3,3’. 
 
LEMMA 3.8.9. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. We define A,C inductively. Suppose 
membership in A,C have been defined for all elements of 
[n,k), where k ≥ n. We define membership of k in A,C as 
follows. 
 
If k is already in B ∪ fA but not yet in gC, put k in A. if 
k is already in B ∪ fB but not yet in gA, put k in C. 
Obviously A,C ⊆ [n,∞). 
 
Clearly B ∩ fA = B ∩ gA = B ∩ fB = B ∩ gC = A ∩ gC = C ∩ 
gA = ∅. Hence we have put every element of B in A, and 
every element of B in C. Also fA ⊆ A ∪ gC, fB ⊆ C ∪ gA. QED 
 
LEMMA 3.8.10. Let g ∈ ELG and p > 0. There exist finite D 
such that D,gD,ggD are pairwise disjoint and each have at 
least p elements.  
 
Proof: Let g,p be as given, and n be sufficiently large. 
Let  n = b1 < ... < bp, where for all 1 ≤ i ≤ p, bi+1 > bin. 
Let D = {b1,...,bp}. QED    
 
The following pertains to 3,4’.   
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LEMMA 3.8.11. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB has AL.  
 
Proof: Let f,g ∈ ELG and p > 0. Let D be as given by Lemma 
3.8.10. Let B = gD.  
 
Let n be sufficiently large. By an obvious generalization 
of Lemma 3.3.3, let A be unique such that A ⊆ [n,∞) ⊆ A ∪. 
g(A ∪ D ∪ (fB\gB)). Let C = A ∪ D ∪ (fB\gB). Then [n,∞) ⊆ 
A ∪. gC. 
 
Obviously B,D are finite and A,C are infinite. Since n is 
sufficiently large, we have B ∩ fA = A ∩ fB = A ∩ gB = D ∩ 
gB = ∅. Hence C ∩ gB = ∅.  
 
Since B = gD ⊆ gC and fA ⊆ [n,∞) ⊆ A ∪ gC, we have B ∪ fA 
⊆ A ∪ gC.  
 
Since A ⊆ C and fB\gB ⊆ C, we have A ∪ fB ⊆ C ∪ gB. QED 
 
The following pertains to 3,6’. 
 
LEMMA 3.8.12. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA has AL.  
 
Proof: Let f,g ∈ ELG and p > 0. Let D be as given by Lemma 
3.8.10. Let B = gD.  
 
Let n be sufficiently large. Let A ⊆ [n,∞) ⊆ A ∪. g(A ∪ D 
∪ fB). Let C = A ∪ D ∪ fB. Then [n,∞) ⊆ A ∪. gC. 
 
Obviously D,B are finite and A,C are infinite. Since n is 
sufficiently large, we have B ∩ fA = A ∩ fB = fB ∩ gA = ∅. 
Also A ∩ gA ⊆ A ∩ gC = ∅, and D ∩ gA = ∅. Hence C ∩ gA = 
∅. 
 
Since B = gD ⊆ gC and fA ⊆ [n,∞) ⊆ A ∪ gC, we have B ∪ fA 
⊆ A ∪ gC. Also A ∪ fB ⊆ C. QED 
 
The following pertains to 3,5’. 
 
LEMMA 3.8.13. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC has AL.  
 
Proof: Let f,g ∈ ELG and p > 0. Let n be sufficiently 
large. Let C ⊆ [n,∞) ⊆ C ∪. gC.  
 
Clearly C is infinite. Let B ⊆ gC have cardinality p. Let m 
be sufficiently large relative to p,n,max(B). Let A = C ∩ 
[m,∞). Then A,C are infinite.  
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Clearly B ∩ fA = A ∩ gC = A ∩ fB = C ∩ gC = ∅.  
 
We claim that fA ⊆ A ∪ gC. To see this, let r ∈ fA. Then r 
> m > n, and so r ∈ C ∪ gC. If r ∈ gC then we are done. If 
r ∈ C, then r ∈ A.  
 
Finally, A ∪ fB ⊆ A ∪ fgC ⊆ [n,∞) ⊆ C ∪. gC. QED 
 
part 4. C ∪. fA ⊆ A ∪. gA. 
 
4,1’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,2’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,3’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,5’. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,6’. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 4,1’. 
 
LEMMA 3.8.14. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 4m+6, g(n) = 4n+5. 
Let C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ A, 4m+6 ∈ fA, 
2m+2 ∉ fA, m ∉ A, m ∈ C ∪ gB.  
 
case 1. m ∈ C. Then m ∈ A ∪ gA, m ∈ gA. Let m = 4n+5, n ∈ 
A. Then 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we 
have 4n+5 ∈ fA. This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gB. Let m = 4n+5, n ∈ B. Since n < m are from 
B, we have 4m+6 ∈ fB, 4m+6 ∈ C. Since 4m+6 ∈ fA, this 
contradicts C ∩ fA = ∅. QED 
 
The following pertains to 4,2’. 
 
LEMMA 3.8.15. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC has 
¬NON. 
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Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 2m, g(n) = 4n+5. Let 
C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gC.  
 
case 1. m ∈ C. Then m ∈ A ∪ gA, m ∈ gA. Let m = 4n+5, n ∈ 
A. Hence 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we 
have 4n+5 = m ∈ fA. This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gC. Let m = 4n+5, n ∈ C. Hence n ∈ A ∪ gA. 
 
case 2a. n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A, 4n+6 ∈ fA, 4n+6 ∈ 
A, 8n+12 ∈ fA. Since m ∈ B, we have 2m+2 = 8n+12 ∈ fB, 
8n+12 ∈ C. This contradicts C ∩ fA = ∅.  
 
case 2b. n ∈ gA. Let n = 4r+5, r ∈ A. Then 2r+2 ∈ fA, 2r+2 
∈ A, 4r+6 ∈ fA, 4r+6 ∈ A, 8r+12 ∈ fA, 8r+12 ∈ A, 16r+26 ∈ 
fA, 16r+26 ∈ A, 32r+52 ∈ fA.  
 
Since m ∈ B, we have 2m+2 = 8n+12 = 32r+52 ∈ fB, and so 
32r+52 ∈ C. This contradicts C ∩ fA = ∅. QED 
 
The following pertains to 4,3’. 
 
LEMMA 3.8.16. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 2m, g(n) = 4n+5. Let 
C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gA.  
 
case 1. m ∈ C. Then m ∈ A ∪ gA, m ∈ gA. Let m = 4n+5, n ∈ 
A. Hence 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we 
have m = 4n+5 ∈ fA. This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gA. Let m = 4n+5, n ∈ A. Hence 2n+2 ∈ fA, 2n+2 
∈ A, 4n+6 ∈ fA, 4n+6 ∈ A, 8n+12 = 2m+2 ∈ fA. Since 2m+2 ∈ 
C, this contradicts C ∩ fA = ∅. QED 
 
The following pertains to 4,4’, 4,5’, 4,6’. 
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LEMMA 3.8.17. C ∪. fA ⊆ A ∪. gX, A ∪. fB ⊆ C ∪. gY has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+2, g(n) = 2n+1. Let C 
∪. fA ⊆ A ∪. gX, B ∪. fB ⊆ C ∪. gY, where A,B,C are 
nonempty.  
 
Let m ∈ A. Then 2m+2 ∈ fA, 2m+2 ∈ A, 2m+2 ∈ C. This 
contradicts C ∩ fA = ∅. QED 
 
part 5. C ∪. fA ⊆ A ∪. gB. 
 
5,1’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,2’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,3’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,4’. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,5’. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,6’. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 5,1’.  
 
LEMMA 3.8.18. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 4m+6, g(n) = 2n+1. Let C 
∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ A, 4m+6 ∈ fA, 
2m+2 ∉ fA, m ∉ A, m ∈ C ∪ gB.   
 
case 1. m ∈ C. Then m ∈ A ∪ gB, m ∈ gB. This contradicts C 
∩ gB = ∅.  
 
case 2. m ∈ gB. Let m = 2n+1, n ∈ B. Since n < m are from 
B, we have 4m+6 ∈ fB, 4m+6 ∈ C. Since 4m+6 ∈ fA, this 
contradicts C ∩ fA = ∅.  
 
QED 
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The following pertains to 5,2’. 
 
LEMMA 3.8.19. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+8, f(m,n) = 2m+4, g(n) = 2n+3. 
Let C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gC.  
 
case 1. m ∈ C. Then m ∈ A ∪ gB. Hence m ∈ gB. This 
contradicts B ∩ gB = ∅.  
 
case 2. m ∈ gC. Let m = 2n+3, n ∈ C. Hence n ∈ A ∪ gB. 
 
case 2a. n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 
are from A, we have 4n+8 = 2m+2 ∈ fA. But 2m+2 ∉ fA.  
 
case 2b. n ∈ gB. Let n = 2r+3, r ∈ B. Now m = 2n+3 = 4r+9 ∈ 
B. So 2m+2 = 8r+20 ∈ fB, 2m+2 = 8r+20 ∈ C. Note that 2r+2 ∈ 
fB, 2r+2 ∈ C, 2r+2 ∈ A, 4r+6 ∈ fA, 4r+6 ∈ A. Since 2r+2 < 
4r+6 are from A, we have 8r+20 ∈ fA. This contradicts C ∩ 
fA = ∅. QED 
 
The following pertains to 5,3’. 
 
LEMMA 3.8.20. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 4m+6, f(m,n) = 2m, g(n) = 4n+5. Let 
C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ A, 4m+6 ∈ fA, 
2m+2 ∉ fA, m ∉ A, m ∈ C ∪ gA.  
 
case 1. m ∈ C. Then m ∈ A ∪ gB, m ∈ gB. Let m = 4n+5, n ∈ 
B. Since n < m are from B, we have 4m+6 ∈ fB, 4m+6 ∈ C. 
This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gA. Let m = 4n+5, n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ 
A, 4n+6 ∈ fA, 4n+6 ∈ A. Since 2n+2 < 4n+6 are from A, we 



 470 

have 8n+12 = 2m+2 ∈ fA. Since 2m+2 ∈ C, this contradicts C 
∩ fA = ∅.    
 
QED 
 
LEMMA 3.8.21. X ∪. fA ⊆ A ∪. gY, A ∪. fZ ⊆ X ∪. gW has 
¬NON. 
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
defined by g(n) = 2n+1. Let X ∪. fA ⊆ A ∪. gY, A ∪. fZ ⊆ X 
∪. gW, where X,A,Y,Z,W are nonempty.  
 
Let n ∈ fA ∩ 2N. Then n ∈ A. Hence fA ∩ 2N ⊆ A. By Lemma 
3.2.1, fA is cofinite. Hence A contains almost all of 2N. 
Therefore X contains almost all of 2N. This contradicts X ∩ 
fA = ∅. QED  
 
LEMMA 3.8.22. 5,4’, 5,5’, 5,6’ have ¬NON. 
 
Proof: By Lemma 3.8.21. QED 
 
part 6. C ∪. fA ⊆ A ∪. gC. 
 
6,1’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,2’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,3’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,4’. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,5’. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,6’. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 6,1’. 
 
LEMMA 3.8.23. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB, where A,B,C are nonempty. 
 
We claim that for all t ∈ A and p ≥ 0, 2gp(t)+2 ∈ A ∩ fA. 
To see this, fix t ∈ A and argue by induction on p ≥ 0. 
Obviously 2g0(t)+2 = 2t+2 ∈ fA, and so 2g0(t)+2 = 2t+2 ∈ A ∩ 
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fA. Suppose 2gp(t)+2 ∈ A ∩ fA. Note that 2gp+1(t)+2 = 
2(2gp(t)+1)+2 = 2(2gp(t)+2) ∈ fA, since t < 2gp(t)+2 are 
from A. Hence 2gp+1(t)+2 ∈ A ∩ fA.  
 
Let m = min(B). Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, 
m ∈ C ∪ gB, m ∉ gB, m ∈ C, m ∈ A ∪ gC, m ∈ gC, g-1(m) ∈ C.  
 
Let p be greatest such that  
 
g-1(m),...,g-p(m) ∈ C. 
 
Then p ≥ 1 and g-p(m) ∈ C\gC. Hence g-p(m) ∈ A.  
 
By the claim, 2gp(g-p(m))+2 ∈ A ∩ fA. Hence 2m+2 ∈ A ∩ fA. 
Since 2m+2 ∈ C, this contradicts C ∩ fA = ∅. QED 
 
The following pertains to 6,2’. 
 
LEMMA 3.8.24. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC, where A,B,C are nonempty.  
 
Let m ∈ B. Then m ∈ C ∪ gC. 
 
case 1. m ∈ C. Then m ∈ A ∪ gC, m ∉ gC, m ∈ A, 2m+2 ∈ fA, 
2m+2 ∈ A, 2m+2 ∈ fB, 2m+2 ∈ C. This contradicts C ∩ fA = 
∅. 
 
case 2. m ∈ gC. Let m = 2n+1, n ∈ C. Then n ∉ gC, n ∈ A, 
2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we have 
4n+4 = 2m+2 ∈ fA, 2m+2 ∈ fB, 2m+2 ∈ C. This contradicts C ∩ 
fA = ∅. QED 
 
The following pertains to 6,3’. 
 
LEMMA 3.8.25. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA, where A,B,C are nonempty. 
 
As in the proof of Lemma 3.8.23, for all t ∈ A and p ≥ 0, 
2gp(t)+2 ∈ A ∩ fA.  
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Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gA.  
 
case 1. m ∈ C. Then m ∈ A ∪ gC, m ∈ gC, g-1(m) ∈ C. 
 
Let p be greatest such that g-1(m),...,g-p(m) ∈ C. 
 
Then p ≥ 1 and g-p(m) ∈ C\gC. Hence g-p(m) ∈ A.  
 
By the claim, 2gp(g-p(m))+2 ∈ A ∩ fA. Hence 2m+2 ∈ A ∩ fA. 
Since 2m+2 ∈ C, this contradicts C ∩ fA = ∅. 
 
case 2. m ∈ gA. Let m = 2n+1, n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ 
A. Since n < 2n+2 are from A, we have 4n+4 = 2m+2 ∈ fA. 
Since 2m+2 ∈ C, this contradicts C ∩ fA = ∅.  
 
QED 
 
LEMMA 3.8.26. 6,4’, 6,5’, 6,6’ have ¬NON. 
 
Proof: By Lemma 3.8.21. QED 
 
3.9. ABAB. 
 
Recall the following reduced table for AB from section 3.5.  
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The duplicate pairs were treated in section 3.3. We now 
treat the 15 ordered pairs from this table, where the first 
clause is earlier in the list than the second clause. We 
determine the status of INF, AL, ALF, FIN, NON for each 
such ordered pair.  
 
1,2. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
1,3. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.  
1,4. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. 
FIN. NON.   
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1,5. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
1,6. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
2,3. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
2,4. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN, NON. 
2,5. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. 
FIN. NON.  
2,6. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
3,4. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. 
FIN. NON.   
3,5. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
3,6. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
4,5. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. ¬ALF. 
FIN. NON.  
4,6. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.  
5,6. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN, NON.  
 
LEMMA 3.9.1. (1,3), (1,4), (1,6), (2,3), (2,5), (3,4), 
(3,6), (4,6) have INF, ALF, even for EVSD. 
 
Proof: Note that A ∪. fA ⊆ B ∪. gA has INF, ALF, and A ∪. 
fA ⊆ B ∪. gB has INF, ALF, even for EVSD, by the AB table 
in section 3.3. Now set C = A in all of the above ordered 
pairs except (2,3). For (2,3), set C = B. QED 
 
The following pertains to (1,2). 
 
LEMMA 3.9.2. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB has FIN. 
 
Proof: Let f,g ∈ ELG. Let A = {n}, where n is sufficiently 
large.  
 
case 1. f(n,...,n) = g(n,...,n). Set A = B = {n}.  
 
case 2. f(n,...,n) ≠ g(n,...,n). Set A = {n}, B = 
{n,f(n,...,n)}. Note that A ⊆ B.  
 
In case 1, fA = gA = gB, A ∩ fA = B ∩ gA = B ∩ gB = ∅. 
 
In case 2, note that A ⊆ B, A ∩ fA = B ∩ gA = ∅, fA ⊆ B. 
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We claim that B ∩ gB = ∅. To see this, first note that n ∉ 
gB since n is sufficiently large. Also note that f(n,...,n) 
∉ gB, since f(n,...,n) ≠ g(n,...,n), and f(n,...,n) ≠ 
g(...,f(n,...,n)...). QED 
 
LEMMA 3.9.3. (1,5), (2,4), (2,6), (3,5), (4,5), (5,6) have 
FIN. 
 
Proof: From Lemma 3.9.2, by setting C = A in the cited 
ordered pairs. QED 
 
LEMMA 3.9.4. fA ⊆ B ∪. gA, A ∩ fA = B ∩ gB = ∅ has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = 4m, f(m,n) = 8m, g(n) = 2n. Let fA ⊆ 
B ∪. gA, A ∩ fA = B ∩ gB = ∅, where A,B have at least two 
elements. Let n < m be from A.  
 
Clearly 2m,4m,8m ∈ fA. Hence 2m,4m,8m ∉ A. So 4m,8m ∉ gA. 
Hence 4m,8m ∈ B, 8m ∈ fB. This contradicts B ∩ fB = ∅. QED 
 
LEMMA 3.9.5. (1,2), (1,5) have ¬AL. 
 
Proof: By Lemma 3.9.4. QED 
 
The following pertains to (2,4). 
 
LEMMA 3.9.6. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let A ∪. 
fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA, where A,B have at least 
two elements. Let n < m be from A. 
 
Clearly 2m ∈ fA, 2m ∈ B, 2m ∉ A, 4m+1 ∉ gA, 4m+1 ∈ fA, 4m+1 
∈ B, 4m+1 ∈ gB. This contradicts B ∩ gB = ∅. QED 
 
LEMMA 3.9.7. fA ⊆ B ∪. gB, fA ⊆ B ∪. gC, C ∩ fA = ∅ has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let fA ⊆ 
B ∪. gB, fA ⊆ B ∪. gC, C ∩ fA = ∅, where A,B,C have at 
least two elements. Let n < m be from A.  
 
Clearly 2m ∈ fA, 2m ∈ B, 2m ∉ C, 4m+1 ∉ gC, 4m+1 ∈ fA, 4m+1 
∈ B, 4m+1 ∈ gB. This contradicts B ∩ gB = ∅. QED 
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LEMMA 3.9.8. (2,6), (3,5), (5,6) have ¬AL. 
 
Proof: By Lemma 3.9.7. QED 
 
The following pertains to (4,5). 
 
LEMMA 3.9.9. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB has AL. 
 
Proof: Note that C ∪. fA ⊆ A ∪. gA has AL by the AA table 
of section 3.3. Replace B by A in the cited pair. QED 
 
The following pertains to (4,5). 
 
LEMMA 3.9.10. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB has 
¬INF, ¬ALF. 
 
Proof: Let f be as given by Lemma 3.2.1. Let f’ ∈ ELG be 
given by f’(a,b,c,d) = f(a,b,c) if c = d; 2f(a,b,c)+1 if c 
> d; 2|a,b,c,d|+2 if c < d. Let g ∈ ELG be given by g(n) = 
2n+1. Let C ∪. f’A ⊆ B ∪. gA, C ∪. f’A ⊆ B ∪. gB, where 
A,B,C have at least two elements. Let A’ = A\{min(A)}.  
 
Note that fA’ ⊆ fA ⊆ f’A. To see this, let a,b,c ∈ A. Then 
f(a,b,c) = f’(a,b,c,c).  
 
Let n ∈ fA’ ∩ 2N. Write n = f(a,b,c), a,b,c ∈ A'. Then 2n+1 
= f'(a,b,c,min(A)), 2n+1 ∈ f'A. Also n ∈ f'A. Hence n ∈ B, 
2n+1 ∈ gB, 2n+1 ∉ B, 2n+1 ∈ gA, n ∈ A, n > min(A), n ∈ A'. 
Thus we have shown that fA’ ∩ 2N ⊆ A’. Hence by Lemma 
3.2.1, fA’ is cofinite.  
 
It is now clear that A’ is infinite, and therefore A is 
infinite. This establishes ¬ALF.  
 
We also see that C is finite, since f’A is cofinite and C ∩ 
f’A = ∅. This establishes ¬INF. QED 
 
3.10. ABAC. 
 
Recall the reduced AB table from section 3.5. 
 
REDUCED AB  
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
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4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The reduced AC table is obtained from the reduced AB table 
by interchanging B and C. We use 1'-6' to avoid confusion.  
 
REDUCED AC 
 
1’. A ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
2’. A ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
3’. A ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
4’. B ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
5’. B ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
6’. B ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
 
We will use the reduced AB table and the reduced AC table.  
 
Note that each i,j’ is equivalent to j,i’, because each 
i,j’ is sent to i’,j by interchanging B and C.  
 
Hence we need only consider i,j’ where i ≤ j’.  
 
We need to determine the status of INF, AL, ALF, FIN, NON 
for each pair.  
 
1,1’. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.  
1,2’. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gC. INF. AL. ALF. 
FIN, NON.  
1,3’. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON.  
1,4’. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,5’. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,6’. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,2’. A ∪. fA ⊆ B ∪. gB. A ∪. fA ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
2,3’. A ∪. fA ⊆ B ∪. gB. A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
2,4’. A ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,5’. A ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. A ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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3,3’. A ∪. fA ⊆ B ∪. gC. A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
3,4’. A ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,5’. A ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,6’. A ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,5’. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,6’. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,5’. C ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,6’. C ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FiN. ¬NON. 
6,6’. C ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
LEMMA 3.10.1. fA ⊆ B ∪. gY, B ∩ fA = ∅ has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. f(n) = 2n+2, g(n) = 
2n+1. Let X ∪. fA ⊆ B ∪. gY, B ∪. fA ⊆ Z ∪. gW, where 
A,B,C are nonempty.  
 
Clearly fA ⊆ B. This contradicts B ∩ fA = ∅. QED  
 
LEMMA 3.10.2. 1,4’ - 1,6’, 2,4’ - 2,6’, 3,4’ - 6,6’ have 
¬NON. 
 
Proof: By Lemma 3.10.1. QED 
 
LEMMA 3.10.3. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gX has 
INF, ALF, provided X ∈ {A,B}, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. By Lemma 3.2.5, let A ⊆ N be 
infinite, where A is disjoint from fA ∪ g(A ∪ fA), and 
min(A) is sufficiently large.  
 
Let B = (A ∪ fA)\gA. Let C = (A ∪ fA)\gX.  
 
Clearly A ∩ fA = B ∩ gA = A ∩ gA = A ∩ gB = C ∩ gX = ∅. 
Hence A ⊆ B, A ⊆ C. Also A ∪ fA ⊆ B ∪ gA, A ∪ fA ⊆ C ∪ gX. 
This establishes INF. 
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We can repeat the argument using A of any given finite 
cardinality. This establishes ALF. QED 
 
LEMMA 3.10.4. 1,1’ and 1,3’ have INF, ALF, even for EVSD. 
 
Proof: Immediate from Lemma 3.10.3. QED 
 
The following pertains to 1,2’. 
 
LEMMA 3.10.5. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. By Lemma 3.2.5, let A ⊆ N be 
infinite, where A is disjoint from fA ∪ g(A ∪ fA), and 
min(A) is sufficiently large.  
 
Let B = (A ∪ fA)\gA. By Lemma 3.3.3, let C be unique such 
that C ⊆ A ∪ fA ⊆ C ∪. gC. Then C is infinite.  
 
Clearly A ∩ fA = B ∩ gA = C ∩ gC = A ∩ gA = ∅. Also A ∩ gC 
⊆ A ∩ g(A ∪ fA) = ∅. Hence A ⊆ B, A ⊆ C. Also A ∪ fA ⊆ B 
∪ gA, A ∪ fA ⊆ C ∪ gC. This establishes INF.  
 
We can repeat the argument using A of any given finite 
cardinality. This establishes ALF. QED 
 
The following pertains to 2,3’. 
 
LEMMA 3.10.6. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. By Lemma 3.2.5, let A ⊆ N be 
infinite, where A is disjoint from fA ∪ g(A ∪ fA), and 
min(A) is sufficiently large.  
 
By Lemma 3.3.3, let B be unique such that B ⊆ A ∪ fA ⊆ B ∪. 
gB. Define C = (A ∪ fA)\gB.  
 
Clearly A ∩ fA = B ∩ gB = C ∩ gB = ∅. Also A ∩ gB ⊆ A ∩ 
g(A ∪ fA) = ∅. Hence A ⊆ B, A ⊆ C. Also A ∪ fA ⊆ B ∪ gB, A 
∪ fA ⊆ C ∪ gB. This establishes INF. 
 
We can repeat the argument using A of any given finite 
cardinality. This establishes ALF. QED 
 
The following pertains to 2,2’. 
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LEMMA 3.10.7. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: From the AB table, A ∪. fA ⊆ B ∪. gB has INF, ALF. 
Replace C by B in the cited pair. QED  
 
The following pertains to 3,3’. 
 
LEMMA 3.10.8. A ∪. fA ⊆ B ∪. gC. A ∪. fA ⊆ C ∪. gB has 
INF, ALF, even for EVSD. 
 
Proof: A ∪. fA ⊆ B ∪. gB has INF, ALF, by the AB table. 
Replace C by B in the cited pair. QED 
 
3.11. ABBA. 
 
Recall the reduced AB table from section 3.5.  
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
Recall the reduced BA table from section 3.6. 
 
REDUCED BA 
 
1’. B ∪. fB ⊆ A ∪. gB.  INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ A ∪. gA.  INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ A ∪. gC.  INF. AL. ALF. FIN. NON. 
4’. C ∪. fB ⊆ A ∪. gB.  INF. AL. ALF. FIN. NON. 
5’. C ∪. fB ⊆ A ∪. gA.  INF. AL. ALF. FIN. NON. 
6’. C ∪. fB ⊆ A ∪. gC.  INF. AL. ALF. FIN. NON. 
 
This results in 36 ordered pairs.  
 
We can take advantage of symmetry through interchanging A 
with B as follows. Clearly (i,j’) and (j,i’) are 
equivalent, since interchanging A and B takes us from p to 
p’ and back. So we can require that i ≤ j. Thus we have the 
following 21 ordered pairs to consider.   
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We need to determine the status of all attributes INF, Al, 
ALF, FIN, NON, for each pair.  
 
1,1’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,2’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,3’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,4’. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,5’. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,6’. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,2’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,3’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,4’. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,5’. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,3’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,4’. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,5’. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,6’. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
4,5’. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
4,6’. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
5,5’. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
5,6’. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
6,6’. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
 
LEMMA 3.11.1. 1,1’ - 6,6’ have ¬INF, ¬FIN. 
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Proof: Let f be as given by Lemma 3.2.4. Let g ∈ ELG be 
defined by g(n) = 2n+1. Let  
 

X ∪. fA ⊆ B ∪. gY 
S ∪. fB ⊆ A ∪. gT 

 
where X,A,B,Y,S,T are nonempty subsets of N. Then fA ∩ 2N ⊆ 
B and fB ∩ 2N ⊆ A. Hence f(fA ∩ 2N) ∩ 2N ⊆ fB ∩ 2N ⊆ A. By 
Lemma 3.2.4, fA is cofinite. Thus A is infinite. This 
establishes ¬FIN. Also X is finite, since X ∩ fA = ∅. This 
establishes ¬INF. QED 
 
Lemma 3.11.1 establishes that we have ¬INF, ¬ALF, ¬FIN for 
all of the pairs of clauses considered in this section. It 
remains to determine the status of AL and NON.  
 
LEMMA 3.11.2. fA ⊆ B ∪. gY, fB ⊆ A ∪. gZ, A ∩ fA = ∅ has 
¬NON.  
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m, f(m,n) = 4m, g(n) = 2n+1. Let 
fA ⊆ B ∪. gY, fB ⊆ A ∪. gZ, A ∩ fA = ∅, where A,B,Y,Z are 
nonempty subsets of N.  
 
Let n ∈ B. Then 2n+2 ∈ fB, 2n+2 ∈ A, 4n+6 ∈ fA, 4n+6 ∈ B. 
Since n < 4n+6 are from B, we have 8n+12 ∈ fB, 8n+12 ∈ A. 
Since 2n+2 < 8n+12 are from A, we have 16n+24 ∈ fA. Also 
since n < 4n+6 are from B, we have 16n+24 ∈ fB, 16n+24 ∈ A. 
This contradicts A ∩ fA = ∅. QED   
 
LEMMA 3.11.3. 1,1’ - 3,6’ have ¬NON. 
 
Proof: By Lemma 3.11.2. QED 
 
LEMMA 3.11.4. C ∪. fA ⊆ B ∪. gX, C ∪. fB ⊆ A ∪. gY has AL.  
 
Proof: Let f,g ∈ ELG and p ≥ 0. Let C = [n,n+p], where n is 
sufficiently large. Throw all elements of [n,n+p] into A,B. 
A,B will have no elements < n.  
 
We determine membership of all k > n+p in A,B by induction 
as follows. Suppose membership in A,B has been determined 
for all integers < k, where k > n+p is fixed. If k is not 
already in gX then put k in B. If k is not already in gY 
then put k in A.  
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Note that C ⊆ A,B ⊆ [n,∞), C ∩ fA = C ∩ fB = B ∩ gX = A ∩ 
gY = ∅. Also we have fA ⊆ [n,∞) ⊆ B ∪ gX, fB ⊆ [n,∞) ⊆ A 
∪ gY. QED 
 
LEMMA 3.11.5. 4,4’ - 6,6’ have AL. 
 
Proof: By Lemma 3.11.4. QED 
 
3.12. ABBC. 
 
Recall the following reduced table for AB from section 3.5.  
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The reduced table for BC is obtained from the reduced table 
for AB via the permutation that sends A to B, B to C, and C 
to A. We use 1'-6' to avoid confusion. 
 
REDUCED BC 
 
1’. B ∪. fB ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
4’. A ∪. fB ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
5’. A ∪. fB ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
6’. A ∪. fB ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
 
This results in 36 ordered pairs, which we divide into six 
cases. We begin with two Lemmas.  
 
We will determine the status of all attributes INF, AL, 
ALF, FIN, NON, for all ordered pairs.  
 
LEMMA 3.12.1. C ∪. fX ⊆ B ∪. gY, Z ∪. fB ⊆ C ∪. gW has 
¬INF, ¬FIN. 
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
given by g(n) = 2n+1. Let C ∪. fX ⊆ B ∪. gY, Z ∪. fB ⊆ C 
∪. gW, where A,B,C are nonempty. 
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Clearly fB ∩ 2N ⊆ C. By C ⊆ B ∪ gY, we have fB ∩ 2N ⊆ B. 
Hence by Lemma 3.2.1, fB is cofinite. Hence B is infinite. 
This establishes that ¬FIN. Also Z is finite. This 
establishes that ¬INF. QED  
 
LEMMA 3.12.2. C ∪. fX ⊆ B ∪. gY, Z ∪. fB ⊆ C ∪. gW, B ∩ fB 
= ∅ has ¬NON. 
 
Proof: We can continue the proof of Lemma 3.12.1. Using fB 
is cofinite and B is finite, we obtain an immediate 
contradiction from B ∩ fB = ∅. QED  
 
We use Lemmas 3.12.1 and 3.12.2 in cases 5,6 below.  
 
part 1. A ∪. fA ⊆ B ∪. gA. 
 
1,1’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,2’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,3’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,4’. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
1,5’. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
1,6’. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
The following pertains to 1,4’, 1,6’. 
 
LEMMA 3.12.3. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gX has 
INF, ALF provided X ∈ {A,B}, even for EVSD.  
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA). Let B = (A ∪ fA)\gA, and C = 
(A ∪ fB)\gX.  
 
Clearly A ∩ fA = B ∩ gA = A ∩ fB = C ∩ gX = A ∩ gA = A ∩ 
gB = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gA and fB ⊆ C 
∪ gX. This establishes INF. 
 
We can repeat the argument where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 1,5’. 
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LEMMA 3.12.4. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA) ∪ g(A ∪ f(A ∪ fA)). Let B = (A 
∪ fA)\gA. By Lemma 3.3.3, let C be unique such that C ⊆ A ∪ 
fB ⊆ C ∪. gC. 
 
Clearly A ∩ fA = B ∩ gA = A ∩ fB = C ∩ gC = A ∩ gA = A ∩ 
gC = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gA and fB ⊆ C 
∪ gC. This establishes INF. 
 
We can repeat the proof where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 1,1’, 1,2’, 1,3’. 
 
LEMMA 3.12.5. A ∪. fA ⊆ B ∪. gA, B ∩ fB = ∅ has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. Let f(n) = 2n+2 and 
g(n) = 2n+1. Let A ∪. fA ⊆ B ∪. gA, B ∩ fB = ∅, where A,B 
are nonempty.  
 
Let n = min(A). Then n ∉ gA, n ∈ B, 2n+2 ∈ fB, 2n+2 ∈ fA, 
2n+2 ∈ B. This contradicts B ∩ fB = ∅. QED  
 
part 2. A ∪. fA ⊆ B ∪. gB. 
 
2,1’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
2,2’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
2,3’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
2,4’. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
2,5’. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
2,6’. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
The following pertains to 2,4’, 2,6’. 
 
LEMMA 3.12.6. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gX has 
INF, ALF, provided X ∈ {A,B}, even for EVSD. 
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Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA). By Lemma 3.3.3, let B be unique 
such that B ⊆ A ∪ fA ⊆ B ∪. gB. Let C = (A ∪ fB)\gX.  
 
Clearly A ∩ fA = B ∩ gB = A ∩ fB = C ∩ gX = A ∩ gB = A ∩ 
gA = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gB and fB ⊆ C 
∪ gX. This establishes INF. 
 
We can repeat the argument where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 2,5’. 
 
LEMMA 3.12.7. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA) ∪ g(A ∪ f(A ∪ fA)). By Lemma 
3.3.3, let B be unique such that B ⊆ A ∪ fA ⊆ B ∪. gB. By 
Lemma 3.3.3, let C be unique such that C ⊆ A ∪ fB ⊆ C ∪. 
gC. 
 
Clearly A ∩ fA = B ∩ gB = A ∩ fB = C ∩ gC = A ∩ gB = A ∩ 
gC = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gB and fB ⊆ C 
∪ gC. This establishes INF. 
 
We can repeat the argument where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 2,1’, 2,3’. 
 
LEMMA 3.12.8. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gX has 
FIN, provided X ∈ {A,B}. 
 
Proof: Let f,g ∈ ELG. We claim that there exists 
arbitrarily large n such that f(n,...,n) ≠ 
f(g(n,...,n),...,g(n,...,n)). Suppose this is false. I.e., 
let r be such that for all n ≥ r, f(n,...,n) = 
f(g(n,...,n),...,g(n,...,n)). We can assume that r is 
chosen so that f,g is strictly dominating on [r,∞).  
 
Define t0 = r, ti+1 = g(ti,...,ti). An obvious induction 
shows that r ≤ t0 < t1 < ... .  
 
We now prove by induction that for all i ≥ 0,  
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f(r,...,r) = f(ti,...,ti). 
 
Obviously this is true for i = 0. Suppose this is true for 
a given i ≥ 0. Then  
 

f(r,...,r) = f(ti,...,ti). 
ti ≥ r. 

f(ti,...,ti) = f(g(ti,...,ti),...,g(ti,...,ti)). 
f(r,...,r) = f(ti+1,...,ti+1). 

 
However some ti is greater than f(r,...,r), since the t’s 
are strictly increasing. This is a contradiction. The claim 
is now established.    
 
Now let n be sufficiently large with the property that 
f(n,...,n) ≠ f(g(n,...,n),...,g(n,...,n)). Let A = 
{g(n,...,n)}. Let B = {n,f(g(n,...,n),...,g(n,...,n))}. Let 
C = (B ∪ fB)\gX.  
 
Clearly A ∩ fA = B ∩ gB = B ∩ fB = C ∩ gX = ∅. Also A ⊆ 
gB, fA ⊆ B, B ∪ fB ⊆ C ∪ gX. In addition, n ∉ gX, n ∈ B, 
and so n ∈ C. Hence A,B,C are nonempty finite sets. QED 
 
The following pertains to 2,2’. 
 
LEMMA 3.12.9. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC has 
FIN. 
 
Proof: Let f,g ∈ ELG. We define n,A,B exactly as in the 
proof of Lemma 3.12.8. By Lemma 3.3.3, let C be unique such 
that C ⊆ B ∪ fB ⊆ C ∪. gC.  
 
Clearly A ∩ fA = B ∩ gB = B ∩ fB = C ∩ gC = ∅. Also A ⊆ 
gB, fA ⊆ B, B ∪ fB ⊆ C ∪ gC. In addition, n ∉ gC, and so n 
∈ C. Hence A,B,C are nonempty finite sets. QED 
 
The following pertains to 2,1’, 2,2’, 2,3’. 
 
LEMMA 3.12.10. fA ⊆ B ∪. gX, B ∩ fB = ∅ has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(m,n) = f(n,m) = 4m+6, g(n) = 2n+1. Let fA 
⊆ B ∪. gX, B ∩ fB = ∅, where A,B,C have at least two 
elements. Let n < m be from A. Then 2m+2,4m+6 ∈ fA, 
2m+2,4m+6 ∈ B, 4m+6 ∈ fB. This contradicts B ∩ fB = ∅. QED  
 
part 3. A ∪. fA ⊆ B ∪. gC. 
 



 487 

3,1’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
3,2’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
3,3’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
3,4’. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
3,5’. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
3,6’. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
LEMMA 3.12.11. 3,1’ - 3,3’ have ¬AL.  
 
Proof: By Lemma 3.12.10. QED 
 
The following pertains to 3,1’, 3,3’. 
 
LEMMA 3.12.12. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gX has 
FIN, where X ∈ {A,B}. 
 
Proof: Let f,g ∈ ELG. Let n be sufficiently large. Define A 
= {g(n,...,n)}, B = {f(g(n,...,n),...,g(n,...,n))}, C = (B 
∪ fB ∪ {n})\gX.  
 
Obviously A ∩ fA = B ∩ fB = C ∩ gX = ∅. Also n ∉ gX, n ∈ 
C. Hence A ⊆ gC and fA ⊆ B. Therefore A ∪ fA ⊆ B ∪ gC. 
Obviously B ∪ fB ⊆ C ∪ gX.  
 
It remains to verify that B ∩ gC = ∅. Every element of C is 
either n or f(g(n,...,n),...,g(n,...,n)) or the value of a 
term of depth ≤ 3 in f,g,n with f(g(n,...,n),...,g(n,...,n)) 
as a subterm. Hence every element of gC is either 
g(n,...,n) or the value of a term in f,g,n of depth ≤ 4 with 
f(g(n,...,n),...,g(n,...,n)) as a proper subterm. Since n 
is sufficiently large, f(g(n,...,n),...,g(n,...,n)) does 
not lie in gC. QED  
 
The following pertains to 3,2’. 
 
LEMMA 3.12.13. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC has 
FIN. 
 
Proof: Let f,g ∈ ELG. Let n be sufficiently large. Define A 
= {g(n,...,n)}, B = {f(g(n,...,n),...,g(n,...,n))}. By 
Lemma 3.3.3, let C be unique such that C ⊆ B ∪ fB ∪ {n} ⊆ C 
∪. gC.  
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Obviously A ∩ fA = B ∩ fB = C ∩ gC = ∅. Also n ∉ gC, n ∈ 
C. A ⊆ gC, and fA ⊆ B. Therefore A ∪ fA ⊆ B ∪ gC. In 
addition, B ∪ fB ⊆ C ∪ gC.   
 
It remains to verify that B ∩ gC = ∅. Argue exactly as in 
the proof of Lemma 3.12.12. QED 
 
The following pertains to 3,4’, 3,5’, 3,6’.  
 
LEMMA 3.12.14. A ∪. fA ⊆ B ∪. gC. A ∪. fB ⊆ C ∪. gX has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ f(A ∪ fA)). We inductively 
determine membership in B,C for all elements of [n,∞). B,C 
will have no elements < n. 
 
Suppose membership in B,C has been determined for all 
elements of [n,k), k ≥ n. We now determine membership in B,C 
for k. If k is already in A ∪ fA and k is not yet in gC, 
put k ∈ B. If k is already in A ∪ fB and k is not yet in 
gX, put k in C.  
 
Clearly B ⊆ A ∪ fA and C ⊆ A ∪ fB ⊆ A ∪ f(A ∪ fA). Hence A 
∩ fA = A ∩ fB = C ∩ gX = ∅. Also A ∪ fA ⊆ B ∪ gC and A ∪ 
fB ⊆ C ∪ gX. In addition, A ∩ gC ⊆ A ∩ g(A ∪ fB) ⊆ A ∩ g(A 
∪ f(A ∪ fA)) = ∅, and so A ∩ gX = ∅. Hence A ⊆ B, A ⊆ C. 
This establishes INF.  
 
We can instead use A of any finite cardinality. We obtain 
finite B,C with A ⊆ B,C. This establishes ALF. QED 
 
part 4. C ∪. fA ⊆ B ∪. gA. 
 
4,1’. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,2’. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,3’. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF.  ¬FIN. ¬NON. 
4,5’. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,6’. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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The following pertains to 4,1’, 4,2’, 4,3’.  
 
LEMMA 3.12.15. C ∪. fA ⊆ B ∪. gA. B ∪. fB ⊆ C ∪. gX has 
¬NON. 
 
Proof: Let f be as given by Lemma 3.2.1. Define g ∈ ELG by 
g(n) = 2n+1. Let C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gX, 
where A,B,C are nonempty.  
 
Let n ∈ fB ∩ 2N. Then n ∈ C, n ∈ B. Hence fB ∩ 2N ⊆ B. By 
Lemma 3.2.1, fB is cofinite. Hence B is infinite. This 
contradicts B ∩ fB = ∅. QED 
 
The following pertains to 4,4’. 
 
LEMMA 3.12.16. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(2n,2n,2n) = f(2n+1,2n+1,2n+1) = 4n, f(n,m,m) = 2m, 
f(n,m,n) = 4m, f(m,n,n) = 8m, g(2n) = g(2n+1) = 4n+1. For 
all other triples a,b,c, let f(a,b,c) = 2|a,b,c|.   
 
We claim that  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(g(m),g(m),g(m)). 
 
To see this, let m = 2r ∨ m = 2r+1. Then  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(4r,4r,4r) = 8r 
 
and  
 

f(g(m),g(m),g(m)) = f(4r+1,4r+1,4r+1) = 8r. 
 
Now let C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB, where A,B,C 
are nonempty. Let n ∈ A. Then n ∈ C ∪. gB. 
 
case 1. n ∈ C. Then n ∈ B ∪ gA. First suppose n ∈ B. Then 
f(n,n,n) ∈ C ∪ gB. Hence f(n,n,n) ∈ C. This contradicts C ∩ 
fA = ∅. 
 
Now suppose n ∈ gA. Let n = g(m), m ∈ A, m < n. Then 2n-
2,4n-4,8n-8 ∈ fA, and so 2n-2,4n-4,8n-8 ∈ B, 8n-8 ∈ fB, 8n-
8 ∈ C. This contradicts C ∩ fA = ∅.   
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case 2. n ∈ gB. Let n = g(m), m ∈ B. Then f(m,m,m) ∈ fB, 
f(m,m,m) ∈ C. Hence f(m,m,m) ∈ B. Therefore 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ fB, 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ C. Note that 
f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(g(m),g(m),g(m)) = 
f(n,n,n) ∈ fA. This contradicts C ∩ fA = ∅.   
 
QED 
 
The following pertains to 4,6’. 
 
LEMMA 3.12.17. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g as in the proof of Lemma 3.12.16. Now let 
C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty. Let n ∈ A. Then n ∈ C ∪. gA. 
 
case 1. n ∈ gA. Let n = g(m), m ∈ A, m < n. Then 2n-2,4n-
4,8n-8 ∈ fA, 2n-2,4n-4,8n-8 ∈ B, 8n-8 ∈ fB, 8n-8 ∈ C. This 
contradicts C ∩ fA = ∅.   
 
case 2. n ∈ C. Then n ∉ gA, n ∈ B, f(n,n,n) ∈ fB, f(n,n,n) 
∈ C. Since f(n,n,n) ∈ fA, this contradicts C ∩ fA = ∅. 
 
QED 
 
The following pertains to 4,5’. 
 
LEMMA 3.12.18. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g as in the proof of Lemma 3.12.16. Now let 
C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty. Let n = min(A). Then n ∈ C ∪. gC. 
 
case 1. n ∈ C. By the choice of n, n ∉ gA, n ∈ B. Hence 
f(n,n,n) ∈ fB, f(n,n,n) ∈ C. Since f(n,n,n) ∈ fA, this 
contradicts C ∩ fA = ∅.  
 
case 2. n ∈ gC. Let n = g(m), m ∈ C, m < n. Then m ∈ B ∪ 
gA. By the choice of n, m ∉ gA, m ∈ B. Hence f(m,m,m) ∈ fB, 
f(m,m,m) ∈ C, f(m,m,m) ∈ B ∪ gA.  
 
We claim that f(m,m,m) ∉ gA. To see this, note that by 
quantitative considerations, f(m,m,m) ∈ gA implies that 
there is an element of A that is ≤ m < n, which contradicts 
the choice of n.  
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Hence f(m,m,m) ∈ B. Therefore  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ fB. 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ C. 

 
As in the proof of Lemma 3.12.16,  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) =  
f(g(m),g(m),g(m)) = f(n,n,n) ∈ fA. 

 
This contradicts C ∩ fA = ∅.  
 
QED 
 
part 5. C ∪. fA ⊆ B ∪. gB. 
 
5,1’. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,2’. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,3’. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,4’. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,5’. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,6’. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
LEMMA 3.12.19. 5,1’, 5,2’, 5,3’ have ¬NON. 
 
Proof: By Lemma 3.12.2. QED 
 
The following pertains to 5,4’. 
 
LEMMA 3.12.20. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+1, g(n) = 4n+5. Let C 
∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let n ∈ A. Then n ∈ C ∪ gB.   
 
case 1. n ∈ C\gB. Then n ∈ B, 2n+2 ∈ fB, 2n+2 ∈ C, 2n+2 ∈ 
fA. This contradicts C ∩ fA = ∅.  
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case 2. n ∈ gB. Let n = 4m+5, m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ 
C, 2m+2 ∈ B. Since m < 2m+2 are from B, we have 4m+5 ∈ fB. 
Since 4m+5 = n ∈ A, this contradicts A ∩ fB = ∅. QED  
 
The following pertains to 5,6’. 
 
LEMMA 3.12.21. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+1, g(n) = 4n+5. Let C 
∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty.  
 
Let n = min(A). Then n ∈ C ∪ gA. Clearly n ∉ gA, n ∈ C, n 
∈ B ∪ gB.  
 
case 1. n ∈ B. Then 2n+2 ∈ fB, 2n+2 ∈ C, 2n+2 ∈ fA. This 
contradicts C ∩ fA = ∅.  
 
case 2. n ∈ gB. Let n = 4m+5, m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ 
C, 2m+2 ∈ B. Since m < 2m+2 are from B, we have 4m+5 ∈ fB. 
Since 4m+5 ∈ A, this contradicts A ∩ fB = ∅. QED  
 
The following pertains to 5,5’. 
 
LEMMA 3.12.22. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m, f(m,n) = 4m, g(n) = 2n+1. Let C 
∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let n ∈ A. Then 2n+2 ∈ fA, n ∈ C ∪ gC.  
 
case 1. n ∈ C. Then n ∈ B ∪ gB.  
 
Suppose n ∈ B. Then 2n+2 ∈ fB, 2n+2 ∈ C. Since 2n+2 ∈ fA, 
this contradicts C ∩ fA = ∅. 
 
Suppose n ∈ gB. Let n = 2m+1, m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ 
C, 2m+2 ∈ B. Since m < 2m+2 are from B, we have 4m+4 = 2n+2 
∈ fB, 2n+2 ∈ C. Since 2n+2 ∈ fA, this contradicts C ∩ fA = 
∅. 
 
case 2. n ∈ gC. Let n = 2m+1, m ∈ C, m ∈ B ∪ gB.  
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Suppose m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ B. Since m 
< 2m+2 are from B, we have 4m+4 = 2n+2 ∈ fB, 2n+2 ∈ C. 
Since 2n+2 ∈ fA, this contradicts C ∩ fA = ∅.  
 
Suppose m ∈ gB. Let m = 2r+1, r ∈ B. Then 2r+2 ∈ fB, 2r+2 ∈ 
C, 2r+2 ∈ B. Since r < 2r+2 are from B, we have 8r+8 = 4m+4 
= 2n+2 ∈ fB, 2n+2 ∈ C. Since 2n+2 ∈ fA, this contradicts C 
∩ fA = ∅.   
 
QED 
 
part 6. C ∪. fA ⊆ B ∪. gC. 
 
6,1’. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,2’. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,3’. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,4’. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,5’. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,6’. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
LEMMA 3.12.23. 6,1’ - 6,3’ have ¬NON. 
 
Proof: By Lemma 3.12.2. QED 
 
The following pertains to 6,5’. 
 
LEMMA 3.12.24. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Let f,g ∈ ELG be defined as follows. For all n < m, 
let f(n,n) = 2n+2, f(n,m) = f(m,n)= 2m+1, g(n) = 4n+5. Let 
C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let n ∈ A. Then n ∈ C ∪ gC, 2n+2 ∈ fA.  
 
case 1. n ∈ C. Then n ∈ B ∪ gC, n ∉ gC, n ∈ B, 2n+2 ∈ fB, 
2n+2 ∈ C. This contradicts C ∩ fA = ∅. 
 
case 2. n ∈ gC. Let n = 4r+5, r ∈ C. Then r ∈ B ∪ gC, r ∈ 
B, 2r+2 ∈ fB, 2r+2 ∈ C, 2r+2 ∈ B ∪ gC, 2r+2 ∈ B. Since r < 
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2r+2 are from B, we have 4r+5 = n ∈ fB. Since n ∈ A, this 
contradicts A ∩ fB = ∅.   
 
QED 
 
The following pertains to 6,4’. 
 
LEMMA 3.12.25. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Let f,g ∈ ELG be defined as in the proof of Lemma 
3.12.16, whose definitions we repeat here. For all n < m, 
let f(2n,2n,2n) = f(2n+1,2n+1,2n+1) = 4n, f(n,m,m) = 2m, 
f(n,m,n) = 4m, f(m,n,n) = 8m, g(2n) = g(2n+1) = 4n+1. For 
all other triples a,b,c, let f(a,b,c) = 2max(a,b,c). Let C 
∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let n = min(A). Then n ∈ C ∪ gB.  
 
case 1. n ∈ C. Then n ∈ B ∪ gC.  
 
case 1a. n ∈ C, n ∈ B. Clearly f(n,n,n) ∈ fB, f(n,n,n) ∈ C. 
Since f(n,n,n) ∈ fA, this contradicts C ∩ fA = ∅. 
 
case 1b. n ∈ C, n ∈ gC. Let n’ = min(C ∩ gC). Let n’ = 
g(m), m ∈ C. Then m ∈ B ∪ gC. If m ∈ B then n’ ∈ gB, which 
contradicts C ∩ gB = ∅. Hence m ∈ gC. So m ∈ C ∩ gC and m 
< n’, which is a contradiction.  
 
case 2. n ∈ gB. Let n = g(m), m ∈ B. Then f(m,m,m) ∈ fB, 
f(m,m,m) ∈ C, f(m,m,m) ∈ B. So 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ fB, 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ C.  
 
By the proof of Lemma 3.12.16,  
 
f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(g(m),g(m),g(m)) = 
f(n,n,n) ∈ fA. 
 
This contradicts C ∩ fA = ∅. QED 
 
The following pertains to 6,6'.  
 
LEMMA 3.12.26. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA has 
¬NON. 
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Proof: Let f,g ∈ ELG be defined as follows. For all n < m, 
let f(n,n,n) = 2n, f(n,n,m) = 2n+2, f(n,m,n) = 4m+2, 
f(n,m,m) = 4m-3, g(n) = 4n+1. At all other triples define 
f(a,b,c) = |a,b,c|+2. Let C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C 
∪. gA, where A,B,C are nonempty. 
 
Let n = min(A). We claim that n ∉ B. To see this, let n ∈ 
B. Then 2n ∈ fB, 2n ∉ gA, 2n ∈ C, 2n ∈ fA. This contradicts 
C ∩ fA = ∅.  
 
Since n ∈ C ∪ gA, we have n ∈ C, n ∈ B ∪ gC, n ∈ gC.  
 
Let n = 4m+1, m ∈ C. Suppose m ∉ gC. Then m ∈ B, 2m ∈ fB, 
2m ∈ C, 2m ∈ B. Since m,2m ∈ B, we have 4m+1 ∈ fB, 4m+1 ∈ 
A, contradicting A ∩ fB = ∅. Hence m ∈ gC. 
 
Let p be greatest such that the sequence n,g-1(n),...,g-p(n) 
is defined and remains in C. Then p ≥ 2.  
 
Note that g-p(n) ∈ C\gC, g-p(n) ∈ B ∪ gC, g-p(n) ∈ B. We have 
gone down by g-1. We can go back up from g-p(n) ∈ B as 
follows.  
 
First we apply the function 2n followed by the function 
2n+2 (available through f(n,n,n) and f(n,n,m)). After 
applying the function 2n, we obtain an even element of fB, 
which must lie in C,B. After applying the function 2n+2, we 
arrive at g-p+1(n)+1, which is also even and lies in C,B. 
Then we apply the function 4n+2 successively until arriving 
at g-1(n)+1, which lies in C,B. Finally apply the function 
4n-3, which arrives at n, and lies in fB. Since n ∈ A, we 
have contradicted A ∩ fB = ∅. QED 
 
3.13. ACBC. 
 
Recall the reduced table for AC from section 3.10. 
 
REDUCED AC  
 
1. A ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
4. B ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
5. B ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
6. B ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
 
Recall the reduced table for BC from section 3.8. 
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REDUCED BC 
 
1’. B ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
4’. A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
5’. A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
6’. A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
 
We can take advantage of symmetry through interchanging A 
with B as follows. Clearly (i,j’) and (j,i’) are 
equivalent, by interchanging A and B. So we can require 
that i ≤ j. Thus we have the following 21 ordered pairs to 
consider.   
 
We must determine the status of all attributes INF, AL, 
ALF, FIN, NON, for each pair. 
 
1,1’. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
1,2’. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
1,3’. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
1,4’. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
1,5’. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
1,6’. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
2,2’. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
2,3’. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
2,4’. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. FIN. NON. 
2,5’. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
2,6’. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
3,3’. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.   
3,4’. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON.   

3,5’. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. 
ALF. FIN. NON.  
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3,6’. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.   
4,4’. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
4,5’. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
4,6’. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
5,5’. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
5,6’. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
6,6’. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
It is among the 36 ordered pairs treated here that we 
finally find an ordered pair that cannot be handled within 
RCA0. This is pair 3,5’. In fact, here only the attribute 
INF requires more than RCA0. Note that we have notated this 
above in large underlined bold italics. The pair 3,5’ with 
INF is called the Principal Exotic Case, and is treated as 
Proposition A in Chapters 4 and 5. The equivalence class of 
the Principal Exotic Case has 12 elements, and consists of 
the Exotic Cases.  
 
The following pertains to 1,1’ - 6,6’. 
 
LEMMA 3.13.1. X ∪. fY ⊆ C ∪. gZ, W ∪. fU ⊆ C ∪. gV has 
FIN, provided X,Y,W,U ∈ {A,B}.  
 
Proof: Let f,g ∈ EVSD. Let A = B = {n}, where n is 
sufficiently large.  
 
case 1. f(n,...,n) = g(n,...,n). Let C = {n}. 
 
case 2. f(n,...,n) ≠ g(n,...,n). Let C = {n,f(n,...,n)}. 
 
In case 1, A = B = C, fA = gA, and A ∩ fA = ∅. The two 
inclusions are identities. 
 
In case 2, X = Y = W = U = A = B. So it suffices to verify 
that A ∪. fA ⊆ C ∪. gZ and A ∪. fA ⊆ C ∪. gV. Note that A 
∩ fA = C ∩ gA = C ∩ gB = C ∩ gC = ∅. Also A ∪ fA ⊆ C. QED 
 
LEMMA 3.13.2. 1,1’, 1,3’, 1,4’, 1,6’, 3,3’, 3,4’, 3,6’, 
4,4’, 4,6’, 6,6’ have INF, ALF, even for EVSD. 
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Proof: By the AC table, A ∪. fA ⊆ C ∪. gA has INF, ALF. 
Replace B by A in the cited ordered pairs. QED 
 
LEMMA 3.13.3. 2,2’, 2,5’, 5,5’ have INF, ALF. 
 
Proof: By the AC table, A ∪. fA ⊆ C ∪. gC has INF, ALF. 
Replace B by A in the cited ordered pairs. QED 
 
The following pertains to 1,2’, 1,5’. 
 
LEMMA 3.13.4. A ∪. fA ⊆ C ∪. gA, C ∩ gC = ∅ has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(m,n) = 4m, f(n,m) = 4m+1,  g(n) = 2n+1. Let 
A ∪. fA ⊆ C ∪. gA. C ∩ gC = ∅, where A,B,C have at least 2 
elements. Let n < m be from A.  
 
Clearly 2m ∈ fA, 4m+1 ∈ fA, 2m ∈ C, 2m ∉ A, 4m+1 ∉ gA, 4m+1 
∈ C, 4m+1 ∈ gC. This contradicts C ∩ gC = ∅. QED 
 
The following pertains to 2,3’, 2,6’. 
 
LEMMA 3.13.5. A ∪. fA ⊆ C ∪. gC, fB ⊆ C ∪. gA has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m < r, let 
f(n,n,n) = 2n, f(n,n,m) = 4m, f(n,m,n) = 4m+1, f(m,n,n) = 
8m+1, g(n) = 2n+1. Let A ∪. fA ⊆ C ∪. gC, fB ⊆ C ∪. gA, 
where A,B,C have at least two elements. Let n < m be from 
B. 
 
Note that 2m ∈ fB, 2m ∈ C, 4m+1 ∈ gC, 4m+1 ∉ C, 4m+1 ∈ fB, 
4m+1 ∈ gA, 2m ∈ A, 4m ∈ fB, 4m ∈ C, 8m+1 ∈ gC, 8m+1 ∉ C, 
8m+1 ∈ fB, 8m+1 ∈ gA, 4m ∈ A, 4m ∈ fA. This contradicts A 
∩ fA = ∅. QED   
 
The following pertains to 2,4’. 
 
LEMMA 3.13.6. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB has 
¬INF, ¬ALF.   
 
Proof: Let f be as given by Lemma 3.2.1. Let f’ ∈ ELG be 
given by f’(a,b,c,d) = f(a,b,c) if c = d; 2f(a,b,c)+1 if c 
> d; 2|a,b,c,d|+2 if c < d. Let g ∈ ELG be given by g(n) = 
2n+1. Let A ∪. f’A ⊆ C ∪. gC. A ∪. f’B ⊆ C ∪. gB, where 
A,B,C have at least two elements. Let B’ = B\{min(B)}. Note 
that fB ⊆ f'B.  
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Let n ∈ fB’ ∩ 2N. Then n ∈ f’B ∩ 2N, n ∈ C, 2n+1 ∈ gC, 
2n+1 ∉ C. 
 
We claim that 2n+1 ∈ f’B. To see this, write n = f(a,b,c), 
a,b,c ∈ B'. Then 2n+1 = f'(a,b,c,min(B)) ∈ f'B. 
 
Hence 2n+1 ∈ gB, n ∈ B, n ∈ B’. Thus we have shown that fB’ 
∩ 2N ⊆ B’. Hence by Lemma 3.2.1, fB’ is cofinite. Since fB 
⊆ f’B, f'B is also cofinite. Therefore B is infinite and A 
is finite. The former establishes ¬ALF, and the latter 
establishes ¬INF. QED  
 
The following pertains to 2,4’. 
 
LEMMA 3.13.7. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let A = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let C be unique such 
that C ⊆ [n,∞) ⊆ C ∪. gC. Let B = C.  
 
Clearly A ∩ fA = C ∩ gC = A ∩ fB = C ∩ gB = ∅.  
 
Since A ∪ fA ∪ fB ⊆ [n,∞), we have A ∪ fA ⊆ C ∪ gC, A ∪ fB 
⊆ C ∪ gB = C ∪ gC. Obviously C = B is infinite. QED 
 
The following pertains to 4,5’. 
 
LEMMA 3.13.8. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC has 
¬AL.  
 
Proof: Let f be as given by Lemma 3.2.1. Let f’ ∈ ELG be 
defined by f’(a,b,c,d) = f(a,b,c) if c = d; 4f(a,b,c)+3 if 
c > d; 2|a,b,c,d|+2 if c < d. Let g be as given by Lemma 
3.6.1. Let B ∪. f’A ⊆ C ∪. gA, A ∪. f’B ⊆ C ∪. gC, where 
A,B,C have at least two elements. Let A’ = A\{min(A)}. 
 
Let n ∈ fA’ ∩ 2N. Then n ∈ f’A ∩ 2N, n ∈ C, 4n+3 ∈ gC, 
4n+3 ∉ C, 4n+3 ∈ f’A, 4n+3 ∈ gA, n ∈ A, n ∈ A'. By Lemma 
3.2.1, fA' is cofinite. Since fA ⊆ f'A, we see that f'A is 
cofinite. 
 
We have established that C ∪ gA is cofinite and C ∩ gC = ∅. 
Hence by Lemma 3.6.1, C ⊆ A. Since fB contains an even 
element 2r, we have 2r ∈ C,A,f’B. This contradicts A ∩ f’B 
= ∅. QED 
 
The following pertains to 5,6’. 
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LEMMA 3.13.9. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let B ∪. 
fA ⊆ C ∪. gC. A ∪. fB ⊆ C ∪. gA, where A,B,C have at least 
two elements. Let n < m be from B. 
 
Clearly 2m ∈ fB, 2m ∈ C, 4m+1 ∈ gC, 4m+1 ∉ C, 4m+1 ∈ fB, 
4m+1 ∈ gA, 2m ∈ A. This contradicts A ∩ fB = ∅. QED 
 
The following pertains to 3,5’. 
 
LEMMA 3.13.10. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC has 
ALF. 
 
Proof: Let f,g ∈ ELG and p > 0. Let A = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let S be unique such 
that S ⊆ [n,∞) ⊆ S ∪. gS. Let B = S ∩ [n,max(fA)]. Let C = 
S ∩ [n,max(fB)].  
 
Clearly A ∩ fA = A ∩ fB = A ∩ fS = A ∩ gS = ∅. Hence A ⊆ 
S. Therefore A ⊆ B, A ⊆ C, B ⊆ C. Hence A,B,C are finite 
and have at least p elements.  
 
Since B,C ⊆ S, we have S ∩ gS = ∅, C ∩ gC ⊆ S ∩ gS = ∅, 
and C ∩ gB ⊆ S ∩ gS = ∅. 
 
We claim fA ⊆ C ∪ gB. To see this, let m ∈ fA. Then m ∈ S 
∪ gS.  
 
case 1. m ∈ S. Then m ∈ B, m ∈ C.  
 
case 2. m ∈ gS. Write m = g(s1,...,sq), s1,...,sq ∈ S ⊆ 
[n,∞). Then s1,...,sq < m ≤ max(fA). Hence s1,...,sq ∈ B. So 
m ∈ gB. 
 
We claim fB ⊆ C ∪ gC. To see this, let m ∈ fB. Then m ∈ S 
∪ gS.  
 
case 3. m ∈ S. Then m ∈ C.  
 
case 4. m ∈ gS. Write m = g(t1,...,tq), t1,...,tq ∈ S ⊆ 
[n,∞). Then t1,...,tq < m ≤ max(fB). Hence t1,...,tq ∈ C. So 
m ∈ gC. QED 
 
The Proposition asserting that 3,5’ has INF is the subject 
of the next two Chapters of this book. This is the 
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Principal Exotic Case. It is not provable in ZFC (assuming 
ZFC is consistent). See Definitions 3.1.1 and 3.1.2. 
 
3.14. Annotated Table of Representatives. 
 
SINGLE CLAUSES 
 
1. A ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
3. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
7. A ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
8. A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
9. B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
10. B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
11. B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
12. C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
13. C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
14. C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
 
AAAA 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
3. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
4. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
7. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
8. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
9. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
10. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
11. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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12. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
14. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
16. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
17. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
18. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
19. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
20. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
 
AAAB 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
3. A ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
4. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
7. A ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
8. A ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. A ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
11. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
12. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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14. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
16. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
17. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
18. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
19. A ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
20. A ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
21. A ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
22. A ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
23. A ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
24. A ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
25. A ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
26. A ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
27. A ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
28. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
29. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
30. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
31. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
32. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
33. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
34. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
35. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
36. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
37. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
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38. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
39. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
40. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
41. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
42. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
43. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
44. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
45. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
46. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
47. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
48. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
49. B ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
50. B ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
51. B ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
52. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
53. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
54. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
55. C ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
56. C ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
57. C ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.   
58. C ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
59. C ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
60. C ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
61. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
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62. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
63. C ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ B ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
64. C ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
65. C ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
66. C ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
67. C ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
68. C ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
69. C ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
70. C ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
71. C ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
72. C ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
73. C ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
74. C ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
75. C ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
76. C ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
77. C ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
78. C ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
79. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gA. ¬INF, AL, ¬ALF, 
¬FIN. NON. 
80. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF, AL, ¬ALF, 
¬FIN. NON. 
81. C ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ B ∪. gC. ¬INF, AL, ¬ALF, 
¬FIN. NON. 
 
AABA 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 



 506 

3. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
4. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
7. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
8. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
11. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
12. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
14. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
16. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
17. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
18. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
19. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
20. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
21. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
22. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
23. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
24. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
25. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
26. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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27. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
28. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
29. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
30. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
31. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
32. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
33. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
34. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
35. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
36. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
37. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
38. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
39. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
40. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
41. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
42. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
43. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
44. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
45. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
46. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
47. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
48. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
49. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
50. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
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51. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
52. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
53. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
54. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
55. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
56. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
57. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
58. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
59. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
60. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
61. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
62. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
63. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
64. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
65. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
66. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
67. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
68. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
69. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
70. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
71. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
72. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
73. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
74. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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75. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
76. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
77. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
78. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
79. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
80. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
81. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
 
AABB 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
2. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
3. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
4. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
7. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
8. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
11. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
12. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
14. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 



 510 

16. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
17. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
18. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
19. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
20. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
21. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
22. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
23. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
24. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
25. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
26. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
27. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
28. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
29. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
30. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
31. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
32. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
33. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
34. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
35. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
36. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
37. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
38. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
39. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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40. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
41. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
42. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
43. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
44. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
45. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
 
AABC 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
3. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
4. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
7. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
8. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
11. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
12. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
14. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
16. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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17. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
18. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
19. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
20. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
21. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
22. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
23. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
24. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
25. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
26. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
27. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
28. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
29. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
30. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
31. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
32. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
33. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
34. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
35. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
36. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
37. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
38. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
39. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
40. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
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41. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
42. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
43. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
44. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
45. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
46. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
47. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
48. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
49. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
50. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
51. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON. 
52. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
53. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
54. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
55. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
56. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
57. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
58. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
59. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
60. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
61. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
62. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
63. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
64. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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65. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
66. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
67. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
68. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
69. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
70. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
71. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
72. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
73. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
74. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
75. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
76. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
77. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
78. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
79. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
80. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
81. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
ABAB 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
FIN. NON.  
2. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.  
3. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
4. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
5. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
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6. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. 
FIN. NON.   
7. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
FIN. NON.  
8. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
9. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
10. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
11. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
12. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
13. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN, NON. 
14. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. 
FIN. NON.  
15. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
16. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
17. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
18. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
19. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. 
FIN. NON.   
20. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
21. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
22. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
23. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
24. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
25. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
26. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
27. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
28. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
29. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
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30. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
31. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
32. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
33. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
34. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. ¬ALF. 
FIN. NON.  
35. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.  
36. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN, NON.  
 
ABAC 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. INF, AL, ALF, 
FIN, NON.  
2. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
3. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB. INF, AL, ALF, 
FIN, NON.  
4. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. INF, AL, ALF, 
FIN, NON.  
7. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
8. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
11. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
12. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
14. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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16. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
17. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
18. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
19. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
20. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
21. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
22. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
23. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
24. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FiN. ¬NON. 
25. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FiN. ¬NON. 
26. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
27. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
28. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
29. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
30. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
31. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
32. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
33. A ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON.  
34. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
35. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
36. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
37. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
38. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
39. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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40. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
41. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
42. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
43. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FiN. ¬NON. 
44. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FiN. ¬NON. 
45. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FiN. ¬NON. 
 
ABBA 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
2. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
3. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
4. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
7. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
8. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
11. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
12. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
14. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
16. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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17. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
18. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
19. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
20. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
21. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
22. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
23. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
24. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
25. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
26. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
27. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
28. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
29. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
30. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
31. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
32. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
33. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
34. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
35. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
36. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
37. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
38. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
39. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
40. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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41. B ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
42. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
43. B ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
44. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
45. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. ¬ALF. 
¬FIN. NON.  
 
ABBC 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
2. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
3. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
4. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
5. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
6. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON.  
7. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
8. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
11. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
12. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
13. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
14. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
15. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
16. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
17. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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18. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
19. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
20. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
21. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
22. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
23. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
24. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
25. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
26. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
27. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
28. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
29. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
30. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
31. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
32. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
33. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
34. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
35. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
36. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
37. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
38. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
39. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
40. B ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
41. B ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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42. B ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
43. B ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
44. B ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
45. B ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
46. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
47. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
48. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
49. B ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
50. B ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
51. B ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
52. B ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
53. B ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
54. B ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
55. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
56. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF.  ¬FIN. ¬NON. 
57. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
58. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
59. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
60. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
61. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
62. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
63. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
64. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
65. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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66. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
67. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
68. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
69. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
70. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
71. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
72. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
73. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
74. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
75. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
76. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
77. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
78. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
79. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
80. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
81. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
ACBC 
 
1. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
2. C ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
3. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
FIN. NON. 
4. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
5. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
6. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
FIN. NON. 
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7. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
8. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
9. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. ¬ALF. 
¬FIN. ¬NON. 
10. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
11. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
12. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
13. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
14. C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
15. C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
16. C ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
17. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
18. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
19. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
20. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.   
21. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON.   
22. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.   
23. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
24. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
25. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
26. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
27. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 

28. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON.  
29. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
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30. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
31. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
32. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
33. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. AL. ¬ALF. 
FIN. NON. 
34. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
35. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
36. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
37. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
38. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
39. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
40. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
41. B ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
42. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
43. B ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
44. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
45. C ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
3.15. Some Observations. 
 
Recall the Template and Extended Template introduced at the 
beginning of this Chapter before section 3.1. We now 
justify the claims TEMP 1,2, and ETEMP, which were also 
presented there. 
 
TEMP 1. Every one of the 6561 assertions in the Template is 
either provable or refutable in SMAH+. There exist 12 
assertions in the Template, provably equivalent in RCA0, 
such that the remaining 6549 assertions are each provable 
or refutable in RCA0. Furthermore, these 12 are provably 
equivalent to the 1-consistency of SMAH over ACA’ (Theorem 
5.9.11). 
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To see how the Annotated Table of section 3.14 justifies 
Temp 1, recall how it was constructed. The ordered pairs of 
clauses in the Annotated Table comprise a list of 
representatives from each equivalence class of the ordered 
pairs of clauses under the equivalence relation used in 
section 3.1.  
 
The entries that correspond to the assertions in the 
Template are the entries in the Annotated Table with INF or 
¬INF. The 12 Exotic Cases (see Definition 3.1.2) correspond 
to the single entry in 28 under ACBC, INF. Every entry in 
the Annotated Table, with the sole exception of this single 
entry for INF, was justified in sections 3.3 – 3.13. All of 
the arguments in sections 3.3 – 3.13 were conducted within 
RCA0.  
 
This single entry for INF, corresponding to the 12 Exotic 
Cases, is equivalent to  
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
Proposition A is the Principal Exotic Case - a particular 
one of the 12 Exotic Cases that we have chosen on aesthetic 
grounds. According to Theorem 5.9.11, Proposition A, and 
hence all 12 Exotic Cases, are provably equivalent to 1-
Con(SMAH) over ACA’.  
 
TEMP 2. Every one of the 6561 assertions in the Template, 
other than the 12 Exotic Cases, are provably equivalent, in 
RCA0, to the result of replacing ELG by any of ELG ∩ SD, SD, 
EVSD. All 12 Exotic Cases are refutable in RCA0 if ELG is 
replaced by SD or EVSD (Theorem 6.3.5).  
 
The first claim of TEMP 2 is justified by the way we 
derived each entry in the Annotated Table other than 28 
under ACBC, INF. Namely, when deriving INF, we always 
assumed f,g ∈ EVSD rather than f,g ∈ ELG. Note that ELG, 
ELG ∩ SD, SD ⊆ EVSD. Also see Theorem 3.1.1.  
 
TEMP 3. The Template behaves very differently for MF. For 
example, the Template is true (even provable in RCA0) with A 
∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gB, yet false (even 
refutable in RCA0) with ELG replaced by MF. 
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To see this, use a constant function f:N → N, and the 
identity function g:N → N. Then the left side is infinite, 
whereas the right side is empty.   
 
ETEMP. Every assertion in the Extended Template, other than 
the 12 Exotic Cases with INF, is provable or refutable in 
RCA0.  
 
Clearly ETEMP follows from the observation that all of the 
derivations in this Chapter are conducted in RCA0. 
Consideration of the Exotic Cases with INF is postponed to 
Chapters 4-6.  
 
BRT TRANSFER. Let X,Y,V,W,P,R,S,T be among the letters 
A,B,C. The following are equivalent. 
i. for all f,g ∈ ELG and n ≥ 1, there exist finite A,B,C ⊆ 
N, each with at least n elements, such that X ∪. fY ⊆ V ∪. 
gW, P ∪. fR ⊆ S ∪. gT.  
ii. for all f,g ∈ ELG, there exist infinite A,B,C ⊆ N, such 
that X ∪. fY ⊆ V ∪. gW, P ∪. fR ⊆ S ∪. gT. 
 
THEOREM 3.15.1. BRT transfer is provably equivalent to 1-
Con(SMAH) over ACA'. Furthermore, BRT forward transfer (i → 
ii) is provably equivalent to 1-Con(SMAH) over ACA’.  BRT 
backward transfer (ii → i) is provable in RCA0. 
Furthermore, BRT forward transfer for the Exotic Cases is 
provably equivalent to 1-Con(SMAH) over ACA', and BRT 
forward transfer for ordered pairs other than the Exotic 
Cases, is provable in RCA0. 
 
Proof: As entered in the Annotated Table, A ∪. fA ⊆ C ∪. 
gB, A ∪. fB ⊆ C ∪. gC has ALF, provably in RCA0. Hence BRT 
forward transfer, for the Exotic Cases, is provably 
equivalent, in RCA0, to A ∪. fC ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. 
gC has INF. I.e., BRT forward transfer, for the Exotic 
Cases, is provably equivalent, in RCA0, to Proposition A. 
Hence BRT Forward transfer, for the Exotic Cases, is 
provably equivalent, in ACA', to 1-Con(SMAH).  
 
BRT forward transfer, for other than the Exotic Cases, and 
BRT backward transfer, are seen, by inspection of the 
Annotated Table, to be true. Since the Annotated Table was 
constructed within RCA0, the remainder of Theorem 3.15.1 
has been established. QED    
 
There are some other notable facts concerning the Annotated 
Table. Recall the obvious implications between our five 
attributes: 
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ALF → AL → NON. 
ALF → FIN → NON. 
INF → AL → NON. 

 
We have also discussed the observed Transfer Property: 
 

INF → ALF → INF. 
 
Are there any other observations to be made from the 
annotated tables? 
 
Here is the compilation of all attribute lists that are 
compatible with the above implications: 
 
INF. AL. ALF. FIN. NON. 
¬INF. AL. ¬ALF. FIN. NON.  
¬INF. AL. ¬ALF. ¬FIN. NON. 
¬INF. ¬AL. ¬ALF. FIN. NON. 
¬INF. ¬AL. ¬ALF. ¬FIN. NON.  
¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
 
All of these are realized from the annotated table: 
 
SINGLE CLAUSES 
 
1. A ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
3. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
 
ABAB 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. 
FIN. NON.  
34. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. ¬ALF. 
FIN. NON. 
 
AABA  
 
32. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
 
So there are no more implications between the attributes, 
in the context of this Chapter.  
 

CHAPTER 4.  
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PROOF OF PRINCIPAL EXOTIC 
CASE 
 
4.1. Strongly Mahlo Cardinals of Finite Order. 
4.2. Proof using Strongly Mahlo Cardinals. 
4.3. Some Existential Sentences. 
4.4. Proof using 1-consistency. 
 
4.1. Strongly Mahlo Cardinals of Finite 
Order. 
 
The large cardinal properties used in this book are the 
strongly Mahlo cardinals of order n, where n ∈ ω. These are 
defined inductively as follows.  
 
DEFINITION 4.1.1. The strongly 0-Mahlo cardinals are the 
strongly inaccessible cardinals (uncountable regular strong 
limit cardinals).  
The strongly n+1-Mahlo cardinals are the infinite cardinals 
all of whose closed unbounded subsets contain a strongly n-
Mahlo cardinal. 
 
It is easy to prove by induction on n that for all n < m < 
ω, every strongly m-Mahlo cardinal is a strongly n-Mahlo 
cardinal. 
 
There is a closely related notion: n-Mahlo cardinal.  
 
DEFINITION 4.1.2. The 0–Mahlo cardinals are the weakly 
inaccessible cardinals (uncountable regular limit 
cardinals). The n+1-Mahlo cardinals are the infinite 
cardinals all of whose closed unbounded subsets contain an 
n-Mahlo cardinal.  
 
Again, for all n < m < ω, every m-Mahlo cardinal is an n-
Mahlo cardinal.  
 
NOTE: Sometimes (strongly) n-Mahlo cardinals are called 
(strongly) Mahlo cardinals of order ≤ n. Also, sometimes 
what we call n-Mahlo cardinals are called weakly n-Mahlo 
cardinals.  
 
The well known relationship between n-Mahlo cardinals and 
strongly n-Mahlo cardinals is given as follows. 
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THEOREM 4.1.1. The following is provable in ZFC. Let n < ω. 
A cardinal is strongly n-Mahlo if and only if it is n-Mahlo 
and strongly inaccessible. Under the GCH, a cardinal is 
strongly n-Mahlo if and only if it is n-Mahlo.  
 
Proof: For the first claim, note that it is obvious for n = 
0. Assume that every strongly inaccessible n-Mahlo cardinal 
is strongly n-Mahlo. Let κ be a strongly inaccessible n+1-
Mahlo cardinal. Let A ⊆ κ be closed and unbounded. Since κ 
is strongly inaccessible, the set B ⊆ κ consisting of the 
strong limit cardinals in A is closed and unbounded. Let λ 
∈ B be an n-Mahlo cardinal. As previously remarked, λ is an 
inaccessible cardinal. Since λ is a strong limit cardinal, λ 
is a strongly inaccessible cardinal. By the induction 
hypothesis, λ is a strongly n-Mahlo cardinal.  
 
We have thus shown that every closed unbounded A ⊆ κ 
contains a strongly n-Mahlo element. Hence κ is strongly 
n+1-Mahlo.  
 
For the final claim, assume the GCH. By an obvious 
induction, every strongly n-Mahlo cardinal is an n-Mahlo 
cardinal. For the converse, let κ be an n-Mahlo cardinal. As 
previously remarked, κ is a weakly inaccessible cardinal. 
Hence κ is a strongly inaccessible cardinal (by GCH). By the 
first claim, κ is a strongly n-Mahlo cardinal. QED 
 
We now develop the essential combinatorics of strongly 
Mahlo cardinals of finite order used in this Chapter.  
 
DEFINITION 4.1.3. Let [A]n be the set of all n element 
subsets of A. Sometimes we write x ∈ [A]n in the form 
{x1,...,xn}< to indicate that the xi are strictly 
increasing. Let A be a set of ordinals. We say that f:[A]n 
→ On is regressive if and only if for all x ∈ [A\{0}]n, 
f(x) < min(x).  
 
DEFINITION 4.1.4. We say that E is min homogenous for f:[A]n 
→ On if and only if E ⊆ A and for all x,y ∈ [E]n, min(x) = 
min(y) → f(x) = f(y). 
 
LEMMA 4.1.2. Let n ≥ 0, κ a strongly n-Mahlo cardinal, A ⊆ κ 
unbounded, and f:[A]n+2 → κ be regressive. For all α < κ, 
there exists E ⊆ A of order type α which is min homogenous 
for f.  
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Proof: This result originally appeared in [Sc74], in 
somewhat sharper form, using different notation. We present 
the proof in [HKS87], p. 147, using Erdös-Rado trees.  
 
DEFINITION 4.1.5. Let A be a set of ordinals with at least 
two elements. An A-tree is an irreflexive transitive 
relation T with field A such that  
 
i. α T β → α < β. 
ii. {β: β T α} is linearly (and hence well) ordered by T.  
 
DEFINITION 4.1.6. Let m ≥ 2, A be a nonempty set of 
ordinals, and f:[A]m → On be regressive. The Erdos-Rado 
tree ERT(f) is the unique A-tree T with field A such that 
for all α,β ∈ A, α T β if and only if  
 
i. α < β. 
ii. For all γ1,...,γm-1 T α with γ1 < ... < γm-1, f({γ1,...,γm-
1,α}) = f({γ1,...,γm-1,β}). 
 
To see that there is such a unique T, build ERT(f,α), α ∈ 
A, by transfinite recursion on α ∈ A. Here ERT(f,α) is 
ERT(f) restricted to A ∩ α. The details are left to the 
reader.  
 
DEFINITION 4.1.7. For α ∈ A, the height of α in ERT(f) is 
the order type of {β: β ERT(f) α}. We say that α,β ∈ A are 
siblings in ERT(f) if and only if they are distinct, and 
have the same strict predecessors in ERT(f). For ordinals γ, 
let ERT(f)[<γ] be the restriction of ERT(f) to the elements 
of A (vertices) of height < γ.  
 
We now assume that f:[A]n+2 → On is regressive and sup(A) is 
a strongly inaccessible cardinal κ. Observe that for all α 
∈ A, the number of siblings of α in ERT(f) is at most the 
number of functions from αn+1 into α, which is at most 
2|α|+ω. Next observe that by transfinite induction on α < κ, 
ERT(f)[<α] has < κ vertices. Hence for all α < κ, ERT(f) has 
a vertex of height α. By the construction of ERT(f), every 
vertex has height < κ.  
 
Now observe that if n = 0 then the set of strict 
predecessors of every element of ERT(f) is min homogeneous 
for f. This establishes the Lemma for the basis case n = 0. 
 
Suppose that the Lemma holds for a fixed n ≥ 0. Let κ be a 
strongly n+1-Mahlo cardinal, A ⊆ κ be unbounded, α < κ, and 
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f:[A]n+3 → κ be regressive. We use the Erdös-Rado tree 
ERT(f).  
 
Since κ is strongly inaccessible, C = {λ < κ: λ is a limit 
ordinal > α and ERT(f)[<λ] is an A ∩ λ-tree and A ∩ λ is 
unbounded in λ} is a closed and unbounded subset of κ. Since 
κ is a strongly n+1-Mahlo cardinal, fix λ < κ to be a 
strongly n-Mahlo cardinal > α such that ERT(f)[<λ] is an A 
∩ λ-tree and A ∩ λ is unbounded in λ.  
 
Let v be a vertex of ERT(f) of height λ. Let B = {w: w 
ERT(f) v}. Then B is an unbounded subset of λ.  
 
B naturally gives rise to a regressive function f*:[B]n+2 → 
λ by taking f*(x) = f(x ∪ {γ}), where γ ∈ B, γ > max(x). 
Note that this definition is independent of the choice of γ.  
 
By the induction hypothesis, let E ⊆ B be min homogenous 
for f*, E of order type α. Then E ⊆ B ⊆ A is min homogenous 
for f. QED 
 
DEFINITION 4.1.8. For all ordinals α, let α+ be the least 
infinite cardinal > α. Let f:[A]n → κ. We say that f is 
next regressive if and only if every f(x1,...,xn) < 
min(x1,...,xn)+. 
 
LEMMA 4.1.3. Let n ≥ 0, κ a strongly n-Mahlo cardinal, and A 
⊆ κ be unbounded. For all i ∈ ω, let fi:[A]n+2 → κ be next 
regressive. For all α < κ, there exists E ⊆ A of order type 
α such that for all i ∈ ω, E is min homogenous for fi. 
 
Proof: This is by a straightforward modification of the 
proof of Lemma 4.1.2. Modify the definition of the Erdös-
Rado tree ERT(f) accordingly, and derive a similar upper 
bound on the number of siblings of a vertex in ERT(f). QED 
 
Let n ≥ 1 and f:[A]n → κ. We wish to define n+1 kinds of 
infinite sets E ⊆ A for f.  
 
DEFINITION 4.1.9. We say that E is of kind 0 for f if and 
only if f is constant on [E]n, where the constant value is 
less than the strict sup of E. 
  
DEFINITION 4.1.10. We say that E is of kind 1 ≤ j ≤ n for f 
if and only if the following holds. For all {x1,...,xn}<, 
{x1,...,xj,yj+1,...,yn}< ⊆ E, f(x1,...,xn) = 
f(x1,...,xj,yj+1,...,yn) is greater than every element of E < 
xj and smaller than every element of E > xj. 



 533 

 
For E ⊆ On and δ < ot(E), we write E[δ] for the δ-th element 
of E. 
 
We fix H:On<ω → On\{0}, where H is one-one and for all x ∈ 
On<ω, H(x) < max(x)+. 
 
LEMMA 4.1.4. Let n ≥ 1, κ a strongly n-Mahlo cardinal, and A 
⊆ κ unbounded. For all i ∈ ω, let fi:[A]n+1 → κ. For all α < 
κ, there exists E ⊆ A of order type α such that the 
following holds. For all i ∈ ω, there exists 0 ≤ j ≤ n+1 
such that E is of kind j for fi. 
 
Proof: Let n,κ,A,fi,α be as given. We can assume that α > ω, 
A ⊆ κ\ω, and there is an infinite cardinal strictly between 
any two elements of A. We can also assume that for all 
α1,...,αn+1 < β from A, fi(α1,...,αn+1) < β. 
 
For all i ∈ ω, define gi,0{u,x1,...,xn+1}< = 1+fi{x1,...,xn+1} 
if fi{x1,...,xn+1} ≤ u; 0 otherwise.  
 
For 1 ≤ j ≤ n+1, define gi,j{u,xj+1,...,xn+2}< as follows. Let 
z1 < ... < zj ≤ u be such that fi{z1,...,zj,xj+1...,xn+1} ≠ 
fi{z1,...,zj,xj+2,...,xn+2} and fi{z1,...,zj,xj+1...,xn+1} ≤ u. 
Set gi,j{u,xj+1,...,xn+2} = 
H(z1,...,zj,fi{z1,...,zj,xj+1,...,xn+1}). If such z’s do not 
exist, then set gi,j{u,xj+1,...,xn+2} = 0.  
 
Note that each gi,j is next regressive. By Lemma 4.1.3, let 
E’ ⊆ A\ω be min homogeneous for all gi,j, where E’ has 
cardinality ≥ ℑω(α+ω) = the first strong limit cardinal > 
α+ω.  
 
We can partition the tuples from E’ of length ≤ 2n+2 in a 
strategic way, with 2ω pieces, and apply the Erdös-Rado 
theorem to obtain E ⊆ E’ with order type α, with the 
following three properties. Write E[1],E[2],... for the 
first ω elements of E. Let i ∈ ω. 
 
1) For all {x1,...,xn+1}< ∈ [E]n+1, fi{x1,...,xn+1} ∈ E → 
fi{x1,...,xn+1} ∈ {x1,...,xn+1}.  
 
2) Suppose fi{E[2],...,E[n+2]} = fi{E[n+3],...,E[2n+3]}. 
Then fi is constant on [E]n+1.  
 
3) Suppose 1 ≤ j ≤ n+1, and fi{E[2],E[4],...,E[2n+2]} = 
fi{E[2],E[4],...,E[2j],E[2j+4],E[2j+6],...,E[2n+4]} ∈ (E[2j-
1],E[2j+1]). Then E is of kind j for fi.  
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For the remainder of the proof, we fix i ∈ ω. The first 
case that applies is the operative case. 
 
case 1. fi{E[2],E[4],...,E[2n+2]} ≤ E[1]. Then 
gi,0{E[1],E[2],E[4],...,E[2n+2]} = 
1+fi{E[2],E[4],...,E[2n+2]} > 0. Since E is min homogenous 
for gi,0 we see that for all x,y ∈ [E]n+1 such that 
min(x),min(y) ≥ E[2], we have gi,0({E[1]} ∪ x) = gi,0({E[1]} 
∪ y) = 1+fi(x) = 1+fi(y). In particular, fi{E[2],...,E[n+2]} 
= fi{E[n+3],...,E[2n+3]}. By 2), fi is constant on [E]n+1. 
Hence E is of kind 0 for fi.  
 
case 2. Let j be the greatest element of [1,n+1] such that 
fi{E[2],E[4],...,E[2n+2]} ∈ (E[2j-1],E[2j+1]). Note that 
gi,j{E[2j+1],E[2j+2],E[2j+4],...,E[2n+4]} = 
gi,j{E[2j+1],E[2j+4],E[2j+6],...,E[2n+6]}.  
 
Suppose the main clause in the definition of 
gi,j{E[2j+1],E[2j+2],E[2j+4],...,E[2n+4]} holds, with z1 < 
... < zj ≤ E[2j+1]. Since H is nonzero, the main clause in 
the definition of gi,j{E[2j+1],E[2j+4],E[2j+6],...,E[2n+6]} 
holds with, say, w1 < ... < wj ≤ E[2j+1]. Hence 
H(z1,...,zj,fi{z1,...,zj,E[2j+2],E[2j+4],...,E[2n+2]}) = 
H(w1,...,wj,fi{w1,...,wj,E[2j+4],E[2j+6],...,E[2n+4]}). 
Therefore z1,...,zj = w1,...,wj, respectively, and 
fi{z1,...,zj,E[2j+2],E[2j+4],...,E[2n+2]} = 
fi{w1,...,wj,E[2j+4],E[2j+6],...,E[2n+4]}.  This contradicts 
the choice of z1,...,zj.  
 
Hence the main clause in the definition of 
gi,j{E[2j+1],E[2j+2],E[2j+4],...,E[2n+4]} fails. In 
particular, it fails with z1,...,zj = E[2],E[4],...,E[2j], 
respectively. Then fi{E[2],E[4],...,E[2n+2]} = 
fi{E[2],E[4],...,E[2j],E[2j+4],E[2j+6],...,E[2n+4]}.  By 3), 
E is of kind j for fi. 
 
case 3. Otherwise. Then fi{E[2],E[4],...,E[2n+2]}  ∈ 
{E[1],E[3],...,E[2n+1]}, or fi{E[2],E[4],...,E[2n+2]} ≥ 
E[2n+3]. The first disjunct is impossible by 1), and the 
second disjunct is impossible by the assumption on A. 
 
We have thus shown that for some j ∈ [0,n+1], E is of kind 
j for fi. Since i is arbitrarily chosen from ω, we are done. 
 
QED 
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DEFINITION 4.1.11. Let f:[A]n → κ and E ⊆ A. We define fE 
to be the range of f on [E]n. 
 
LEMMA 4.1.5. Let n,m ≥ 1, κ a strongly n-Mahlo cardinal, and 
A ⊆ κ unbounded. For all i ∈ ω, let fi:[A]n+1 → κ, and let 
gi:[A]m → ω. There exists E ⊆ κ of order type ω such that  
i) for all i ∈ ω, fi is either constant on [E]n+1, with 
constant value < sup(E), or fiE is of order type ω with the 
same sup as E; 
ii) for all i ∈ ω, gi is constant on [E]m. 
 
Proof: Let n,m,κ,A,fi,gi be as given. Apply Lemma 4.1.4 to 
obtain E’ ⊆ κ of order type ℑω(ω) such that the following 
holds. For all i ∈ ω there exists 0 ≤ j ≤ n+1 such that E 
is of kind j for fi. By the Erdös-Rado theorem, let E ⊆ E’ 
be of order type ω, where for all i ∈ ω, gi is constant on 
[E]m. Write E = {E[1],E[2],...}<. 
 
Let i ∈ ω and E be of kind j for fi. If j = 0 then fi is 
constant on [E]n+1, where the constant value is less than 
sup(E).   
 
Now suppose 1 ≤ j ≤ n+1. For all {x1,...,xn+1}<, 
{x1,...,xj,yj+1,...,yn+1}< ⊆ E, fi{x1,...,xn+1} = 
f{x1,...,xj,yj+1,...,yn+1} is greater than every element of E 
< xj and smaller than every element of E > xj. Since we can 
set xj to vary among E[j],E[j+1],..., we see that fiE has 
the same sup as E. In particular, fiE is infinite. 
 
Also, for any particular E[p], the values fi{x1,...,xn+1} < 
E[p], x1 < ... < xn+1 ∈ A, can arise only if xj ≤ E[p+1]. 
Since the arguments xj+1,...,xn+1 don't matter (kind j for 
fi), there are at most finitely many such values.  
 
We have shown that fiE has at most finitely many elements 
not exceeding any given element of E. Therefore fiE has 
order type ≤ ω. Since fiE is infinite, the order type of fiE 
is ω. QED   
 
We now switch over to ordered tuples. Let f:An → κ and E ⊆ 
A. Here we also define fE to be the range of f on En. 
 
LEMMA 4.1.6. Let n,m ≥ 1, κ a strongly n-Mahlo cardinal, and 
A ⊆ κ unbounded. For all i ∈ ω, let fi:An+1 → κ, and let 
gi:Am → ω. There exists E ⊆ κ of order type ω such that  
i) for all i ≥ 1, fiE is either a finite subset of sup(E), 
or of order type ω with the same sup as E; 
ii) for all i ∈ ω, giE is finite. 
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Proof: Let n,m,κ,A,fi,gi be as given. Each fi gives rise to 
finitely many corresponding fi,σ, where σ ranges over the 
order types of n+1 tuples. Also each gi gives rise to 
finitely many corresponding gi,σ, where σ ranges over the 
order types of m tuples. Any fiE is the union of the fi,σE, 
and any giE is the union of the gi,σE. Choose E according to 
Lemma 4.1.5. Then E will be as required. QED 
 
DEFINITION 4.1.12. Let SMAH+ be ZFC + (∀n < ω)(∃κ)(κ is a 
strongly n-Mahlo cardinal). Let SMAH be ZFC + {(∃κ)(κ is a 
strongly n-Mahlo cardinal)}n<ω. 
 
DEFINITION 4.1.13. Let MAH+ be ZFC + (∀n < ω)(∃κ)(κ is an n-
Mahlo cardinal). Let MAH be ZFC + {(∃κ)(κ is an n-Mahlo 
cardinal)}n < ω. 
 
We will use the following (known) relationship between 
SMAH+, MAH+, SMAH, and MAH. 
 
DEFINITION 4.1.14. The system EFA = exponential function 
arithmetic is defined to be the system IΣ0(exp); see [HP93]. 
 
THEOREM 4.1.7. SMAH+ and MAH+ prove the same Π1

2 sentences. 
SMAH and MAH prove the same Π1

2 sentences. SMAH is 1-
consistent if and only if MAH is 1-consistent. SMAH is 
consistent if and only if MAH is consistent. These results 
are provable in EFA. 
 
Proof: We first prove the following well known theorem in 
ZFC.  
 
1) Let n ≥ 0. Every n-Mahlo cardinal is an n-Mahlo cardinal 
in the sense of L.  
 
The basis case asserts that every weakly inaccessible 
cardinal is a weakly inaccessible cardinal in L. This is 
particularly well known and easy to check. 
 
Fix n ≥ 0 and assume that every n-Mahlo cardinal is an n-
Mahlo cardinal in L. Let κ be an n+1-Mahlo cardinal. Let A 
⊆ κ, A ∈ L, where A is closed and unbounded in κ (in the 
sense of L). Let λ ∈ A be an n-Mahlo cardinal. Then λ ∈ A 
is an n-Mahlo cardinal in L. Hence κ is an n+1-Mahlo 
cardinal in L. 
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If T is a sentence or set of sentences in the language of 
set theory, then we write T(L) for the relativization of T 
to Godel’s constructible universe L.  
 
For the first claim, let SMAH+ prove ϕ, where ϕ is Π1

2. By 
Lemma 4.1.1, MAH+ + GCH proves ϕ. Hence ZFC + MAH+(L) + GCH(L) 
proves ϕ(L) by, e.g., [Je78], section 12. Therefore ZFC + 
MAH+(L) proves ϕ(L) by, e.g., [Je78], section 13. By the 
Shoenfield absoluteness theorem (see, e.g., [Je78], p. 
530), ZFC + MAH+(L) proves ϕ. By 1), MAH+ proves ϕ. 
 
For the second claim, we repeat the proof of the first 
claim for any specific level of strong Mahloness.  
 
For the third claim, assume 1-Con(MAH). Let ϕ be a Σ01 
sentence provable in SMAH. By the second claim, ϕ is 
provable in MAH. Hence ϕ is true.  
 
For the final claim, assume Con(MAH). Then MAH does not 
prove 1 = 0. By the second claim, SMAH does not prove 1 = 
0. Hence Con(SMAH). QED  
 
Theorem 4.1.7 tells us that for the purposes of this book, 
SMAH+ and SMAH are equivalent to MAH+ and MAH. We will 
always use SMAH+ and SMAH. 
 
4.2. Proof using Strongly Mahlo Cardinals. 
 
Recall Proposition A from the beginning of section 3.1. 
This is the Principal Exotic Case.  
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that 

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
Recall the definitions of N, ELG, INF, ∪., fA, in 
Definitions 1.1.1, 1.1.2, 1.1.10, 1.3.1, and 2.1.   
 
In this section, we prove Proposition A in SMAH+. It is 
convenient to prove a stronger statement. 
 
PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist 
infinite sets A1 ⊆ ... ⊆ An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅. 
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LEMMA 4.2.1. The following is provable in RCA0. Proposition 
B implies Proposition A. In fact, Proposition B for n = 3 
implies Proposition A. 
 
Proof: Let f,g ∈ ELG. By Proposition B for n = 3, let A ⊆ B 
⊆ C ⊆ N be infinite sets, where fA ⊆ B ∪. gB, fB ⊆ C ∪. 
gC, and A ∩ fC = ∅.  
 
Note that C,gC are disjoint. Hence C,gB are disjoint. In 
addition, A,fA are disjoint, and A,fB are disjoint. We now 
verify the inclusion relations. 
 
Let x ∈ A ∪ fA. If x ∈ fA then x ∈ B ∪ gB ⊆ C ∪ gB. If x ∈ 
A then x ∈ C ⊆ C ∪ gB. 
 
Let x ∈ A ∪ fB. If x ∈ fB then x ∈ C ∪ gC. If x ∈ A then x 
∈ C ⊆ C ∪ gC. QED 
 
Recall the definition of f ∈ ELG from section 2.1: there 
are rational constants c,d > 1 such that for all but 
finitely many x ∈ dom(f), c|x| ≤ f(x) ≤ d|x|. 
 
We wish to put this in more explicit form. Assume f,c,d are 
as above. Let t be a positive integer so large that 1 + 1/t 
< c,d < t, and for all x ∈ dom(f), |x| > t → c|x| ≤ f(x) ≤ 
d|x|. Let b be an integer greater than t and max{f(x): |x| ≤ 
t}. Then for all x ∈ dom(f),  
 

|x| > t → f(x) ≤ b|x|. 
|x| ≤ t → f(x) ≤ b. 
|x| ≤ b → f(x) ≤ b2. 

 
Hence f ∈ ELG if and only if there exists a positive 
integer b such that for all x ∈ dom(f),  
 

|x| > b → (1 + 1/b)|x| ≤ f(x) ≤ b|x|. 
|x| ≤ b → f(x) ≤ b2. 

 
We now fix f,g ∈ ELG, where f is p-ary and g is q-ary. 
According to the above, we also fix a positive integer b 
such that for all x ∈ Np and y ∈ Nq,  
 
i. if |x|,|y| > b then  
 

(1 + 1/b)|x| ≤ f(x) ≤ b|x| 
 (1 + 1/b)|y| ≤ g(y) ≤ b|y|. 

 
ii. if |x|,|y| ≤ b then f(x),g(y) ≤ b2.  
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We also fix n ≥ 1 and a strongly pn-1-Mahlo cardinal κ.  
 
We begin with the discrete linearly ordered semigroup with 
extra structure, M = (N,<,0,1,+,f,g).  
 
The plan will be to first construct a structure of the form 
M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...), where the c*’s are 
indexed by N. This structure is non well founded and 
generated by the constants 0*,1*, and the c*’s. The 
indiscernibility of the c*’s will be with regard to atomic 
formulas only. The first nonstandard point in M* will be 
c0*.  
 
While it is obvious that we cannot embed M* back into M, we 
use the fact that we can embed any partial substructure of 
M* that is “boundedly generated” back into M.  
 
Of course, M* is not well founded, but we prove the well 
foundedness of the crucial irreflexive transitive relation  
 

sx <* y 
 
on N*, where s > 1 is any fixed rational number.  
 
Using the atomic indiscernibility of the c*’s, we 
canonically extend M* to a structure M** = 
(N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...), α < κ. Many 
properties of M* are preserved when passing to M**. The 
appropriate embedding property asserts that any partial 
substructure of M** boundedly generated by 0**,1**, and a 
set of c**’s of order type ω is embeddable back into M* and 
M.   
 
Recall that the proof of the Complementation Theorem 
(Theorem 1.3.1) requires that the function is strictly 
dominating with respect to a well founded relation <. Here 
we verify that g** is strictly dominating on the 
nonstandard part of M** with respect to the above crucial 
irreflexive transitive relation. This enables us to apply 
the Complementation Theorem 1.3.1) to g** on the 
nonstandard part of M** in order to obtain a unique set W ⊆ 
nst(M**) such that for all x ∈ nst(M**), x ∈ W ↔ x ∉ g**W.  
 
We then build a Skolem hull construction of length ω 
consisting entirely of elements of W. The construction 
starts with the set of all c**’s. Witnesses are thrown in 
from W that verify that values of f** at elements thrown in 
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at previous stages do not lie in W (provided they in fact 
do not lie in W). Only the first n stages of the 
construction will be used. 
 
Every element of the n-th stage of the Skolem hull 
construction has a suitable name involving e = e(p,q) of 
the c**’s.  
 
At this crucial point, we then apply Lemma 4.1.6 to the 
large cardinal κ, with arity n = e, in order to obtain a 
suitably indiscernible set S of the c**’s of order type ω, 
with respect to this naming system. 
 
We can redo the length n Skolem hull construction starting 
with S. This is just a restriction of the original Skolem 
hull construction that started with all of the c**'s.  
 
Because of the indiscernibility, we generate a subset of 
N** whose elements are given by terms of bounded length in 
c**'s of order type ω. This forms a suitable partial 
substructure of M**, so that it is embeddable back into M. 
The image of this embedding on the n stages of the Skolem 
hull construction will comprise the A1 ⊆ ... ⊆ An satisfying 
the conclusion of Proposition B. This completes the 
description of the plan for the proof. 
 
We now begin the detailed proof of Proposition B. We begin 
with the structure M = (N,<,0,1,+,f,g) in the language L 
consisting of the binary relation <, constants 0,1, the 
binary function +, the p-ary function f, the q-ary function 
g, and equality.  
 
DEFINITION 4.2.1. Let V(L) = {vi: i ≥ 0} be the set of 
variables of L. Let TM(L) be the set of terms of L, and 
AF(L) be the set of atomic formulas of L. For t ∈ TM(L), we 
define lth(t) as the total number of occurrences of 
functions, constants, and variables, in t. For ϕ ∈ AF(L), 
we also define lth(ϕ) as the total number of occurrences of 
functions, constants, and variables, in ϕ. 
 
DEFINITION 4.2.2. An M-assignment is a partial function 
h:V(L) → N. We write Val(M,t,h) for the value of the term t 
in M at the assignment h. This is defined if and only if h 
is adequate for t; i.e., h is defined at all variables in 
t.  
 
DEFINITION 4.2.3. We write Sat(M,ϕ,h) for atomic formulas 
ϕ. This is true if and only if h is adequate for ϕ and M 
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satisfies ϕ at the assignment h. Here h is adequate for ϕ 
if and only if h is defined at (at least) all variables in 
ϕ. 
 
DEFINITION 4.2.4. We say that a partial function h:V(L) → N 
is increasing if and only if for all i < j, if vi,vj ∈ 
dom(h) then h(vi) < h(vj). 
 
LEMMA 4.2.2. There exist infinite sets N ⊇ E0 ⊇ E1 ⊇ ... 
indexed by N, such that for all i ≥ 0, ϕ ∈ AF(L), lth(ϕ) ≤ 
i, and increasing partial functions h1,h2:V(L) → N adequate 
for ϕ with rng(h1),rng(h2) ⊆ Ei, we have Sat(M,ϕ,h1) ↔ 
Sat(M,ϕ,h2). 
 
Proof: A straightforward application of the usual infinite 
Ramsey theorem, repeated infinitely many times. Each Ei+1 is 
obtained by Ramsey’s theorem applied to a coloring of i-
tuples from Ei. QED 
 
DEFINITION 4.2.5. We fix the E’s in Lemma 4.2.2. In an 
abuse of notation, we write Sat(M,ϕ,E) if and only if ϕ ∈ 
AF(L) and for all increasing h adequate for ϕ with range 
included in Ei, we have Sat(M,ϕ,h), where lth(ϕ) = i.  
 
Note that by Lemma 4.2.2, this is equivalent to: ϕ ∈ AF(L) 
and for some increasing h adequate for ϕ with range 
included in Ei, we have Sat(M,ϕ,h), where lth(ϕ) = i. We can 
also use any i with i ≥ lth(ϕ) and get an equivalent 
definition of Sat(M,ϕ,E). 
 
DEFINITION 4.2.6. We now introduce constants ci, i ∈ N. Let 
C be the set of all such constants. Let L* be L expanded by 
these constants. Structures for L* will be written M* = 
(N*,<*,0*,1*,+*,f*,g*,c0*,...). Here each ci is interpreted 
by ci*.  
 
DEFINITION 4.2.7. We let CT(L*) be the set of closed terms 
of L*, and AS(L*) be the set of atomic sentences of L*. We 
define lth(t), lth(ϕ) for t ∈ AS(L*), ϕ ∈ AS(L*).  
 
DEFINITION 4.2.8. For ϕ ∈ AS(L*), t ∈ CT(L*), we write 
Sat(M*,ϕ) and Val(M*,t) for the usual model theoretic 
notions.  
 
For each t ∈ CT(L*), let X(t) ∈ TM(L) be the result of 
replacing all occurrences of ‘c’ by ‘v’. For each ϕ ∈ 
AS(L*), let X(ϕ) ∈ AF(L) be the result of replacing all 
occurrences of ‘c’ by ‘v’.  
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DEFINITION 4.2.9. Let T = {ϕ ∈ AS(L*): Sat(M,X(ϕ),E)}.  
 
LEMMA 4.2.3. T is consistent. For all s,t ∈ CT(L*), exactly 
one of s = t, s < t, t < s belongs to T. For all n ∈ N, cn < 
cn+1 ∈ T. 
 
Proof: It suffices to show that every finite subset of T is 
consistent. Let ϕ1,...,ϕk ∈ T. Then each Sat(M,X(ϕi),E) 
holds. Let j = max(lth(ϕ1),...,lth(ϕk)) and h:V(L) → Ej be 
the increasing bijection. Then each Sat(M,X(ϕi),h) holds. 
Let M’ be the expansion of M that interprets each constant 
cn as h(vn). Then each Sat(M',ϕi) holds. 
 
For the second claim, let s,t ∈ CT(L*). Let i = lth(s = t) 
and h:V(L) → Ei be the increasing bijection. Then Sat(M,X(s 
= t),h) or Sat(M,X(s < t),h) or Sat(M,X(t < s),h). 
Therefore at least one of s = t, s < t, t < s lies in T. 
Since at most one of Sat(M,X(s = t),E), Sat(M,X(s < t),E), 
Sat(M,X(t < s),E) can hold, clearly at most one of s = t, s 
< t, t < s lies in T.  
 
For the third claim, let n ∈ N, and let h:V(L) → E2 be the 
increasing bijection. Obviously Sat(M,vn < vn+1,h). Hence cn 
< cn+1 ∈ T. QED 
 
We now fix M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) to be any 
model of T which is generated from its constants. Such an 
M* exists by Lemma 4.2.3 and the fact that T consists 
entirely of atomic sentences. Clearly M* is unique up to 
isomorphism.  
 
DEFINITION 4.2.10. For d ∈ N and t ∈ CT(L*) or t ∈ TM(L). 
Define dt to be the term  
 

t + t + ... + t 
 
associated to the left, where there are d t’s. If d = 0, 
then take dt to be 0. Obviously dt ∈ CT(L*) or dt ∈ TM(L), 
respectively. 
 
LEMMA 4.2.4. Let ϕ ∈ AS(L*). Sat(M*,ϕ) if and only if ϕ ∈ 
T. <* is a linear ordering on N*. For all n,d ∈ N, dcn < cn+1 
∈ T.  
 
Proof: Since M* satisfies T, the reverse direction of the 
first claim is immediate.  
 



 543 

Suppose ϕ ∉ T. First assume ϕ is of the form s < t. By 
Lemma 4.2.3, t < s ∈ T or s = t ∈ T. Then Sat(M*,t < s) or 
Sat(M*,s = t). Therefore Sat(M*,ϕ) is false. Now assume ϕ 
is of the form s = t. By Lemma 4.2.3, s < t ∈ T or t < s ∈ 
T. Hence Sat(M*,s < t) or Sat(M*,t < s). Therefore 
Sat(M*,ϕ) is false.  
 
The second claim follows immediately from the first claim 
and the second claim of Lemma 4.2.3. 
 
For the third claim, let i = lth(dcn < cn+1). The unique 
increasing bijection h:V(L) → Ei has dh(vn) < h(vn+1). Hence 
Sat(M,dvn < vn+1,h), Sat(M,dvn < vn+1,E), and X(dcn < cn+1) = 
dvn < vn+1. Hence dcn < cn+1 ∈ T. QED 
  
DEFINITION 4.2.11. For r ≥ 1, we write M*[r] for the set of 
all values in M* of the terms t ∈ CT(L*) of length ≤ r.  
 
DEFINITION 4.2.12. We say that H is an r-embedding from M* 
into M if and only if  
 
i) H:M*[r(p+q+1)] → N; 
ii) H(0*) = 0, H(1*) = 1; 
iii) for all x,y ∈ M*[r(p+q+1)], x <* y ↔ H(x) < H(y); 
iv) for all x,y ∈ M*[r], H(x+*y) = H(x)+H(y).  
v) for all x1,...,xp ∈ M*[r], H(f*(x1,...,xp)) = 
f(H(x1),...,H(xp)); 
vi) for all x1,...,xq, ∈ M*[r], H(g*(x1,...,xq)) = 
g(H(x1),...,H(xq)). 
 
Note that by the second claim of Lemma 4.2.4, iii) implies 
that H is one-one.  
 
LEMMA 4.2.5. For all r ≥ 1, there exists an r-embedding H 
from M* into M.  
 
Proof: Let r ≥ 1 and h:V(L) → E2r(p+q+1) be the unique 
increasing bijection.  
 
We define H:M*[r(p+q+1)] → N as follows. Let x = Val(M*,t), 
where t ∈ CT(L*), lth(t) ≤ r(p+q+1). Define H(x) = 
Val(M,X(t),h).  
 
To see that H is well defined, let x = Val(M*,t’), where t’ 
∈ CT(L*), lth(t’) ≤ r(p+q+1). We must verify that 
Val(M,X(t),h) = Val(M,X(t’),h). Since lth(t = t’) ≤ 
2r(p+q+1),  
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Val(M,X(t),h) = Val(M,X(t’),h) ↔ 
Sat(M,X(t = t’),E) ↔ 

t = t’ ∈ T ↔ 
Sat(M*,t = t’) ↔ 

Val(M*,t) = Val(M*,t’) ↔ 
x = x. 

 
For ii), H(0*) = Val(M,X(0),h) = 0. H(1*) = Val(M,X(1),h) = 
1. Also, ci* = Val(M*,ci), H(ci*) = Val(M,X(ci),h) = 
Val(M,vi,h) = h(vi) ∈ Er(p+q+1). 
 
For iii), we must verify that for lth(t),lth(t') ≤ r(p+q+1), 
Val(M*,t) <* Val(M*,t’) ↔ Val(M,X(t),h) < Val(M,X(t’),h). 
Using Lemma 4.2.4, the left side is equivalent to Sat(M*,t 
< t’), and to t < t’ ∈ T. The right side is equivalent to 
Sat(M,X(t < t’),h), to Sat(M,X(t < t’),E), and to t < t’ ∈ 
T, using lth(t < t') ≤ 2r(p+q+1).  
 
For iv), we must verify that for lth(t),lth(t') ≤ r, 
H(Val(M*,t)+*Val(M*,t')) = H(Val(M*,t))+H(Val(M*,t')). 
Since lth(t+t') ≤ 2r ≤ r(p+q+1), the left side is 
H(Val(M*,t+t')) = Val(M,X(t+t'),h). The right side is 
Val(M,X(t),h)+Val(M,X(t'),h). Equality is immediate.   
 
For v), we must verify that for lth(t1),...,lth(tp) ≤ r, 
H(f*(Val(M*,t1),...,Val(M*,tp)) = 
f(H(Val(M*,t1)),...,H(Val(M*,tp))). Since lth(f(t1,...,tp)) ≤ 
r(p+q+1), the left side is H(Val(M*,f(t1,...,tp))) = 
Val(M,X(f(t1,...,tp)),h). The right side is 
f(Val(M,t1,h),...,Val(M,tp,h)). Equality is immediate.  
 
For vi), see v). QED 
 
DEFINITION 4.2.13. For quantifier free formulas ϕ in L*, we 
define lth'(ϕ) as the total number of occurrences of 
functions, constants, and variables. We do not count the 
occurrences of connectives for lth'. 
 
LEMMA 4.2.6. For all r ≥ 1, there is an r-embedding from M* 
into M with the following properties.  
i. each H(ci*) ∈ E2r(p+q+1). 
ii if t ∈ CT(L*), lth(t) ≤ r(p+q+1), then H(Val(M*,t)) = 
Val(M,X(t),h). 
iii. if ϕ ∈ AS(L*), lth(ϕ) ≤ r(p+q+1), then Sat(M*,ϕ) ↔ 
Sat(M,X(ϕ),E). 
iv. if ϕ is a quantifier free sentence in L*, lth'(ϕ) ≤ 
r(p+q+1), then Sat(M*,ϕ) ↔ Sat(M,X(ϕ),E). 
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Proof: Let H:M*[r(p+q+1)] → N be an r-embedding of M* into 
M, constructed in the proof of Lemma 4.2.5, using the 
strictly increasing bijection h:V(L) → E2r(p+q+1). Then each 
H(ci*) ∈ E2r(p+q+1). Let t ∈ CT(L*), lth(t) ≤ r(p+q+1). Then 
H(Val(M*,t)) = Val(M,X(t),h) by definition. Let ϕ ∈ AS(L*), 
lth(ϕ) ≤ r(p+q+1). Then Sat(M*,s = t) ↔ Val(M*,s) = 
Val(M*,t) ↔ Val(M,X(s),h) = Val(M,X(t),h) ↔ Sat(M,X(s = 
t),E). We can use < in place of =. Finally, iv follows from 
iii. QED  
 
LEMMA 4.2.7. Every universal sentence of L that holds in M 
holds in M*. For any quantifier free sentence of L*, if we 
replace equal c*’s by equal c*’s in a manner that is order 
preserving on indices, then the truth value in M* is 
preserved. The c*’s are strictly increasing and unbounded 
in N*. 
 
Proof: For the first claim, let (∀v1)...(∀vm)(ϕ) be a 
universal sentence of L that holds in M. Suppose it fails 
in M*. Let v1,...,vm ∈ N*, where ϕ(v1,...,vm) fails in M*. 
Let t1,...,tm ∈ CT(L*) be such that each vi = Val(M*,ti). Let 
lth(ϕ(t1,...,tm)) ≤ r.  
 
By Lemmas 4.2.5 and 4.2.6, let H:M*[r] → N be an r-
embedding of M* into M. By the final claim of Lemma 4.2.6, 
since not Sat(M*,ϕ(t1,...,tm)), we have not 
Sat(M,X(ϕ(t1,...,tm)),E). This contradicts 
Sat(M,(∀v1)...(∀vm)(ϕ)). 
 
For the second claim, let ϕ ∈ AS(L*). Let ψ be obtained 
from ϕ by replacing equal c*’s by equal c*’s in an order 
preserving way. Let lth(ϕ) ≤ r. By Lemmas 4.2.5 and 4.2.6, 
let H:M*[r] → N be an r-embedding of M* into M. By Lemma 
4.2.6,   
 

Sat(M*,ϕ) ↔ Sat(M,X(ϕ),E). 
Sat(M*,ψ) ↔ Sat(M,X(ψ),E). 

 
Since X(ψ) is obtained from X(ϕ) by replacing equal vi’s by 
equal vi’s in an order preserving way, the right sides of 
the above two equivalences are equivalent. Hence the left 
sides are also equivalent.   
 
For the third claim, let i < j. Let h:{i,j} → E2 be 
increasing. Since Sat(M,X(ci < cj),h), we have Sat(M,X(ci < 
cj),E), and so ci < cj ∈ T and Sat(M*,ci < cj). Hence ci* <* 
cj*.  
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To see that the c*’s are unbounded in N*, let x ∈ N*, and 
let t ∈ CT(L*) be such that x = Val(M*,t). Let ci be the 
largest element of C appearing in t. We claim that t < ci+1 
lies in T. To see this, let r = lth(t < ci+1) and h:V(L) → 
Er be strictly increasing, where h(vi+1) >* Val(M,t,h). Then 
Sat(M,X(t < ci+1),h), and so Sat(M,X(t < ci+1),E), and hence 
t < ci+1 ∈ T. Therefore Val(M*,t) <* ci+1*. QED  
 
DEFINITION 4.2.14. Let C’ = {cα: α < κ}. C’ is the set of 
transfinite constants. Note that C ⊆ C’. 
 
DEFINITION 4.2.15. Let L** be the language L extended by 
constants cα, α < κ. Note that the ci in L* are already 
present in L**. The new constants are the cα, ω ≤ α < κ. 
 
DEFINITION 4.2.16. Let CT(L**) be the set of all closed 
terms of L**. Let AS(L**) be the set of all atomic 
sentences of L**.  
 
DEFINITION 4.2.17. A reduction is a partial function J:C’ → 
C, where for all α < β and i,j < ω, if J(cα) = ci and J(cβ) = 
cj, then i < j. Any reduction J extends to a partial map 
from CT(L**) into CT(L*), and to a partial map AS(L**) into 
AS(L*) in the obvious way. Here J is defined at a closed 
term or atomic sentence of L** if and only if J is defined 
at every constant appearing in that closed term or atomic 
sentence. 
 
DEFINITION 4.2.18. For s,t ∈ CT(L**), we define s ≡ t if 
and only if for all reductions J defined at s,t, Sat(M*,J(s 
= t)). 
 
LEMMA 4.2.8. Let s,t ∈ CT(L**) and J,J’ be reductions 
defined at s,t ∈ CT(L**). Then Sat(M*,J(s = t)) ↔ 
Sat(M*,J’(s = t)), and Sat(M*,J(s < t)) ↔ Sat(M*,J’(s < 
t)). ≡ is an equivalence relation on CT(L**). 
 
Proof: Let s,t,J,J’ be as given. Then J(s = t) and J’(s = 
t) are the same up to an increasing change in the c’s 
appearing in s, as in the second claim of Lemma 4.2.7. 
Hence by the second claim of Lemma 4.2.7, Sat(M*,J(s = t)) 
↔ Sat(M*,J’(s = t)), and Sat(M*,J(s < t)) ↔ Sat(M*,J’(s < 
t)). 
 
For the second claim, obviously ≡ is reflexive and 
symmetric. Now suppose s ≡ t and t ≡ r. Let J be any 
increasing reduction defined at s,t,r. Then Sat(M*,J(s = 
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t)) and Sat(M*,J(t = r)). Hence Sat(M*,J(s = r)). Therefore 
s ≡ r. QED 
 
DEFINITION 4.2.19. We now define the structure M** = 
(N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...), α < κ. Here 
the interpretation of < is <**, of 0 is 0**, of 1 is 1**, 
of f is f**, of g is g**, and of each cα is cα**. 
 
DEFINITION 4.2.20. We will define M** as a stretching of 
M*. We define N** to be the set of all equivalence classes 
of terms in CT(L**) under the ≡ of Lemma 4.2.8. We define 
0** = [0]. We define 1** = [1]. We define cα** = [cα].  
 
We define [s] <** [t] if and only if Sat(M*,J(s < t)), 
where J is any (some) reduction defined at s,t.  
 
We define [s] +** [t] = [s + t].  
 
We define f**([t1],...,[tp]) = [f(t1,...,tp)].  
 
We define g**([t1],...,[tq]) = [g(t1,...,tq)].  
 
DEFINITION 4.2.21. For t ∈ CT(L**) and d ∈ N, we write dt 
for t + ... + t, where there are d t’s, associated to the 
left. If d = 0, then use 0. 
 
DEFINITION 4.2.22. For x ∈ N** and d ∈ N, we write dx for x 
+** ... +** x, where there are d x’s associated to the 
left. If d = 0, then use 0.  
 
LEMMA 4.2.9. These definitions of <**, +**, f**, g** are 
well defined. For all α < β < κ and d ∈ N, dcα** <** cβ**.  
 
Proof: Suppose s ≡ s’, t ≡ t’. We freely use Lemma 4.2.8. 
 
Suppose Sat(M*,J(s < t)) holds for all reductions J defined 
at s,t. Let s ≡ s’ and t ≡ t’. Let J’ be any reduction 
defined at s,s’,t,t’. Then Sat(M*,J’(s < t)), Sat(M*,J’(s = 
s’)), and Sat(M*,J’(t = t’)). Hence Sat(M*,J’(s’ < t’)). By 
Lemma 4.2.8, for all reductions J’’ defined at s’,t’, 
Sat(M*,J’’(s < t)).  
 
Suppose s ≡ s’, t ≡ t’. We want to show s + t ≡ s’ + t’. 
Obviously for all reductions J defined at s,t,s’,t’, 
Sat(M*,J(s + t = s’ + t’)).  
 
Suppose s1 ≡ t1, ..., sp ≡ tp. We want to show f(s1,...,sp) ≡ 
f(t1,...,tp). Obviously for all reductions J defined at 
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s1,...,sp,t1,...,tp, Val(M*,J(f(s1,...,sp))) = 
Val(M*,J(f(t1,...,tp))). Hence f(s1,...,sp) ≡ f(t1,...,tp). 
 
The remaining case with g is handled analogously.  
 
For the second claim, let α < β < κ, d ∈ N, and J be any 
reduction defined at dcα < cβ, where J(cα) = cn and J(cβ) = 
cm, n < m. Then dcα** <** cβ** ↔ [dcα] <** [cβ] ↔ 
Sat(M*,J(dcα < cβ)) ↔ Sat(M*,dcn < cm), which holds by Lemma 
4.2.4. QED 
 
We write M** = 
(N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...), α < κ.  
 
The terms t ∈ CT(L**) play a dual role. We used them to 
define N** as the set of all [t], t ∈ CT(L**), under the 
equivalence relation ≡.  
 
However, now that we have defined the structure M**, we can 
use the terms t ∈ CT(L**) in the expression Val(M**,t).  
 
LEMMA 4.2.10. For all t ∈ CT(L**), Val(M**,t) = [t]. In 
particular, every element of N** is generated in M** from 
the set of all constants of M**, which is C’ ∪ {0,1}. 
 
Proof: By induction on lth(t). QED  
 
DEFINITION 4.2.23. Let S ⊆ κ. The S-constants are the cα, α 
∈ S. The S-terms are the t ∈ CT(L**), where all transfinite 
constants in t are S-constants. 
 
LEMMA 4.2.11. Let S ⊆ κ. {[t]: t is an S-term} contains 
0**, 1**, the cα**, α ∈ S, and is closed under +**, f**, 
g**. 
 
Proof: Let S ⊆ κ. Since 0,1,cα, α ∈ S, are S-terms, we can 
obviously form [0],[1],[cα], α ∈ S, which are, respectively, 
0**,1**,cα**, α ∈ S. Now let s,t be S-terms. Then [s] +** 
[t] = [s + t], and s + t is an S-term. The f**,g** cases 
are treated in the same way. QED  
 
By Lemma 4.2.11, we let M**<S> be the substructure of M** 
whose domain is {[t]: t is an S-term}, where only the 
interpretations of S-constants are retained. By Lemma 
4.2.11, M**<S> is a structure. 
 
DEFINITION 4.2.24. Let N**<S> = dom(M**<S>) = {[t]: t is an 
S-term}. 
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LEMMA 4.2.12. Let S ⊆ κ have order type ω. Then there is a 
unique isomorphism from M**<S> onto M* which maps the cα**, 
α ∈ S, onto the cn*, n ∈ N.  
 
Proof: Let J be the unique reduction from the S-constants 
onto C. Define h:N**<S> → N* as follows. Let t be an S-
term. Set h([t]) = Val(M*,J(t)).  
 
To see that h is well defined, let [t] = [t’], where t,t’ 
are S-terms. Since J is a reduction defined at t,t’, we 
have Val(M*,J(t = t’)), and so Val(M*,J(t)) = 
Val(M*,J(t’)). 
 
For α ∈ S, h(cα**) = h([cα]) = Val(M*,J(cα)) = J(cα)*. This 
establishes that h maps the cα**, α ∈ S, onto the cn*, n ∈ 
N. 
 
We now verify that h is an isomorphism from M**<S> onto M*.  
 
Suppose h([s]) = h([t]), where s,t are S-terms. Then 
Val(M*,J(s)) = Val(M*,J(t)). Hence Sat(M*,J(s = t)), and so 
s ≡ t, [s] = [t], using Lemma 4.2.8. Hence h is one-one. 
 
Let x ∈ N*, and write x = Val(M*,t), t ∈ CT(L*). By the 
construction of J, let t’ be the unique S-term such that 
J(t’) = t. Then h([t’]) = Val(M*,J(t’)) = Val(M*,t) = x. 
Hence h is onto N*. 
 
Let s,t be S-terms. Then [s] <** [t] ↔ Val(M*,J(s)) <* 
Val(M*,J(t)) ↔ h([s]) <* h([t]).  
 

h([s] +** [t]) = h([s + t]) = Val(M*,J(s + t)) =  
Val(M*,J(s) + J(t)) = Val(M*,J(s)) +* Val(M*,J(t))  

= h([s]) +* h([t]). 
 

h(f**([t1],...,[tp])) = h([f(t1,...,tp)]) =  
Val(M*,J(f(t1,...,tp))) = Val(M*,f(J(t1),...,J(tp))) = 

f*(Val(M*,J(t1)),...,Val(M*,J(tp))) = 
f*(h([t1]),...,h([tp])). 

 
The g** case is handled analogously. 
 
Finally, 
 

h(0**) = h[0] = Val(M*,J(0)) = 0. 
h(1**) = h[1] = Val(M*,J(1)) = 1. 

 



 550 

The uniqueness of h follows from the fact that the 0**, 1** 
and cα**, α ∈ S, generate N**<S> in M**<S>, and the 0*, 1* 
and cn*, n ∈ N, generate N* in M*. QED 
 
DEFINITION 4.2.25. For S ⊆ κ and r ≥ 1, we write M**[S,r] = 
{Val(M**,t): t is an S-term of length ≤ r}.  
 
DEFINITION 4.2.26. We say that H is an S,r-embedding from 
M** into M if and only if  
 
i) H:M**[S,r(p+q+1)] → N; 
ii) H(0**) = 0, H(1**) = 1; 
iii) for all x,y ∈ M**[S,r(p+q+1)], x <** y ↔ H(x) < H(y); 
iv) for all x,y ∈ M**[S,r], H(x+*y) = H(x)+H(y).  
v) for all x1,...,xp ∈ M**[S,r], H(f**(x1,...,xp)) = 
f(H(x1),...,H(xp)); 
vi) for all x1,...,xq, ∈ M**[S,r], H(g**(x1,...,xq)) = 
g(H(x1),...,H(xq)). 
 
LEMMA 4.2.13. Let S ⊆ κ be of order type ω and r ≥ 1. There 
is an S,r-embedding from M** into M. Every universal 
sentence of L that holds in M holds in M**. For any atomic 
sentence of L**, if we replace equal transfinite constants 
by equal transfinite constants in a manner that is order 
preserving on indices, then the truth value in M** is 
preserved. The cα**, α ∈ S, are unbounded in M**[S,r].  
 
Proof: By Lemma 4.2.12, let h be the unique isomorphism h 
from M**<S> onto M* which maps the cα**, α ∈ S, onto the 
cn*, n ∈ N. By Lemma 4.2.5, there is an r-embedding from M* 
into M. By composing these two mappings, we obtain the 
desired S,r-embedding from M** into M. The remaining claims 
follow from Lemma 4.2.7 by the isomorphism h. QED 
 
We refer to the second claim of Lemma 4.2.13 as universal 
sentence preservation (from M to M**). We refer to the 
third claim of Lemma 4.2.13 as atomic indiscernibility. 
 
DEFINITION 4.2.27. For m ∈ N, we write m^ for the term 
1+...+1 with m 1’s, where 0^ is 0. We say that x ∈ N** is 
standard if and only if it is the value in M** of some m^, 
m ≥ 0. We say that x ∈ N** is nonstandard if and only if x 
is not standard. We write st(M**) for the standard elements 
of N**, and nst(M**) for the nonstandard elements of N**. 
 
LEMMA 4.2.14. Let x ∈ nst(M**) and m ∈ N. Then x >** m^. 
c0** ∈ nst(M**).  
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Proof: Let m < ω. Then (∀x)(x ≤ m → (x = 0^ ∨ ... ∨ x = 
m^)) holds in M. By universal sentence preservation, it 
holds in M**. Let x be nonstandard in M**. Then x ≤** m^ is 
impossible by the above, and hence x >** m^.  
 
Suppose c0** is standard, and let c0** = m^. By atomic 
indiscernibility in M**, for all n ∈ N, cn** = m^. This is 
impossible, since α < β → cα** < cβ**. QED    
 
Obviously, (n/m)x generally makes no sense in M**, where 
n,m ∈ N, m ≠ 0. We have no division operation in M**, and 
certainly there is no 1/2 (there is no 1/2 in M). However, 
we can make perfectly good sense, in M**, of equations and 
inequalities  
 

(n/m)x = (n’/m’)x 
(n/m)x <** (n’/m’)x 
(n/m)x ≤** (n’/m’)x 

 
by interpreting them as 
 

nm’x = n’mx 
nm’x <** n’mx 
nm’x ≤** n’mx. 

 
Universal sentence preservation can be used to support 
natural reasoning in M** involving such equations and 
inequalities. 
 
We have been using | | for the sup norm, or max, for 
elements of Nt, t ≥ 1.  
 
DEFINITION 4.2.28. We now use | | for elements of N** = 
dom(M**). 
 
LEMMA 4.2.15. Let x1,...,xp,y1,...,yq ∈ N**, where 
|x1,...,xp|,|y1,...,yq| >** b^. Then  
 

(1 + 1/b)|x1,...,xp| ≤** f**(x1,...,xp) ≤** b|x1,...,xp|. 
(1 + 1/b)|y1,...,yq| ≤** g**(y1,...,yq) ≤** b|y1,...,yq|. 

 
If |x1,...,xp|,|y1,...,yq| ≤** b^, then  
 

f(x1,...,xp),g(y1,...,yq) ≤ b2^. 
 
Proof: Recall the choice of b ∈ N\{0,1} made at the 
beginning of this section. These inequalities are purely 
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universal, and hold in M. Hence they hold in M** by 
universal sentence preservation. QED 
 
DEFINITION 4.2.29. Let t ∈ CT(L**). We write #(t) for the 
transfinite constant of greatest index that appears in t. 
If none appears, then we take #(t) to be -1.  
 
LEMMA 4.2.16. Let t ∈ CT(L**). #(t) = -1 ↔ Val(M**,t) is 
standard. There exists a positive integer d such that the 
following holds. Suppose #(t) = cα. Then cα** ≤** Val(M**,t) 
<** dcα** <** cα+1**.  
 
Proof: We first claim the following. Suppose #(t) = cα. Then 
cα** ≤** Val(M**,t). This follows easily using Lemmas 
4.2.14, 4.2.15, and the monotonicity of +. 
 
Now suppose #(t) = -1. Since no transfinite constants 
appear in t, compute Val(M,t) = m ∈ N. Hence t = m^ holds 
in M. By universal sentence preservation, t = m^ holds in 
M**, and so Val(M**,t) = m^. Now suppose #(t) ≠ -1, and let 
#(t) = cα. By the first claim in the previous paragraph, 
cα** ≤ Val(M**,t), and so Val(M**,t) is nonstandard.  
 
We now prove by induction on t ∈ CT(L**) that there exists 
d ∈ N\{0} such that for all α < κ, if #(t) = cα then 
Val(M**,t) <** dcα**.  
 
This is clearly true if t is a constant of L**. Let #(s + 
t) = cα. Then #(s),#(t) ≤ cα. By the induction hypothesis, 
let d ∈ N\{0} be such that #(s) = cα → Val(M**,s) <** 
dcα**, and #(t) = cα → Val(M**,t) <** dcα**. Then #(s + t) = 
cα → Val(M**,s + t) <** 2dcα**.  
 
Let #(f(t1,...,tp)) = cα. Then #(t1),...,#(tp) ≤ cα. By the 
induction hypothesis, let d ∈ N\{0} be such that for all 1 
≤ i ≤ p, #(ti) = cα → Val(M**,ti) <** dcα**. Let 
#(f(t1,...,tp)) = cα. By Lemma 4.2.15, Val(M**,f(t1,...,tp)) 
<** bdcα**. The case of g(t1,...,tq) is argued in the same 
way. This completes the argument by induction. 
 
We also need to establish that for all d ∈ N and α < κ, 
dcα** <** cα+1**. This is from Lemma 4.2.9. QED   
 
LEMMA 4.2.17. c0** is the least element of nst(M**).  
 
Proof: By Lemma 4.2.14, c0** ∈ nst(M**). Suppose x <** c0**. 
Write x = Val(M**,t), t ∈ CT(L**). By Lemma 4.2.16, #(t) = 
-1. By Lemma 4.2.16, x is standard. QED 
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LEMMA 4.2.18. Let x1,...,xp ∈ N** and α < κ. Then 
f**(x1,...,xp) <** cα** ↔ x1,...,xp <** cα**. Let x1,...,xq ∈ 
N** and α < κ. Then g**(x1,...,xq) <** cα** ↔ x1,...,xq <** 
cα**. Let x,y ∈ N** and α < κ. Then x + y <** cα** ↔ x,y < 
cα**.  
 
Proof: Let x1,...,xp ∈ N** and α < κ. Let t1,...,tp ∈ 
CT(L**), where each xi = Val(M**,ti).  
 
First suppose that f**(x1,...,xp) < cα**. By Lemma 4.2.16, 
#(f(t1,...,tp)) < cα or #(f(t1,...,tp)) = -1. Hence for all 
i, #(ti) < cα or #(ti) = -1. Fix i. Then #(ti) = -1 or for 
some β < α, #(ti) = cβ. In the former case, by Lemma 4.2.16, 
Val(M**,ti) is standard, and so is < cα**, by Lemma 4.2.17. 
In the latter case, Val(M**,ti) <** cβ+1 ≤** cα**, by Lemma 
4.2.16.  
 
For the converse, assume x1,...,xp <** cα**. Then 
Val(M*,t1),...,Val(M*,tp) <** cα**. If α = 0 then by Lemmas 
4.2.16 and 4.2.17, #(f(t1,...,tp)) = -1, and so 
Val(M**,f(t1,...,tp)) is standard. So we can assume that α > 
0. By Lemma 4.2.16, none of #(t1),...,#(tp) is ≥ cα. Hence 
#(t1),...,#(tp) < cα. Let β < α, where #(t1),...,#(tp) ≤ cβ. 
By Lemma 4.2.16, Val(M*,f(t1,...,tp)) <** cβ+1** ≤ cα**.  
 
The remaining two claims are established analogously. QED 
 
DEFINITION 4.2.30. Let s be a rational number. We write <s** 
for the relation on N** given by x <s** y ↔ sx <** y. 
 
LEMMA 4.2.19. Let s be a rational number > 1. There exists 
k ≥ 1 such that for all x1 <s** x2 <s** ... <s** xk, we have 
2x1 <** xk. 
 
Proof: Fix s as given, and let k ≥ 1. Using universal 
sentence preservation, we see that for all x1,...,xk ∈ N**, 
if x1 <s** x2 <s** ... <s** xk then x1 <s’** xk, where s’ is 
sk-1. Choose k large enough so that sk-1 ≥ 2. QED  
 
LEMMA 4.2.20. Let s be a rational number > 1. The relation 
<s** on N** is transitive, irreflexive, and well founded.  
 
Proof: Transitivity and irreflexivity follow from universal 
sentence preservation. By well foundedness, we mean that 
every nonempty subset of N** has a <s** minimal element. 
This is equivalent to: there is no infinite x1 >s** >s** x2 
>s** x3 ... . 
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By Lemma 4.2.19, if <2** is well founded then <s** is well 
founded. We now show that <2** is well founded.  
 
Let Y be a nonempty subset of N**. Choose t ∈ CT(L**) such 
that #(t) is least with Val(M**,t) ∈ Y. If #(t) = -1 then Y 
has a standard element. Let x be the least standard element 
of Y. Then x is a <2** minimal element of S. Therefore, we 
can assume without loss of generality that Y has no 
standard elements, and #(t) ≥ 0.  
 
Let #(t) = cα and assume Y has no <2** minimal element. By 
Lemma 4.2.16, fix d ∈ N\{0} such that Val(M**,t) <** dcα**. 
Let t = t1,...,td+1 ∈ CT(L**) be such that Val(M**,t1) >2** 
... >2** Val(M**,td+1), where Val(M**,t1),...,Val(M**,td+1) ∈ 
Y. Then dVal(M**,td+1) <** Val(M**,t) <** dcα**, and so 
Val(M**,td+1) <** cα**. Since Y has no standard elements, α > 
0. By Lemma 4.2.16, #(td+1) < cα, which contradicts the 
choice of t, α. QED   
 
DEFINITION 4.2.31. It is convenient to set s = 1 + 1/2b for 
using Lemma 4.2.20.  
 
We now apply the well foundedness of <s** in an essential 
way.  
 
LEMMA 4.2.21. There is a unique set W such that W = {x ∈ 
nst(M**): x ∉ g**W}. For all α < κ, cα** ∉ 
rng(f**),rng(g**). In particular, each cα** ∈ W.  
 
Proof: By Lemma 4.2.15,  
 

g**(x1,...,xq) ≥1+(1/b)** |x1,...,xq| 
g**(x1,...,xq) >s** |x1,...,xq| 

 
holds for all x1,...,xq ∈ nst(M**). Hence g** is strictly 
dominating on nst(M**). By Lemma 4.2.20, <s** is well 
founded on nst(M**). Hence we can apply the Complementation 
Theorem (for well founded relations), Theorem 1.3.1. Let W 
be the unique set such that W = {x ∈ nst(M**): x ∉ g**W}. 
  
For the second claim, write cα** = f**(x1,...,xp). By Lemma  
4.2.15, each xi <** cα**. By Lemma 4.2.18, f**(x1,...,xp) <** 
cα**. This is a contradiction. The same argument applies to 
g**.  
 
The third claim follows immediately from the second claim. 
QED 
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We fix the unique W from Lemma 4.2.21. We will use q choice 
functions F1,...,Fq:N** → W such that for all x ∈ g**W,  
 

x = g**(F1(x),...,Fq(x)) 
 
and for all x ∉ g**W, 
 

F1(x) = ... = Fq(x) = c0**. 
 
We now come to the Skolem hull construction.  
 
DEFINITION 4.2.32. Let E ⊆ κ. Define E[1] = {cα**: α ∈ E}. 
Suppose E[1] ⊆ ... ⊆ E[k] ⊆ κ have been defined, k ≥ 1. 
Define E[k+1] = E[k] ∪ (W ∩ f**E[k]) ∪ F1f**E[k] ∪ ... ∪ 
Fqf**E[k].  
 
LEMMA 4.2.22. Let E ⊆ κ and i ≥ 1. E[i] ⊆ E[i+1] ⊆ W. 
f**E[i] ⊆ E[i+1] ∪. g**E[i+1]. E[1] ∩ f**E[i] = ∅. 
 
Proof: Let E ⊆ κ and i ≥ 1. E[i] ⊆ E[i+1] ⊆ W is obvious by 
construction and the third claim of Lemma 4.2.21. Let x ∈ 
f**E[i]. Since E[i] ⊆ nst(M**), by Lemma 4.2.15,  we have x 
∈ nst(M**).  
 
case 1. x ∈ W. Then x ∈ E[i+1].  
 
case 2. x ∉ W. Since x ∈ nst(M**), we have x ∈ g**W. Hence 
x = g**(F1(x),...,Fq(x)). Now each Fi(x) ∈ E[i+1] since x ∈ 
f**E[i]. Hence x ∈ g**E[i+1]. 
 
We have thus established that f**E[i] ⊆ E[i+1] ∪ g**E[i+1].  
 
E[i+1] ∩ g**E[i+1] = ∅ follows from W ∩ g**W = ∅.  
 
E[1] ∩ f**E[i] = ∅ follows from the second claim of Lemma 
4.2.21. QED 
 
Note that Proposition B is essentially the same as Lemma 
4.2.22, for 1 ≤ i < n. However Proposition B lives in N and 
Lemma 4.2.22 lives way up in M**. The remainder of the 
proof of Proposition B surrounds the choice of a suitable E 
such that E[n] can be suitably embedded back into M.  
 
Recall the positive integer e = pn-1 fixed at the beginning 
of this section, where κ is strongly e-Mahlo. Recall that we 
have also fixed n ≥ 1.  
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LEMMA 4.2.23. There is an integer m depending only on p,n, 
such that the following holds. There exist finitely many 
functions G1,G2,...,Gm:κe → W, such that for all E ⊆ κ, E[n] 
= G1E ∪ ... ∪ GmE.  
 
Proof: We show by induction on 1 ≤ i ≤ n that there exist 
finitely many functions G1,G2,...,Gm, where each Gi is a 
multivariate function from κ into W of various arities ≤ pi-
1, with the desired property.  
 
For i = 1, take G1:κ → W, where G1(α) = cα**.  
 
Suppose G1,...,Gm works for fixed 1 ≤ i < n, with arities ≤ 
pi-1. For i+1, we start with G1,...,Gm in order to generate 
E[i] from E. In order to generate W ∩ f**E[i], we need 
finitely many functions, each built from f** composed with 
p of the G1,...,Gm. The element c0** ∈ W is used to make 
sure that only values in W are generated. Each of these 
finitely many functions have arity at most p(pi-1) = pi. Each 
of Fjf**[Ei], 1 ≤ j ≤ q, are generated similarly.  
 
So arities ≤ pn-1 are sufficient for the case i = n. We can 
obviously arrange for all of these functions to have arity 
e = pn-1 by adding dummy variables. QED   
 
We fix the functions G1,...,Gm given by Lemma 4.2.23. 
 
We now define “term decomposition” functions Hi:W → κ, 
indexed by the natural numbers. Let x ∈ W.  
 
DEFINITION 4.2.33. To define the Hi(x), first choose t ∈ 
CT(L**) such that Val(M**,t) = x. Let cα_1,cα_2,...,cα_s be a 
listing of all transfinite constants appearing in t from 
left to right, with repetitions allowed. 
 
DEFINITION 4.2.34. For x ∈ W, set H0(x) = lth(t). For 1 ≤ i 
≤ s, set Hi(x) = αi. For i > s, set Hi(x) = 0.  
 
DEFINITION 4.2.35. Finally, define functions Ji,j:κe → κ, i 
≥ 0, 1 ≤ j ≤ m, by Ji,j(α1,...,αe) = Hi(Gj(α1,...,αe)).  
 
LEMMA 4.2.24. Let E ⊆ κ. Every element of E[n] is of the 
form Val(M**,t), where the length of t ∈ CT(L**) lies in 
∪{J0,jE: 1 ≤ j ≤ m} and the transfinite constants of t have 
subscripts lying in ∪{Ji,jE: 1 ≤ i ≤ lth(t) ∧ 1 ≤ j ≤ m}.  
 
Proof: Let E ⊆ κ and x ∈ E[n]. By Lemma 4.2.23, let x ∈ 
GjE, 1 ≤ j ≤ m. Let t ∈ CT(L**) be the term used to write x 
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= Val(M**,t) in the definition of the Hi(x). Write x = 
Gj(α1,...,αe), α1,...,αe ∈ E. Then J0,j(α1,...,αe) = H0(x) = 
lth(t), and J1,j(α1,...,αe),J2,,j(α1,...,αe),..., 
Jlth(t),j(α1,...,αe) enumerates at least the subscripts of 
transfinite constants of t. QED   
 
LEMMA 4.2.25. There exists E ⊆ S ⊆ κ, E,S of order type ω, 
and a positive integer r, such that E[n] ⊆ M**[S,r].  
 
Proof: We apply Lemma 4.1.6 to the following two sequences 
of functions. The first is the Ji,j:κe → κ, where i ≥ 1 and 
1 ≤ j ≤ m (here m is as given by Lemma 4.2.23, and depends 
only on p,k). The first can be construed as an infinite 
sequence of functions from κe into κ, and the second can 
also be construed as an infinite sequence of functions from 
κ into ω by infinite repetition.  
 
By Lemma 4.1.6, let E ⊆ κ be of order type ω such that for 
all i ≥ 1 and 1 ≤ j ≤ m, Ji,jE is either a finite subset of 
sup(E), or has order type ω with the same sup as E, and 
J0,jE is finite.  
 
Let r = max(J0,1E ∪ ... ∪ J0,mE). By Lemma 4.2.24, every 
element of E[n] is the value in M** of a closed term t of 
length at most r, whose transfinite constants have 
subscripts lying in S = ∪{JijE: 1 ≤ i ≤ lth(t) ∧ 1 ≤ j ≤ m}. 
I.e., E[n] ⊆ M**[S,r]. Note that S is a finite union of 
sets of ordinals, each of which is either a finite subset 
of sup(E), or is of order type ω with the same sup as E. 
Since E ⊆ S, we see that S is of order type ω. QED 
 
DEFINITION 4.2.36. We fix E,S,r as given by Lemma 4.2.25. 
 
THEOREM 4.2.26. Proposition B is provable in SMAH+. In fact, 
it is provable in MAH+. 
 
Proof: By Lemma 4.2.22, for all 1 ≤ i < n, f**E[i] ⊆ E[i+1] 
∪. g**E[i+1], and E[1] ∩ f**E[n] = ∅. By Lemma 4.2.13, 
there is an S,r-embedding T from M** into M. Note that 
f**[E[n]] ∪ g**[E[n]] ⊆ M**[S,r(p+q)] = dom(T).  
 
For 1 ≤ i ≤ n, let Ai = TE[i]. Since E[1] ⊆ ... ⊆ E[n], we 
have A1 ⊆ ... ⊆ An ⊆ N. By Lemma 4.2.25, E[n] ⊆ M**[S,r]. 
 
We first claim that for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪ gAi+1.  
 
Let 1 ≤ i < n, and x ∈ fAi. Write x = f(Ty1,...,Typ), 
y1,...,yp ∈ E[i]. Hence Tf**(y1,...,yp) = f(Ty1,...,Typ) = x.  
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By Lemma 4.2.22, f**(y1,...,yp) ∈ E[i+1] ∪ g**E[i+1]. First 
suppose f**(y1,...,yp) ∈ E[i+1]. Then Tf**(y1,...,yp) = x ∈ 
Ai+1.  
 
Secondly suppose f**(y1,...,yp) ∈ g**E[i+1], and write 
f**(y1,...,yp) = g**(z1,...,zq), where z1,...,zq  ∈ E[i+1]. 
Then Tf**(y1,...,yp) = Tg**(z1,...,zq) = g(Tz1,...,Tzq) = 
f(Ty1,...,Typ) = x. Hence x ∈ gAi+1.  
 
We next claim that for all 1 ≤ i < n, Ai+1 ∩ gAi+1 = ∅. We 
must verify that TE[i+1] ∩ gTE[i+1] = ∅. Let x,y1,...,yq ∈ 
E[i+1], T(x) = g(Ty1,...,Tyq). Clearly T(x) = 
Tg**(y1,...,yq), and so x = g**(y1,...,yq). This contradicts 
E[i+1] ∩ g**E[i+1] = ∅.  
 
We finally claim that A1 ∩ fAn = ∅. Let x ∈ A1, y1,...,yp ∈ 
An, x = f(y1,...,yp). Let x’ ∈ E[1], y1’,...,yp’ ∈ E[n], 
where x = T(x’), and y1,...,yp = T(y1’),...,T(yp’) 
respectively. Note that Tf**(y1’,...,yp’) = 
f(T(y1’),...,T(yp’)) = f(y1,...,yp) = x = T(x’). Therefore x’ 
= f**(y1’,...,yp’), contradicting the last claim of Lemma 
4.2.22.  
 
The second claim in the Lemma follows from the first by 
Theorem 4.1.7. This is because Proposition B is obviously 
in Π1

2 form. QED 
 
Obviously the proof of Theorem 4.2.26 gives an upper bound 
on the order of strongly Mahlo cardinal sufficient to prove 
Proposition B that depends exponentially on the arity of f 
and the length of the tower. Without attempting to optimize 
the level, we have shown the following. 
 
COROLLARY 4.2.27. The following is provable in ZFC. Let p,n 
≥ 1. If there exists a strongly pn-1-Mahlo cardinal then 
Proposition B holds for p-ary f, multivariate g, and n. If 
there exists a strongly p2-Mahlo cardinal, then Proposition 
A holds for p-ary f and multivariate g. Furthermore, we can 
drop "strongly" from both results.   
 
Corollary 4.2.27 is far from optimal. For instance, if n = 
2 then Proposition B is provable in RCA0, as we shall see 
now. 
 
THEOREM 4.2.28. The following is provable in RCA0. For all 
f,g ∈ ELG there exist infinite A ⊆ B ⊆ N such that  
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fA ⊆ B ∪. gB 
A ∩ fB = ∅. 

 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Theorem 3.2.5, let A ⊆ [n,∞) be infinite where A ∩ g(A ∪ 
fA) = ∅. By Lemma 3.3.3, let B be unique such that B ⊆ A ∪ 
fA ⊆ B ∪. gB. Then A ∩ gB ⊆ A ∩ g(A ∪ fA) = ∅, and hence A 
⊆ B. Also A ∩ fB ⊆ A ∩ f(A ∪ fA) = ∅, and fA ⊆ B ∪. gB. 
QED 
 
4.3. Some Existential Sentences. 
 
In this section, we prove a crucial Lemma needed for 
section 4.4. We consider existential sentences of the 
following special form.   
 
DEFINITION 4.3.1. Define λ(k,n,m,R1,...,Rn-1) =  
 

(∃ infinite B1,...,Bn ⊆ Nk) 
(∀i ∈ {1,...,n-1})(∀x1,...,xm ∈ Bi)  

(∃y1,...,ym ∈ Bi+1)(Ri(x1,...,xm,y1,...,ym)) 
 
where k,n,m ≥ 1, and R1,...,Rn-1 ⊆ N2km are order invariant 
relations. Recall that order invariant sets of tuples are 
sets of tuples where membership depends only on the order 
type of a tuple. 
 
Note the stratified structure of λ(k,n,m,R1,...,Rn-1). It 
asserts that there are n infinite sets such that for all 
elements of the first there are elements of the second with 
a property, and for all elements of the second there are 
elements of the third with a property, etcetera.   
 
It is evident that even RCA0 suffices to define truth for 
the sentences of the form λ(k,n,m,R1,...,Rn-1). For in RCA0, 
we can  
 
i. Appropriately code finite sequences of subsets of Nk as 
subsets of N. 
ii. Appropriately code finite sequences of elements of N as 
elements of N. 
iii. Appropriately treat order invariant sets of tuples 
from N. 
 
This does not mean that we can form the set of all true 
sentences of the form λ(k,n,m,R1,...,Rn-1) in RCA0 or even 
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ACA’. However, we will show that this is in fact the case 
for ACA’. See Definition 1.4.1.  
 
Specifically, we will present a primitive recursive 
criterion for the truth of sentences λ(k,n,m,R1,...,Rn-1), 
and prove that the criterion is correct, within the system 
ACA’. 
 
We first put the sentences λ(k,n,m,R1,...,Rn-1) in 
substantially simpler form.  
 
DEFINITION 4.3.2. Define λ’(k,n,R1,...,Rn-1) =  

 
(∃ infinite B1,...,Bn ⊆ Nk) 

(∀i ∈ {1,...,n-1}) 
(∀x,y,z ∈ Bi)(∃w ∈ Bi+1)(Ri(x,y,z,w)) 

 
where k,n ≥ 1, and R1,...,Rn-1 ⊆ N4k are order invariant 
relations.  
 
LEMMA 4.3.1. There is a primitive recursive procedure for 
converting any sentence λ(k,n,m,R1,...,Rn-1) to a sentence 
λ’(k’,n’,S1,...,Sn’-1) with the same truth value. In fact, 
ACA’ proves that any λ(k,n,m,R1,...,Rn-1) has the same truth 
value as its conversion λ’(k’,n’,S1,...,Sn’-1). 
 
Proof: Start with  
 
*) (∃ infinite B1,...,Bn ⊆ Nk)(∀i ∈ {1,...,n-1}) 
(∀x1,...,xm ∈ Bi)(∃y1,...,ym ∈ Bi+1)(Ri(x1,...,xm,y1,...,ym)).  
 
Let C,D ⊆ Nkm. We think of C,D as sets of m-tuples from Nk. 
We write C# ⊆ Nk for the set of all k-tuple components of 
elements of C.  
 
We write C ≤ D if and only if C,D ⊆ Nkm, and for all 
(x1,...,xm),(y1,...,ym),(z1,...,zm)  ∈ C,  
 
i. If (x1,...,xm) = (y1,...,ym) = (z1,...,zm) then (x1,...,xm) 
∈ D. 
ii. If (x1,...,xm),(y1,...,ym),(z1,...,zm) are distinct then 
(x2,...,xm,x1) ∈ D. 
iii. If (x1,...,xm) ≠ (y1,...,ym) = (z1,...,zm) then 
(x1,y1,...,ym-1) ∈ D.  
iv. If (x1,...,xm) = (y1,...,ym) ≠ (z1,...,zm) then 
(x1,y1,...,ym-1) ∈ D.  
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We claim that if C1 has at least three elements and C1 ≤ ... 
≤ C2m, then C1#m ⊆ C2m ⊆ Nkm. To see this, let C1,...,C2m be as 
given. By i), C1 ⊆ ... ⊆ C2m. By ii), (x1,...,xm) ∈ C1 → 
(x2,...,xm,x1) ∈ C2. We can continue for m steps, obtaining 
that for all (x1,...,xm) ∈ C1, all m rotations of (x1,...,xm) 
lie in Cm.  
 
It follows that every α ∈ C1#m is the sequence of first 
terms of some β1,...,βm ∈ Cm. (Here α is an m tuple from C1# 
and β1,...,βm are m tuples from Cm). By iii,iv, we can 
replace the first term of βm by the first term of βm-1, and 
shift the remaining terms of βm to the right, removing the 
last term of βm, with the resulting m tuple β' starting with 
the first term of βm-1 followed by the first term of βm. Thus 
β' ∈ Cm+1. At the second stage, we can use βm-2 and β' to form 
β'' ∈ Cm+2. We continue this process until we finally use β1, 
to arrive at α ∈ C2m.   
 
We now claim that *) is equivalent to   
 
**) (∃ infinite C1,...,C2nm ⊆ Nkm)(C1 ≤ ... ≤ C2m ∧ C2m+1 ≤ ... 
≤ C4m ∧ ... ∧ C2nm-2m+1 ≤ ... ≤ C2nm ∧ (∀i ∈ {1,...,n-1}) 
(∀x ∈ C2im)(∃y ∈ C2im+1)(Ri(x,y))).   
 
To see this, let B1,...,Bn witness *). Set  
 

C1 = ... = C2m = B1m 
... 

C2nm-2m+1 = ... = C2nm = Bnm. 
 
Clearly  
 

C1 ≤ ... ≤ C2m 
... 

C2nm-2m+1 ≤ ... ≤ C2nm. 
 
Conversely, let C1,...,C2nm witness **). Since C1,...,C2nm are 
infinite, we see that C1#m ⊆ C2m ∧ ... ∧ C2nm-2m+1#m ⊆ C2nm. For 
all 1 ≤ i ≤ n, set Bi = C2(i-1)m+1#. Then these B’s witness *).  
 
It is easy to see that **) is a sentence of the form 
λ’(k’,n’,S1,...,Sn’-1). The relations in **) between 
successive C1,...,C2m, and between successive C2m+1,...,C4m, 
etcetera, are of the form ∀∀∀∃ according to the definition 
of ≤. The relations in **) between C2m,C2m+1, and between 
C4m,C4m+1, etcetera, are of the form ∀∃. QED  
 
We now define sets Y1,...,Yn by  
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i. Y1 = N. 
ii. For 1 ≤ i < n, Yi+1 = Yi × Yi × Yi × Yi.  
 
LEMMA 4.3.2. A sentence λ’(k,n,R1,...,Rn-1) holds if and only 
if there exist functions fi:Yi → Nk, 1 ≤ i ≤ n, such that 
the following holds.  
i. f1 is one-one. 
ii. For all 1 ≤ i ≤ n and x,y,z ∈ Yi, fi(x,y,z,w) as a 
function of w ∈ Yi, is one-one.   
iii. For all 1 ≤ i < n and x,y,z ∈ Yi, 
Ri(fi(x),fi(y),fi(z),fi+1(x,y,z,z)). 
 
Proof: Let λ’(k,n,R1,...,Rn-1) be given. Suppose 
λ’(k,n,R1,...,Rn-1) is true. Let B1,...,Bn ⊆ Nk be infinite, 
where for all 1 ≤ i < n, (∀x,y,z ∈ Bi)(∃w ∈ Bi+1)(Ri(x,y,z)).  
 
We now define f1,...,fn inductively as follows. Let f1:N → 
B1 be a bijection. Suppose surjective fi:Yi → Bi has been 
defined, 1 ≤ i < n. To define fi+1:Yi+1 → Bi+1, let x,y,z ∈ 
Yi. Since fi(x),fi(y),fi(z) ∈ Bi, set fi+1(x,y,z,z) ∈ Bi+1 to 
be such that Ri(fi(x),fi(y),fi(z),fi+1(x,y,z,z)). Define 
fi+1(x,y,z,w), w ∈ Yi, w ≠ z, so that fi+1(x,y,z,w) is a 
bijection from Yi+1 onto Bi+1 as a function of w.  
 
Conversely, let fi:Yi → Nk, 1 ≤ i ≤ n, be such that i)-iii) 
above hold. For all 1 ≤ i ≤ n, let Bi = rng(fi). Then each Bi 
is infinite. Let 1 ≤ i < n and u,v,w ∈ Bi. Let u = fi(x), v 
= fi(y), w = fi(z), where x,y,z ∈ Yi. Then 
Ri(u,v,w,fi+1(x,y,z,z)). Since fi+1(x,y,z,z) ∈ Bi+1, we are 
done. QED 
 
We can use Lemma 4.3.2 to convert λ’(k,n,R1,...,Rn-1) into a 
sentence of a rather simple form.  
 
DEFINITION 4.3.3. Define µ(p,q,ϕ) = 
 

(∃f:Np → N)(∀x1,...,xq ∈ N)(ϕ) 
 
where ϕ is a propositional combination of atomic formulas 
of the forms xi < xj, f(y1,...,yp) < f(z1,...,zp), where 
xi,xj,y1,...,yp,z1,...,zp are among the (distinct) variables 
x1,...,xq.  
 
LEMMA 4.3.3. There is a primitive recursive procedure for 
converting any sentence λ’(k,n,S1,...,Sn-1) to a sentence 
µ(p,q,ϕ), with the same truth value. In fact, ACA’ proves 
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that any λ’(k,n,S1,...,Sn-1) has the same truth value as its 
conversion µ(p,q,ϕ). 
 
Proof: We use Lemma 4.3.2. We can obviously identify each Yi 
with N4^(i-1). Then the condition in Lemma 4.3.2 takes the 
following form: there exists a definite finite number of 
functions from various Cartesian powers of N into Nk such 
that a universally quantified statement (quantifiers in N) 
holds whose matrix is a propositional combination of 
numerical comparisons, either between integer variables, or 
designated coordinates of values (which lie in Nk) of the 
functions at tuples of variables. This is clear by 
examining clauses i) – iii) in Lemma 4.3.2, and noting that 
the Si are order invariant.  
 
The use of Nk as a range here can be eliminated in favor of 
using more functions from various Cartesian powers of N 
into N. Thus we obtain an equivalent of the following form: 
there exists a definite finite number of functions from 
various Cartesian powers of N into N such that a 
universally quantified statement holds whose matrix is a 
propositional combination of numerical comparisons, either 
between integer variables, or values of the functions at 
tuples of variables. 
 
By adding dummy variables, we can assume that all of the 
functions have the same arity. Thus we have  
 

*) (∃f1,...,fr:Np → N)(∀x1,...,xq ∈ N)(ϕ) 
 
where ϕ is a propositional combination of atomic formulas 
of the forms xi < xj, fa(y1,...,yp) < fb(z1,...,zp), where 
xi,xj,y1,...,yp,z1,...,zp are among the (distinct) variables 
x1,...,xq. It remains to reduce this to quantification over 
a single function. 
 
The idea is to introduce a single function variable f:Np+r → 
N which does the work of f1,...,fr in a sufficiently 
explicit way. We say that f is special if and only if for 
all distinct c,d ∈ N, f(y1,...,yp,c,...,c,d,...,d) depends 
only on y1,...,yp and the number of c’s displayed (which is 
from 1 to r), and not what integers c,d are (as long as c ≠ 
d).  
 
It is now clear that *) is equivalent to  
 

**) (∃f:Np+r → N)(∀u,v ∈ N)(∀x1,...,xp ∈ N) 
(f is special ∧ (u ≠ v → ϕ’)) 
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where ϕ’ is obtained from ϕ by replacing each fi(y1,...,yp) 
in *) by f(y1,...,yp,u,...,u,v,...,v), where the number of 
u’s displayed is i. QED 
 
We now prove a combinatorial lemma.  
 
DEFINITION 4.3.4. Let f:Np → N and A ⊆ N. We say that A is 
an SOI for f if and only if the truth value of any 
statement  
 

f(x1,...,xp) < f(y1,...,yp) 
 
where x1,...,xp,y1,...,yp ∈ A, depends only on the order type 
of the 2p-tuple (x1,...,xp,y1,...,yp). 
 
DEFINITION 4.3.5. We say that A is a strong SOI for f if 
and only if A is an SOI for f such that the following 
holds. Let x1,...,xp,y1,...,yp ∈ A. Suppose (x1,...,xp) and 
(y1,...,yp) have the same order type. Suppose also that for 
all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). Then 
f(x1,...,xp) ≤ f(y1,...,yp);  
 
DEFINITION 4.3.6. We say that A is a special SOI for f if 
and only if A is a strong SOI for f such that the following 
holds. Let x1,...,xp,y1,...,yp ∈ A. Suppose (x1,...,xp) and 
(y1,...,yp) have the same order type. Suppose also that for 
all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). If f(x1,...,xp) 
< f(y1,...,yp) then f(y1,...,yp) is greater than all 
f(z1,...,zp), with |z1,...,zp| ≤ |x1,...,xp|.   
 
The above definitions makes perfectly good sense for 
functions f:Ap → N where A is finite. In this finite 
context, we will be particularly interested in the case A = 
[0,q].  
 
LEMMA 4.3.4. The following is provable in ACA’. For all p ≥ 
1, every f:Np → N has an infinite special SOI A ⊆ N. In 
fact, every infinite SOI for f:Np → N is a special SOI for 
f.  
 
Proof: Let f:Np → N. By the infinite Ramsey theorem for 2p-
tuples, let A ⊆ N be an infinite SOI for f. We now show 
that A is a special SOI for f.  
 
Let x1,...,xp,y1,...,yp ∈ A. Suppose x = (x1,...,xp) and y = 
(y1,...,yp) have the same order type, and for all 1 ≤ i ≤ p, 
xi = yi ∨ yi > max(x1,...,xp).  
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Suppose x ≠ y. We claim that x,y are the first two terms of 
an infinite sequence of elements of Np, written 
x,y,w1,w2,..., such that the order types of (x,y), (y,w1), 
(w1,w2), ..., are the same. To see this, let x1’ < ... < xi’ 
and y1’ < ... < yj’ be the strictly increasing enumeration 
of the terms of (x1,...,xp) and (y1,...,yp), respectively. 
Since (x1,...,xp) and (y1,...,yp) have the same order type, i 
= j. It is also clear that for the least k such that xk’ ≠ 
yk’, we have yk’ > xi’. Now choose w1 of the same order type 
as x,y so that its strictly increasing enumeration starts 
with the same x1’ < ... < xk-1’ and continues higher than 
yi’. Then obviously (x,y) and (y,w1) have the same order 
type. Continue in this way indefinitely.   
 
Now suppose f(x) > f(y). Then x ≠ y and we can use the 
x,y,w1,w2,... constructed in the previous paragraph. Since A 
is an SOI for f, if f(x) > f(y) then f(x) > f(y) > f(w1) > 
f(w2) ..., which is impossible. Hence f(x) ≤ f(y).  
 
Finally, suppose f(x) < f(y), and let z ∈ [0,max(x)]p. Since 
x ≠ y, we can use the x,y,w1,w2,... constructed previously. 
Note that the pairs (y,z),(w1,z),(w2,z), ... all have the 
same order type. Suppose f(y) ≤ f(z). Since A is an SOI for 
f, we see that each f(wi) ≤ f(z). Also since A is an SOI for 
f and f(x) < f(y), we have that each f(wi) < f(wi+1), and 
therefore the f(wi) are unbounded. This is a contradiction. 
QED 
 
LEMMA 4.3.5. The following is provable in ACA’. Let q ≥ 3p ≥ 
1, and f:[0,q]p → N. Assume [0,q] is a special SOI for f. 
There exists g:Np → N such that N is a special SOI for g, 
where for all x,y ∈ [0,q]p, f(x) ≤ f(y) ↔ g(x) ≤ g(y).  
 
Proof: Let p,q,f be as given. We now put a relation ≤* on Np 
as follows. Let x,y ∈ Np. Then x ≤* y if and only if there 
exists α,β ∈ [0,q]p such that  
 
i. (x,y) and (α,β) have the same order type. 
ii. f(α) ≤ f(β).  
 
Since [0,q] is an SOI for f, we have that x ≤ y* if and only 
if  
 
for all α,β ∈ [0,q]p, if (x,y) and (α,β) have the same order 

type  
then f(α) ≤ f(β). 
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Since q ≥ 2p, every element of N2p is of the same order type 
as an element of [0,q]2p. Hence ≤* is reflexive and 
connected.  
 
To see that ≤* is transitive, let x ≤* y ∧ y ≤* z. Let a1 < 
... < ar be an enumeration of the combined coordinates of 
x,y,z. Clearly 1 ≤ r ≤ 3p ≤ q. Let (x,y,z) have the same 
order type as (α,β,γ) ∈ [0,q]3p. Then f(α) ≤ f(β) and f(β) ≤ 
f(γ). Hence f(α) ≤ f(γ) and (x,z),(α,γ) have the same order 
type. Therefore x ≤* z.  
 
It is standard to define the equivalence relation of ≤* by x 
=* y ↔ (x ≤* y ∧ y ≤* x). This is obviously equivalent to 
the existence of α,β ∈ [0,q]p such that (x,y),(α,β) have the 
same order type and f(α) = f(β). This is also equivalent to: 
for all α,β ∈ [0,q]p, if (x,y) and (α,β) have the same order 
type then f(α) = f(β).  
 
We now show that the order type of ≤*, modulo its 
equivalence relation =*, is finite or ω.  
 
We first verify that ≤* is well founded. Suppose x1 >* x2 >* 
... . Apply Ramsey’s theorem to the comparison of the b-th 
coordinate of xi with the b-th coordinate of xj, b = 
1,...,p. Then we obtain an infinite subsequence y1 >* y2 >* 
... such that for all 1 ≤ b ≤ p, either the b-th coordinates 
of the y’s are constant, or strictly increasing. We can 
then pass to an infinite subsequence z1 >* z2 >* ... such 
that for all i < j, the p-tuples zi,zj satisfy the 
hypotheses in the definition of strong SOI. Let (z1,z2) and 
(α,β) have the same order type, where α,β ∈ [0,q]p. Then α,β 
satisfy the hypotheses in the definition of strong SOI. 
Therefore f(α) ≤* f(β), and hence z1 ≤* z2. This is a 
contradiction.  
 
We now verify that ≤* has no limit points. Suppose y1 <* y2 
... <* x. As before, pass to an infinite subsequence z1 <* 
z2 ... <* x, such that for all i < j the p-tuples zi,zj 
satisfy the hypotheses in the definition of strong SOI. 
Choose zi <* zi+1 such that max(zi) > max(x). Let α,β,γ ∈ 
[0,q]p, where (α,β,γ) and (x,zi,zi+1) have the same order 
type. Then β,γ satisfy the hypotheses in the definition of 
special SOI. Also f(β) < f(γ) and |α| < |β|. Since [0,q] is 
a special SOI for f, f(γ) > f(α). Hence zi+1 >* x. This is a 
contradiction.  
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So we have now shown that the order type of ≤* is finite or 
ω. Note that ≤* is order invariant. Hence =*, <* are also 
order invariant.  
 
We define g:Np → N by: g(x) is the position of x in the 
ordering ≤*, counting from 0. Obviously N is an SOI for g, 
since <* is order invariant. Hence by Lemma 4.3.4, N is a 
special SOI for g.  
 
For the final claim of Lemma 4.3.5, let x,y ∈ [0,q]p. 
Suppose f(x) ≤ f(y). Then x ≤* y, and hence g(x) ≤ g(y). 
Suppose g(x) ≤ g(y). Then x ≤* y. Let (x,y) and (α,β) have 
the same order type, α,β ∈ [0,q]p, where f(α) ≤ f(β). Then 
f(x) ≤ f(y). QED 
 
LEMMA 4.3.6. The following is provable in ACA'. Let q ≥ 3p ≥ 
1, and f:[0,q]p → N. Assume [0,q] is a special SOI for f. 
Let g:Np → N be such that N is a special SOI for g, where 
for all x,y ∈ [0,q]p, f(x) ≤ f(y) ↔ g(x) ≤ g(y). Then 
µ(p,q,ϕ) holds with f, where the universal quantifiers are 
restricted to [0,q], if and only if µ(p,q,ϕ) holds with g. 
 
Proof: Let p,q,f,g, and µ(p,q,ϕ) be as given. Assume 
µ(p,q,ϕ) holds with f, where the universal quantifiers are 
restricted to [0,q].  
 
Suppose µ(p,q,ϕ) fails with g. Let x1,...,xq ∈ N be a 
counterexample to µ(p,q,ϕ) with g.  
 
We claim that we can push this counterexample down to lie 
within [0,q], by merely choosing x1’,...,xq’ ∈ [0,q] such 
that (x1’,...,xq’) and (x1,...,xq) have the same order type. 
The reason is that ϕ is a propositional combination of 
formulas of the forms  
 

y < z 
f(y1,...,yq) < f(z1,...,zq) 

 
where y,z,y1,...,yq,z1,...,zq are among the variables 
x1,...,xq. Using the fact that N is a special SOI for g, the 
above inequalities have the same truth values as the 
inequalities 
 

y' < z' 
f(y1',...,yq') < f(z1',...,zq'). 

 
By hypothesis, we can now replace f by g in ϕ with 
x1',...,xq' ∈ [0,q], obtaining ¬µ(p,q,ϕ) with g.  
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Conversely, suppose µ(p,q,ϕ) fails with f. Let x1,...,xq ∈ 
[0,q] be a counterexample to µ(p,q,ϕ) with f. Then by the 
same argument, x1,...,xq is a counterexample to µ(p,q,ϕ) 
with g.  
 
It is worth noting that this argument would fail if we 
allowed inequalities of the form u < f(v1,...,vq) in ϕ. Thus 
the restriction on ϕ is important. QED 
 
LEMMA 4.3.7. The following is provable in ACA’. A sentence 
µ(p,q,ϕ), q ≥ 3p, holds if and only if there exists f:[0,q]p 
→ [0,(q+1)p] such that [0,q] is a special SOI for f, and ϕ 
holds for f (with universal quantifiers ranging over 
[0,q]).  
 
Proof: Let µ(p,q,ϕ) be given, q ≥ 3p. Let f:[0,q]p → 
[0,(q+1)p], where [0,q] is a special SOI for f, and µ(p,q,ϕ) 
holds with f, with universal quantifiers restricted to 
[0,q]. Let g be as given by Lemma 4.3.5. By Lemma 4.3.6, 
µ(p,q,ϕ) holds with g. In particular, µ(p,q,ϕ) holds. 
 
Conversely, let µ(p,q,ϕ) hold with g:Np → N. By Lemma 
4.3.4, let A ⊆ N be a special SOI for g of cardinality q+1. 
Then µ(p,q,ϕ) holds for g with universal quantifiers 
restricted to A. Note that g|Ap is isomorphic to a unique 
f:[0,q]p → N by the unique increasing bijection h from A 
onto [0,q]. (Here the isomorphism h acts only on the 
domains, and so only provides the transfer of statements of 
the form f(x1,...,xp) τ f(y1,...,yp) to g(h(x1),...,h(xp)) τ 
g(h(y1),...,h(yp)), where τ ∈ {≤,<,=}). Hence µ(p,q,ϕ) holds 
with f.  
 
Now A is a special SOI for g|Ap. We now show that [0,q] is a 
special SOI for f. By the isomorphism h from g|Ap onto f, 
clearly [0,q] is a strong SOI for f. Now let (x1,...,xp) and 
(y1,...,yp) from [0,q]p have the same order type. Suppose 
also that for all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). 
Suppose  
 

1) f(x1,...,xp) < f(y1,...,yp) 
|z1,...,zp| ≤ |x1,...,xp|. 

 
We must show that f(y1,...,yp) > f(z1,...,zp). Since 
|z1,...,zp| ≤ q, we can take h-1 throughout 1), and then 
apply that A is a special SOI for g|Ap.  
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Note that we can obviously arrange that rng(f) ⊆ [0,(q+1)p] 
by counting. QED 
 
THEOREM 4.3.8. There is a presentation of a primitive 
recursive function h such that the following holds. ACA’ 
proves that λ(k,n,m,R1,...,Rn-1) is true if and only if 
h(k,n,m,R1,...,Rn-1) = 1.  
 
Proof: Start with λ(k,n,m,R1,...,Rn-1). Pass to 
λ’(k’,n’,S1,...,Sn’-1) by Lemma 4.3.1. Pass to µ(p,q,ϕ), q ≥ 
3p, by Lemma 4.3.3. Now apply Lemma 4.3.7. QED 
 
4.4. Proof using 1-consistency. 
 
In this section we show that Propositions A,B can be proved 
in ACA’ + 1-Con(SMAH). Here 1-Con(T) is the 1-consistency 
of T, which asserts that “every Σ01 sentence provable in T 
is true”. 1-Con(T) is also equivalent to “every Π0

2 sentence 
provable in T is true”.   
 
By Lemma 4.2.1, Proposition B implies Proposition A in RCA0. 
Hence it suffices to show that Proposition B can be proved 
in ACA’ + 1-Con(SMAH). 
 
DEFINITION 4.4.1. We write ELG(p,b) for the set of all f ∈ 
ELG of arity p satisfying the following conditions. For all 
x ∈ Np,  
 
i. if |x| > b then (1 + 1/b)|x| ≤ f(x) ≤ b|x|. 
ii. if |x| ≤ b then f(x) ≤ b2. 
 
Note that from Definition 2.1, f ∈ ELG if and only if there 
exist positive integers p,b such that f ∈ ELG(p,b). Also 
note that each ELG(p,b) forms a compact subspace of the 
Baire space of functions from Nk into N. 
 
DEFINITION 4.4.2. Let p,q,b ≥ 1. A p,q,b-structure is a 
system of the form 
 

M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) 
 
such that  
 
1. N* is countable. For specificity, we can assume that N* 
is N. 
2. (N*,0*,1*,<*,+*) is a discretely ordered commutative 
semigroup (see definition below).   
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3. +*:N*2 → N*, f*:N*p → N*, g*:N*q → N*. 
4. f* obeys the above two inequalities for membership in 
ELG(p,b), internally in M*. 
5. g* obeys the above two inequalities for membership in 
ELG(q,b), internally in M*. 
6. Let i ≥ 0. The sum of any finite number of copies of ci* 
is < ci+1*. 
7. The c*’s form a strictly increasing set of 
indiscernibles for the atomic sentences of M*. 
 
Note that the conditions under clauses 4-7 are all 
universal sentences.  
 
Note that we do not require every element of N* to be the 
value of a closed term.  
 
DEFINITION 4.4.3. A discretely ordered commutative 
semigroup is a system (G,0,1,<,+) such that  
 
i. < is a linear ordering of G. 
ii. 0,1 are the first two elements of G. 
iii. x+0 = x.  
iv. x+y = y+x. 
v. (x+y)+z = x+(y+z). 
vi. x < y → x+z < y+z. 
vii. x+1 is the immediate successor of x.   
 
Note that the cancellation law  
 

x+z = y+z → x = y 
 
holds in any discretely ordered commutative semigroup (in 
this sense), since assuming x+z = y+z, the cases x < y and 
y < x are impossible. 
 
In any p,q,b-structure, the cn* have an important 
inaccessibility condition: any closed term whose value is 
cn* is a sum consisting of cn* and zero or more 0*’s. To see 
this, write cn* = t, and write t as a sum, t = s1 + ... + 
sk, k ≥ 1, where each si is either a constant or starts with 
f or g. By 7, cn* is infinite, and so all si that begin with 
f or g must have immediate subterms < cn* (using 4,5). Hence 
all si that begin with f or g must be < cn* (using 4,5,6). 
Hence all si are either < cn* or are a constant. If no si is 
ci* then all si are < cn*, violating 6. Hence some si is cn*. 
By 2, the remaining si must be 0.  
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We can follow the development of section 4.2 starting right 
after the proof of Lemma 4.2.7. In this rerun, we do not 
fix f ∈ ELG(p,b), and g ∈ ELG(q,b).  
 
Instead we fix p,q,b,n ≥ 1, a strongly pn-1-Mahlo cardinal κ, 
and a p,q,b-structure M*, where every element of N* is the 
value of a closed term in M*. Note that we must have b ≥ 2. 
 
As in the development of section 4.2 after the proof of 
Lemma 4.2.7, we extend M* to the structure  
 

M** = (N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...),  
α < κ. 

 
We follow this prior development through the first line of 
the proof of Theorem 4.2.26.  
 
Thus we have r ≥ 1, E ⊆ S ⊆ κ of order type ω, and sets 
E[1] ⊆ ... ⊆ E[n] ⊆ M**[S,r] such that  
 
i. E[1] = {cα**: α ∈ E}. 
ii. For all 1 ≤ i < n, f**E[i] ⊆ E[i+1] ∪. g**E[i+1]. 
 
This construction of E ⊆ S ⊆ κ of order type ω uses that κ 
is strongly pn-1-Mahlo. 
 
In the proof of Theorem 4.2.26, we continued by 
transferring this situation back into N via an S,r(p+q)-
embedding T from M** into M, thus establishing Proposition 
B with the sets TE[1] ⊆ ... ⊆ TE[n].  
 
Here we want to merely transfer this situation back into M* 
via an S,r(p+q)-embedding from M** into M*, and then 
establish uniformities. By Lemma 4.2.12, we use the unique 
isomorphism from M**<S> onto M* which maps {cα**: α ∈ S} 
onto {cj*: j ≥ 0}.  
 
As in section 4.2, for r ≥ 1, we write M*[r] for the set of 
all values of closed terms of length ≤ r in M*.  
 
Thus we obtain r ≥ 1 and infinite sets D[1] ⊆ ... ⊆ D[n] ⊆ 
M*[r] such that  
 
iii. D[1] ⊆ {cj*: j ≥ 0}. 
iv. For all 1 ≤ i < n, f*D[i] ⊆ D[i+1] ∪. g*D[i+1]. 
 
We summarize this modified development as follows.  
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LEMMA 4.4.1. Let p,q,b,n ≥ 1. The following is provable in 
SMAH. Let M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) be a p,q,b-
structure. There exist r ≥ 1 and infinite sets D[1] ⊆ ... ⊆ 
D[n] ⊆ M*[r] such that D[1] ⊆ {cj*: j ≥ 0}, and for all 1 ≤ 
i < n, f*D[i] ⊆ D[i+1] ∪. g*D[i+1]. Furthermore, this 
entire Lemma, starting with “Let p...”, is provable in RCA0. 
 
Proof: Let p,q,b,n,M* be as given. Proceed as discussed 
above. One of the important points is that we only need M* 
= (N*,0*,1*,<*,+*) to obey the axioms for a discretely 
ordered commutative group. QED 
 
By using Lemma 4.4.1, we will no longer need to refer back 
to section 4.2.  
 
We can obviously view clauses 3-7 in the definition of 
p,q,b-structure as universal axioms. Recall that b is a 
standard integer. 
 
We now introduce the notion of p,q,b;r-structure, which is 
a level r approximation to a p,q,b-structure.  
 
DEFINITION 4.4.4. Let p,q,b,r ≥ 1. A p,q,b;r-structure is a 
system of the form  
 

M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) 
 
such that the following holds.  
 
a. Clauses 1,2,3 in the definition of p,q,b-structure, 
without change. 
b. All instantiations of the universal sentences under 
clauses 4-7, by closed terms of length ≤ r. Here length 
counts the total number of occurrences of constant and 
function symbols that appear.  
 
In particular, we are using the following specialization of 
clause 7 in the definition of p,q,b-structure: 
 
7’. The c*’s form a strictly increasing set of 
indiscernibles for the atomic sentences of M* whose terms 
are of length ≤ r.  
 
Again, we do not require that every element of N* be the 
value of a closed term.  
 



 573 

DEFINITION 4.4.5. A p,q,b;r;n-special structure is a 
p,q,b;r-structure M* where there exist infinite D1 ⊆ ... ⊆ 
Dn ⊆ M*[r/(p+q)] such that  
i. For all 1 ≤ i < n, f*Di ⊆ Di+1 ∪. g*Di+1. 
ii. D1 ⊆ {cj:* j ≥ 0}.  
 
We use M*[r/(p+q)] instead of M*[r] since in clause i, we 
are applying f*,g* to p,q, terms, respectively, and want 
all relevant terms to have length at most r.  
 
DEFINITION 4.4.6. The r-type of a p,q,b;r-structure M* is 
the set of all closed atomic sentences, whose terms have 
length ≤ r, involving only the constants 0,1,c0,...,c2r, 
which hold in M*. Thus r-types are finite sets.  
 
DEFINITION 4.4.7. A p,q,b;r-type is the r-type of a 
p,q,b;r-structure. A p,q,b;r;n-special type is the r-type 
of a p,q,b;r;n-special structure.  
 
LEMMA 4.4.2. Let M* be a p,q,b;r-structure. Then M* is a 
p,q,b;r;n-special structure if and only if the r-type of M* 
is a p,q,b;r;n-special type.  
 
Proof: Let M* be a p,q,b;r-structure. First suppose that M* 
is a p,q,b;r;n-special structure. Then by definition, the 
r-type of M* is a p,q,b;r;n-special type.  
 
Conversely, suppose the r-type τ of M* is a p,q,b;r;n-
special type. Let M*’ be a p,q,b;r;n-special structure of 
r-type τ.  
 
Let D1 ⊆ ... ⊆ Dn ⊆ M*’[r/(p+q)] be infinite, where 
i. For all 1 ≤ i < n, f*Di ⊆ Di+1 ∪. g*Di+1. 
ii. D1 ⊆ {cj*: j ≥ 0}.  
 
We can obviously come up with an infinite list of atomic 
sentences whose terms are of length ≤ r, whose truth in M*’ 
witnesses that M*’ is a p,q,b;r;n-special structure. These 
include the atomic sentences with terms of length ≤ r that 
justify that M*' is a p,q,b;r-structure, and the atomic 
sentences with terms of length ≤ r that justify the special 
clauses i,ii just above. This uses the fact that the 
lengths of f(s1,...,sp), g(t1,...,tq) are ≤ r provided the 
lengths of s1,...,sp,t1,...,tq are ≤ r/(p+q). But since M* 
and M*’ have the same r-type, they agree on all such 
statements. Hence M* is a p,q,b;r;n-special structure. QED 
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We can view the following as a uniform version of Lemma 
4.4.1. 
 
LEMMA 4.4.3. Let p,q,b,n ≥ 1. The following is provable in 
SMAH. There exist r ≥ 1 such that every p,q,b;r-structure is 
p,q,b;r;n-special. Furthermore, this entire Lemma, starting 
with “Let p...” is provable in RCA0. 
 
Proof: Fix p,q,b,n ≥ 1. We now argue in SMAH. Suppose this 
is false. Let T be the following theory in the language of 
p,q,b-structures. 
 
i. Let r ≥ 1. Assert the axioms for being a p,q,b;r-
structure. 
ii. Let r ≥ 1 and τ be a p,q,b;r;n-special type. Assert that 
τ is not the r-type of the p,q,b;r-structure. 
 
We claim that every finite subset of T is satisfiable. To 
see this, let r be an upper bound on the r's used in the 
finite subset. By hypothesis, there exists a p,q,b;r-
structure M* that is not a p,q,b;r;n-special structure. Fix 
r,M*. 
 
We claim that M* satisfies the finite subset of T. Let τ be 
the r-type of the p,q,b;r-structure M*. 
 
Obviously M* satisfies all instances of i) for r’ ≤ r. Now 
let 1 ≤ r’ ≤ r and τ’ be a p,q,b;r’;n-special type. Suppose 
that τ’ is the correct r’-type of M*. I.e., M* has r’-type 
τ’. By Lemma 4.4.2, M* is a p,q,b;r’;n-special structure. 
Since M* is a p,q,b;r-structure, M* is a p,q,b;r;n-special 
structure. This is a contradiction.   
 
By the compactness theorem, T is satisfiable. Let M* 
satisfy T. By Lemma 4.4.1, let r be such that M* is 
p,q,b;r;n-special. Let τ be the r-type of M*. Then τ is a 
p,q,b;r;n-special type. By axioms ii) above, τ is not the r-
type of M*. This is a contradiction. QED 
 
LEMMA 4.4.4. There is a presentation of a primitive 
recursive function Q(p,q,b,r,τ) such that the following is 
provable in RCA0. Q(p,q,b,r,τ) = 1 if and only if τ is a 
p,q,b;r-type (as a Gödel number).  
 
Proof: We give the following necessary and sufficient 
finitary condition for τ to be a p,q,b;r-type.  
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1. τ is a set of atomic sentences in 0,1,<,+,f,g,c0,...,c2r 
whose terms have length ≤ r, involving only the constants 
0,1,c0,...,c2r. 
 
2. There is a system V* = 
(D,E,0*,1*,<*,+*,f*,g*,c0*,...,c2r*) which obeys the 
following conditions. 
 
i. D,E have cardinality at least 1 and at most some 
specific iterated exponential in p,q,r.  
ii. 0*,1* ∈ D. 
iii. +*:D2 → E. 
iv. f*:Dp → E. 
v. g*:Dq → E. 
vi. D is the set of values of the closed terms of length ≤ 
r. 
vii. E is D union the values of +*,f*,g*.  
vii. All axioms in clause b in the definition of p,q,b;r-
structure hold in V*.  
viii. All sentences in τ hold in V*. 
ix. All atomic sentences in 0,1,<,+,f,g,c0,...,c2r outside τ, 
with terms of length ≤ r, fail in V*.  
 
This condition is necessary because such a structure V* can 
be obtained from any p,q,b;r-structure M* of r-type τ by 
taking D to be the set of values of closed terms in M* of 
length ≤ r, restricting M* in the obvious way. The atomic 
sentences in 0,1,<,+,f,g,c0,...,c2r that hold in V* are the 
same as those that hold in M*, which are the elements of τ.  
 
For the other direction, let τ,V* be given as above. Using 
the indiscernibility in ix, we can canonically stretch V* 
to 
 

W* = (D’,E’,0*,1*,<*’,+*’,f*’,g*’,c0*’,c1*’,...) 
 
which obviously obeys clause 1 and clauses 2i-2ix above, 
modified to incorporate all constant symbols c0,c1,... . We 
now have all of the conditions we need for being a p,q,b;r-
structure except that we only have D’ ⊆ E’. However, this 
is easily remedied without affecting the properties of W* 
by taking the domain to be E’, and extending +*’,f*’,g*’ 
arbitrarily to the tuples from E’ that are not tuples from 
D’, into E’. This resulting modification of W* is a 
p,q,b,r-structure with r-type τ. QED 
 
Let τ be a p,q,b;r-type. We want to express  
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1) τ is a p,q,b;r;n-special type 
 
as a sentence λ(k,n,p+q+2,R1,...,Rn-1) of section 4.3, and 
then apply Theorem 4.3.8. 
 
Recall that 1) is equivalent to the condition  
 
2) there exists a p,q,b;r-structure M* of r-type τ and 
infinite sets D1 ⊆ ... ⊆ Dn ⊆ M*[r/(p+q)] such that  
i. For all 1 ≤ i < n, f*Di ⊆ Di+1 ∪. g*Di+1. 
ii. D1 ⊆ {cj*: j ≥ 0}. 
 
We now put this in a more syntactic form.  
 
DEFINITION 4.4.8. A p,q,r-term is a closed term in 
0,1,+,f,g and constants c0,c1,... of length at most r.  
 
We identify M*[r] with the set of all p,q,r-terms. Of 
course, a given element of M*[r] may be the value of many 
p,q,r-terms.  
 
DEFINITION 4.4.9. We let τ* be the set of all atomic 
sentences obtained from elements of τ by replacing c’s by 
c’s in an order preserving way. 
 
3) there exist infinite sets T1 ⊆ ... ⊆ Tn of p,q,r/(p+q)-
terms such that  
i. For any two distinct elements t,t’ of Tn, t = t’ ∉ τ*. 
ii. Every t ∈ T1 is some ck.  
iii. Let 1 ≤ i < n and t1,...,tp ∈ Ti. Then there exists t ∈ 
Ti+1 such that f(t1,...,tp) = t ∈ τ*, or there exist 
t1’,...,tq’ ∈ Ti+1 such that f(t1,...,tp) = g(t1’,...,tq’) ∈ 
τ*. 
iv. Let t,t1,...,tq ∈ Tn. Then g(t1,...,tq) = t ∉ τ*. 
v. For all k ≥ 0 and t1,...,tp ∈ Tn, f(t1,...,tp) = ck ∉ τ*. 
 
LEMMA 4.4.5. The following is provable in RCA0. Let 
p,q,b,n,r ≥ 1 and τ be a p,q,b;r-type. Then conditions 1)–3) 
are equivalent. 
 
Proof: Let τ be a p,q,b;r-type. It is obvious that 1),2) are 
equivalent. So assume 2) holds. We derive 3). Let M* be a 
p,q,b;r-structure of r-type τ, and D1 ⊆ ... ⊆ Dn ⊆ 
M*[r/(p+q)] be infinite sets such that  
 
i. For all 1 ≤ i < n, fDi ⊆ Di+1 ∪. gDi+1. 
ii. D1 ⊆ {cj*: j ≥ 1}. 
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For each x ∈ Dn, pick a p,q,r/(p+q)-term x# of least 
possible length whose value in M* is x. If x is some ci* 
then make sure that x# is ci. Set Ti = {x#: x ∈ Di}.  
 
Since D1 ⊆ ... ⊆ Dn, clearly T1 ⊆ ... ⊆ Tn. Since every x ∈ 
Dn lies in M*[r/(p+q)], clearly every x# ∈ Tn has length ≤ 
r/(p+q).  
 
Let t,t' ∈ Tn be distinct. Write t = x#, t' = y#. Then x# ≠ 
y#, and so t = t' is false. Hence t = t' ∉ τ*. Let t ∈ T1. 
Write t = x#, x ∈ D1. Then x is some ck*. Therefore x# = ck. 
This establishes 3i and 3ii.   
 
To verify 3iii, let 1 ≤ i < n and x1#,...,xp# ∈ Ti. Then 
x1,...,xp ∈ Di. Hence f*(x1,...,xp) ∈ f*Di ⊆ Di+1 ∪. g*Di+1.  
 
case 1. f*(x1,...,xp) ∈ Di+1. Let the p,q,r/(p+q)-term t ∈ 
Ti+1 have the value f*(x1,...,xp) in M*. Then f(x1#,...,xp#) = 
t holds in M*, and both terms in this equation have length ≤ 
r. Hence f(x1*,...,xp*) = t ∈ τ*.  
 
case 2. f*(x1,...,xp) ∈ gDi+1. Let f*(x1,...,xp) = 
g*(y1,...,yq), where y1,...,yq ∈ Di+1. Then y1#,...,yq# ∈ Ti+1. 
Also f(x1*,...,xp*) = g(y1*,...,yq*) holds in M*, and both 
terms in this equation have length ≤ r. Hence f(x1*,...,xp*) 
= g(y1*,...,yq*) ∈ τ*.  
 
To verify 3iv, let x#,x1#,...,xq# ∈ Tn. Then g(x1#,...,xq#) = 
x# ∉ τ* because g*(x1,...,xq) ≠ x in M*.  
 
To verify 3v, let k ≥ 0 and x1#,...,xp# ∈ Tn. Then 
f(x1#,...,xp#) = ck ∉ τ* because f*(x1,...,xp) ≠ ck* in M*.   
 
Now assume that 3) holds. We establish 2). Let T1 ⊆ ... ⊆ Tn 
be infinite sets of p,q,r/(p+q)-terms such that  
 
i. For any two distinct elements t,t’ of Tn, t = t’ ∉ τ*. 
ii. For all t ∈ T1 there exists k ≥ 0 such that t is ck.  
iii. Let 1 ≤ i < n and t1,...,tp ∈ Ti. Then there exists t ∈ 
Ti+1 such that f(t1,...,tp) = t ∈ Ti+1, or there exist 
t1’,...,tq’ ∈ Ti+1 such that f(t1,...,tp) = g(t1’,...,tq’) ∈ 
τ*. 
iv. Let t,t1,...,tq ∈ Tn. Then g(t1,...,tq) = t ∉ τ*. 
v. For all k ≥ 0 and t1,...,tp ∈ Tn, f(t1,...,tp) = ck ∉ τ*. 
 
Let M* be any p,q,b;r-structure of r-type τ. For each 1 ≤ i 
≤ n, let Di be the set of values of terms in Ti. Then D1 ⊆ 
... ⊆ Dn ⊆ M*[r/(p+q)]. 
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Let 1 ≤ i < n and x ∈ f*Di. We claim that x ∈ Di+1 ∪ g*Di+1.  
 
To see this, write x = f*(x1,...,xp), x1,...,xp ∈ Di, and let 
t1,...,tp ∈ Ti have values x1,...,xp, respectively. By 3iii, 
let t ∈ Ti+1, where f(t1,...,tp) = t ∈ τ*, or there exists 
t1’,...,tq’ ∈ Ti+1 such that f(t1,...,tp) = g(t1’,...,tq’) ∈ 
τ*.  
 
case 1. f(t1,...,tp) = t ∈ τ*. Then f*(x1,...,xp) = x ∈ Di+1.  
 
case 2. Let t1’,...,tq’ ∈ Ti+1, where f(t1,...,tp) = 
g(t1’,...,tq’) ∈ τ*. Let the values of t1’,...,tq’ be 
y1,...,yq ∈ Di+1, respectively. Then f*(x1,...,xp) = 
g*(y1,...,yq).   
 
Now suppose x ∈ Di+1 ∩ gDi+1. Let x be the value of t ∈ Ti+1, 
and write x = g(y1,...,yq), y1,...,yq ∈ Di+1. Let t1,...,tq ∈ 
Ti+1 have values y1,...,yq, respectively. By 3iv, g(t1,...,tq) 
= t ∉ τ*. Since both terms in this equation have length ≤ r, 
we see that g(t1,...,tq) = t is false in M*. Hence 
g*(y1,...,yq) ≠ x. This is a contradiction.  
 
Finally, let x ∈ D1. Then x is the value of a term t ∈ T1. 
By 3ii, t is some ck. Hence x is some ck*. QED 
 
We can conveniently represent the p,q,r-terms as elements 
of Nk in the following way. This integer k will be set 
below. 
 
DEFINITION 4.4.10. Two p,q,r-terms have the same shape if 
and only if the second can be obtained from the first by 
replacing c’s by c’s, where we do not require that equal 
c’s be replaced by equal c’s. 
 
Let e be the number of shapes of the p,q,r-terms.  
 
We represent the p,q,r-term σ as follows. Let the shape of 
σ be 1 ≤ i ≤ e. Here the shapes have been arbitrarily 
indexed without repetition, by 1 ≤ i ≤ e.  
 
DEFINITION 4.4.9. The representations of σ are obtained as 
follows. First write down a sequence of e elements of N, 
where exactly i of these elements are the same as the first 
of these elements. Follow this by the sequence of 
subscripts of the c’s that appear from left to right. If 
this sequence of c’s is of length < r then fill it out to 
length r by repeating the last argument. This results in a 
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representation of σ as an element of Ne+r. Obviously, σ will 
have infinitely many representations.  
 
Set k = e+r. We will use the above representation of p,q,r-
terms to write 3) in the form of a sentence 
λ(k,n,p+q+2,R1,...,Rn-1), as in section 4.3.  
 
4) There exist infinite sets B1 ⊆ ... ⊆ Bn ⊆ Nk of 
p,q,r/(p+q)-representations such that  
a. Distinct elements of Bn represent distinct p,q,r/(p+q)-
terms. 
b. For each 1 ≤ i ≤ n, let Ti be the p,q,r/(p+q)-terms 
represented by the elements of Bi. Then T1,...,Tn obeys 3) 
above.   
 
Note the use of τ* in 3). We represent elements of τ* as a 
p,q,r-representation followed by two equal elements of N 
(indicating <), or followed by two unequal elements of N 
(indicating =), followed by a p,q,r-representation. Keep in 
mind that the lengths of p,q,r-representations are fixed at 
k = e+r. Hence representations of elements of τ* are fixed 
at length k+2+k = 2k+2. If τ is a p,q,b;r-type, then τ is 
finite and τ* is order invariant.   
 
LEMMA 4.4.6. The following is provable in RCA0. Let 
p,q,b,n,r ≥ 1 and τ be a p,q,b;r-type. Conditions 1)–4) are 
each equivalent to λ(k,n,p+q+2,R1,...,Rn-1), for some order 
invariant relations R1,...,Rn-1 ⊆ N2k(p+q+2) obtained explicitly 
from p,q,b,n,r,τ.   
 
Proof: We argue in RCA0. Let p,q,b,n,r ≥ 1 and τ be a 
p,q,b;r-type. It is clear that 3) is equivalent to 4), and 
hence by Lemma 4.4.5, 1)–4) are equivalent. We now 
exclusively use clause 4.  
 
B1 ⊆ ... ⊆ Bn asserts, for each 1 ≤ i < n, that (∀x ∈ Bi)(∃y 
∈ Bi+1)(x = y).  
 
“Distinct elements of Bn represent distinct p,q,r/(p+q)-
terms” is of the form (∀x,y ∈ Bn)(S(x,y)).  
 
“Distinct elements t,t’ of the corresponding Tn have t = t’ 
∉ τ*” is of the form (∀x,y ∈ Bn)(S(x,y)).  
 
Clause 3ii for the corresponding T1 is of the form (∀x ∈ 
B1)(S(x)). 
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Clause 3iii for the corresponding T’s is of the form (∀i ∈ 
[1,n))(∀x1,...,xp ∈ Bi)(∃y1,...,yq ∈ Bi+1)(S(x1,...,xp, 
y1,...,yq)). 
 
Clause 3iv for the corresponding Tn is of the form 
(∀x1,...,xq+1 ∈ Bn)(S(x1,...,xq+1)).  
 
Clause 3v for the corresponding Tn is of the form 
(∀x1,...,xp+1 ∈ Bn)(S(xp+1) → S’(x1,...,xp+1)).  
 
Here all the S’s are order invariant relations. QED     
 
LEMMA 4.4.7. There is a presentation of a primitive 
recursive function H such that the following is provable in 
ACA’. Let p,q,b,n,r ≥ 1 and τ be a p,q,b;r-type. Then 
H(p,q,b,r,n,τ) = 1 if and only if τ is a p,q,b;r;n-special 
type (as a Gödel number). 
 
Proof: Let p,q,b,r,n,τ be given, where τ is a p,q,b;r-type. 
Apply Lemma 4.4.6 to obtain order invariant R1,...,Rn-1. Now 
apply Theorem 4.3.8. QED 
 
We fix H as given by Lemma 4.4.7.   
 
LEMMA 4.4.8. Let p,q,b,n ≥ 1. The following is provable in 
SMAH. (∃r)(∀τ)(Q(p,q,b,r,τ) = 1 → H(p,q,b,r,n,τ) = 1). 
Furthermore, this entire Lemma, starting with “Let p...”, 
is provable in RCA0. 
 
Proof: Let p,q,b,n be as given. By Lemma 4.4.3, SMAH proves 
the existence of r ≥ 1 such that every p,q,b;r-type is a 
p,q,b;r;n-special type. Now apply Lemmas 4.4.4 and 4.4.7. 
QED  
 
LEMMA 4.4.9. RCA0 + 1-Con(SMAH) proves (∀p,q,b,n ≥ 1) 
(∃r)(∀τ)(Q(p,q,b,r,τ) = 1 → H(p,q,b,r,n,τ) = 1). 
 
Proof: We argue within RCA0 + 1-Con(SMAH). Let p,q,b,n ≥ 1 
be given. By Lemma 4.4.8,  
 
1) (∃r)(∀τ)(Q(p,q,b,r,τ) = 1 → H(p,q,b,r,n,τ) = 1) 
 
is provable in SMAH. Note that the quantifier ∀τ in 1) is 
bounded. Hence by 1-Con(SMAH), this Σ01 sentence is true. 
QED 
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LEMMA 4.4.10. The following is provable in ACA’ + 1-
Con(SMAH). (∀p,q,b,n ≥ 1)(∃r)(∀τ)(τ is a p,q,b;r-type → τ 
is a p,q,b;r;n-special type).   
 
Proof: By Lemmas 4.4.4, 4.4.7, and 4.4.9. QED  
 
For Propositions C,D, see Appendix A.  
 
THEOREM 4.4.11. Propositions A,B,C,D are provable in ACA’ + 
1-Con(SMAH). 
 
Proof: Propositions A,C,D are immediate consequences of 
Proposition B over RCA0 (see Lemmas 4.2.1 and 5.1.1). We 
argue in ACA’ + 1-Con(SMAH). Let p,q,b,n ≥ 1, and f ∈ 
ELG(p,b), g ∈ ELG(q,b). Let r be given by Lemma 4.4.10.  By 
Ramsey’s theorem for 2r-tuples in ACA’, we can find a 
p,q,b;r-structure M = (N,0,1,<,+,f,g,c0,c1,...). Let τ be 
its r-type. By Lemma 4.4.10, τ is a p,q,b;n;r-special type. 
By Lemma 4.4.2, M is a p,q,b;r;n-special structure. Let D1 ⊆ 
... ⊆ Dn ⊆ N, where D1 ⊆ {c0,c1,...}, and each fDi ⊆ Di+1 ∪. 
gDi+1, and D1 ∩ fDn = ∅. This is Proposition B, thus 
concluding the proof. QED   
 

CHAPTER 5 
INDEPENDENCE OF EXOTIC CASE 
 
5.1. Proposition C and Length 3 Towers. 
5.2. From Length 3 Towers to Length n Towers. 
5.3. Countable Nonstandard Models with Limited 
Indiscernibles. 
5.4. Limited Formulas, Limited Indiscernibles, x-
definability, Normal Form. 
5.5. Comprehension, Indiscernibles. 
5.6. Π0

1 Correct Internal Arithmetic, Simplification. 
5.7. Transfinite Induction, Comprehension, Indiscernibles, 
Infinity, Π0

1 Correctness.  
5.8. ZFC + V = L, Indiscernibles, and Π0

1 Correct 
Arithmetic. 
5.9. ZFC + V = L + {(∃κ)(κ is strongly k-Mahlo)}k + 
TR(Π0

1,L), and 1-Con(SMAH). 
 
5.1. Proposition C and length 3 towers. 
 
In sections 5.1 – 5.9 we show that Proposition A implies 
the 1-consistency of SMAH (ZFC with strongly Mahlo 
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cardinals of every specific finite order). The derivation 
is obviously conducted in ZFC. With some detailed 
examination, we see that this derivation can be carried out 
in the system ACA’ used in Chapter 4. For a detailed 
discussion of RCA0 and other subsystems of second order 
arithmetic, see [Si99]. 
 
We actually show that the specialization of Proposition A 
to rather concrete functions implies the 1-consistency of 
SMAH.  
 
We use the following very basic functions on the set of all 
nonnegative integers N. 
 
DEFINITION 5.1.1. We define +,-,•,↑,log as follows. 
1. Addition. x+y is the usual addition. 
2. Subtraction. Since we are in N, x-y is defined by the 
usual x-y if x ≥ y; 0 otherwise. 
3. Multiplication. x•y is the usual multiplication. 
4. Base 2 exponentiation. x↑ is the usual base 2 
exponentiation. 
5. Base 2 logarithm. Since we are in N, log(x) is the floor 
of the usual base 2 logarithm, with log(0) = 0. 
 
DEFINITION 5.1.2. TM(0,1,+,-,•,↑,log) is the set of all 
terms built up from 0,1,+,-,•,↑,log, and variables v1,v2,... 
.  
 
DEFINITION 5.1.3. Each t ∈ TM(0,1,+,-,•,↑,log) gives rise 
to infinitely many functions, one of each arity that is at 
least as large as all subscripts of variables appearing in 
t, as follows. Let the variables of t be among v1,...,vk, k 
≥ 1. Then we associate the function f:Nk → N given by  
 

f(v1,...,vk) = t(v1,...,vk) 
 
where t is interpreted according to Definition 5.1.1.  
 
DEFINITION 5.1.4. BAF (basic functions) is the set of all 
functions given by terms in 0,1,+,-,•,↑,log, according to 
Definition 5.1.3. 
 
It is very convenient to extend TM(0,1,+,-,•,↑,log) with 
definition by cases, to get an alternative description of 
BAF.  
 
DEFINITION 5.1.5. ETM(0,1,+,-,•,↑,log) is the set of 
“extended terms” of the following form:  
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t1 if ϕ1; 
t2 if ϕ2 ∧ ¬ϕ1; 

... 
tn if ϕn ∧ ¬ϕ1 ∧ ... ∧ ¬ϕn-1; 

tn+1 if ¬ϕ1 ∧ ... ∧ ¬ϕn. 
 
where n ≥ 1, each ti ∈ TM(0,1,+,-,•,↑,log), and each ϕi is a 
propositional combination of atomic formulas of the forms s 
< t, s = t, where s,t ∈ TM(0,1,+,-,•,↑,log).  
 
DEFINITION 5.1.6. As in Definition 5.1.3, each t ∈ 
ETM(0,1,+,-,•,↑,log) gives rise to infinitely many 
functions, one of each arity at least as large as all 
subscripts of variables appearing in t.  
 
DEFINITION 5.1.7. EBAF (extended basic functions) is the 
set of all functions arising in this manner from 
ETM(0,1,+,-,•,↑,log).  
 
We now show that EBAF = BAF.  
 
DEFINITION 5.1.8. We use L for the language in first order 
predicate calculus with equality based on the nonlogical 
symbols <,0,1,+,-,•,↑,log. 
 
Thus TM(0,1,+,-,•,↑,log) is the set of all terms in L. Also 
the formulas ϕi used in the extended terms above are exactly 
the quantifier free formulas in L.   
 
LEMMA 5.1.1. BAF ⊆ EBAF.  
 
Proof: Let t ∈ TM(0,1,+,-,•,↑,log), whose variables are 
among v1,...,vk, k ≥ 1. The function f(v1,...,vk) = 
t(v1,...,vk) is also defined by 
 

t if v1 = v1; 
t if ¬v1 = v1. 

 
which places f in EBAF. QED 
 
LEMMA 5.1.2. The following functions lie in BAF. 
i. neg(x) = 1 if x = 0; 0 otherwise. 
ii. α(x) = 1 if x ≥ 1; 0 otherwise.  
iii. conj(x,y) = 1 if x ≥ 1 ∧ y ≥ 1; 0 otherwise. 
iv. disj(x,y) = 1 if x ≥ 1 ∨ y ≥ 1; 0 otherwise. 
v. les(x,y) = 1 if x < y; 0 otherwise.  
vi. eq(x,y) = 1 if x = y; 0 otherwise.  
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Proof: Note that  
 

neg(x) = 1-x. 
α(x) = 1-(1-x). 

conj(x,y) = α(x)•α(y). 
disj(x,y) = neg(conj(neg(x),neg(y)). 

les(x,y) = α(y-x). 
eq(x,y) = 1-((x-y)+(y-x)). 

 
QED 
 
LEMMA 5.1.3. Let ϕ be a quantifier free formula in L whose 
variables are among v1,...,vk, k ≥ 1. Then the function 
fϕ(x1,...,xk) = 1 if ϕ(x1,...,xk); 0 otherwise, lies in BAF. 
 
Proof: Fix k ≥ 1. We can assume that ϕ uses only the 
connectives ¬,∧. We prove this by induction on ϕ obeying 
the hypotheses.  
 
case 1. ϕ is s = t. Then fϕ(v1,...,vk) = 
eq(s(v1,...,vk),t(v1,...,vk)). 
case 2. ϕ is s < t. Then fϕ(v1,...,vk) = 
les(s(v1,...,vk),t(v1,...,vk)). 
case 3. ϕ is ¬ψ. Then fϕ(v1,...,vk) = neg(fψ(v1,...,vk)). 
case 4. ϕ is ψ ∧ ρ. Then fϕ(v1,...,vk) = 
conj(fψ(v1,...,vk),fρ(v1,...,vk)). 
 
By Lemmas 5.1.1, 5.1.2, and the induction hypothesis, in 
each case the function constructed lies in BAF. QED 
 
THEOREM 5.1.4. EBAF = BAF. 
 
Proof: By Lemma 5.1.1, it suffices to prove EBAF ⊆ BAF. Now 
let f:Nk → N be the function in EBAF given by f(v1,...,vk) =  
 

t1 if ϕ1; 
t2 if ϕ2 ∧ ¬ϕ1; 

... 
tn if ϕn ∧ ¬ϕ1 ∧ ... ∧ ¬ϕn-1; 

tn+1 if ¬ϕ1 ∧ ... ∧ ¬ϕn. 
 
where the variables in t1,...,tn+1,ϕ1,...,ϕn+1 are among 
x1,...,xk, k ≥ 1.  
 
Then f:Nk → N is given by f(v1,...,vk) =  
 

fϕ_1•t1 + ... + fϕ_n∧¬ϕ_1∧...∧¬ϕ_n-1•tn + f¬ϕ_1∧...∧¬ϕ_n•tn+1 
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using the notation of Lemma 5.1.3, with + associated to the 
left. Hence f ∈ BAF by Lemma 5.1.3. QED 
 
It is useful to know that certain functions lie in BAF. The 
powers of 2 are taken to be the integers 1,2,4,... .  
 
THEOREM 5.1.5. The following functions lie in BAF. 
i. All constant functions of every arity. 
ii. nx, where n is a given power of 2. 
iii. The greatest power of 2 that is ≤ x if x > 0; 0 
otherwise.   
 
Proof: i. This is obvious using the term 1+...+1. 
ii. Let n = 2k, k ≥ 0. Write nx = 2kx = (kx)↑ = (x+...+x)↑. 
iii. log(x)↑ is the greatest power of 2 that is ≤ x if x > 
0; 1 otherwise. To fix this, take log(x)↑-(1-x).    
 
QED 
 
In this Chapter, we will show that the following 
specialization of Proposition A to these rather concrete 
functions implies the consistency of SMAH. Specifically, 
 
PROPOSITION C. For all f,g ∈ ELG ∩ SD ∩ BAF, there exist 
A,B,C ∈ INF such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
We have carefully chosen BAF so that we can choose A,B,C to 
be (primitive) recursive sets. Accordingly, Proposition C 
becomes an explicitly Π0

3 sentence. See Theorem 6.2.20.  
 
We use ELG ∩ SD ∩ BAF instead of ELG ∩ BAF because 
expansive linear growth is an asymptotic condition, and so 
ELG ∩ BAF is not included in SD. In BRT, the best course is 
to include both asymptotic and non asymptotic classes, as 
they behave differently. E.g., A ∪. fA = U is correct in 
EBRT in A,fA on SD, but incorrect in EBRT in A,fA on ELG. 
The function f(x) = 2n, which lies in ELG\SD, is a 
counterexample.  
 
In the remainder of this chapter, we will assume 
Proposition C. Our aim is to construct a model of the 
system  
 
SMAH = ZFC + {there exists a strongly k-Mahlo cardinal}k. 
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Our construction will take place well within ZFC. (In 
section 5.9, we will analyze just what axioms are used for 
this entire development.) This will establish that none of 
Propositions A,B,C are provable in SMAH, provided SMAH is 
consistent. For otherwise, SMAH would prove its own 
consistency, and hence would be inconsistent by Gödel’s 
second incompleteness theorem. 
 
DEFINITION 5.1.9. The Π0

1(L) sentences are the sentences in 
L which begin with zero or more universal quantifiers, 
followed by a formula ψ in which all quantifiers are 
bounded. I.e., all quantifiers in ψ appear, in abbreviated 
form, as  
 

(∀x < t) 
(∃x < t) 

 
where x is a variable, t is a term in which x does not 
appear, and where the intended range of all variables is N.  
 
DEFINITION 5.1.10. We use TR(Π0

1,L) for the set of all 
Π0

1(L) sentences that are true in N, using the 
interpretation in Definition 5.1.1.  
 
We will actually establish a stronger result. Using 
Proposition C, we will construct a model of the system  
 

SMAH + TR(Π0
1,L). 

 
Strictly speaking, Π0

1 sentences are obviously not in the 
language of set theory. However, in weak fragments of set 
theory, there is the standard version of N,<,0,1,+,•,↑,log, 
where N is the set theoretic ω, 0 is ∅, 1 is {∅}, and <,+,-
,•,↑,log are treated as sets of 2-tuples, 3-tuples, 3-
tuples, 3-tuples, 2-tuples, and 2-tuples, respectively. 
 
Accordingly, we view the system SMAH + TR(Π0

1,L) as a set 
theory that extends the system SMAH. The axioms of SMAH + 
TR(Π0

1,L) do not form a recursive set. However, this will 
not cause any difficulties.  
 
DEFINITION 5.1.11. For x ∈ Nr, |x| denotes the maximum term 
of x. 
 
DEFINITION 5.1.12. For E ⊆ N, we write E* for E\{min(E)}. 
If E = ∅ then we take E* = ∅.  
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The reader should not confuse our E* with the set of all 
finite sequences from E.  
 
Recall Definition 1.1.3.  
 
DEFINITION 5.1.13. For S ⊆ N and p,q ∈ N, we define  
 

pS+q = {pn+q: n ∈ S}. 
 
LEMMA 5.1.6. Let f,g ∈ ELG ∩ SD ∩ BAF. There exist f’,g’ ∈ 
ELG ∩ SD ∩ BAF such that the following holds. Let S ⊆ N. 
i) g’S = g(S*) ∪ 6S+2; 
ii) f'S = f(S*) ∪ g’S ∪ 6f(S*)+2 ∪ 2S*+1 ∪ 3S*+1. 
 
Proof: Let f,g ∈ ELG ∩ SD ∩ BAF, where f:Np → N and g:Nq → 
N. We define g’:Nq+1 → N as follows. Let x1,...,xq,y ∈ N.  
 
case 1. x1,...,xq > y. Set g’(x1,...,xq,y) = g(x1,...,xq). 
 
case 2. Otherwise. Set g’(x1,...,xq,y) = 6|x1,...,xq,y|+2.  
 
We define f’:N5p+q+1 → N as follows. Let x1,...,x5p,y1,...,yq+1 
∈ N.  
 
case a. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| = |x4p+1,...,x5p|. Set 
f’(x1,...,x5p,y1,...,yq+1) = g’(y1,...,yq+1). 
 
case b. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| < min(x4p+1,...,x5p). Set 
f’(x1,...,x5p,y1,...,yq+1) = f(x4p+1,...,x5p). 
 
case c. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x4p+1,...,x5p| < min(x3p+1,...,x4p). Set 
f’(x1,...,x5p,y1,...,yq+1) = 6f(x3p+1,...,x4p)+2.  
 
case d. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(x2p+1,...,x3p). Set 
f’(x1,...,x35,y1,...,yq+1) = 2|x2p+1,...,x3p|+1. 
 
case e. |y1,...,yq+1| = |x1,...,xp| = |x2p+1,...,x3p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(xp+1,...,x2p). Set 
f’(x1,...,x5p,y1,...,yq+1) = 3|xp+1,...,x2p|+1. 
 
case f. Otherwise. Set f’(x1,...,x5p,y1,...,yq+1) = 
2|x1,...,x5p,y1,...,yq+1|+1. 
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Note that in case 1, |x1,...,xq,y| = |x1,...,xq|. Also note 
that in cases a)-e),  
 

|x1,...,x5p,y1,...,yq+1| = |y1,...,yq+1| 
|x1,...,x5p,y1,...,yq+1| = |x4p+1,...,x5p| 
|x1,...,x5p,y1,...,yq+1| = |x3p+1,...,x4p| 
|x1,...,x5p,y1,...,yq+1| = |x2p+1,...,x3p| 
|x1,...,x5p,y1,...,yq+1| = |xp+1,...,x2p| 

 
respectively. Hence f',g' ∈ ELG ∩ SD ∩ BAF.  
 
Let S ⊆ N. From S, case 1 produces exactly g(S*). Case 2 
produces exactly 6S+2. This establishes i). 
 
Case a) produces exactly g’S. Case b) produces exactly 
f(S*). Case c) produces exactly 6f(S*)+2. Case d produces 
exactly 2S*+1. Case e produces exactly 3S*+1.  
 
Case f) produces exactly 2S*+1 since 2min(S)+1 is not 
produced. This is because 2min(S)+1 can only be produced 
from case f) if all of the arguments are min(S), which can 
only happen under case a). This establishes ii). QED 
 
LEMMA 5.1.7. Let f,g ∈ ELG ∩ SD ∩ BAF and rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  
i) fA ∩ 6N ⊆ B ∪ gB; 
ii) fB ∩ 6N ⊆ C ∪ gC; 
iii) fA ∩ 2N+1 ⊆ B; 
iv) fA ∩ 3N+1 ⊆ B; 
v) fB ∩ 2N+1 ⊆ C; 
vi) fB ∩ 3N+1 ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ fB = ∅. 
 
Proof: Let f,g be as given. Let f’,g’ be given by Lemma 
5.1.6. Let A,B,C ⊆ N be given by Proposition C for f’,g’. 
We have  
 

A ∪. f’A ⊆ C ∪. g’B 
 A ∪. f’B ⊆ C ∪. g’C. 

 
Let n ∈ B. Then 6n+2 ∈ g’B ⊆ f’B, and so 6n+2 ∈ C ∨ 6n+2 ∈ 
g’C. Now 6n+2 ∉ C by C ∩ g’B = ∅. Hence 6n+2 ∈ g’C. By 
Lemma 5.1.6 i) and rng(g) ⊆ 6N, we have 6n+2 ∈ 6C+2. 
Therefore n ∈ C. So we have established that B ⊆ C.  
 
Let n ∈ A. Then n ∈ C ∨ n ∈ g’B. Now n ∉ f’B by A ∩ f’B = 
∅. Also g’B ⊆ f’B. Hence n ∉ g’B, n ∈ C. Also 6n+2 ∈ g’A ⊆ 



 589 

f’A, and so 6n+2 ∈ C ∨ 6n+2 ∈ g’B. Since n ∈ C, we have 
6n+2 ∈ g’C. By C ∩ g’C = ∅, we have 6n+2 ∉ C. Hence 6n+2 ∈ 
g’B. Since rng(g) ⊆ 6N, we have 6n+2 ∈ 6B+2. Hence n ∈ B. 
So we have established that A ⊆ B.  
 
We have thus shown that A ⊆ B ⊆ C ⊆ N. 
 
We now verify all of the required conditions i)–viii) above 
using the three sets A*,B*,C*.  
 
Firstly note that A* ⊆ B* ⊆ C* ⊆ N\{0}. To see this, let n 
∈ A*. Then n ∈ A ∧ n > min(A). Hence n ∈ B ∧ n > min(B), 
and so n ∈ B*. By the same argument, n ∈ B* → n ∈ C*.  
 
We now claim that A* ∩ f(B*) = ∅. This follows from A* ⊆ A 
and f(B*) ⊆ f’B.  
 
Next we claim that C* ∩ g(C*) = ∅. This follows from C* ⊆ C 
and g(C*) ⊆ g’C.  
 
Now we claim that f(A*) ∩ 6N ⊆ B* ∪ g(B*). To see this, let 
n ∈ f(A*) ∩ 6N. Then n ∈ f’A. Hence n ∈ C ∪ g’B.   
 
case 1. n ∈ C. Now 6n+2 ∈ g’C and 6n+2 ∈ 6f(A*)+2 ⊆ f’A. 
Since C ∩ g’C = ∅, we have 6n+2 ∉ C. Also 6n+2 ∈ C ∪ g’B. 
Hence 6n+2 ∈ g’B. Since rng(g) ⊆ 6N, we have 6n+2 ∈ 6B+2, 
and so n ∈ B. Since n ∈ f(A*) and f is strictly dominating, 
we have n > min(A) ≥ min(B). Hence n ∈ B*. 
 
case 2. n ∈ g’B. Since n ∈ 6N, n ∈ g(B*). This establishes 
the claim. 
 
Next we claim that f(B*) ∩ 6N ⊆ C* ∪ g(C*). To see this, 
let n ∈ f(B*) ∩ 6N. Then n ∈ f’B. Hence n ∈ C ∪ g’C.  
 
case 1’. n ∈ C. Since n ∈ f(B*) and f is strictly 
dominating, we have n > min(B) ≥ min(C). Hence n ∈ C*. 
 
case 2’. n ∈ g’C. Since n ∈ 6N, n ∈ g(C*). This establishes 
the claim. 
 
Now we claim that f(A*) ∩ 2N+1, f(A*) ∩ 3N+1 ⊆ B*. To see 
this, let n ∈ f(A*), n ∈ 2N+1 ∪ 3N+1. Then n ∈ f’A, and so 
n ∈ C ∪ g’B. Recall that rng(g) ⊆ 6N. Since n ∈ 2N+1 ∪ 
3N+1, we see that n ∉ g’B, and so n ∈ C. Now 6n+2 ∈ g’C and 
6n+2 ∈ 6f(A*)+2 ⊆ f’A. Since C ∩ g’C = ∅, we have 6n+2 ∉ 
C. Also 6n+2 ∈ f'A ⊆ C ∪ g’B. Hence 6n+2 ∈ g’B. Since 
rng(g) ⊆ 6N, we have 6n+2 ∈ 6B+2, and so n ∈ B. Since n ∈ 
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f(A*) and f is strictly dominating on A, we have n > min(A) 
≥ min(B). Hence n ∈ B*. 
  
Finally we claim that f(B*) ∩ 2N+1, f(B*) ∩ 3N+1 ⊆ C*. To 
see this, let n ∈ f(B*), n ∈ 2N+1 ∪ 3N+1. Then n ∈ f’B, and 
so n ∈ C ∪ g’C. Since n ∈ 2N+1 ∪ 3N+1, we have n ∉ 6N ∪ 
6N+2. Hence n ∉ g’C, n ∈ C. Since n ∈ f(B*) and f is 
strictly dominating, n > min(B) ≥ min(C). Hence n ∈ C*. QED 
 
The phrase "length 3 towers" mentioned in the title of this 
section refers to the A ⊆ B ⊆ C in Lemma 5.1.7.  
 
5.2. From length 3 towers to length n 
towers. 
 
In this section, we obtain a variant of Lemma 5.1.7 (Lemma 
5.2.12) involving length n towers rather than length 3 
towers of infinite sets. However, we only assert that the 
sets in the length n tower have at least r elements, for 
any r ≥ 1. Thus we pay a real cost for lengthening the 
towers.  
 
Because the sets in the tower are finite and not infinite, 
certain indiscernibility properties of the first set in the 
tower must now be stated explicitly as additional 
conditions. See Lemma 5.2.12, iii), viii). These 
indiscernibility properties can of course be obtained from 
the usual infinite Ramsey theorem by taking a subset of the 
infinite A ⊆ N from Lemma 5.1.7 - but then we would only 
have a tower of length 3.   
 
We will apply Lemma 5.1.7 with f arising from term 
assignments. Thus Lemma 5.2.12 uses g and not f.  
 
Recall the definition of the language L (Definition 5.1.8). 
In order to avoid having to write too many parentheses in 
terms and formulas of L, we use the following two standard 
precedence tables. 
 

↑ 
• 

+,- 
 
¬ 
∧,∨ 
→,↔ 
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DEFINITION 5.2.1. Let t be a term of L. We write #(t) for 
the maximum of: the subscripts of variables in t, and the 
number of occurrences of the symbols  
 

01+-•↑()v1v2,...log 
 
We count log as a single symbol. Note that for all n ≥ 0, 
{t: #(t) ≤ n} is finite.  
 
DEFINITION 5.2.2. Let ϕ be a quantifier free formula in L. 
We write #(ϕ) for the maximum of: the subscripts of 
variables in ϕ, and the number of occurrences of the 
symbols  
 

01+-•↑()=<¬∧∨→↔v1v2,...,vr log 
 
in ϕ. Note that for all n ≥ 0, {ϕ: #(ϕ) ≤ n} is finite. 
 
DEFINITION 5.2.3. For all r ≥ 1, let β(r) be the number of 
terms t in L with #(t) ≤ r. We fix a doubly indexed sequence 
t[i,r] of terms in L, which is defined if and only if r ≥ 1 
and 1 ≤ i ≤ β(r). For each r ≥ 1, the sequence t[i,r], 1 ≤ i 
≤ β(r), enumerates the terms t with #(t) ≤ r, without 
repetition. 
 
DEFINITION 5.2.4. For all r ≥ 1, let γ(r) be the number of 
quantifier free formulas ϕ in L with #(ϕ) ≤ r. We fix a 
doubly indexed sequence ϕ[i,r] of quantifier free formulas 
in L, which is defined if and only if r ≥ 1 and 1 ≤ i ≤ 
γ(r). For each r ≥ 1, the sequence ϕ[i,r], 1 ≤ i ≤ γ(r), 
enumerates the quantifier free formulas ϕ with #(ϕ) ≤ r, 
without repetition. 
 
We adhere to the convention of displaying all free 
variables (and possibly additional variables). Thus 
t(v1,...,vn) and ϕ(v1,...,vm) respectively indicate that all 
variables in the term t are among the first n variables 
v1,...,vn, and all variables in the quantifier free formula 
ϕ are among the first m variables v1,...,vm.  
 
Note that all terms t[i,r] have variables among v1,...,vr, 
and all formulas ϕ[i,r] have variables among v1,...,vr.  
 
We want to be more specific about the enumerations of terms 
and formulas in Definitions 5.2.3, 5.2.4. 
 
DEFINITION 5.2.5. Let r ≥ 1. The enumeration 
t[1,r],...,t[β(r),r] in Definition 5.2.3 is the enumeration 
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of all terms t of L with #(t) ≤ r, ordered first by #(t), 
and second by the lexicographic ordering of strings of 
symbols, where, for specificity, the symbols are ordered by  
 

01+-•↑()v1v2...vr log  
 
DEFINITION 5.2.6. Let r ≥ 1. The enumeration 
ϕ[1,r],...,ϕ[γ(r),r] in Definition 5.2.4 is the enumeration 
of all quantifier free formulas ϕ of L with #(ϕ) ≤ r, 
ordered first by #(ϕ), and second by the lexicographic 
ordering of strings of symbols, where the symbols are 
ordered by  
 

01+-•↑()=<¬∧∨→↔v1v2...vr log   
 
An important consequence of the way we have enumerated 
terms and formulas is the following.  
 

1 ≤ i ≤ β(r) ∧ 1 ≤ r ≤ r’ → t[i,r] = t[i,r’]. 
1 ≤ i ≤ γ(r) ∧ 1 ≤ r ≤ r’ → ϕ[i,r] = ϕ[i,r’]. 

 
DEFINITION 5.2.7. For E ⊆ N and r ≥ 1, we write α(r,E) for 
the set of values of all terms t[i,r], at assignments f to 
the variables in t, with rng(f) ⊆ E, including t[i,r] that 
are closed.  
 
DEFINITION 5.2.8. For E ⊆ N and integers p,q ≥ 0, we write 
α(r,E;p,q) for the set of all nonnegative integers x such 
that the following holds. There is a term t[i,r] that is 
not closed, and an assignment f to its variables, with 
rng(f) ⊆ E, such that x is the value of t[i,r] under f, and 
x ∈ [pmax(rng(f)),qmax(rng(f))]. We refer to p,q as the 
lower and upper coefficients, respectively. 
 
Note that for E ⊆ N, r ≥ 1, p,q ≥ 0, α(r,E;p,q) ⊆ 
[pmin(E),∞). 
 
Here is a version of Lemma 5.1.7, where the role of f is 
taken up by α. Recall Definition 5.1.12.  
 
LEMMA 5.2.1. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  
i) 6α(r,A*;1,r) ⊆ B ∪ gB; 
ii) 6α(r,B*;1,r) ⊆ C ∪ gC; 
iii) 2α(r,A*;1,r)+1 ⊆ B; 
iv) 3α(r,A*;1,r)+1 ⊆ B; 
v) 2α(r,B*;1,r)+1 ⊆ C; 
vi) 3α(r,B*;1,r)+1 ⊆ C; 
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vii) C ∩ gC = ∅; 
viii) A ∩ α(r,B*;2,r) = ∅. 
 
Proof: Let r,g be as given. We define f ∈ ELG ∩ SD ∩ BAF of 
arity β(r)+12+r as follows. Let x* =  
 

(y1,...,yβ(r),z1,...,z6,w1,...,w6,x1,...,xr) 
∈ Nβ(r)+12+r. 

 
Let i,j,k be greatest such that  
 

y1 = ... = yi 
z1 = ... = zj 
w1 = ... = wk 

 
respectively. 
 
Define f(x*) =  
 

jt[i,r](x1,...,xr)+k-1 if  
|x*|+1,2|x*| ≤ jt[i,r](x1,...,xr)+k-1 ≤ r|x*|; 

max(|x*|+1,2|x*|) otherwise. 
 
Clearly f ∈ ELG ∩ SD ∩ BAF. We claim that for any D ⊆ N, 2 
≤ p ≤ 6, and 0 ≤ q ≤ 5,   
 

α(r,D*;2,r) ∪ pα(r,D*;1,r)+q ⊆ fD. 
 
To see this, let u ∈ α(r,D*;2,r), v ∈ pα(r,D*;1,r)+q, and 
write  
 

u = t[i,r](x1,...,xr) 
v = pt[i',r](x1,...,xr)+q 

 
where x1,...,xr ∈ D*, 1 ≤ i,i' ≤ β(r), 2|x1,...,xr| ≤ u ≤ 
r|x1,...,xr|, |x1,...,xr| ≤ v ≤ r|x1,...,xr|, and 
t[i,r],t[i',r] are not closed.  
 
First let y1 = ... = yi = min(D), yi+1 = ... = yβ(r) = 
|x1,...,xr|, z1 = w1 = min(D), z2 = ... = z6 = w2 = ... = w6 = 
|x1,...,xr|. Then f(y1,...,yβ(r),z1,...,z6,w1,...,w6,x1,...,xr) 
= u ∈ fD.   
 
Now let y1 = ... = yi = min(D), yi+1 = ... = yβ(r) = 
|x1,...,xr|, z1 = ... = zp = min(D), zp+1 = ... = z6 = 
|x1,...,xr|, w1 = ... = wq+1 = min(D), wq+2 = ... = w6 = 
|x1,...,xr|.  
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It is obvious that 
f(y1,...,yβ(r),z1,...,z6,w1,...,w6,x1,...,xr) = v ∈ fD. 
 
Now apply Lemma 5.1.7 to f,g to obtain A,B,C ⊆ N\{0} with 
the properties i)-viii) cited there. 
 
From the demonstrated claim, we have  

 
6α(r,A*;1,r) ⊆ fA. 
6α(r,B*;1,r) ⊆ fB. 
2α(r,A*;1,r)+1 ⊆ fA. 
3α(r,A*;1,r)+1 ⊆ fA. 
2α(r,B*;1,r)+1 ⊆ fB. 
3α(r,B*;1,r)+1 ⊆ fB. 
α(r,B*;2,r) ⊆ fB. 

 
We now obtain i)- viii) here immediately from the i)-viii) 
of Lemma 5.1.7. QED 
 
We are now going to define three properties of finite 
length towers of sets, of increasing strength: r,g-good for 
aN, r,g-great for aN, and r,g-terrific for aN. The notion 
of r-good generalizes some properties from Lemma 5.2.1. 
 
DEFINITION 5.2.9. Let n ≥ 3, r,a ≥ 1, and g ∈ ELG ∩ SD ∩ 
BAF. We say that (D1,...,Dn) is r,g-good for aN if and only 
if  
 
i) D1 ⊆ ... ⊆ Dn ⊆ N\{0}; 
ii) for all x < y from D1, x↑ < y; 
iii) for all 1 ≤ i ≤ n-1, aα(r,Di*;1,r) ⊆ Di+1 ∪ gDi+1; 
iv) for all 1 ≤ i ≤ n-1, 2α(r,Di*;1,r)+1 ⊆ Di+1; 
v) for all 1 ≤ i ≤ n-1, 3α(r,Di*;1,r)+1 ⊆ Di+1; 
vi) Dn ∩ gDn = ∅; 
vii) D1 ∩ α(r,D2*;2,r) = ∅. 
 
The following proves the existence of length 3 towers that 
are r,g-good for 6N.   
 
LEMMA 5.2.2. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, rng(g) ⊆ 6N. 
There exists (A,B,C) which is r,g-good for 6N, where A is 
infinite.  
 
Proof: Let r,g be as given, and let A,B,C ⊆ N\{0} be as 
given by Lemma 5.2.1. Set D1 = A, D2 = B, D3 = C. Obviously 
i),iii)- vii) hold in the definition of r,g-good for 6N. 
However ii) may fail. We can obviously shrink A so that ii) 
holds, keeping A infinite, and retaining i),iii)-vii). QED  
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We now want to define certain g ∈ ELG ∩ SD ∩ BAF so that 
any r,g-good sequence for N codes up the truth values of 
existential closures of quantifier free formulas ϕ[i,r], 1 ≤ 
i ≤ γ(r), in a convenient uniform way. This introduces a 
kind of quantifier elimination.  
 
DEFINITION 5.2.10. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 24N. We define τ(g,r) ∈ ELG ∩ SD ∩ BAF as follows. 
τ(g,r) has arity γ(r)+k+r+1, where k is the arity of g. Let 
x* = (y1,...,yγ(r),z1,...,zk,x1,...,xr,w) ∈ N

γ(r)+k+r+1. Let i ∈ 
[1,γ(r)] be greatest such that 1 ≤ i ≤ γ(r) and y1 = ... = 
yi. 
 
case 1. |x*| = w ∧ x1,...,xr < w ∧ ϕ[i,r](x1,...,xr). Define 
τ(g,r)(x*) = 24γ(r)w+24i+6. 
 
case 2. |x*| = |z1,...,zk| ∧ x1 = ... = xr = w. Define 
τ(g,r)(x*) = g(z1,...,zk). 
 
case 3. Otherwise. Define τ(g,r)(x*) = 24|x*|+12. 
 
We now establish some useful coding properties of τ(g,r). 
 
LEMMA 5.2.3. τ(g,r) ∈ ELG ∩ SD ∩ BAF. The values arising 
out of the above three cases are mutually disjoint, and lie 
in 6N. Let E ⊆ N. For all w ∈ E and 1 ≤ i ≤ γ(r), 
24γ(r)w+24i+6 ∈ τ(g,r)E ↔ (∃v1,...,vr ∈ E)(v1,...,vr < w ∧ 
ϕ[i,r](v1,...,vr)). gE = τ(g,r)E ∩ 24N. 
 
Proof: Note that in case 1, γ(r),w ≥ 1, and 24w ≤ 
24γ(r)w+24i+6 ≤ 100γ(r)w. Hence  
 

|x*|+1,24|x*| ≤ τ(g,r)(x*) ≤ 100γ(r)|x*|. 
 
In case 2,  
 

|x*| = |z1,...,zk| 
|τ(g,r)(x*)| = |g(z1,...,zk)|. 

 
In case 3, |x*| ≥ 1, and 
 

24|x*| < τ(g,r)(x*) ≤ 36|x*|. 
 
Therefore τ(g,r) ∈ ELG ∩ SD ∩ BAF.  
 
Since rng(g) ⊆ 24N, the values arising out of the three 
cases are mutually disjoint. Also note that the w,i used in 
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case 1 can be recovered from any value of τ(g,r) obtained by 
case 1. This is because 1 ≤ i ≤ γ(r) in case 1. 
 
Let E ⊆ N and w ∈ E. First suppose 24γ(r)w+24i+6 ∈ τ(g,r)E. 
Then 24γ(r)w+24i+6 must arise out of case 1, with, say, x* ∈ 
Eγ(r)+k+r+1. Then the w,i used in case 1 must be this w,i. 
Hence the x1,...,xr used in case 1 must be < w, and 
ϕ[i,r](x1,...,xr).  
 
Conversely, suppose x1,...,xr ∈ E ∩ [0,w) and 
ϕ[i,r](x1,...,xr). Then we can choose y1 = ... = yi = x1 and 
yi+1 = ... = yγ(r) = z1 = ... = zk = w. Then case 1 applies, 
y1,...,yγ(r),z1,...,zk,w ∈ E, and i is greatest  such that y1 
= ... = yi. Hence τ(g,r)(y1,...,yγ(r),z1,...,zk,x1,...,xr,w) = 
24γ(r)w+24i+6.   
 
For the final claim, note that every element of gE arises 
out of case 2, since we can set y1 = ... = yγ(r) = x1 = ... = 
xr = w = z1, taking z1,...,zk to be arbitrary elements of E. 
On the other hand, all elements of τ(g,r)E lying in 24N must 
arise out of case 2, in which case they must lie in gE. QED 
 
DEFINITION 5.2.11. Throughout the book, we will use the 
logical construction 
 

ϕ1 ↔ ... ↔ ϕk 
 
for  
 

(ϕ1 ↔ ϕ2) ∧ (ϕ2 ↔ ϕ3) ∧ ... ∧ (ϕk-1 ↔ ϕk).  
 
LEMMA 5.2.4. Let r ≥ 1, g ∈ ELG ∩ SD ∩ BAF, rng(g) ⊆ 24N, 
and (A,B,C) be 100γ(r),τ(g,r)-good for 6N. Then  
 
i) for all 1 ≤ i ≤ γ(r) and x ∈ B*,  
 

(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
24γ(r)x+24i+6 ∉ C; 

 
ii) for all 1 ≤ i ≤ γ(r) and x ∈ A*,  
 

(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔  
(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔  

24γ(r)x+24i+6 ∉ B ↔  
24γ(r)x+24i+6 ∉ C.  

 
iii) (A,B,C) is r,g-good for 24N.  
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Proof: Let r,g,A,B,C be as given. For claim i), let 1 ≤ i ≤ 
γ(r), x ∈ B*. Then 4γ(r)x+4i+1 ∈ α(100γ(r),B*;1,100γ(r)). To 
see this, note that γ(r),x ≥ 1, 2x ≤ 4γ(r)x+4i+1 ≤ 100γ(r)x. 
Also 4γ(r)x+4i+1 is a term t(x) with #(t) ≤ 100γ(r). 
 
By clauses iii),vi) in the definition of 100γ(r),τ(g,r)-good 
for 6N, we have  
 

24γ(r)x+24i+6 ∈ C ∪ τ(g,r)C. 
C ∩ τ(g,r)C = ∅. 

 
By the above and Lemma 5.2.3,  
 

(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
24γ(r)x+24i+6 ∈ τ(g,r)C ↔ 24γ(r)x+24i+6 ∉ C. 

  
For claim ii), let 1 ≤ i ≤ γ(r) and x ∈ A*. Then 4γ(r)x+4i+1 
∈ α(100γ(r),A*;1,100γ(r)). By clauses iii),iv),vi) in the 
definition of 100γ(r),τ(g,r)-good for 6N, we have  
 

24γ(r)x+24i+6 ∈ B ∪ τ(g,r)B 
B ∩ τ(g,r)B = ∅. 

 
By the above and Lemma 5.2.3,  
 

(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
24γ(r)x+24i+6 ∈ τ(g,r)B ↔ 24γ(r)x+24i+6 ∉ B. 

 
Hence  
 

(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) →  
24γ(r)x+24i+6 ∉ C →  
24γ(r)x+24i+6 ∉ B →  

(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) →  
(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) 

 
and so all of the above → are also ↔.  
 
For claim iii), by the definition of 100γ(r),τ(g,r)-good for 
6N, we have  
 

6α(100γ(r),A*;1,100γ(r)) ⊆ B ∪ τ(g,r)B 
6α(100γ(r),B*;1,100γ(r)) ⊆ C ∪ τ(g,r)C 

2α(100γ(r),A*;1,100γ(r))+1 ⊆ B 
3α(100γ(r),A*;1,100γ(r))+1 ⊆ B 
2α(100γ(r),B*;1,100γ(r))+1 ⊆ C 
3α(100γ(r),B*;1,100γ(r))+1 ⊆ C 

C ∩ τ(g,r)C = ∅ 



 598 

A ∩ α(100γ(r),B*;2,100γ(r)) = ∅ 
for all x < y from A, x↑ < y. 

 
By Lemma 5.2.3, gB = τ(g,r)B ∩ 24N and gC = τ(g,r)C ∩ 24N. 
Hence the conditions  
 

24α(r,A*;1,r) ⊆ B ∪ gB 
24α(r,B*;1,r) ⊆ C ∪ gC 

2α(r,A*;1,r)+1 ⊆ B 
3α(r,A*;1,r)+1 ⊆ B 
2α(r,B*;1,r)+1 ⊆ C 
3α(r,B*;1,r)+1 ⊆ C 

C ∩ gC = ∅ 
A ∩ α(r,B*;2,r) = ∅ 

for all x < y from A, x↑ < y 
 
follow immediately. Therefore (A,B,C) is r,g-good for 24N. 
QED 
 
We now define r,g-great towers, which feature a special 
form of indiscernibility for terms. We also define r,g-
terrific towers, which feature a special form of 
indiscernibility for quantifier free formulas. We will only 
use r,g-terrific towers of length 3.  
 
DEFINITION 5.2.12. Let n ≥ 3, r,a ≥ 1, and g ∈ ELG ∩ SD ∩ 
BAF. We say that (D1,...,Dn) is r,g-great for aN if and only 
if  
 
i) (D1,...,Dn) is r,g-good for aN; 
ii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr),(xr+1,...,x2r) have the same order type and 
min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3* ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3*. 
 
DEFINITION 5.2.13. Let r,a ≥ 1, and g ∈ ELG ∩ SD ∩ BAF. We 
say that (A,B,C) is r,g-terrific for aN if and only if  
 
i) (A,B,C) is r,g-great for aN; 
ii) A is infinite; 
iii) for all 1 ≤ i ≤ γ(r),   
 

(∃v1,...,vr ∈ B)(ϕ[i,r](v1,...,vr)) ↔ 
(∃v1,...,vr ∈ C)(ϕ[i,r](v1,...,vr)). 

 
We now derive an essentially well known infinitary 
combinatorial lemma. E.g., see [Sc74].  
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LEMMA 5.2.5. Let D be an infinite subset of N and r ≥ 1. Let 
f:N → N, and R1,...,Rs be a finite list of subsets of N2r. 
There exists an infinite D’ ⊆ D such that the following 
holds. Let 1 ≤ i ≤ s, x1,...,x2r ∈ D’, and y1,...,yr ∈ N, 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ f(min(x1,...,xr)). Then 
Ri(x1,...,xr,y1,...,yr) ↔ Ri(xr+1,...,x2r,y1,...,yr). 
 
Proof: Let D,r,f,R1,...,Rs be as given. Here we write 
Ri(z1,...,z2r) for (z1,...,z2r) ∈ Ri. We will partition the 
ordered 2r tuples from N into finitely many pieces as 
follows. Let x1,...,x2r ∈ N be given. We partition 
(x1,...,x2r)  
 
a. first according to the order type of (x1,...,x2r). 
b. second according to the set of all i ∈ [1,s] such that 
for all y1,..,yr ≤ f(min(x1,...,x2r)), Ri(x1,...,xr,y1,...,yr) 
↔ Ri(xr+1,...,x2r,y1,...,yr).  
 
By Ramsey’s theorem, let D’ ⊆ D be infinite, where any two 
(x1,...,x2r) ∈ D’2r with the same order type lie in the same 
partition.  
 
Let 1 ≤ i ≤ s and µ be the order type of an element of Nr. 
We say that (x1,...,x2r) is µ-special if and only if  
 
i) (x1,...,xr) and (xr+1,...,x2r) have order type µ; 
ii) min(x1,...,xr) = min(xr+1,...,x2r); 
iii) if xr+j > min(x1,...,xr), then |x1,...,xr| < xr+j.  
 
The µ-special tuples are exactly the 2r-tuples of some 
particular order type depending on µ. Hence for each µ,i, we 
have  
 
1) for all µ-special (x1,...,x2r) ∈ D’2r, we have: for all 
y1,...,y2r ≤ f(min(x1,...,x2r)), Ri(x1,...,xr,y1,...,yr) ↔ 
Ri(xr+1,...,x2r,y1,...,yr); or  
 
2) for all µ-special (x1,...,x2r) ∈ D’2r, we have: ¬(for all 
y1,...,yr ≤ f(min(x1,...,x2r)), Ri(x1,...,xr,y1,...,yr) ↔ 
Ri(xr+1,...,x2r,y1,...,yr)). 
 
Suppose 2) holds for µ. Let α1,α2,... be elements of Nr 
where each 2r-tuple (αj,αj+1) is µ-special. For each j < k 
from [1,∞), let h(j,k) be some counterexample (y1,...,yr) 
given by 2) for (x1,...,x2r) = (αj,αk).  
 



 600 

Obviously h is bounded by f(min(α1)). By Ramsey’s theorem, h 
is constant on the j < k drawn from some infinite subset of 
N. But h(j,k) = h(j,p) = h(k,p) is obviously impossible for 
j < k < p. We conclude that 2) fails. Hence 1) holds for µ. 
 
We have thus shown that for all µ,i, 1) holds. To complete 
the argument, let 1 ≤ i ≤ s, x1,...,x2r ∈ D’, and y1,...,yr ∈ 
N, where (x1,...,xr) and (xr+1,...,x2r) have the same order 
type and min, and y1,...,yr ≤ f(min(x1,...,xr)). Let the 
order type of (x1,...,xr) be µ. Choose x1’,...,xr’ ∈ D' such 
that (x1,...,xr,x1’,...,xr’) and (xr+1,...,x2r,x1’,...,xr’)  
are µ-special. By 1),  
 

Ri(x1,...,xr,y1,...,yr) ↔  
Ri(x1’,...,xr’,y1,...,yr). 
Ri(xr+1,...,x2r,y1,...,yr) ↔  
Ri(x1’,...,xr’,y1,...,yr). 

 
Hence  
 

Ri(x1,...,xr,y1,...,yr) ↔  
Ri(xr+1,...,x2r,y1,...,yr) 

 
as required. QED 
 
We now prove the existence of r,g-terrific towers. 
 
LEMMA 5.2.6. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, where rng(g) 
⊆ 24N. There exists (A,B,C) which is r,g-terrific for 24N. 
 
Proof: Let r,g be as given. By Lemma 5.2.2, there exists 
(A,B,C) which is 100γ(r),τ(g,r)-good for 6N, where A is 
infinite. By Lemma 5.2.4, (A,B,C) is r,g-good for 24N, and 
satisfies clauses i) and ii) in Lemma 5.2.4.  
 
For all 1 ≤ i ≤ β(2r), let Ri ⊆ N2r be given by  
 

Ri(x1,...,x2r) ↔  
t[i,2r](x1,...,x2r) ∈ C*. 

 
Apply Lemma 5.2.5 to these Ri with D = A to obtain A’ ⊆ A, 
A’ infinite, such that (A’,B,C) is r,g-great for 24N. 
 
To see that (A’,B,C) is r,g-terrific for 24N, we need only 
verify clause iii) in that definition. Since (A,B,C) 
satisfies clause ii) in Lemma 5.2.4, we have that for all 1 
≤ i ≤ γ(r) and x ∈ A*,  
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(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)). 

 
Since A* is infinite, we have  
 

(∃v1,...,vr ∈ B)(ϕ[i,r](v1,...,vr)) ↔ 
(∃v1,...,vr ∈ C)(ϕ[i,r](v1,...,vr)). 

 
QED 
 
We remark that, using Lemma 5.2.5, we can obtain ii) in the 
definition of r,g-great with α(r,D2) replaced by N. However, 
if we formulated r,g-greatness in such a strong form, we 
would not be able to push down from C to B in Lemma 5.2.8.  
  
LEMMA 5.2.7. For all n ≥ 3 and k,p,r ≥ 1, there exists m ≥ 1 
such that the following holds. Let g ∈ ELG ∩ SD ∩ BAF be k-
ary, a ≥ 1, and (D1,...,Dn) be r,g-great for aN, |D1| = p. 
There exists (D1’,...,Dn’) which is r,g-great for aN, where 
D1’ = D1, each Di’ ⊆ Di, and |Dn’| ≤ m. 
 
Proof: Let n,k,p,r,a be as given. Let g,D1,...,Dn also be as 
given. We will construct the required D1’,...,Dn’ by 
induction on 1 ≤ j ≤ n, in such a way that there is an 
obvious bound on the cardinality of each Dj+1’ that depends 
only on j,k,p,r and not on a,n,g,D1,...,Dn.   
 
Suppose D1 = D1’ ⊆ ... ⊆ Dj’ have been defined, 1 ≤ j < n, 
such that (∀i ∈ [1,j])(Di’ ⊆ Di). We now construct Dj+1’ ⊆ 
Dj+1.  
 
First throw all elements of Dj’ into Dj+1’, and also min(Dj+1) 
into Dj+1’. Then for each x ∈ aα(r,Dj’*;1,r), throw x into 
Dj+1’ if x ∈ Dj+1; otherwise find a k-tuple y from Dj+1 such 
that g(y) = x and throw y1,..., yk into Dj+1’. Next, throw 
all elements of 2α(r,Dj’*;1,r)+1, 3α(r,Dj’*;1,r)+1, into 
Dj+1’. Note that these elements are in Dj+1, because 
(D1,...,Dn) is r,g-good. 
 
Finally, if j = 2 then let 1 ≤ i ≤ β(2r), x1,...,xr ∈ D1, and 
y1,...,yr ∈ α(r,D2’), y1,...,yr ≤ min(x1,...,xr). If 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3*, then throw 
t[i,2r](x1,...,xr,y1,...,yr) in D3’. Otherwise, take no 
action.  
 
It is clear that (D1’,...,Dn’) is r,g-good for aN. We have 
to verify clause ii) in the definition of r,g-great for aN.  
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Let 1 ≤ i ≤ β(2r), x1,...,xr ∈ D1, y1,...,yr ∈ α(r,D2’), 
where y1,...,yr ≤ min(x1,...,xr). We claim that  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ D3’* ↔  
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3*. 

 
The forward direction is immediate. For the reverse 
direction, first note that min(D3) = min(D3’) by 
construction. If the right side holds, then 
t[i,2r](x1,...,xr,y1,...,yr) has been thrown into D3’, and 
since t[i,2r](x1,...,xr,y1,...,yr) > min(D3) = min(D3’), the 
left side follows. 
 
Now let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2’), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). We must verify that  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ D3’* ↔  
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3’*. 

 
By the above, this is equivalent to  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ D3* ↔  
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3* 

 
which follows from the hypothesis on (D1,...,Dn) - in 
particular, from ii) in the definition of r,g-great.  
 
It is clear that we can write m as a specific iterated 
exponential in n,k,p,r. QED 
 
We show that, at the cost of increasing r to much larger s, 
we can guarantee that for any s,g-terrific tower (A,B,C), 
any r,g-great tower contained in C can be shrunk to an r,g-
great tower contained in B. 
 
LEMMA 5.2.8. Let n ≥ 3, k,p,r ≥ 1, and g ∈ ELG ∩ SD ∩ BAF 
be k-ary. There exists s ≥ 1 such that the following holds. 
Let (A,B,C) be s,g-terrific for 24N. Let (D1,...,Dn) be r,g-
great for 24N, |D1| = p, and Dn ⊆ C. Then some (D1’,...,Dn’) 
is r,g-great for 24N, where |D1’| = p and Dn’ ⊆ B is finite. 
 
Proof: Let n,k,p,r,g be as given. Let m ≥ 1 be given by 
Lemma 5.2.7, with a = 24, which depends only on n,k,p,r. 
Let s >> n,k,p,r,m and the presentation of g. (Some 
specific iterated exponential in n,k,p,r,m, and the size of 
the presentation of g, will suffice). Let (A,B,C) be s,g-
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terrific for 24N. Let (D1,...,Dn) be r,g-great for 24N, |D1| 
= p, and Dn ⊆ C.  
 
By Lemma 5.2.7, the following statement is true:  
 
*) there exists (D1,...,Dn) which is r,g-great for 24N, 
where |D1| = p and Dn = {x1,...,xm} ⊆ C. 
 
We claim that *) asserts the existence of x1,...,xm ∈ C such 
that a quantifier free formula ϕ(x1,...,xm) in L holds. This 
crucially depends on the fact that g ∈ BAF. The actual 
formula depends on n,k,p,r, and the function g.  
 
To see this, ϕ(x1,...,xm) asserts that x1,...,xm can be 
arranged into sets D1 ⊆ ... ⊆ Dn = {x1,...,xm}, where 
(D1,...,Dn) is r,g-great for 24N. We have to put clauses 
i),ii) in Definition 5.2.12, with a = 24, in quantifier 
free form. 
 
Each arrangement of x1,...,xm into sets D1 ⊆ ... ⊆ Dn = 
{x1,...,xm} is given by a double sequence xij, 1 ≤ i ≤ n, 1 ≤ 
j ≤ m, where the xij are among the variables x1,...,xm. So we 
disjunct over the finitely many such double sequences of 
variables. 
 
According to Definition 5.2.12, we assert  
 
i. ({x11,...,x1m},...,{xn1,...,xnm}) is r,g-good for 24N. 
ii. Let 1 ≤ i ≤ β[2r], x1,...,x2r ∈ {x11,...,x1m}, y1,...,yr ∈ 
α(r,{x21,...,x2m}), where (x1,...,xr), (xr+1,...,x2r) have the 
same order type and min, and y1,...,yr ≤ min(x1,...,xr). Then  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ {x31,...,x3m}\{0} ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ {x31,...,x3m}\{0}. 

 
It is clear that ii) is given by a quantifier free formula 
in L.  
 
As for i), it asserts  
 
i'. {x11,...,x1m} ⊆ ... ⊆ {xn1,...,xnm} ⊆ N\{0}. 
ii'. x1i < x1j → x1i↑ < x1j. 
iii'. For all 1 ≤ i ≤ n-1, 24α(r,{xi1,...,xim}\{0};1,r) ⊆ 
{xi+1,1,...,xi+1,m} ∪ g{xi+1,1,...,xi+1,m}. 
iv'. For all 1 ≤ i ≤ n-1, 2α(r,{xi1,...,xim}\{0};1,r)+1 ⊆ 
{xi+1,1,...,xi+1,m}; 
v'. Same as iv' with 2 replaced by 3. 
vi'. {xn1,...,xnm} ∩ g{xn1,...,xnm} = ∅. 
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vii'. {x11,...,x1m} ∩ α(r,{x21,...,x2m};2,r) = ∅. 
 
It is now clear that i) is also given by a quantifier free 
formula.  
 
By the choice of s, write ϕ = ϕ[i,s], where 1 ≤ i ≤ γ(s).   
 
By Lemma 5.2.7, we have  
 

(∃v1,...,vm ∈ C)(ϕ[i,s](v1,...,vm)). 
 
By clause iii) in the definition of s,g-terrific for 24N,  
 

(∃v1,...,vm ∈ B)(ϕ[i,s](v1,...,vm)). 
 
Hence  
 

(∃v1,...,vm ∈ B)(∃D1,...,Dn)((D1,...,Dn) is  
r,g-great for 24N ∧ |D1| = p ∧ Dn = {v1,...,vm}). 

 
I.e., some (D1’,...,Dn’) is r,g-great for 24N, where |D1’| = 
p and Dn’ ⊆ B has at most m elements. QED 
 
DEFINITION 5.2.14. Let s(n,k,p,r,g) be an s given by Lemma 
5.2.8. 
 
LEMMA 5.2.9. Let n ≥ 3, k,p,r ≥ 1, and g ∈ ELG ∩ SD ∩ BAF 
be k-ary. There exists t ≥ 1 such that the following holds. 
Let (A,B,C) be t,g-terrific for 24N. Then some (D1,...,Dn) 
is r,g-great for 24N, where |D1| = p and Dn ⊆ B is finite.  
 
Proof: Let n,k,p,r,g be as given. Let t = max{s(q,k,p,r,g): 
3 ≤ q ≤ n)}. Let (A,B,C) be t,g-terrific for 24N. We prove 
by induction on 3 ≤ q ≤ n that some (D1,...,Dq) is r,g-great 
for 24N, where |D1| = p and Dn ⊆ B is finite.  
 
For the basis case q = 3, apply Lemma 5.2.8 to (D1,D2,D3), 
where D1 is any subset of A of cardinality p, and D2 = B, D3 
= C. Note that t ≥ s(3,k,p,r,g). 
 
Let 3 ≤ q < n and (D1,...,Dq) be r,g-great for 24N, where 
|D1| = p and Dq ⊆ B is finite.  
 
We claim that (D1,...,Dq,C) is r,g-great for 24N.  
 
We first verify that (D1,...,Dq,C) is r,g-good for 24N. In 
light of the fact that (D1,...,Dq) is r,g-good for 24N and q 
≥ 3, it suffices to show that   
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24α(r,Dq*;2,r) ⊆ C ∪ gC 

2α(r,Dq*;2,r)+1 ⊆ C 
3α(r,Dq*;2,r)+1 ⊆ C 

C ∩ gC = ∅. 
 
These are immediate since Dq ⊆ B and (A,B,C) is r,g-good for 
24N. 
 
Clause ii) in the definition of (D1,...,Dq,C) is immediate 
since q ≥ 3 and (D1,...,Dq) is r,g-great for 24N.  
 
Now apply Lemma 5.2.8 to (D1,...,Dq,C)  to obtain a sequence  
(D1’,...,Dq+1’) that is r,g-great for 24N, where |D1| = p and  
Dq+1’ ⊆ B is finite. Note that t ≥ s(q+1,k,p,r,g). QED 
 
LEMMA 5.2.10. Let n ≥ 3, p,r ≥ 1, and g ∈ ELG ∩ SD ∩ BAF, 
where rng(g) ⊆ 24N. There exists (D1,...,Dn) which is r,g-
great for 24N, where |D1| = p and Dn is finite. 
 
Proof: Let n,p,r,g be as given. Let g be k-ary. Let t be 
given by Lemma 5.2.9. By Lemma 5.2.6, let (A,B,C) be t,g-
terrific for 24N. By Lemma 5.2.9, let (D1,...,Dn) be r,g-
great for 24N, where |D1| = p and Dn is finite. QED 
 
LEMMA 5.2.11. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 24N. There exists (D1,...,Dr) such that  
i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 24α(r,Di*;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di*;1,r)+1, 3α(r,Di*;1,r)+1 ⊆ 
Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2*;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3* ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3*. 
 
Proof: Immediate from Lemma 5.2.10 and the definition of 
r,g-great for 24N, setting n,p,r there to be r here. QED 
 
We now eliminate the use of the Di*.  
 
LEMMA 5.2.12. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 48N. There exists (D1,...,Dr) such that  
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i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 48α(r,Di;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di;1,r)+1, 3α(r,Di;1,r)+1 ⊆ 
Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3 ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3. 
 
Proof: Let r,g be as given. Let g:Nk → 48N.  
 
Define g’:Nk+1 → 24N by g’(x1,...,xk+1) = g(x1,...,xk) if xk+1 
< x1,...,xk; 48|x1,...,xk+1|+24 otherwise.  
 
Note that rng(g’) ⊆ 24N, and g’ ∈ ELG ∩ SD ∩ BAF. Let 
D1,...,Dn ⊆ N be given by Lemma 5.2.11 applied to r+1,g’. In 
particular, |D1| = r+1. 
 
We now verify that D1*,...,Dr* is as required.  
 
For claim i), since D1 ⊆ ... ⊆ Dr, we have min(D1) ≥ ... ≥ 
min(Dr). We claim that D1* ⊆ ... ⊆ Dr*. To see this, let n ∈ 
Di*. Then n ∈ Di+1, n > min(Di) ≥ min(Di+1), n ∈ Di+1*. 
 
For claim ii), since |D1| = r+1, we have |D1*| = r. since Dr 
is finite, Dr* is finite. 
 
Claim iii) is immediate from iii) of Lemma 5.2.11. 
 
For claim iv), let 1 ≤ i ≤ r-1, x ∈ 48α(r,Di*;1,r). Then x > 
min(Di) ≥ min(Di+1). By Lemma 5.2.11 iv), x ∈ Di+1 ∪ g’Di+1. 
If x ∈ Di+1 then x ∈ Di+1*. If x ∈ g’Di+1 then x ∈ g(Di+1*), 
because x must arise from the first clause in the 
definition of g’.  
 
For claim v), let 1 ≤ i ≤ r-1, x ∈ 2α(r,Di*;1,r)+1 ∪ 
3α(r,Di*;1,r)+1. Then x > min(Di) ≥ min(Di+1). By Lemma 
5.2.11 v), x ∈ Di+1. Hence x ∈ Di+1*.  
 
For vi), we have Dr ∩ g’Dr = ∅. Since g(Dr*) ⊆ g’(Dr), we 
have Dr* ∩ g(Dr*) = ∅. 
 
Claim vii) is the same as vii) of Lemma 5.2.11. 
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For claim viii), let 1 ≤ i ≤ β(2r). Let 1 ≤ i’ ≤ β(2r+2) be 
such that t[i’,2r+2] is the result of replacing the 
variables vr+1,...,v2r in t[i,2r] with the variables 
vr+2,...,v2r+1.  
 
Let x1,...,x2r ∈ D1*, y1,...,yr ∈ α(r,D2*), where (x1,...,xr) 
and (xr+1,...,x2r) have the same order type and min, and 
y1,...,yr ≤ min(x1,...,xr). Clearly 
 

t[i,2r](x1,...,xr,y1,...,yr) = 
t[i’,2r+2](x1,...,xr,xr,y1,...,yr,yr). 

 
t[i,2r](xr+1,...,x2r,y1,...,yr) = 

t[i’,2r+2](xr+1,...,x2r,x2r,y1,...,yr,yr). 
 
By Lemma 5.2.11 viii),  
 

t[i’,2r+2](x1,...,xr,xr,y1,...,yr,yr) ∈ D3* ↔ 
t[i’,2r+2](xr+1,...,x2r,x2r,y1,...,yr,yr) ∈ D3*. 

 
t[i,r](x1,...,xr,y1,...,yr) ∈ D3* ↔ 
t[i,r](xr+1,...,x2r,y1,...,yr) ∈ D3*. 

 
QED 
 
5.3. Countable nonstandard models with 
limited indiscernibles. 
 
LEMMA 5.3.1. There exist positive integers σ1,τ1,σ2,τ2,..., 
each divisible by 96, such that for all n ≥ 1 and x,y ∈ N,  
 

σnx + τn = σmy + τm → (n = m ∧ x = y). 
σn,τn ≥ 96n. 

 
Proof: For n ≥ 1, let σn = 96(pn!) and τn = 96pn, where pn is 
the n-th prime. Suppose 96(pn!)x + 96pn = 96(pm!)y + 96pm. 
Then pn!x + pn = pm!y + pm. If n ≤ m then pn clearly divides 
the left side and the first term of the right side. Hence pn 
divides pm. Therefore n = m. If m ≤ n then also n = m. Hence 
n = m. Therefore x = y. QED 
 
DEFINITION 5.3.1. We fix σn,τn, n ≥ 1, as given by Lemma 
5.3.1.  
 
Recall the standard pairing function P (Definition 3.2.1). 
We have P(n,m) ≥ n,m. We use the extension P(x,y,z) = 
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P(P(x,y),z). We have P(n,m,r) ≥ n,m,r, and P is strictly 
increasing in each argument. 
 
The following Lemma adjoins r predicates E1,...,Er ⊆ N to 
our basic standard countable structure (N,<,0,1,+,-
,•,↑,log). 
 
LEMMA 5.3.2. Let r ≥ 3. There exists a structure 
(N,<,0,1,+,-,•,↑,log,E1,...,Er) such that the following 
holds. 
i) E1 ⊆ ...⊆ Er ⊆ N\{0}; 
ii) |E1| = r and Er is finite; 
iii) For all x < y from E1, x↑ < y; 
iv) Let 1 ≤ i ≤ γ(r), 1 ≤ j < r, 0 ≤ a,b < r, and x ∈ 
α(r,Ej;1,r). Then (∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b ∧ 
ϕ[i,r](x,v2,...,vr)) ↔ σP(i,a,b)x+τP(i,a,b) ∉ Ej+1; 
v) For all 1 ≤ j ≤ r-1, 2α(r,Ej;1,r)+1, 3α(r,Ej;1,r)+1 ⊆ 
Ej+1; 
vi) E1 ∩ α(r,E2;2,r) = ∅; 
vii) Let 1 ≤ i ≤ β(2r), x1,...,x2p ∈ E1, y1,...,yr ∈ α(r,E2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ E3 ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ E3. 
 
Proof: Let r ≥ 3, and let r’ >> r. We define γ(r)+3r-ary g ∈ 
BAF with rng(g) ⊆ 48N, as follows. Let x# = 
(y1,...,yγ(r),z1,...,zr,w1,...,wr,x,x2,...,xr) ∈ N

γ(r)+3r. Let i 
be greatest such that y1 = ... = yi+1. Let a be greatest such 
that z1 = ... = za+1. Let b be greatest such that w1 = ... = 
wb+1. (It will prove to be convenient to write x here 
instead of x1.) 
 
case 1. 0 < |x#| ≤ (3+a+b)x ∧ |x2,...,xr| ≤ ax+b ∧ 
ϕ[i,r](x,x2,...,xr). Set g(x#) = σP(i,a,b)x+τP(i,a,b).   
 
case 2. Otherwise. Set g(x#) = 96|x#|+48. 
 
In case 1, g(x#) ≥ 96P(i,a,b)x ≥ 96P(1,a,b)x ≥ 96max(1,a,b)x 
≥ 32(1+a+b)x ≥ 8(3+a+b)x ≥ 8|x#| > |x#|. Also g(x#) ≤ 
σP(i,a,b)|x#|+τP(i,a,b)   
≤ (σP(i,a,b)+τP(i,a,b))|x#|.  
 
In case 2, |x#| < g(x#) ≤ 192|x#|. Hence g ∈ ELG ∩ SD ∩ 
BAF.    
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Clearly rng(g) ⊆ 48N. So we can apply Lemma 5.2.12 with r’. 
Let D1,...,Dr’ ⊆ N be given by Lemma 5.2.12. For all 1 < i ≤ 
r, set Ei = Di. Set E1 to be the first r elements of D1.  
 
Claims i),ii),iii),v),vi) for E1,...,Er follow immediately 
from clauses i),ii),iii),v),vii) for D1,...,Dr’ in Lemma 
5.2.12.  
 
For claim iv), let 1 ≤ i ≤ γ(r), 1 ≤ j < r, 0 ≤ a,b < r, and 
x ∈ α(r,Ej;1,r). We claim that  
 

σP(i,a,b)x+τP(i,a,b) ∈ 48α(r’,Ej;1,r’). 
 
To see this, write  
 

|d1,...,dk| ≤ x = t[i,r](d1,...,dk) ≤ r|d1,...,dk|, 
 
where k ≥ 1 and d1,...,dk ∈ Ej. Since 96|σP(i,a,b),96|τP(i,a,b), 
let p = σP(i,a,b)/48 and q = τP(i,a,b)/48. Then we have  
 

px+q ∈ α(r’,Ej;1,r’) 
 
since r’ >> r and p,q > 0. This establishes the claim. 
 
Since r’ ≥ r, by Lemma 5.2.12 iv),vi),  
 

σP(i,a,b)x+τP(i,a,b) ∈ Ej+1 ∪. gEj+1. 
 
First assume that  
 

σP(i,a,b)x+τP(i,a,b) ∉ Ej+1. 
 
Then σP(i,a,b)x+τP(i,a,b) ∈ gEj+1. Write  
 

σP(i,a,b)x+τP(i,a,b) =  
g(y1,...,yγ(r),z1,...,zr,w1,...,wr,u,u2,...,ur), 

 
where y1,...,yγ(r),z1,...,zr,w1,...,wr,u,u2,...,ur ∈ Ej+1. 
 
Since 96 divides σP(i,a,b)x+τP(i,a,b), σ(i,a,b,)x+τP(i,a,b) can only 
arise from case 1 in the definition of g.  
 
Let i’ be greatest such that y1 = ... = yi'+1, a’ be greatest 
such that z1 = ... = za’+1, and b’ be greatest such that w1 = 
... = wb’+1. Then  
 
0 < |y1,...,yγ(r),z1,...,zr,w1,...,wr,u,u2,...,ur| ≤ (3+a’+b’)x. 

u2,...,ur ≤ a’u+b’.  
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ϕ[i’,r](u,u2,...,ur). 
g(y1,...,yγ(r),z1,...,zr,w1,...,wr,u,u2,...,ur) =  

σP(i’,a’,b’)u + τP(i’,a’,b’) = σP(i,a,b)x + τP(i,a,b). 
 
By Lemma 5.3.1,  
 

i = i’ ∧ a = a’ ∧ ∧ b = b’ ∧ u = x. 
 
Hence  
 

u2,...,ur ≤ ax+b. 
ϕ[i,r](x,u2,...,ur). 

 
In particular,  
 

(∃v2,...,vr ∈ Ej+1) 
(v2,...,vr ≤ ax+b ∧ ϕ[i,r](x,v2,...,vr)). 

 
Now assume that  
 

(∃v2,...,vr ∈ Ej+1) 
(v2,...,vr ≤ ax+b ∧ ϕ[i,r](x,v2,...,vr)). 

 
Let  
 

x2,...,xr ∈ Ej+1.  
x2,...,xr ≤ ax+b.  

ϕ[i,r](x,x2,...,xr). 
 
By Lemma 5.2.12 v), 2x+1 ∈ 2α(r';Ej,1,r’)+1 ⊆ Dj+1 = Ej+1. 
Note that  
 

0 < |x,...,x,2x+1,...,2x+1,x,...,x,2x+1,...,2x+1, 
x,...,x,2x+1,...,2x+1,x,x2,...,xr| ≤  

max(2x+1,ax+b) ≤ (3+a+b)x. 
x2,...,xr ≤ ax+b. 

ϕ[i,r](x,x2,...,xr). 
 
Here the first group of x’s has length i, the second group 
of x’s has length a, and the third group of x’s has length 
b. 
 
Hence case 1 applies, and so 
 

g(x,...,x,2x+1,...,2x+1,x,...,x,2x+1,...,2x+1, 
x,...,x,2x+1,...,2x+1,x,x2,...,xr)  =  

σP(i,a,b)x+τP(i,a,b). 
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Hence σP(i,a,b)x+τP(i,a,b) ∈ gEj+1. By Lemma 5.2.12, vi), Ej+1 ∩ 
gEj+1 = ∅. Hence σP(i,a,b)x+τP(i,a,b) ∉ Ej+1 as required. This 
establishes claim iv).  
 
Claim vii) is immediate from Lemma 5.2.12 vii). QED 
 
We now work with countable structures whose domain is not 
N. These structures must interpret the language L, so that 
we work with structures of the form (A,<,0,1,+,-
,•,log,...). In fact, this is why we wrote (N,<,0,1,+,-
,•,↑,log,E1,...,Er) in Lemma 5.3.2.  
 
Let M = (A,<,0,1,+,-,•,↑,log,...) be given. In all such M 
that we consider, M will satisfy a certain amount of 
arithmetic. In particular, M will satisfy TR(Π0

1,L). See the 
discussion below.  
 
DEFINITION 5.3.2. Let E ⊆ A and p ∈ N. We write α(E;p,<∞) 
for the set of x ∈ A such that the following holds. There 
is a term t in L that is not closed, and an assignment f to 
its variables, with rng(f) ⊆ E, such that x is the value of 
t under f, and a nonnegative integer k, such that x ∈ 
[pmax(rng(f)),kmax(rng(f))].  
 
In the above, the value of t under f is computed using the 
interpretation M of L. It is important to note that here 
both p and k serve as standard integers.  
 
DEFINITION 5.3.3. We let α(E) be the set of all values of 
terms t in L under an assignment of elements of E to the 
variables in t, computed according to M. For α(E), we allow 
closed terms. 
 
DEFINITION 5.3.4. We also let α(r,E) be the set of all 
values of terms t in L with #(t) ≤ r, under an assignment of 
elements of E to the variables in t, computed according to 
M. For α(r,E), we also allow closed terms.  
 
Recall the theory TR(Π0

1,L) from Definition 5.1.10. It is 
clear that (N,<,0,1,+,-,•,↑,log) satisfies PA(L) + 
TR(Π0

1,L), where PA(L) is Peano Arithmetic, formulated in L. 
See Definition 5.6.6. 
 
LEMMA 5.3.3. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E1,E2,...) obeying the following 
conditions. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E1 ⊆ E2 ⊆ ... ⊆ A\{0}; 
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iii) E1 has order type ω, and has no upper bound in A; 
iv) For all x < y from E1, x↑ < y; 
v) Let r ≥ 1, ϕ(v1,...,vr) be a quantifier free formula of 
L, and a,b ∈ N. There exists d,e ∈ N\{0} such that for all 
j ≥ 1 and x ∈ α(Ej;1,<∞), (∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b 
∧ ϕ(x,v2,...,vr)) ↔ dx+e ∉ Ej+1; 
vi) For all j ≥ 1, 2α(Ej;1,<∞)+1, 3α(Ej;1,<∞)+1 ⊆ Ej+1; 
vii) E1 ∩ α(E2;2,<∞) = ∅; 
viii) Let r ≥ 1 and t(v1,...,v2r) be a term of L. Let 
x1,...,x2r ∈ E1, y1,...,yr ∈ α(E2), where (x1,...,xr) and 
(xr+1,...,x2r) have the same order type and min, and y1,...,yr 
≤ min(x1,...,xr). Then t(x1,...,xr,y1,...,yr) ∈ E3 ↔ 
t(xr+1,...,x2r,y1,...,yr) ∈ E3. 
 
Proof: We apply the compactness theorem for predicate 
calculus with equality, to Lemma 5.3.2.  
 
For the purposes of the proof of this Lemma only, we use 
the language L’ which augments the language L with 
infinitely many unary relation symbols Ei, i ≥ 1, and 
infinitely many constant symbols, ci, i ≥ 1.  
 
Let T be the following set of axioms in L’.  
 
1. TR(Π0

1,L). 
2. For all i ≥ 1, we take ci < ci+1 ∧ ci ∈ E1. 
3. For all i ≥ 1, we take Ei ⊆ Ei+1 ∧ 0 ∉ Ei. 
4. (∀x,y ∈ E1)(x < y → x↑ < y). 
5. Let 1 ≤ i ≤ γ(r), 1 ≤ j < r, and 0 ≤ a,b < r. (∀v1 ∈ 
α(Ej;1,<∞))((∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ av1+b ∧ 
ϕ[i,r](v1,...,vr)) ↔ σP(i,a,b)v1+τP(i,a,b) ∉ Ej+1). Here we index 
over r,i,j,a,b, and also non closed terms and standard 
integer upper coefficients for α(Ej;1,<∞). The latter is 
used to create infinitely many conditional members of 
α(Ej;1,<∞)). 
6. Let j ≥ 1. We take the schemes 2α(Ej;1,<∞)+1 ⊆ Ej+1, 
3α(Ej;1,<∞)+1 ⊆ Ej+1. Here we index over j, and also non 
closed terms and standard integer upper coefficients for 
α(Ej;1,<∞). The latter is used to create infinitely many 
conditional members of α(Ej;1,<∞).  
7. We take the scheme E1 ∩ α(E2;2,<∞) = ∅. Here we index 
over non closed terms and also standard integer upper 
coefficients for α(E2;2,<∞). The latter is used to create 
infinitely many conditional members of α(Ej;2,<∞). 
8. Let r ≥ 1 and t be a term in L with at most the variables 
v1,...,v2r. Let x1,...,x2r ∈ E1, y1,...,yr ∈ α(r,E2), where 
(x1,...,xr) and (xr+1,...,x2r) have the same order type and 
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min, and y1,...,yr ≤ min(x1,...,xr). Then 
t(x1,...,xr,y1,...,yr) ∈ E3 ↔ 
t(xr+1,...,x2r,y1,...,yr) ∈ E3. Here we index over r,t, and 
terms for α(r,E2). The latter is used to create finitely 
many conditional elements of α(r,E2). 
 
These axioms have very robust formulations in light of 
axioms 1. It suffices to remark that in 5, we take av+b to 
be  
 

(1+...+1)•vi+(1+...+1)  
 
where the 1’s are associated to the left, and where there 
are a 1’s in the first sum, and b 1’s in the second sum. We 
take 0 1’s to mean 0. 
 
Let T0 ⊆ T be finite. Let s ≥ 3 be so large that all of the 
i,r,j+1, values of β at # of terms, and upper coefficients 
used, are at most s. 
 
Let Ms = (N,<,0,1,+,-,•,↑,log,E1,...,Es) be given by Lemma 
5.3.2, with r = s. We now show that Ms satisfies T0 + 
TR(Π0

1,L), where for all 1 ≤ i ≤ s, ci is interpreted as the 
i-th element of E1 (c1 is interpreted as min(E1)). 
Obviously, Ms satisfies 1,2 of T0 by construction. 
 
The axioms in T0 from 3-4,6,7 obviously hold in Ms using 
Lemma 5.3.2 i)-iii),v),vi).  
 
For the axioms in T0 from 5, we have to handle several 
different r’s at once. This is because of the different 
lengths of the existential quantifiers that appear in 5.  
 
We use our convenient coding setup whereby if 1 ≤ i ≤ γ(r) 
and 1 ≤ r ≤ s, then ϕ[i,r] = ϕ[i,s].  
 
For 5, let 1 ≤ i ≤ γ(r), 1 ≤ j < r, and 0 ≤ a,b < r. The 
axioms in T0 from 5 must have r ≤ s. By Lemma 5.3.2 iv), Ms 
satisfies  
 

(∀v1 ∈ α(s,Ej;1,s))((∃v2,...,vs ∈ Ej+1) 
(v2,...,vs ≤ av1+b ∧ ϕ[i,s](v1,...,vs)) ↔  

σP(i,a,b,)v1+τP(i,a,b) ∉ Ej+1). 
 
It is clear that Ms satisfies  
 

(∀v1 ∈ α(r,Ej;1,r))((∃v2,...,vr ∈ Ej+1) 
(v2,...,vr ≤ av1+b ∧ ϕ[i,r](v1,...,vr)) ↔ 
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σP(i,a,b)v1+τP(i,a,b) ∉ Ej+1) 
 
since 1 ≤ r ≤ s. In particular, all variables in ϕ[i,s] = 
ϕ[i,r] are among v1,...,vr, so the extra existential 
quantifiers, vr+1,...,vs, are dummy quantifiers. Therefore Ms 
satisfies the axioms in T0 from 5.  
 
We now come to the verification of 8 in Ms. Let r ≥ 1, t be 
a term in L with at most the variables v1,...,v2r, 
x1,...,x2r ∈ E1, y1,...,yr ∈ α(r,E2), where (x1,...,xr) and 
(xr+1,...,x2r) have the same order type and min, and y1,...,yr 
≤ min(x1,...,xr).   
 
The axioms in T0 from 8 must have r ≤ s. Also we can let 1 ≤ 
i ≤ β(2s) be such that t[i,2s] is the result of replacing 
the variables vr+1,...,v2r in t by the variables vs+1,...,vs+r. 
By Lemma 5.3.2 vii), Ms satisfies  
 

t[j,2s](x1,...,xr,...,xr,y1,...,yr,...,yr) ∈ E3 ↔ 
t[j,2s](xr+1,...,x2r,...,x2r,y1,...,yr,...,yr) ∈ E3. 

 
Note that  
 

t[j,2s](x1,...,xr,...,xr,y1,...,yr,...,yr) =  
t(x1,...,xr,y1,...,yr). 

t[j,2s](xr+1,...,x2r,...,x2r,y1,...,yr,...,yr) =  
t(xr+1,...,x2r,y1,...,yr). 

 
Hence Ms satisfies  
 

t(x1,...,xr,y1,...,yr) ∈ E3 ↔  
t(xr+1,...,x2r,y1,...,yr) ∈ E3. 

 
By the compactness theorem for first order predicate 
calculus with equality, T has a countable model M = 
(A,<,0,1,+,-,•,↑,log,E1,E2,...). We now verify clauses i)-
viii) of Lemma 5.3.3, except for clause iii). In order to 
verify clause iii), we must adjust M. 
 
Claim i) is immediate from axioms 1 of T. 
 
Claim ii) is immediate from axioms 3 of T. 
 
Claim iv) is immediate from axioms 4 of T. 
 
For claim v), let r ≥ 1, ϕ(x1,...,xr) be a quantifier free 
formula of L, a,b ∈ N. By axiom 5 of T, M satisfies 
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(∀v1 ∈ α(Ej;1,<∞)) 
((∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax1+b ∧ ϕ[i,r](v1,...,vr)) ↔ 

σP(i,a,b)v1+τP(i,a,b) ∉ Ej+1). 
 
Set d = σP(i,a,b) and e = τP(i,a,b).  
 
For claim vi), let r,j ≥ 1. By axiom 6 of T, M satisfies  
 

2α(r,Ej,1,r)+1 ⊆ Ej+1. 
3α(r,Ej,1,r)+1 ⊆ Ej+1. 

 
Since r is arbitrary, M satisfies 
 

2α(Ej;1,<∞)+1 ⊆ Ej+1. 
3α(Ej;1,<∞)+1 ⊆ Ej+1. 

 
Claim vii) follows immediately from axioms 7 of T. 
 
Claim viii) also follows immediately from axioms 8 of T.   
 
Now M may not satisfy iii). We will instead use an initial 
segment of M so that iii) holds. We need to check that the 
above verifications in M are still valid in our initial 
segment of M (defined below). 
 
By axioms 2 of T, let E1’ ⊆ E1 be of order type ω. Let  
 

A’ = {x ∈ dom(M): (∃y ∈ E1’)(x < y)}. 
 
Note that by axioms 1,4 of T, A’ is closed under all of the 
primitive operations of L. Hence we let M’ be M restricted 
to A’, where the E1 of M’ is E1’, and the Ej of M’, j ≥ 2, is 
Ej ∩ A’.    
 
We now show that M’ satisfies all of the claims i)-viii).  
 
For i), note that M’ is still a model of TR(Π0

1,L) because 
M’ is an initial segment of M that is closed under the 
operations of M. 
 
Claims ii),iii) are immediate by the definitions of the Ei 
of M’.  
 
The remaining claims are all immediate since all of the 
quantifiers are bounded, the initial segment A’ is closed 
under all of the primitive operations of M, and E1 has been 
shrunk to E1' ⊆ E1. QED 
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We fix M = (A,<,0,1,+,-,•,↑,log,E1,E2,...) as given by Lemma 
5.3.3.  
 
DEFINITION 5.3.5. We will use the notation |y1,...,yr| for 
the maximum of y1,...,yr ∈ A in the sense of M.   
 
LEMMA 5.3.4. Every element of E1 is nonstandard. 
 
Proof: Fix a standard element k of E1. Let t(x) be a term of 
L such that  
 

t(x) = k if x = k; 0 otherwise. 
 
By Lemma 5.3.3 iii), let k < n, n ∈ E1. By Lemma 5.3.3 
viii),  
 

t(k) ∈ E3 ↔ t(n) ∈ E3. 
k ∈ E3 ↔ 0 ∈ E3. 

 
This is a contradiction since k ∈ E3 and 0 ∉ E3, by Lemma 
5.3.3 ii). QED 
 
LEMMA 5.3.5. Let r,j ≥ 1, ϕ(v1,...,vr) be a quantifier free 
formula of L, a,b ∈ N, and x ∈ α(E1;1,<∞) Then  
(∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b ∧ ϕ(x,v2,...,vr)) ↔ 
(∃v2,...,vr ∈ E2)(v2,...,vr ≤ ax+b ∧ ϕ(x,v2,...,vr)).  
 
Proof: Let r ≥ 1, ϕ(v1,...,vr) be a quantifier free formula 
of L, and a,b ∈ N. By Lemma 5.3.3 v), let d,e ∈ N\{0} be 
such that the following holds. For all j ≥ 1 and x1 ∈ 
α(E1;1,<∞),  
 

(∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b ∧ ϕ(x,v2,...,vr)) ↔ 
dx+e ∉ Ej+1. 

 
Now let j ≥ 1 and x ∈ α(E1;1,<∞). Then  
 

(∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b ∧ ϕ(x,v2,...,vr)) → 
dx+e ∉ Ej+1 → dx+e ∉ E2 → 

(∃v2,...,vr ∈ E2)(v2,...,vr ≤ ax+b ∧ ϕ(x,v2,...,vr)). 
 
QED 
 
LEMMA 5.3.6. For all j ≥ 1, E1 ∩ α(Ej;2,<∞) = ∅.  
 
Proof: By Lemma 5.3.3 vii), this is true for j = 1,2. 
Suppose this is false for some fixed j ≥ 3. Let y ∈ E1, p,r 
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≥ 1, t(v2,...,vr) be a term of L, x2,...,xr ∈ Ej, y = 
t(x2,...,xr), and 2|x2,...,xr| ≤ y ≤ p|x2,...,xk|. Then  
 

(∃v2,...,vr ∈ Ej)(v2,...,vr ≤ y ∧ 2|v2,...,vr| ≤ y ≤ 
p|v1,...,vr| ∧ y = t(v2,...,vr)). 

 
By Lemma 5.3.5,  
 

(∃v2,...,vr ∈ E2)(v2,...,vr ≤ y ∧ 2|v2,...,vr| ≤ y ≤ 
p|v2,...,vr| ∧ y = t(v2,...,vr)). 

 
Therefore y ∈ α(E2;2,<∞). Since y ∈ E1, this contradicts 
Lemma 5.3.3 vii). QED 
 
LEMMA 5.3.7. Let r ≥ 1 and ϕ(v1,...,v2r) be a quantifier free 
formula of L. Let x1,...,x2r ∈ E1, y1,...,yr ∈ α(E2), where 
(x1,...,xr) and (xr+1,...,x2r) have the same order type and 
min, and y1,...,yr ≤ min(x1,...,xr). Then 
ϕ(x1,...,xr,y1,...,yr) ↔ ϕ(xr+1,...,x2r,y1,...,yr).  
 
Proof: Let r,ϕ be as given. Let f:N2r → N be defined by  
 

f(x1,...,x2r) = 0 if ϕ(x1,...,x2r); x1 otherwise. 
 
Obviously, f is given by a term t(x1,...,x2r) of L.  
 
Let x1,...,x2r,y1,...,yr be as given. Since 0 ∉ E3 and 
x1,...,x2r ∈ E1, we have  
 

ϕ(x1,...,xr,y1,...,yr) ↔ t(x1,...,xr,y1,...,yr) ∉ E3.  
ϕ(xr+1,...,x2r,y1,...,yr) ↔ t(xr+1,...,x2r,y1,...,yr) ∉ E3. 

 
By Lemma 5.3.3 viii), 
 
t(xr+1,...,x2r,y1,...,yr) ∈ E3 ↔ t(x1,...,xr,y1,...,yr) ∈ E3. 

ϕ(x1,...,xr,y1,...,yr) ↔ ϕ(xr+1,...,x2r,y1,...,yr). 
 
QED 
 
DEFINITION 5.3.6. For x in A and k ≥ 0, we write ↑k(x) for 
x↑...↑, where there are k ↑’s. We take ↑0(x) = x. 
 
DEFINITION 5.3.7. By Lemma 5.3.4 and Lemma 5.3.3 iii), we 
fix c1 < c2 < ... to be the strictly increasing ω 
enumeration of E1, which consists entirely of nonstandard 
elements. The c’s are unbounded in A. 
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LEMMA 5.3.8. Let r ≥ 1 and t(v1,...,vr) be a term of L. 
There exists p ∈ N such that for all x1,...,xr, t(x1,...,xr) 
≤ ↑p(|x1,...,xr|). Furthermore, if x1,...,xr ≤ cn then 
t(x1,...,xr) < cn+1.  
 
Proof: Let r ≥ 1. The first claim is easily proved by 
induction on the term t(v1,...,vr).  
 
We now show that for all p ∈ N and n ≥ 1, ↑p(cn) < cn+1. 
Suppose ↑p(cn) ≥ cn+1. By Lemma 5.3.7, for all m ≥ n+1, 
↑p(cn) ≥ cm. But this contradicts Lemma 5.3.3 iii), that the 
c’s have no upper bound in A.  
 
For the second claim, we use p from the first claim, which 
depends only on r,t. Let x1,...,xr ≤ cn. Then t(x1,...,xr) ≤ 
↑p(|x1,...,xr|) ≤ ↑p(cn) < cn+1. QED 
 
LEMMA 5.3.9. For all a,b ∈ N there exist c,d ∈ N\{0} such 
that the following holds. Let j ≥ 1 and x ∈ α(Ej;1,<∞). 
Then ax+b ∈ Ej+1 ↔ cx+d ∉ Ej+1. 
 
Proof: Let a,b ∈ N. By Lemma 5.3.3 v), let c,d ∈ N\{0} be 
such that the following holds. Let j ≥ 1 and x ∈ Ej. Then  
 

(∃v2 ∈ Ej+1)(v2 ≤ ax+b ∧ v2 = ax+b) ↔ cx+d ∉ Ej+1. 
 
I.e.,  
 

ax+b ∈ Ej+1 ↔ cx+d ∉ Ej+1. 
 
QED 
 
LEMMA 5.3.10. Let r ≥ 1, a,b ∈ N, and ϕ(x1,...,xr) be a 
quantifier free formula in L. There exist d,e,f,g ∈ N\{0} 
such that the following holds. Let j ≥ 1 and x ∈ 
α(Ej;1,<∞). Then (∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b ∧ 
ϕ(x,v2,...,vr)) ↔ dx+e ∉ Ej+1 ↔ fx+g ∈ Ej+1. 
 
Proof: Let r,ϕ,a,b be as given. By Lemma 5.3.3 v), let d,e 
∈ N\{0} be such that the following holds. Let j ≥ 1 and x ∈ 
α(Ej;1,<∞). Then  
 

(∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b ∧ ϕ(x,v2,...,vr)) ↔  
dx+e ∉ Ej+1. 

 
By Lemma 5.3.9, let f,g ∈ N\{0} be such that for all j ≥ 1 
and x ∈ α(Ej;1,<∞), 
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dx+e ∈ Ej+1 ↔ fx+g ∉ Ej+1. 
 

(∃v2,...,vr ∈ Ej+1)(v2,...,vr ≤ ax+b ∧ ϕ(v1,...,vr)) ↔  
dx+e ∉ Ej+1 ↔ px+q ∈ Ej+1. 

 
QED 
 
We view Lemma 5.3.10 as a form of quantifier elimination 
without parameters. We need to develop a workable form of 
this kind of quantifier elimination with parameters. This 
requires that we have a mechanism for coding up tuples.  
 
DEFINITION 5.3.8. We adapt the standard pairing function of 
Definition 3.2.1 to map A2 onto A, for our structure M. 
I.e., for all x,y ∈ A, 
 

P(x,y) = (x+y)(x+y+1)/2 + y = (x2+y2+2xy+x+3y)/2. 
 
By Lemma 5.3.3 i, M satisfies TR(Π0

1,L). Hence P:A2 → A is 
one-one, onto, P is strictly increasing in each argument, 
and for all x,y ∈ A, P(x,y) ≥ x,y.  
 
DEFINITION 5.3.9. We extend P naturally to any finite 
number of arguments by P(x) = x, and for k ≥ 3, P(x1,...,xk) 
= P(P(x1,x2),x3,...,xk).  
 
Note that for each k ≥ 1, P is a bijection from Ak onto A, P 
is strictly increasing in each argument, and for all 
x1,...,xk ∈ A, P(x1,...,xk) ≥ x1,...,xk.  
 
DEFINITION 5.3.10. We also define, in M,   
 

x÷y = the unique z such that y•z ≤ x < (y+1)•z if y ≠ 0;  
0 otherwise. 

 
Let x1,...,xk ≤ cn, where x1,...,xk ∈ Ej. Suppose we want to 
code x1,...,xk. The natural choice is of course P(x1,...,xk). 
However, at this point, we don’t know that P(x1,...,xk) ∈ 
Ej, or even P(x1,...,xk) ∈ Ej+1, 2P(x1,...,xk) ∈ Ej+1, or 
3P(x1,...,xk)+1 ∈ Ej+1, which severely limits the usefulness 
of P(x1,...xk).  
 
Our approach is to use cm > cn to give a code for x1,...,xk ≤ 
cn that we can really use. For each m > n, a useful code for 
x1,...,xk ≤ cn is  
 

CODE(cm;x1,...,xk) = 8((log(cm))↑+P(x1,...,xk))+1. 
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We make a more general definition. 
 
DEFINITION 5.3.11. We define  
 

CODE(w;x1,...,xk) = 8((log(w))↑+P(x1,...,xk))+1. 
INCODE(x) = (x-(log(x))↑-1)÷8. 

 
Here ÷8 is the floor of the result of dividing by 8. Also, 
the – here is associated to the left: a-b-c = (a-b)-c. 
 
Note that CODE is given by a term in L. However, INCODE 
(inverse code) is not given by a term in L. So we have to 
be careful how we use INCODE. This issue arises in the 
proof of Lemma 5.3.13, statement 1). But note that  
 

y÷8 = z ↔ 8z ≤ y < 8z+8. 
INCODE(x) = z ↔ 8z ≤ x-(log(x))↑-1 < 8z+8. 

 
Thus the associated graphs are expressible as quantifier 
free formulas of L. This supports careful use of INCODE. 
 
Recall that from the proof of Theorem 5.1.5, log(w)↑ is the 
greatest power of 2 that is ≤ w if w > 0; 1 otherwise.  
 
LEMMA 5.3.11. Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where 
x1,...,xk ∈ α(Ej;1,<∞). Then CODE(cm;x1,...,xk) ∈ α(Ej;2,<∞) 
∩ Ej+1. Separately, let k ≥ 1 and 8P(x1,...,xk)+1 < log(w). 
Then INCODE(CODE(w;x1,...,xk)) = P(x1,...,xk). 
 
Proof: Let k,n,m,x1,...,xk be as given. Note that  

 
(cm÷2)+1 ≤ (log(cm))↑ ≤ cm. 

2cm ≤ 4(log(cm))↑+P(x1,...xk)) ≤ 5cm. 
 

4((log(cm))↑+P(x1,...xk)) ∈ α(Ej;2,<∞). 
CODE(cm;x1,...,xk) ∈ 2α(Ej;2,<∞)+1. 

 
We have CODE(cm;x1,...,xk) ∈ Ej+1 by Lemma 5.3.3 vi). 
 
Now let k,x1,...,xk,w be as given. We claim that  
 

1) log(CODE(w;x1,...,xk)) = log(w)+3. 
 
To see this, note that  
 

log(CODE(w;x1,...,xk)) =  
log(8((log(w))↑ + P(x1,...,xk))+1) =  
log(8(log(w))↑ + 8P(x1,...,xk) + 1) =  
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log((log(w)+3)↑ + 8P(x1,...,xk) + 1) ≤  
log((log(w)+3)↑ + log(w)) = log(w)+3 ≤  
log((log(w)+3)↑ + 8P(x1,...,xk) + 1).  

 
Using 1),  
 

INCODE(CODE(w;x1,...,xk)) = z ↔ 
8z ≤ CODE(w;x1,...,xk)-(log(CODE(w;x1,...,xk)))↑-1 < 8z+8 ↔ 

8z ≤ CODE(w;x1,...,xk)-(log(w)+3)↑-1 < 8z+8 ↔ 
8z ≤ CODE(w;x1,...,xk)-8((log(w))↑)-1 < 8z+8 ↔ 

8z ≤ 8P(x1,...,xk) < 8z+8. 
 
Hence  
 

INCODE(CODE(w;x1,...,xk)) = P(x1,...,xk). 
 
QED 
 
LEMMA 5.3.12. Let x ∈ α(Ej;1,<∞). There exist y,z ∈ Ej+1 ∩ 
[0,4x] such that x = y-z.  
 
Proof: Let x be as given. By Lemma 5.3.3 vi), 2x+1, 3x+1 ∈ 
Ej+1. Write x = (3x+1)-(2x+1). QED 
 
LEMMA 5.3.13. Let r ≥ 1, p ≥ 2, and ϕ(v1,...,v2r) be a 
quantifier free formula of L. There exist a,b,d,e ∈ N\{0} 
such that the following holds. Let j,n ≥ 1 and x1,...,xr ∈ 
α(Ej;1,<∞) ∩ [0,cn]. Then  
 

(∃vr+1,...,v2r ∈ Ej+1)(vr+1,...,v2r ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,vr+1,...,v2r)) ↔ 

aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ 
dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 

 
Proof: Let r,p,ϕ be as given. By Lemma 5.3.10, let a,b,d,e 
∈ N\{0} be such that the following holds. Let j ≥ 1 and x ∈ 
α(Ej;1,<∞). Then  
 
1) (∃v1,...,v3r ∈ Ej+1)(v1,...,v3r ≤ x ∧ vr+1,...,v2r ≤ ↑p(|v2r+1-
v1,...,v3r-vr|) ∧ INCODE(x) = P(v2r+1-v1,...,v3r-vr) ∧ ϕ(v2r+1-
v1,...,v3r-vr,vr+1,...,v2r)) ↔ ax+b ∉ Ej+1 ↔ dx+e ∈ Ej+1. 
 
We have used the fact that INCODE(v) = P(v1,...,vr) can be 
expanded out as a formula of L in variables v,v1,...,vr, as 
observed just before Lemma 5.3.11. 
 



 622 

Now let j,n ≥ 1, x1,...,xr ∈ α(Ej;1,<∞) ∩ [0,cn]. By Lemma 
5.3.11, CODE(cn+1;x1,...,xr) ∈ α(Ej;1,<∞). Hence we can set x 
= CODE(cn+1;x1,...,xr) and obtain the following.  
 
2) (∃v1,...,v3r ∈ Ej+1)(v1,...,v3r ≤ CODE(cn+1;x1,...,xr) ∧ 
vr+1,...,v2r ≤ ↑p(|v2r+1-v1,...,v3r-vr|) ∧ 
INCODE(CODE(cn+1;x1,...,xr)) = P(v2r+1-v1,...,v3r-vr) ∧ ϕ(v2r+1-
v1,...,v3r-vr,vr+1,...,v2r)) ↔ aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ 
dCODE(cn+1;x1,...,xr)+e ∈ Ej+1.  
 
By Lemma 5.3.8, 8P(x1,...,xr)+1 < log(cn+1). Using Lemma 
5.3.11,   
 
3) (∃v1,...,v3r ∈ Ej+1)(v1,...,v2r ≤ CODE(cn+1;x1,...,xr) ∧ 
vr+1,...,v2r ≤ ↑p(|v2r+1-v1,...,v3r-vr|) ∧ P(x1,...,xr) = P(v2r+1-
v1,...,v3r-vr) ∧ ϕ(v2r+1-v1,...,v3r-vr,vr+1,...,v2r))  ↔ 
aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ dCODE(cn+1;x1,...,xr)+e ∈ Ej+1.  
 
4) (∃v1,...,v3r ∈ Ej+1)(v1,...,v2r ≤ CODE(cn+1;x1,...,xr) ∧ 
vr+1,...,v2r ≤ ↑p(|v2r+1-v1,...,v3r-vr|) ∧ x1 = v2r+1-v1 ∧ ... ∧ 
xr = v3r-vr ∧ ϕ(v2r+1-v1,...,v3r-vr,vr+1,...,v2r)) ↔ 
aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 
 
By Lemma 5.3.12,  
 
5) (∃vr+1,...,v2r ∈ Ej+1)(vr+1,...,v2r ≤ CODE(cn+1;x1,...,xr) ∧ 
vr+1,...,v2r ≤ ↑p(|x1,...,xr|) ∧ ϕ(x1,...,xr,vr+1,...,v2r)) ↔ 
aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 
 
Note that the application of Lemma 5.3.12 to the x = 1 
requires 1 = 4-3, and 4 ≤ ↑1(1) is false. However, 4 ≤ ↑2(1) 
is true. This explains why we require p ≥ 2.  
 
By x1,...,xr ≤ cn and Lemma 5.3.8,   
 
6) (∃vr+1,...,v2r ∈ Ej+1)(vr+1,...,v2r ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,vr+1,...,v2r)) ↔ aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ 
dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 
 
QED 
 
LEMMA 5.3.14. Let r ≥ 1, i1,...,ir ≥ 1, and ϕ(x1,...,x2r) be 
a quantifier free formula of L. Suppose (∀v1,...,vr ∈ E2) 
(ϕ(ci_1,...,ci_r,v1,...,vr)). Then for all j ≥ 1, (∀v1,...,vr ∈ 
Ej)(ϕ(ci_1,...,ci_r,v1,...,vr)). 

 
Proof: Let r,ϕ,i1,...,ir be as given. Fix n > i1,...,ir.  
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We apply Lemma 5.3.13. Let a,b,d,e ∈ N\{0} be such that the 
following holds. For all j ≥ 1,  
 

(∃v1,...,vr+1 ∈ Ej+1)(v1,...,vr ≤ |ci_1,...,ci_r,cn|↑↑ ∧  
v1,...,vr ≤ cn ∧ ¬ϕ(ci_1,...,ci_r,v1,...,vr)) ↔ 

aCODE(cn+1;ci_1,...,ci_r,cn)+b ∉ Ej+1 ↔ 
dCODE(cn+1;ci_1,...,ci_r,cn)+e ∈ Ej+1. 

 
(∃v1,...,vr ∈ Ej+1)(v1,...,vr ≤ cn ∧ ¬ϕ(ci_1,...,ci_r,v1,...,vr)) 

↔ aCODE(cn+1;ci_1,...,ci_r,cn)+b ∉ Ej+1 ↔ 
dCODE(cn+1;ci_1,...,ci_r,cn)+e ∈ Ej+1. 

 
By hypothesis,  
 

¬(∃v1,...,vr ∈ E2) 
(v1,...,vr ≤ cn ∧ ¬ϕ(ci_1,...,ci_r,v1,...,vr)). 

 
aCODE(cn+1;ci_1,...,ci_r,cn)+b ∈ E2. 

 
Now let j ≥ 1. Then  
 

aCODE(cn+1;ci_1,...,ci_r,cn)+b ∈ Ej+1. 
 
Hence  
 

¬(∃v1,...,vr ∈ Ej+1) 
(v1,...,vr ≤ cn ∧ ¬ϕ(ci_1,...,ci_r,v1,...,vr)). 

 
I.e.,  
 

(∀v1,...,vr ∈ Ej+1) 
(v1,...,vr ≤ cn → ϕ(ci_1,...,ci_r,v1,...,vr)). 

 
Since n ≥ i1,...,ir is arbitrary and the c’s have no upper 
bound in A, we have 
 

(∀v1,...,vr ∈ Ej+1)(ϕ(ci_1,...,ci_r,v1,...,vr)). 
 
QED 
 
DEFINITION 5.3.12. We say that t(v1,...,vr) is a (p,<∞) term 
of L if and only if  
 
i. t(v1,...,vr) is a term of L. 
ii. p is a positive standard integer. 
iii. There exists a standard integer q such that for all 
x1,...,xr ∈ A, p|x1,...,xr| ≤ t(x1,...,xr) ≤ q|x1,...,xr|. 
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LEMMA 5.3.15. Let r ≥ 1, t(v1,...,v2r) be a (1,<∞) term of 
L, and i1,...,i2r ≥ 1, where (i1,...,ir) and (ir+1,...,i2r) 
have the same order type and min. For all j ≥ 1, y1,...,yr ∈ 
Ej, y1,...,yr ≤ min(ci_1,...,ci_r), 

t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1 ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1. 

 
Proof: By Lemma 5.3.3 viii), this holds for j = 2. In fact, 
in the case j = 2, we have the equivalence for any term t.  
 
We will use Lemma 5.3.14 to argue that it holds for any j ≥ 
1. But there are many details that need to be checked. 
 
By Lemma 5.3.9, let a,b ∈ N\{0} be such that the following 
holds. For all j ≥ 1 and x ∈ α(Ej;1,<∞),  
 

1) x ∈ Ej+1 ↔ ax+b ∉ Ej+1. 
 
Let r,t,i1,...,i2r be as given. Fix n = min(i1,...,i2r).  
 
Since t is a (1,<∞) term, for all j ≥ 1 and y1,...,yr ∈ Ej, 
 

2) t(ci_1,...,ci_r,y1,...,yr), t(ci_r+1,...,ci_2r,y1,...,yr)  
∈ α(Ej;1,<∞). 

 
By 1),2), for all j ≥ 1 and y1,...,yr ∈ Ej, 
 

3) t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1 →  
at(ci_1,...,ci_r,y1,...,yr)+b ∉ Ej+1 

∧ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1 →  
at(ci_r+1,...,ci_2r,y1,...,yr)+b ∉ Ej+1. 

 
By Lemma 5.3.3 viii), for all y1,...,yr ∈ α(E2) ∩ [0,cn], 
 

4) t(ci_1,...,ci_r,y1,...,yr) ∈ E3 →  
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E3 

∧ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E3 →  
t(ci_1,...,ci_r,y1,...,yr) ∈ E3. 

 
By 1),2),4), for all y1,...,yr ∈ E2 ∩ [0,cn], 
 

5) t(ci_1,...,ci_r,y1,...,yr) ∈ E3 →  
at(ci_r+1,...,ci_2r,y1,...,yr)+b ∉ E3 

∧ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E3 →  
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at(ci_1,...,ci_r,y1,...,yr)+b ∉ E3. 
 
By elementary logical manipulations from 5, for all 
y1,...,yr ∈ E2 ∩ [0,cn], 
 

t(ci_1,...,ci_r,y1,...,yr) ∉ E3 ∨  
at(ci_r+1,...,ci_2r,y1,...,yr)+b ∉ E3 

∧ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∉ E3 ∨  
at(ci_1,...,ci_r,y1,...,yr)+b ∉ E3. 

 
(∀u,v ∈ E3)(t(ci_1,...,ci_r,y1,...,yr) ≠ u ∨  

at(ci_r+1,...,ci_2r,y1,...,yr)+b ≠ v) 
∧ 

(∀u,v ∈ E3)(t(ci_r+1,...,ci_2r,y1,...,yr) ≠ u ∨  
at(ci_1,...,ci_r,y1,...,yr)+b ≠ v). 

 
6) (∀u1,u2,u3,u4 ∈ E3) 

(t(ci_1,...,ci_r,y1,...,yr) ≠ u1 ∨  
at(ci_r+1,...,ci_2r,y1,...,yr)+b ≠ u2 

∧ 
t(ci_r+1,...,ci_2r,y1,...,yr) ≠ u3 ∨  
at(ci_1,...,ci_r,y1,...,yr)+b ≠ u4). 

 
Write 6) in the form  
 

7) (∀v3r+1,v3r+2,v3r+3,v3r+4 ∈ E3) 
ψ(ci_1,...,ci_2r,v2r+1,...,v3r+4). 

 
where ψ is given by 
 

8) ψ(v1,...,v3r+4) = 
(t(v1,...,vr,v2r+1,...,y3r) ≠ v3r+1 ∨  
at(vr+1,...,v2r,v2r+1,...,v3r)+b ≠ v3r+2 

∧ 
t(vr+1,...,v2r, v2r+1,...,y3r) ≠ v3r+3 ∨  
at(v1,...,vr,v2r+1,...,y3r)+b ≠ v3r+4). 

  
To recapitulate, we have  
 

9) (∀v2r+1,...,v3r ∈ E2)(v2r+1,...,v3r ≤ cn →  
(∀v3r+1,v3r+2,v3r+3,v3r+4 ∈ E3) 

(ψ(ci_1,...,ci_2r,v2r+1,...,y3r+4))). 
 
We can weaken 9) to  
 

10) (∀v2r+1,...,y3r+4 ∈ E2) 
(v2r+1,...,y3r ≤ cn → ψ(ci_1,...,ci_2r,v2r+1,...,v3r+4)). 



 626 

 
We now want to apply Lemma 5.3.14 to obtain 10) with E2 
replaced by any Ej, j ≥ 1. Lemma 5.3.14 requires that we 
quantify over v1,...,vr', and use r' constants, where r' ≥ 1. 
We can set r' = 3r+4 and add 2r+3 dummy constants.  
 
Hence for all j ≥ 1,  
 

11) (∀v2r+1,...,y3r+4 ∈ Ej+1) 
(v2r+1,...,y3r ≤ cn → ψ(ci_1,...,ci_2r,v2r+1,...,v3r+4)). 

 
We can now perform the above rewriting in reverse. By 11), 
for all j ≥ 1 and v2r+1,...,y3r ∈ Ej ∩ [0,cn],  
 

12) (∀v3r+1,v3r+2,v3r+3,v3r+4 ∈ Ej+1) 
(ψ(ci_1,...,ci_2r,v2r+1,...,y3r+4)). 

 
By 8),12), for all j ≥ 1 and v2r+1,...,y3r ∈ Ej ∩ [0,cn], 
 

13) (∀v3r+1,v3r+2,v3r+3,v3r+4 ∈ Ej+1) 
(t(ci_1,...,ci_r,v2r+1,...,v3r) ≠ v3r+1 ∨ 
at(ci_r+1,...,ci_2r,v2r+1,...,v3r)+b ≠ v3r+2 

∧ 
t(ci_r+1,...,ci_2r,v2r+1,...,v3r) ≠ v3r+3 ∨ 
at(ci_1,...,ci_r,v2r+1,...,v3r)+b ≠ v3r+4). 

 
By logical manipulations, for all j ≥ 1 and v2r+1,...,v3r ∈ Ej 
∩ [0,cn], 
  
14) (∀v3r+1,v3r+2 ∈ Ej+1)(t(ci_1,...,ci_r,v2r+1,...,v3r) ≠ v3r+1 ∨  

at(ci_r+1,...,ci_2r,y1,...,yr)+b ≠ v3r+2) 
∧ 

(∀v3r+3,v3r+4 ∈ Ej+1)(t(ci_r+1,...,ci_2r,v2r+1,...,v3r) ≠ v3r+3 ∨  
at(ci_1,...,ci_r,y1,...,yr)+b ≠ v3r+4). 

 
15) t(ci_1,...,ci_r,v2r+1,...,v3r) ∉ Ej+1 ∨  
at(ci_r+1,...,ci_2r,v2r+1,...,v3r)+b ∉ Ej+1 

∧ 
t(ci_r+1,...,ci_2r,v2r+1,...,v3r) ∉ Ej+1 ∨  
at(ci_1,...,ci_r,v2r+1,...,v3r)+b ∉ Ej+1. 

 
16) t(ci_1,...,ci_r,v2r+1,...,v3r) ∈ Ej+1 → 
at(ci_r+1,...,ci_2r,v2r+1,...,v3r)+b ∉ Ej+1 

∧ 
t(ci_r+1,...,ci_2r,v2r+1,...,v3r) ∈ Ej+1 → 
at(ci_1,...,ci_r,v2r+1,...,v3r)+b ∉ Ej+1. 

 
By 1),2),16), 
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17) t(ci_1,...,ci_r,v2r+1,...,v3r) ∈ Ej+1 →  

t(ci_r+1,...,ci_2r,v2r+1,...,v3r) ∈ Ej+1  
∧ 

t(ci_r+1,...,ci_2r,v2r+1,...,v3r) ∈ Ej+1 →  
t(ci_1,...,ci_r,v2r+1,...,v3r) ∈ Ej+1. 

 
18) t(ci_1,...,ci_r,v2r+1,...,v3r) ∈ Ej+1 ↔  

t(ci_r+1,...,ci_2r,v2r+1,...,v3r) ∈ Ej+1  
 

as required. QED 
 
LEMMA 5.3.16. Let r ≥ 1 and t(v1,...,vr) be a term of L. 
There exists a (1,<∞) term t’(v1,...,vr+1) such that the 
following holds. Let n,j ≥ 1 and x1,...,xr ∈ α(Ej;1,<∞) ∩ 
[0,cn]. Then t(x1,...,xr) ∈ Ej+1 ↔ t’(x1,...,xr,cn+1) ∈ Ej+1. 
 
Proof: Let r,t be as given. By Lemma 5.3.8, let p ≥ 2 be 
such that for all n ≥ 1, x1,...,xr ≤ cn, we have t(x1,...,xr) 
≤ ↑p(cn). By Lemma 5.3.13, let a,b ∈ N\{0} be such that the 
following holds. Let j,n ≥ 1 and x1,...,xr ∈ α(Ej;1,<∞) ∩ 
[0,cn]. Then  
 

(∃y ∈ Ej+1)(y ≤ ↑p(|x1,...,xr|) ∧ y = t(x1,...,xr)) ↔ 
aCODE(cn+1;x1,...,xr)+b ∈ Ej+1. 

 
By the choice of p and |x1,...,xr| ≤ cn, we have  
 

t(x1,...,xr) ∈ Ej+1 ↔ 
aCODE(cn+1;x1,...,xr)+b ∈ Ej+1. 

 
So we can set t’(v1,...,vr+1) = aCODE(vr+1;v1,...,vr)+b if 
|v1,...,vr+1| ≤ aCODE(vr+1;v1,...,vr)+b ≤ 16a|v1,...,vr+1|; 
|v1,...,vr+1| otherwise. Obviously t’ is a (1,<∞) term, and 
for all x1,...,xr ≤ cn, t’(x1,...,xr,cn+1) = 
aCODE(cn+1;x1,...,xr)+b ∈ [cn+1,16acn+1]. QED 
 
LEMMA 5.3.17. Let r,j ≥ 1 and t(v1,...,v2r) be a term of L. 
Let i1,...,i2r ≥ 1, and y1,...,yr ∈ Ej, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and min, and y1,...,yr 
≤ min(ci_1,...,ci_r). Then  

t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1 ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1. 

 
Proof: Let r,t(v1,...,v2r) be as given. Let t’(x1,...,x2r+1) 
be as given by Lemma 5.3.16. Let j,i1,...,i2r,y1,...,yr be as 
given. Let n > max(i1,...,i2r). Obviously, y1,...,yr ≤ cn. By 
Lemma 5.3.16,  
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t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1 ↔ 

t’(ci_1,...,ci_r,y1,...,yr,cn+1) ∈ Ej+1. 
 

t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1 ↔ 
t’(ci_r+1,...,ci_2r,y1,...,yr,cn+1) ∈ Ej+1. 

 
Since t’ is a (1,<∞) term, we see that by Lemma 5.3.15,  
 

t’(ci_1,...,ci_r,y1,...,yr,cn+1) ∈ Ej+1 ↔ 
t’(ci_r+1,...,ci_2r,y1,...,yr,cn+1) ∈ Ej+1. 

 
Hence  
 

t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1 ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1. 

 
QED 
 
LEMMA 5.3.18. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...) such that the following 
holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1, t(v1,...,vr) be a term of L, and x1,...,xr ≤ 
cn. Then t(x1,...,xr) < cn+1;  
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let r ≥ 1, a,b ∈ N, and ϕ(v1,...,vr) be a quantifier 
free formula of L. There exist d,e,f,g ∈ N\{0} such that 
for all x1 ∈ α(E;1,<∞), (∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ 
ϕ(x1,...,xr)) ↔ dx1+e ∉ E ↔ fx1+g ∈ E; 
vii) Let r ≥ 1, p ≥ 2, and ϕ(v1,...,v2r) be a quantifier free 
formula of L. There exist a,b,d,e ∈ N\{0} such that the 
following holds. Let n ≥ 1 and x1,....,xr ∈ α(E;1,<∞) ∩ 
[0,cn]. Then  
(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr)) ↔  
aCODE(cn+1;x1,...,xr)+b ∉ E ↔  
dCODE(cn+1;x1,...,xr)+e ∈ E. Here CODE is as defined just 
before Lemma 5.3.11; 
viii) Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where x1,...,xk 
∈ α(E;1,<∞). Then CODE(cm;x1,...,xk) ∈ E; 
ix) Let r ≥ 1 and t(v1,...,v2r) be a term of L. Let i1,...,i2r 
≥ 1 and y1,...,yr ∈ E, where (i1,...,ir) and (ir+1,...,i2r) 
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have the same order type and min, and y1,...,yr ≤ 
min(ci_1,...,ci_r). Then  
t(ci_1,...,ci_r,y1,...,yr) ∈ E ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. 
 
Proof: Let this M be the same as the M given by Lemma 
5.3.3, except that instead of using E1,E2,..., we use E = 
∪{En: n ≥ 1}. We also use the enumeration c1 < c2 < ... of 
E1.  
 
Claim i) is the same as Lemma 5.3.3 i).  
 
Claim ii) is immediate from Lemma 5.3.3 ii). 
 
Claim iii) is from Lemmas 5.3.3 iii), 5.3.4, 5.3.6, and the 
definition of the c’s.  
 
Claim iv) is from Lemma 5.3.8.  
 
Claim v) is immediate from Lemma 5.3.3 vi).  
 
For claim vi), let r,a,b,ϕ(v1,...,vr) be as given. By Lemma 
5.3.10, let d,e,f,g ∈ N\{0} be such that the following 
holds. Let j ≥ 1 and x1 ∈ α(Ej;1,<∞). Then  
 

(∃x2,...,xr ∈ Ej+1)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)) ↔  
dx1+e ∉ Ej+1 ↔ fx1+g ∈ Ej+1. 

 
Let x1 ∈ α(E;1,<∞). For all j ≥ 1, if x1 ∈ α(Ej;1,<∞), then  
 

1) (∃x2,...,xr ∈ Ej+1)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)) ↔ 
dx1+e ∉ Ej+1 ↔ fx1+g ∈ Ej+1. 

 
We must verify that  
 

(∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)) ↔ 
dx1+e ∉ E ↔ fx1+g ∈ E. 

 
First assume  
 

2) (∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)). 
 
Let j be such that  
 

3) x1 ∈ α(Ej;1,<∞). 
(∃x2,...,xr ∈ Ej+1)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)). 

 
By 1),3), 
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dx1+e ∉ Ej+1. 
fx1+g ∈ Ej+1. 

 
Since j can be raised arbitrarily,  
 

dx1+e ∉ E. 
fx1+g ∈ E. 

 
Next assume  
 

4) dx1+e ∉ E. 
 
By 1),4), for all j ≥ 1, if x1 ∈ α(Ej;1,<∞) then 
 

(∃x2,...,xr ∈ Ej+1)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)). 
fx1+g ∈ Ej+1. 

(∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)). 
fx1+g ∈ E. 

 
Finally assume  
  

5) fx1+g ∈ E. 
 
By 1), for all j ≥ 1, if fx1+g ∈ Ej+1 and x1 ∈ α(Ej;1,<∞), 
then  
 

(∃x2,...,xr ∈ Ej+1)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)). 
dx1+e ∉ Ej+1. 

 
Since we can choose such a j to be arbitrarily large,   
 

(∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ ϕ(x1,...,xr)). 
dx1+e ∉ E. 

 
For claim vii), let r,p,ϕ(v1,...,v2r) be as given. By Lemma 
5.3.13, let a,b,d,e ∈ N\{0} be such that the following 
holds. For all j,n ≥ 1 and x1,...,xr ∈ α(Ej;1,<∞) ∩ [0,cn],  
 

(∃y1,...,yr ∈ Ej+1)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧  
ϕ(x1,...,xr,y1,...,yr) ↔ 

aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ 
dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 

 
Fix n ≥ 1 and x1,....,xr ∈ α(E;1,<∞) ∩ [0,cn]. Then for all 
j ≥ 1 and x1,...,xr ∈ α(Ej;1,<∞) ∩ [0,cn], 
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6) (∃y1,...,yr ∈ Ej+1)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr) ↔ 

aCODE(cn+1;x1,...,xr)+b ∉ Ej+1 ↔ 
dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 

 
 We must verify that  
 

(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧  
ϕ(x1,...,xr,y1,...,yr)) ↔ 

aCODE(cn+1;x1,...,xr)+b ∉ E ↔ 
dCODE(cn+1;x1,...,xr)+e ∈ E. 

 
First assume  
 

7) (∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr)). 

 
Let j ≥ 1 be such that  
 

x1,...,xr ∈ α(Ej;1,<∞).  
(∃y1,...,yr ∈ Ej+1)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧  

ϕ(x1,...,xr,y1,...,yr)). 
 
By 6),7),  
 

aCODE(cn+1;x1,...,xr)+b ∉ Ej+1. 
dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 

 
Since j can be raised arbitrarily,   
 

aCODE(cn+1;x1,...,xr)+b ∉ E. 
dCODE(cn+1;x1,...,xr)+e ∈ E. 

 
Now assume  
 

8) aCODE(cn+1;x1,...,xr)+b ∉ E. 
 
By 6),8), for all j ≥ 1 and x1,...,xr ∈ α(Ej;1,<∞) ∩ [0,cn], 
  

(∃y1,...,yr ∈ Ej+1)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧  
ϕ(x1,...,xr,y1,...,yr)). 

dCODE(cn+1;x1,...,xr)+e ∈ Ej+1. 
(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧  

ϕ(x1,...,xr,y1,...,yr)). 
dCODE(cn+1;x1,...,xr)+e ∈ E. 

 
Finally assume  
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9) dCODE(cn+1;x1,...,xr)+e ∈ E. 
 
By 6), for all j ≥ 1 such that x1,...,xr ∈ α(Ej;1,<∞) ∩ 
[0,cn] and dCODE(cn+1;x1,...,xr)+e ∈ Ej+1, 
 

(∃y1,...,yr ∈ Ej+1)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧  
ϕ(x1,...,xr,y1,...,yr). 

aCODE(cn+1;x1,...,xr)+b ∉ Ej+1. 
 
Since we can choose arbitrarily large such j,     
 

(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr). 

aCODE(cn+1;x1,...,xr)+b ∉ E. 
 
For claim viii), let k,n,m,x1,...,xk be as given. Let j ≥ 1 
be such that x1,...,xk ∈ α(Ej;1,<∞). By Lemma 5.3.11, 
CODE(cm;x1,...,xk) ∈ Ej+1. Hence CODE(cm;x1,...,xk) ∈ E.   
 
For claim ix), let r,t,i1,...,i2r,y1,...,yr be as given. By 
Lemma 5.3.17, for all j ≥ 1, if y1,...,yr ∈ Ej then  
 

10) t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1 ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1. 

 
We must verify that 
 

t(ci_1,...,ci_r,y1,...,yr) ∈ E ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. 

 
First assume t(ci_1,...,ci_r,y1,...,yr) ∈ E. Let j ≥ 1 be such 
that  
 

11) y1,...,yr ∈ Ej. 
t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1. 

 
By 10),11),  
 

t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1. 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. 

 
Finally, assume t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. Let j ≥ 1 be 
such that  
 

12) y1,...,yr ∈ Ej. 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ Ej+1. 

 
By 10),12),  
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t(ci_1,...,ci_r,y1,...,yr) ∈ Ej+1. 
t(ci_1,...,ci_r,y1,...,yr) ∈ E. 

 
QED 
 
5.4. Limited formulas, limited 
indiscernibles, x-definability, normal form. 
 
We fix M = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...) as given by 
Lemma 5.3.18. 
 
DEFINITION 5.4.1. Let L(E) be the first order predicate 
calculus with equality, using <,0,1,+,-,•,↑,log,E, where E 
is 1-ary. The c's are not included in L(E). We will always 
write t ∈ E instead of E(t). 
 
We follow the convention that ϕ(v1,...,vk) represents a 
formula of L(E) whose free variables are among v1,...,vk. 
This does not require that vk be free or even appear in ϕ. 
Recall that all variables are of the form vn, where n ≥ 1. 
 
In this section, we will only be concerned with what we 
call the E formulas of L(E).  
 
DEFINITION 5.4.2. The E formulas of L(E) are inductively 
defined as follows. 
 
i) Every atomic formula of L(E) is an E formula; 
ii) If ϕ,ψ are E formulas then (¬ϕ), (ϕ∧ψ), (ϕ∨ψ), (ϕ→ψ), 
(ϕ↔ψ) are E formulas; 
iii) If ϕ is an E formula and n ≥ 1, then (∃vn ∈ E)(ϕ), (∀vn 
∈ E)(ϕ) are E formulas. 
 
DEFINITION 5.4.3. We take  
 

(∃vn ∈ E)(ϕ), (∀vn ∈ E)(ϕ) 
 
to be abbreviations of  
 

(∃vn)(vn ∈ E ∧ ϕ), (∀vn)(vn ∈ E → ϕ). 
 
Although general formulas of L(E) will arise in this 
section, attention will be focused on their 
relativizations, which are E formulas of L(E).  
 



 634 

DEFINITION 5.4.4. Let ϕ(v1,...,vk) be a formula of L(E) and 
v be a variable not among v1,...,vk. We let ϕ(v1,...,vk)v be 
the result of bounding all quantifiers in ϕ(v1,...,vk) to  
 

E ∩ [0,v]. 
 
I.e., we replace each quantifier  
 

(∀u) by (∀u ∈ E ∩ [0,v]) 
(∃u) by (∃u ∈ E ∩ [0,v]). 

 
These bounded quantifiers should be expanded in the usual 
way to create an actual formula in L(E).  
 
We now define a very important 6-ary relation. 
 
DEFINITION 5.4.5. We define A(r,n,m,ϕ,a,b) if and only if   
 
i) r,n,m,a,b ∈ N\{0}, n < m; 
ii) ϕ = ϕ(v1,...,vr) is a formula of L(E); i.e., all free 
variables of ϕ are among v1,...,vr; 
iii) Let x1,...,xr ∈ E ∩ [0,cn]. Then ϕ(x1,...,xr)c_n ↔  
aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E.     
 
LEMMA 5.4.1. Let r,n ≥ 1 and ϕ(v1,...,vr) be a quantifier 
free formula of L. There exist a,b such that 
A(r,n,n+1,ϕ,a,b). 
 
Proof: Let r,n,ϕ be as given. Note that ϕc_n = ϕ.  
 
By Lemma 5.3.18 vii), let a,b ∈ N\{0} be such that the 
following holds. Let n ≥ 1 and x1,...,xr ∈ E ∩ [0,cn].  
 
(∃y ∈ E)(y ≤ |cn,x1,...,xr|↑↑ ∧ y ≤ |x1,...,xr| ∧ 
ϕ(cn,x1,...,xr,y))  

↔ 
(∃y ∈ E)(y ≤ |cn,x1,...,xr|↑↑ ∧ ρ(cn,x1,...,xr,y))  

↔ 
aCODE(cn+1;cn,x1,...,xr)+b ∈ E. 

 
ϕ(x1,...,xr) ↔  

aCODE(cn+1;cn,x1,...,xr)+b ∈ E. 
 
Hence A(r,n,n+1,ϕ,a,b). QED 
 
Note that in the proof of Lemma 5.4.1, the second displayed 
formula is subject to Lemma 5.3.18 vii). The formula ρ used 
can be read off easily from the first displayed formula. We 
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will be using this style of exposition throughout this 
section. 
 
LEMMA 5.4.2. Let r ≥ 1 and ϕ be t ∈ E, where t(v1,...,vr) is 
a term of L. There exist a,b such that the following holds. 
Let n ≥ 1. Then A(r,n,n+1,ϕ,a,b).  
 
Proof: Let r,ϕ,t be as given.  
 
Let p ≥ 2 be such that for all x1,...,xr ∈ A, t(x1,...,xr) ≤ 
↑p(|x1,...,xr|). By Lemma 5.3.18 vii), let a,b ∈ N\{0} be 
such that the following holds. Let n ≥ 1 and x1,...,xr ∈ E ∩ 
[0,cn]. Then  
 

(∃y ∈ E)(y ≤ ↑p(|cn,x1,...,xr|) ∧ y = t(x1,...,xr))  
↔ 

(∃y ∈ E)(y ≤ ↑p(|cn,x1,...,xr|) ∧ ρ(cn,x1,...,xr,y)) 
↔   

aCODE(cn+1;cn,x1,...,xr)+b ∈ E. 
 

t(x1,...,xr) ∈ E ↔  
aCODE(cn+1;cn,x1,...,xr)+b ∈ E. 

 
Hence A(r,n,n+1,ϕ,a,b). QED  
 
LEMMA 5.4.3. Let A(r,n,m,ϕ,a,b). There exist d,e such that 
A(r,n,m,¬ϕ,d,e).  
 
Proof: Let A(r,n,m,ϕ,a,b). By Lemma 5.3.18 vi), fix i,j ∈ 
N\{0} such that the following holds. Let x1 ∈ α(E;1,<∞). 
Then 
 

(∃x2 ∈ E)(x2 ≤ x1 ∧ x2 = x1) ↔  
ix1+j ∉ E. 

 
Clearly for all x1 ∈ α(E;1,<∞),  
 

1) x1 ∈ E ↔ ix1+j ∉ E. 
 
Now let x1,...,xr ∈ E ∩ [0,cn]. By A(r,n,m,ϕ,a,b),  
 

2) ϕ(x1,...,xr)c_n ↔  
aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E. 

 
By Lemma 5.3.18 viii),  
 

CODE(cm;cn,...,cm-1,x1,...,xr) ∈ E. 
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By 1),  
 

3) a(CODE(cm;cn,...,cm-1,x1,...,xr))+b ∈ E ↔ 
ia(CODE(cm;cn,...,cm-1,x1,...,xr))+ib+j  ∉ E. 

 
By 2),3), 
 

¬ϕ(x1,...,xr)c_n ↔  
ia(CODE(cm;cn,...,cm-1,x1,...,xr))+ib+j ∈ E. 

 
Therefore A(r,n,m,¬ϕ,ia,ib+j). QED 
 
LEMMA 5.4.4. Let a,b,d,e ∈ N\{0}. There exist f,g ∈ N\{0} 
such that the following holds. Let w ∈ α(E;1,<∞). Then 
(aw+b ∈ E ∧ dw+e ∈ E) ↔ fw+g ∈ E. 
 
Proof: Let a,b,d,e ∈ N\{0}. Let p = max(a,b,d,e).  
 
By Lemma 5.3.18 vi), let f,g ∈ N\{0} such that the 
following holds. Let w ∈ α(E;1,<∞). Then 
 

(∃y,z ∈ E)(y,z ≤ pw+p ∧ y = aw+b ∧ z = cw+d) ↔  
fw+g ∈ E. 

 
(∃y,z ∈ E)(y = aw+b ∧ z = cw+d) ↔  

fw+g ∈ E. 
 

(aw+b ∈ E ∧ cw+d ∈ E) ↔  
fw+g ∈ E. 

 
QED 
 
LEMMA 5.4.5. Let A(r,n,m,ϕ,a,b) and A(r,n,m,ψ,d,e). There 
exist f,g such that A(r,n,m,ϕ∧ψ,f,g).  
 
Proof: Assume A(r,n,m,ϕ,a,b), A(r,n,m,ψ,d,e). Let x1,...,xr 
∈ E ∩ [0,cn], Then  
 

1) ϕ(x1,...,xr)c_n ↔  
aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E. 

 
ψ(x1,...,xr)c_n ↔  

dCODE(cm;cn,...,cm-1,x1,...,xe)+e ∈ E. 
 
Let f,g be given by Lemma 5.4.4 using a,b,d,e. By Lemma 
5.3.18 viii),  
 

CODE(cm;cn,...,cm-1,x1,...,xr) ∈ E. 
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Hence by Lemma 5.4.4,  
 

2) aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E ∧ 
dCODE(cm;cn,...,cm-1,x1,...,xr)+e ∈ E  

↔ 
fCODE(cm;cn,...,cm-1,x1,...,xr)+g ∈ E. 

 
By 1),2),  
 

((ϕ∧ψ)(x1,...,xr))c_n  
↔ 

ϕ(x1,...,xr)c_n ∧ ψ(x1,...,xr)c_n 
↔ 

fCODE(cm;cn,...,cm-1,x1,...,xr)+g ∈ E. 
 
QED 
 
LEMMA 5.4.6. Let 1 ≤ i ≤ r and A(r,n,m,ϕ,a,b). There exists 
d,e such that A(r,n,m+1,(∃vi)(ϕ),d,e).  
 
Proof: Let 1 ≤ i ≤ r and A(r,n,m,ϕ,a,b). Let x1,...,xr ∈ E ∩ 
[0,cn]. Then  
 

1) ϕ(x1,...,xr)c_n ↔  
aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E. 

 
By Lemma 5.3.18 vii), let d,e ∈ N\{0} be such that the 
following holds, using m for n. Let x1,...,xr ∈ E ∩ [0,cn]. 
Then  
 

(∃xi,w ∈ E)(xi,w ≤ cm↑↑ ∧ xi ≤ cn ∧  
w = aCODE(cm;cn,...,cm-1,x1,...,xr)+b))  

↔  
(∃z,w ∈ E)(z,w ≤ cm↑↑ ∧ z ≤ cn ∧  

w = aCODE(cm;cn,...,cm-1,x1,...,xi-1,z,xi+1,...xr)+b))  
↔ 

(∃z,w ∈ E)(z,w ≤ cm↑↑ ∧ ρ(cn,...,cm,x1,...,xr,z,w)) 
↔ 

dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E. 
   

(∃xi,w ∈ E)(xi ≤ cn ∧  
w = aCODE(cm;cn,...,cm-1,x1,...,xr)+b))  

↔  
dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E. 

 
2) (∃xi ∈ E)(xi ≤ cn ∧  

aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E)  
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↔ 
dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E. 

 
By 1),2),  
 

(∃xi ∈ E)(xi ≤ cn ∧ ϕ(x1,...,xr)c_n) ↔ 
dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E. 

 
(∃xi)(ϕ(x1,...,xr))c_n  

↔ 
dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E. 

 
Hence A(r,n,m+1,(∃vi)(ϕ),d,e). QED 
 
LEMMA 5.4.7. Let m ≤ m’ and A(r,n,m,ϕ,a,b). There exist d,e 
such that A(r,n,m’,ϕ,d,e). 
 
Proof: Let m < m’ and A(r,n,m,ϕ,a,b). Let x1,...,xr ∈ E ∩ 
[0,cn]. Then  
 

1) ϕ(x1,...,xr)c_n ↔ 
aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E. 

 
By Lemma 5.3.18 vii), let d,e ∈ N\{0} be such that the 
following holds. Let x1,...,xr ∈ E ∩ [0,cn]. Then  
 
(∃y ∈ E)(y ≤ cm’↑↑ ∧ y = aCODE(cm;cn,...,cm-1,x1,...,xr)+b)  

↔  
(∃y ∈ E)(y ≤ cm'↑↑ ∧ ρ(cn,...,cm'-1,x1,...,xr,y) 

↔ 
dCODE(cm’;cn,...,cm’-1,x1,...,xr)+e ∈ E. 

 
(∃y ∈ E)(y = aCODE(cm;cn,...,cm-1,x1,...,xr)+b) ↔  

dCODE(cm’;cn,...,cm’-1,x1,...,xr)+e ∈ E. 
 

2) aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E ↔ 
dCODE(cm’;cn,...,cm’-1,x1,...,xr)+e ∈ E. 

 
By 1),2), 
 

ϕ(x1,...,xr)c_n ↔ 
dCODE(cm’;cn,...,cm’-1,x1,...,xr)+e ∈ E. 

 
Therefore A(r,n,m’,ϕ,d,e). QED 
 
LEMMA 5.4.8. Let r ≤ r’ and A(r’,n,m,ϕ,a,b), where all free 
variables of ϕ are among v1,...,vr. There exist d,e such 
that A(r,n,m+1,ϕ,d,e). 
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Proof: Let r,r’n,m,ϕ,a,b be as given. By A(r’,n,m,ϕ,a,b), 
for all x1,...,xr’ ∈ E ∩ [0,cn], 
 

1) ϕ(x1,...,xr’)c_n ↔ 
aCODE(cm;cn,...,cm-1,x1,...,xr’)+b ∈ E. 

 
Note that ϕ(x1,...,xr’)c_n = ϕ(x1,...,xr)c_n. Hence for all 
x1,...,xr ∈ E ∩ [0,cn], 
 

2) ϕ(x1,...,xr)c_n ↔ 
aCODE(cm;cn,...,cm-1,x1,...,xr,xr,...,xr)+b ∈ E. 

 
By Lemma 5.3.18 vii), let d,e ∈ N\{0} be such that the 
following holds. Let x1,...,xr ∈ E ∩ [0,cn]. Then  
 

(∃z ∈ E)(z ≤ cm↑↑ ∧ z = aCODE(cm;cn,...,cm-
1,x1,...,xr,xr,...,xr))  

↔ 
(∃z ∈ E)(z ≤ cn↑↑ ∧ ρ(cn,...,cm,x1,...,xr,z) 

↔ 
dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E.  

 
3) aCODE(cm;cn,...,cm-1,x1,...,xr,xr,...,xr)+b ∈ E ↔ 

dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E.  
 
By 2),3), for all x1,...,xr ∈ E ∩ [0,cn],  
 

ϕ(x1,...,xr)c_n ↔  
dCODE(cm+1;cn,...,cm,x1,...,xr)+e ∈ E.  

 
Hence A(r,n,m+1,ϕ,d,e). QED 
 
LEMMA 5.4.9. Let r,n ≥ 1 and ϕ(x1,...,xr) be a formula of 
L(E). There exists m,a,b such that A(r,n,m,ϕ,a,b). 
 
Proof: By induction on the complexity of ϕ. Without loss of 
generality, we can assume that ϕ uses only the connectives 
¬,∧, and only the quantifier ∃. For our purposes, we define 
c(ϕ) as the total number of occurrences of connectives and 
quantifiers in ϕ.  
 
We prove the following by induction on p ≥ 0. Let r,n ≥ 1 
and ϕ(v1,...,vr) be a formula of L(E) with c(ϕ) ≤ p. There 
exist m,a,b such that A(r,n,m,ϕ,a,b).  
 
We first handle the basis case p = 0. Let r,n,ϕ be as 
given. Then ϕ has no connectives and no quantifiers, and so 
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ϕ is an atomic formula of L(E). Now use Lemmas 5.4.1 and 
5.4.2 with m = n+1. 
 
Now assume that the statement holds of p ≥ 0. Let r,n ≥ 1 
and ϕ(v1,...,vr) be a formula of L(E) with c(ϕ) = p+1.  
 
case 1. ϕ(v1,...,vr) = ¬ψ(v1,...,vr). By the induction 
hypothesis, let A(r,n,m,ψ,a,b). By Lemma 5.4.3, there exist 
d,e such that A(r,n,m,ϕ,d,e). 
 
case 2. ϕ(v1,...,vr) = ψ(v1,...,vr) ∧ ρ(v1,...,vr). By the 
induction hypothesis, let A(r,n,m,ψ,a,b),A(r,n,m’,ρ,d,e). 
By Lemma 5.4.7, let A(r,n,max(m,m’),ψ,a’,b’), 
A(r,n,max(m,m’),ρ,d’,e’). By Lemma 5.4.5, there exists f,g 
such that A(r,n,max(m,m’),ϕ,f,g).  
 
case 3. ϕ(v1,...,vr) = (∃vi)(ψ), 1 ≤ i ≤ r. Then we can write 
ψ = ψ(v1,...,vr) because has all free variables of ϕ are 
among v1,...,vr. By the induction hypothesis, let 
A(r,n,m,ψ,a,b). By Lemma 5.4.6, there exist d,e such that 
A(r,n,m+1,ϕ,d,e). 
 
case 4. ϕ(v1,...,vr) = (∃vi)(ψ), i > r. Then ψ has all free 
variables among v1,...,vi, and we an write ψ = ψ(v1,...,vi). 
By the induction hypothesis, let A(i,n,m,ψ,a,b). By Lemma 
5.4.6, let A(i,n,m+1,ϕ,d,e). By Lemma 5.4.8, there exists 
f,g such that A(r,n,m+2,ϕ,f,g). 
 
QED 
 
We now extend the indiscernibility in Lemma 5.3.18 iv) to 
formulas. 
 
LEMMA 5.4.10. Let r ≥ 1 and ϕ(v1,...,v2r) be a formula in 
L(E). Let 1 ≤ i1,...,i2r < n, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and the same min. Let 
y1,...,yr ∈ E, y1,...,yr ≤ min(ci_1,...,ci_r). Then 
ϕ(ci_1,...,ci_r,y1,...,yr)c_n ↔ ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n. 
 
Proof: Let r,ϕ,i1,...,i2r be as given. Let n > i1,...,i2r. By 
Lemma 5.4.9, let m,a,b be such that the following holds. 
For all x1,...,x2r ∈ E ∩ [0,cn],  
 

ϕ(x1,...,x2r)c_n ↔ 
aCODE(cm;cn,...,cm-1,x1,...,x2r)+b ∈ E. 

 
Let y1,...,yr be as given. Then 
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1) ϕ(ci_1,...,ci_r,y1,...,yr)c_n ↔ 
aCODE(cm:cn,...,cm-1,ci_1,...,ci_r,y1,...,yr)+b ∈ E. 

 
ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n ↔ 

aCODE(cm;cn,...,cm-1,ci_r+1,...,ci_2r,y1,...,yr)+b ∈ E. 
 

By Lemma 5.3.18 ix), 
 

2) aCODE(cm;cn,...,cm-1,ci_1,...,ci_r,y1,...,yr)+b ∈ E ↔ 
aCODE(cm;cn,...,cm-1,ci_r+1,...,ci_2r,y1,...,yr)+b ∈ E. 

 
By 1),2),  
 

ϕ(ci_1,...,ci_r,y1,...,yr)c_n ↔ 
ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n. 

 
QED 
 
LEMMA 5.4.11. Let k,n ≥ 1 and ϕ(v1,...,vk) be a formula of 
L(E). There exist m,a,b ∈ N\{0}, n < m, and yn,...,ym ∈ E ∩ 
[0,cn+1] such that for all x1,...,xk ∈ E ∩ [0,cn], 
 

ϕ(x1,...,xk)c_n ↔ 
aCODE(ym;yn,...,ym-1,x1,...,xk)+b ∈ E. 

 
Proof: Let k,n,ϕ be as given. By Lemma 5.4.9, there exist 
m,a,b ∈ N\{0} such that  
 

1) (∀x1,...,xk ∈ E ∩ [0,cn])(ϕ(x1,...,xr)c_n  

↔ 

aCODE(cm;cn,...,cm-1,x1,...,xr)+b ∈ E). 
 

2) (∃yn,...,ym ∈ E)(∀x1,...,xk ∈ E ∩ [0,cn]) 

(ϕ(x1,...,xr)c_n ↔ aCODE(ym;yn,...,ym-1,x1,...,xr)+b ∈ E). 

 
3) (∃yn,...,ym ∈ E)(∀x1,...,xk ∈ E ∩ [0,cn]) 

(ϕ(x1,...,xr)c_n ↔ (∃z ∈ E)(z = aCODE(ym;yn,...,ym-
1,x1,...,xr)+b)). 

 
By Lemma 5.3.18 iii), choose t so large that  
 

4) (∃yn,...,ym ∈ E ∩ [0,ct])(∀x1,...,xk ∈ E ∩ 
[0,cn])(ϕ(x1,...,xr)c_n  

↔ 
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(∃z ∈ E ∩ [0,ct+1])(z = aCODE(ym;yn,...,ym-1,x1,...,xr)+b)). 
 
By Lemma 5.4.10,  
 

5) (∃yn,...,ym ∈ E ∩ [0,cn+1])(∀x1,...,xk ∈ E ∩ 
[0,cn])(ϕ(x1,...,xr)c_n ↔ 

(∃z ∈ E ∩ [0,cn+2])(z = aCODE(ym;yn,...,ym-1,x1,...,xr)+b)). 
 

6) (∃yn,...,ym ∈ E ∩ [0,cn+1])(∀x1,...,xk ∈ E ∩ 
[0,cn])(ϕ(x1,...,xr)c_n ↔ 

(∃z ∈ E)(z = aCODE(ym;yn,...,ym-1,x1,...,xr)+b)). 
 

7) (∃yn,...,ym ∈ E ∩ [0,cn+1])(∀x1,...,xk ∈ E ∩ 
[0,cn])(ϕ(x1,...,xr)c_n ↔  

aCODE(ym;yn,...,ym-1,x1,...,xr)+b ∈ E). 

QED 

 
Recall that α(E) is the set of all values of terms in L at 
arguments from E (Definition 5.3.3). 
 
LEMMA 5.4.12. α(E) = E-E. Let n ≥ 1. α(E ∩ [0,cn]) ⊆ (E ∩ 
[0,cn+1]) - (E ∩ [0,cn+1]).    
 
Proof: Since E-E ⊆ α(E), it suffices to prove α(E) ⊆ E-E. 
Let t(v1,...,vk) be a term in L, and let x1,...,xk ∈ E. Let n 
be such that x1,...,xk < cn.  
 
Note that by Lemma 5.3.18 iv),v),  
 

t(x1,...,xk) < cn+1. 
2cn+1+t(x1,...,xk),3cn+1+t(x1,...,xk) ∈ α(E;1,<∞). 

3(2cn+1+t(x1,...,xk))+1, 2(3cn+1+t(x1,...,xk))+1 ∈ E. 
6cn+1+3t(x1,...,xk)+1, 6cn+1+2t(x1,...,xk)+1 ∈ E. 
(6cn+1+3t(x1,...,xk)+1)-(6cn+1+2t(x1,...,xk)+1) =  

t(x1,...,xk) ∈ E-E. 
 
Thus we have written t(x1,...,xk) as the difference between 
two elements of E. This establishes the first claim.  
 
For the second claim, let n ≥ 1. Let t(v1,...,vk) be a term 
in L. By the proof of the first claim, 
 

1) (∀x1,...,xk ∈ E ∩ [0,cn])(∃y,z ∈ E ∩ [0,cn+2]) 
(t(x1,...,xk) = y-z). 

 
By Lemma 5.4.10,  
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2) (∀x1,...,xk ∈ E ∩ [0,cn])(∃y,z ∈ E ∩ [0,cn+1]) 

(t(x1,...,xk) = y-z). 
 
QED 
 
LEMMA 5.4.13. Let k,r ≥ 1 and x1,...,xk,y1,...,yr ∈ A. Then 
P(y1,...,yr,x1,...,xk) = P(P(y1,...,yr),x1,...,xk).  
 
Proof: Recall the definition of P in section 5.3, right 
after the proof of Lemma 5.3.10. We prove the following by 
induction on r ≥ 1:  
 

for all k ≥ 1 and x1,...,xk,y1,...,yr ∈ A, 
P(y1,...,yr,x1,...,xk) = P(P(y1,...,yr),x1,...,xk). 

 
For the basis case r = 1, this asserts that for all k ≥ 1  
 

P(y1,x1,...,xk) = P(P(y1),x1,...,xk) 
 
which follows from P(y1) = y1. 
 
Fix r ≥ 1. Suppose that for all k ≥ 1 and 
x1,...,xk,y1,...,yr, 
 

1) P(y1,...,yr,x1,...,xk) =  
P(P(y1,...,yr),x1,...,xk). 

 
We want to verify that for all k ≥ 1 and 
x1,...,xk,y1,...,yr+1, 
 

P(y1,...,yr+1,x1,...,xk) =  
P(P(y1,...,yr+1),x1,...,xk). 

 
Let k ≥ 1 and x1,...,xk,y1,...,yr+1 ∈ A. By the induction 
hypothesis 1) using k = k+1,  
 

2) P(y1,...,yr+1,x1,...,xk) =  
P(P(y1,...,yr),yr+1,x1,...,xk). 

 
By the definition of P, 
 

3) P(P(y1,...,yr),yr+1,x1,...,xk) =  
P(P(P(y1,...,yr),yr+1),x1,...,xk). 

 
By the induction hypothesis 1) using k = 1,  
 

4) P(P(y1,...,yr),yr+1) =  
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P(y1,...,yr+1). 
 
By 2),3),4),  
 

P(y1,...,yr+1,x1,...,xk) =  
P(P(y1,...,yr+1),x1,...,xk) 

 
as required. QED 
 
LEMMA 5.4.14. Let k,n,r ≥ 1, and ϕ(v1,...,vr+k) be a formula 
of L(E). Let y1,...,yr ∈ E ∩ [0,cn]. There exist 
d,e,f,g,h,i,j,p ∈ E ∩ [0,cn+1] such that for all x1,...,xk ∈ 
E ∩ [0,cn], 
 

ϕ(y1,...,yr,x1,...,xk)c_n ↔ 
 (d-e)CODE(f-g;h-i,x1,...,xk)+(j-p) ∈ E. 

 
Proof: Let k,n,r,ϕ be as given. By Lemma 5.4.11, let m,a,b 
∈ N\{0}, n < m, and zn,...,zm ∈ E ∩ [0,cn+1], be such that 
for all y1,...,yr,x1,...,xk ∈ E ∩ [0,cn], 
 

ϕ(y1,...,yr,x1,...,xk)c_n ↔ 
aCODE(zm;zn,...,zm-1,y1,...,yr,x1,...,xk)+b ∈ E. 

 
By the definition of CODE introduced right after the proof 
of Lemma 5.3.10,  

 
1) ϕ(y1,...,yr,x1,...,xk)c_n ↔ 

a(8((log(zm))↑+P(zn,...,zm-1,y1,...,yr,x1,...,xk))+1)+b ∈ E. 
 
Now fix y1,...,yr as given. These are in addition to the 
already fixed zn,...,zm ∈ E.  
 
By Lemma 5.4.13 and 1), for all x1,...,xk ∈ E ∩ [0,cn], 
 

ϕ(y1,...,yr,x1,...,xk)c_n ↔ 
a(8((log(zm))↑+P(P(zn,...,zm-1,y1,...,yr),x1,...,xk))+1)+b ∈ 

E. 
 

2) ϕ(y1,...,yr,x1,...,xk)c_n ↔ 
aCODE(zm;P(zn,...,zm-1,y1,...,yr),x1,...,xk)+b ∈ E. 

 
By Lemma 5.4.12, let a = d-e, zm = f-g, P(zn,...,zm-
1,y1,...,yr) = h-i, b = j-p, where d,e,f,g,h,i,j,p ∈ E ∩ 
[0,cn+2]. Make these substitutions for a,zm,P(zn,...,zm-
1,y1,...,yr),b, respectively, in 2). 
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The Lemma requires that d,e,f,g,h,i,j,p ∈ E ∩ [0,cn+1], and 
we only have d,e,f,g,h,i,j,p ∈ E ∩ [0,cn+2]. However, we can 
apply Lemma 5.4.10 in the obvious way to reduce to E ∩ 
[0,cn+1]. QED 
 
LEMMA 5.4.15. For all k ≥ 1 there exists a term 
t(v1,...,vk+8) of L(E) such that the following holds. Let n,r 
≥ 1, ϕ(v1,...,vr+k) be a formula of L(E), and y1,...,yr ∈ E ∩ 
[0,cn]. There exists w1,...,w8 ∈ E ∩ [0,cn+1] such that for 
all x1,...,xk ∈ E ∩ [0,cn], 
 

ϕ(y1,...,yr,x1,...,xk)c_n ↔ 
t(x1,...,xk,w1,...,w8) ∈ E. 

 
Proof: Let k ≥ 1. Let t(v1,...,vk+8) be the obvious term of 
L(E) such that for all x1,...,xk,w1,..,w8 ∈ A,  
 

t(x1,...,xk,w1,...,w8) =  
(w1-w2)CODE(w3-w4;w5-w6,x1,...,xk)+(w7-w8). 

 
Let n,r,ϕ,y1,...,yr be as given. By Lemma 5.4.14, there 
exist w1,...,w8 ∈ E ∩ [0,cn+1] such that for all x1,...,xk ∈ 
E ∩ [0,cn],  
 

ϕ(y1,...,yr,x1,...,xk)c_n ↔ 
(w1-w2)CODE(w3-w4;w5-w6,x1,...,xk)+(w7-w8) ∈ E. 

 
QED 
 
DEFINITION 5.4.6. Let k ≥ 1 and x ∈ E. An x-definable k-ary 
relation is a relation R of the form  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,x]k: ϕ(x1,...,xp)x} 
 
where p ≥ k, ϕ(v1,...,vp) is a formula of L(E), and 
xk+1,...,xp ∈ E ∩ [0,x].  
 
It is essential that x-definability requires boundedness. 
These are the internal relations, and this requirement is 
in analogy with the set/class distinct in set (class) 
theory.  
 
LEMMA 5.4.16. Let k,n ≥ 1 and R be a cn-definable k-ary 
relation. Let tk is the term of L(E) given by Lemma 5.4.15. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}.  
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Proof: Let n ≥ 1 and R be a cn-definable k-ary relation. 
Write  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,cn]k: ϕ(x1,...,xp)c_n} 
 
where p ≥ k ≥ 1, ϕ(v1,...,vp) is a formula of L(E), and 
xk+1,...,xp ∈ E ∩ [0,cn].  
 
We now apply Lemma 5.4.15 to the formula  
 

ϕ’(v1,...,vp) = ϕ(vp-k+1,...,vp,v1,...,vp-k). 
 
We use the present xk+1,...,xp for the parameters y1,...,yr 
in Lemma 5.4.15.  
 
Let y1,...,y8 ∈ E ∩ [0,cn+1], where for all x1,...,xk ∈ E ∩ 
[0,cn], 
 

ϕ’(xk+1,...,xp,x1,...,xk)c_n ↔ ϕ(x1,...,xp)c_n ↔  
R(x1,...,xk) ↔ tk(x1,...,xk,z1,...,z8) ∈ E. 

 
QED 
 
Below, the new features over Lemma 5.3.18 are items vi) and 
vii). 
 
LEMMA 5.4.17. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...), and terms t1,t2,... of L, 
where for all i, ti has variables among v1,...,vi+8, such 
that the following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1 and t(v1,...,vr) be a term of L, and 
x1,...,xr ≤ cn. Then t(x1,...,xr) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L(E). Let 1 
≤ i1,...,i2r < n, where (i1,...,ir) and (ir+1,...,i2r) have the 
same order type and the same min. Let y1,...,yr ∈ E, 
y1,...,yr ≤ min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr)c_n 
↔ ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n. 
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Proof: The t's are given by Lemma 5.4.15. i)-v) are from 
Lemma 5.3.18 i)-v). vi) is by Lemma 5.4.16. vii) is by 
Lemma 5.4.10. QED 
 
5.5. Comprehension, indiscernibles. 
 
We fix M = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...) and terms 
t1,t2,... of L(E) be given as in Lemma 5.4.17.  
 
We now consider unbounded quantifiers. Below, Q indicates 
either ∀ or ∃. All formulas of L(E) are interpreted in M. 
 
LEMMA 5.5.1. Let n,m ≥ 0, r ≥ 1, and ϕ(v1,...,vn+m) be a 
quantifier free formula of L(E). Let xn+1,...,xn+m ∈ E ∩ 
[0,cr]. Then  
(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+m)) ↔  
(Qnxn ∈ E ∩ [0,cr+1])...(Q1x1 ∈ E ∩ [0,cr+n])(ϕ(x1,...,xn+m)). 
 
Proof: We prove the following statement by induction on n ≥ 
0. 
 
Let m ≥ 0, r ≥ 1, ϕ(x1,...,xn+m) be a quantifier free formula 
in L(E), Q1,...,Qn be quantifiers, and xn+1,...,xn+m ∈ E ∩ 
[0,cr]. Then  
 

(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+m)) ↔ 
(Qnxn ∈ E ∩ [0,cr+1])...(Q1x1 ∈ E ∩ [0,cr+n])(ϕ(x1,...,xn+m)). 
 
The basis case n = 0 is trivial. Assume this is true for a 
given n ≥ 0. Let m ≥ 0, r ≥ 1, and ϕ(x1,...,xn+1+m) be a 
quantifier free formula in L(E). Let xn+2,...,xn+1+m ∈ E ∩ 
[0,cr]. We wish to verify that  
 

(Qn+1xn+1 ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)) ↔ 
(Qn+1xn+1 ∈ E ∩ [0,cr+1])...(Q1x1 ∈ E ∩ [0,cr+n+1]) 

(ϕ(x1,...,xn+1+m)). 
 
By duality, we may assume that Qn+1 is ∃. Thus we wish to 
verify that  
 

1) (∃xn+1 ∈ E)(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m))  
↔ 

(∃xn+1 ∈ E ∩ [0,cr+1])(Qnxn ∈ E ∩ [0,cr+2])... 
(Q1x1 ∈ E ∩ [0,cr+n+1])(ϕ(x1,...,xn+1+m)). 

 
Let xn+1 ∈ E ∩ [0,cr+1] witness the right side of 1). I.e.,  
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2) (Qnxn ∈ E ∩ [0,cr+2])...(Q1x1 ∈ E ∩ 
[0,cr+n+1])(ϕ(x1,...,xn+1+m)). 

 
According to the induction hypothesis applied to 
m+1,r+1,ϕ(x1,...,xn+1+m),Q1,...,Qn, and xn+1,...,xm+1+m, ∈ E ∩ 
[0,cr+1], we have 
 

3) (Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)) ↔ 
(Qnxn ∈ E ∩ [0,cr+2])...(Q1x1 ∈ E ∩ 

[0,cr+n+1])(ϕ(x1,...,xn+1+m)). 
 
By 2),3),  
 

(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)), 
 
which is the left side of 1) instantiated with xn+1.  
 
Finally, let xn+1 ∈ E witness the left side of 1). I.e.,  
 

4) (Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)). 
 
Let xn+1 ≤ cs, s ≥ r+1. According to the induction hypothesis 
applied to m+1,s,ϕ(x1,...,xn+1+m),Q1,...,Qn, and xn+2,...,xn+1+m, 
∈ E ∩ [0,cs], we have  
 

5) (Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)) ↔ 
(Qnxn ∈ E ∩ [0,cs+1])...(Q1x1 ∈ E ∩ [0,cs+n])(ϕ(x1,...,xn+1+m)). 
 
By 4),5),  
 

(∃xn+1 ∈ E ∩ [0,cs])(Qnxn ∈ E ∩ [0,cs+1])... 
(Q1x1 ∈ E ∩ [0,cs+n])(ϕ(x1,...,xn+1+m)). 

 
By Lemma 5.4.17 vii), since xn+2,...,xn+1+m ∈ E ∩ [0,cr], we 
have 
 

(∃xn+1 ∈ E ∩ [0,cr+1])(Qnxn ∈ E ∩ [0,cr+2])... 
(Q1x1 ∈ E ∩ [0,cr+n+1])(ϕ(x1,...,xn+1+m)) 

 
which is the right side of 1). QED 
 
Note that Lemmas 5.4.17 and 5.5.1 concern only the E 
formulas of L(E). I.e., all of the quantifiers are 
relativized to E. This is clear for Lemma 5.4.17 by 
Definitions 5.4.4, 5.4.5. Lemma 5.5.1 only involves 
quantifier free formulas which are inside quantifiers 
relativized to E.  
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DEFINITION 5.5.1. Let k ≥ 1 and R ⊆ Ak. We say that R is M,E 
definable if and only if R ⊆ Ek, and R is definable by an E 
formula of L(E) with parameters from E. I.e., there exists 
m ≥ 1, an E formula 
ϕ(x1,...,xk+m), and xk+1,...,xk+m ∈ E, such that  
 

R = {(x1,...,xk) ∈ Ek: ϕ(x1,...,xk+m)}. 
 
Recall the definition of x-definability (Definition 5.4.6).   
 
DEFINITION 5.5.2. We say that R is bounded if and only if 
there exists x ∈ E such that R ⊆ [0,x]k.  
 
DEFINITION 5.5.3. For all k ≥ 1, we write Xk for the set of 
all bounded M,E definable k-ary relations.  
 
LEMMA 5.5.2. Let k ≥ 1 and R ⊆ Ak. The following are 
equivalent. 
i) R ∈ Xk; 
ii) R is cn-definable for some n ≥ 1; 
iii) R is x-definable for some x ∈ E. 
 
Proof: Let k,R be as given. We have ii) → iii) → i). So we 
need only prove i) → ii). Let R ∈ Xk. By choosing r to be 
sufficiently large, we can write  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,cr]: ϕ(x1,...,xk+m)} 
 
where ϕ(x1,...,xk+m) is an E formula of L(E), r ≥ 1, and 
xk+1,...,xk+m ∈ E ∩ [0,cr]. We can assume that ϕ is in prenex 
form. By a change of bound variables, we can assume that ϕ 
is in the form  
 

(Q1xk+m+1 ∈ E)...(Qnxk+m+n ∈ E)(ψ(x1,...,xk+m+n)) 
 
where ψ(x1,...,xk+m+n) is a quantifier free formula of L(E).  
 
Let x1,...,xk ∈ E ∩ [0,cr]. By Lemma 5.5.1, 
 

R(x1,...,xk) ↔ ϕ(x1,...,xk+m) ↔ 
(Q1xk+m+1 ∈ E)...(Qnxk+m+n ∈ E)(ψ(x1,...,xk+m+n)) ↔ 

(Q1xk+m+1 ∈ E ∩ [0,cr+1])...(Qnxk+m+n ∈ E ∩ 
[0,cr+n])(ψ(x1,...,xk+m+n)). 

 
Since R ⊆ Ek ∩ [0,cr]k, this provides a cr+n-definition of R. 
QED 
 
Lemma 5.5.2 reveals a considerable amount of robustness.  
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DEFINITION 5.5.4. We say that a k-ary relation R ⊆ Ek is 
internal (to M) if and only if R obeys any (all) of 
conditions i) – iii) in Lemma 5.5.2.  
 
DEFINITION 5.5.5. Let k ≥ 1 and R ⊆ Ak. We say that 
y1,...,y9 codes R if and only if y1,...,y9 ∈ E and  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,y9]k:  
tk(x1,...,xk,y1,...,y8) ∈ E}. 

 
LEMMA 5.5.3. Every internal R is coded by some y1,...,y9. 
For k ≥ 1, every y1,...,y9 ∈ E codes some unique R ⊆ Ak, 
which must be internal.  
 
Proof: Let R be internal. Let n ≥ 1, where R is cn-
definable. By Lemma 5.4.17 vi), write 
 

R = {(x1,...,xk) ∈ Ek ∩ [0,cn]k:  
tk(x1,...,xk,y1,...,y8) ∈ E} 

 
where y1,...,y8 ∈ E. Then R is coded by y1,...,y8,cn. 
 
Now let k ≥ 1, and y1,...,y9 ∈ E. Then y1,...,y9 codes  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,y9]k:  
tk(x1,...,xk,y1,...,y8) ∈ E}. 

 
R is obviously unique (given k), bounded, and M,E 
definable. I.e., R is internal. QED 
 
We now work with the second order expansion M* of M, where 
M* = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...). Recall the 
definition of Xk (Definition 5.5.3). 
 
We use the following language L*(E) suitable for M*.  
 
DEFINITION 5.5.6. The first order terms of L*(E) are 
exactly the terms of L(E). The second order variables of 
L*(E) are written Vkn, k,n, ≥ 1. 
The atomic formulas of L*(E) are of the form  
 

t ∈ E 
Vkn(t1,...,tk) 

s = t 
s < t 
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where s,t,t1,...,tk are first order terms of L*(E) and k,n ≥ 
1. We view E as a unary predicate symbol, rather than a 
second order object.    
 
DEFINITION 5.5.7. The formulas of L*(E) are inductively 
defined as follows. 
 
i) every atomic formula of L*(E) is a formula of L*(E); 
ii) if ϕ,ψ are formulas of L*(E) then 
(¬ϕ),(ϕ∧ψ),(ϕ∨ψ),(ϕ→ψ),(ϕ↔ψ) are formulas of L*(E); 
iii) if ϕ is a formula of L*(E) and k,n ≥ 1, then (∀vn)(ϕ), 
(∃vn)(ϕ), (∀Vkn)(ϕ), (∃Vkn)(ϕ) are formulas of L*(E).  
 
As was the case with L(E), it is the E formulas of L*(E) 
that we focus on.  
 
DEFINITION 5.5.8. The E formulas of L*(E) are inductively 
defined as follows.  
 
1) every atomic formula of L*(E) is a formula of L*(E); 
ii) if ϕ,ψ are formulas of L*(E) then 
(¬ϕ),(ϕ∧ψ),(ϕ∨ψ),(ϕ→ψ),(ϕ↔ψ) are formulas of L*(E); 
iii) if ϕ is a formula of L*(E) and k,n ≥ 1, then (∀vn ∈ 
E)(ϕ), (∃vn ∈ E)(ϕ), (∀Vkn)(ϕ), (∃Vkn)(ϕ) are formulas of 
L*(E).  
 
DEFINITION 5.5.9. We use 
 

(∀vn ∈ E)(ϕ), (∃vn ∈ E)(ϕ) 
 
as abbreviations for 
 

(∀vn)(vn ∈ E → ϕ), (∃vn)(vn ∈ E ∧ ϕ). 
 
DEFINITION 5.5.10. The intended interpretation of L*(E) is 
the structure M* introduced above, where the first order 
quantifiers range over A, and the second order quantifiers 
Vkn range over Xk. 
 
Note that in M*, if a second order object holds at any 
arguments, then those arguments must have the attribute E. 
That is, all elements of all second order objects are 
tuples of elements of E.   
 
DEFINITION 5.5.11. A relation is said to be M*,E definable 
if and only if it is a relation on E that is M* definable 
by an E formula of L*(E) with second order parameters from 
the various Xk and first order parameters from E only. 
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In practice, we will allow flexibility of notation in 
presenting formulas of L*(E). In particular we will often 
drop the subscripts or superscripts on the second order 
variables.  
 
We also take advantage of the added flexibility of notation 
that comes from sometimes treating k-ary relations as sets 
of k-tuples, with the ∈ notation. 
 
LEMMA 5.5.4. Let k ≥ 1 and R ⊆ Ak. The following are 
equivalent.  
i) R ∈ Xk; 
ii) R is cn-definable for some n ≥ 1; 
iii) R is x-definable for some x ∈ E; 
iv) R is M*,E definable and bounded.  
 
Proof: Let k,R be as given. In light of Lemma 5.5.2, we 
have only to verify that iv) implies i). Let  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,cr]k:  
ϕ(x1,...,xk+m,R1,...,Rn) holds in M*}, 

 
where k,m,n,r ≥ 1, ϕ(V1,...,vk+m,V1,...,Vn) is an E formula of 
L*(E) whose free variables are among the variables 
v1,...,vk+m,V1,...,Vn, xk+1,...,xk+m ∈ E ∩ [0,cr], and R1,...,Rk 
are internal.  
 
We can remove R1,...,Rn using definitions of R1,...,Rn in the 
form given by Lemma 5.4.17 vi).  
 
We can also remove second order quantifiers by 
appropriately quantifying over codes, as can be seen from 
Lemma 5.5.3. This involves quantifying over nine variables. 
Since each second order quantifier has a definite arity, k, 
we are only using the fixed term tk. We then obtain a 
definition of R by an E formula of L(E). Hence R is 
internal. QED  
 
DEFINITION 5.5.12. The bounded comprehension axioms of 
L*(E) consist of all E formulas of L*(E) of the form 
 

xk+1,...,xk+m+1 ∈ E → (∃R)(∀x1,...,xk ∈ E) 
(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)) 

 
where k ≥ 1, m ≥ 0, ϕ is an E formula of L*(E) in which R is 
not free, and all first order variables free in ϕ are among 
x1,...,xk+m+1.  
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LEMMA 5.5.5. The bounded comprehension axioms of L*(E) hold 
in M*.  
 
Proof: Let a bounded comprehension axiom of L*(E) 
 

1) xk+1,...,xk+m+1 ∈ E → (∃R)(∀x1,...,xk ∈ E) 
(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)) 

 
be given, subject to the required syntactic conditions 
above. Write ϕ = ϕ(x1,...,xk+m+1,V1,...,Vn), where V1,...,Vn 
are distinct second order variables of L*(E), and all free 
variables of ϕ are among x1,...,xk+m+1,V1,...,Vn.  
 
Let xk+1,...,xk+m+1 ∈ E and R1,...,Rn ∈ X have the same 
respective arities as V1,...,Vn. Set  
 

R = {(x1,...,xk) ∈ Ek: x1,...,xk ≤ xk+1  
∧ ϕ(x1,...,xk+m+1,R1,...,Rn)}. 

 
Then R is a bounded M*,E definable relation. By Lemma 
5.5.4, R ∈ Xk. Therefore R witnesses the consequent of 1). 
QED 
 
LEMMA 5.5.6. Let r ≥ 1, and ϕ(v1,...,v2r) be an E formula of 
L(E). Let 1 ≤ i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) 
have the same order type and the same min. Let x1,...,xr ∈ 
E, x1,...,xr ≤ min(ci_1,...,ci_r). Then 
ϕ(ci_1,...,ci_r,x1,...,xr) ↔ ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Proof: Let r,ϕ,i1,...,i2r be as given. Let t = 
max(i1,...,i2r). We can assume that ϕ is in prenex form: 
 

(Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E)(ψ(v1,...,v2r+n)). 
 
where ψ is a quantifier free formula of L(E). By Lemma 
5.5.1, for all v1,...,v2r ∈ E ∩ [0,ct],  
 

(Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E)(ψ(v1,...,v2r+n)) 
↔ 

(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ 
[0,ct+n])(ψ(v1,...,v2r+n)). 

 
In particular, for all x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r), 
 

1) (Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E) 
(ψ(ci_1,...,ci_r,x1,...,xr,v2r+1,...,v2r+n)) 
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↔ 
(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 

(ψ(ci_1,...,ci_r,x1,...,xr,v2r+1,...,v2r+n)). 
 

2) (Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E) 
(ψ(ci_r+1,...,ci_2r,x1,...,xr,v2r+1,...,v2r+n)) 

↔ 
(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 

(ψ(ci_r+1,...,ci_2r,x1,...,xr,v2r+1,...,v2r+n)). 
 
Hence  
 

3) ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 
(ψ(ci_1,...,ci_r,x1,...,xr,v2r+1,...,v2r+n))c_t+n. 

 
4) ϕ(ci_r+1,...,ci_2r,x1,...,xr) ↔ 

(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 
(ψ(ci_r+1,...,ci_2r,x1,...,xr,v2r+1,...,v2r+n))c_t+n. 

 
The right sides of 3),4) are ψc_t+n,ρc_t+n, respectively, where 
ρ,ψ begin with the quantifier Qn. ρ,ψ are first expanded out 
to formulas of L(E) in the obvious way. Then the displayed 
quantifiers are relativized to E ∩ [0,ct+n].  
 
By Lemma 5.4.17 vii), for all x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r), 
 

ϕ(ci_1,...,ci_r,x1,...,xr) ↔ ϕ(ci_r+1,...,ci_2r,x1,...,xr)  
 
QED 
 
LEMMA 5.5.7. Let r ≥ 1, and ϕ(v1,...,v2r) be an E formula of 
L*(E), with no free second order variables. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Proof: By the same argument that we used in the proof of 
Lemma 5.5.4, using codes, we can remove all second order 
quantifiers in ϕ, thereby reducing ϕ to an equivalent E 
formula ψ(v1,...,v2r) of L(E). No new parameters are 
introduced in this process. Then apply Lemma 5.5.6. QED 
 
LEMMA 5.5.8. There exists a countable second order 
structure M* = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...), 
where for all i ≥ 1, Xi is the set of all i-ary relations on 
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A that are cn-definable for some n ≥ 1; and terms t1,t2,... 
of L, where for all i, ti has variables among x1,...,xi+8, 
such that the following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements of E\α(E;2,<∞) with no upper bound in 
A; 
iv) For all r,n ≥ 1, ↑r(cn) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exist y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let k ≥ 1, m ≥ 0, and ϕ be an E formula of L*(E) in 
which R is not free, where all first order variables free 
in ϕ are among x1,...,xk+m+1. Then xk+1,...,xk+m+1 ∈ E → 
(∃R)(∀x1,...,xk ∈ E)(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)); 
viii) Let r ≥ 1, and ϕ(x1,...,x2r) be an E formula of L*(E) 
with no free second order variables. Let 1 ≤ i1,...,i2r, 
where (i1,...,ir) and (ir+1,...,i2r) have the same order type 
and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Proof: i),ii),iii),v),vi) are identical to 
i),ii),iii),v),vi) of Lemma 5.4.17. iv) follows immediately 
from iv) of Lemma 5.4.17. vii) is from Lemma 5.5.5. viii) 
is from Lemma 5.5.7. QED 
 
5.6. Π0

1 correct internal arithmetic, 
simplification. 
 
We fix M* = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...) from 
Lemma 5.5.8. Let M = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...). We 
can view the main point of this section as the derivation 
of a suitable form of the axiom of infinity. 
 
Note that we have yet to use that the c’s lie outside 
α(E;2,<∞), from Lemma 5.5.8 iii). In this section, we use 
this in an essential way. This condition is needed in order 
to obtain any useable form of the axiom of infinity.  
 
The one and only use of the fact that the c’s lie outside 
α(E;2,<∞), in this Chapter, is in the proof of Lemma 5.6.6. 
There we use that c5 ∉ α(E;2,<∞).  
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We first prove the existence of a least internal set I 
containing 1, and closed under + 2c1 (see Lemma 5.6.7 and 
Definition 5.6.3). We then define natural arithmetic 
operations on I (see Lemma 5.6.10), resulting in the 
structure M(I) which satisfies PA(L) (see Lemma 5.6.11). 
Then we define a natural external isomorphism h from M(I) 
into M. We then show that M(I) satisfies PA(L) + TR(Π0

1,L) 
using the solution to Hilbert's 10th Problem (see Lemma 
5.6.14).  
 
At this point, we only care that M(I) satisfies TR(Π0

1,L), 
and that I is internally well ordered. The external h is 
used only to take advantage of the fact that M satisfies 
TR(Π0

1,L). We think of h as external because its range is 
not a subset of E.  
 
M(I) will provide us with the arithmetic part of the 
structure M# in Lemma 5.6.18.   
 
We remind the reader that for x,y ∈ A, x-y always means  
 

x-y if x ≥ y; 0 if x < y. 
 
Recall that α(E) is the set of all values of terms in L at 
arguments from E (Definition 5.3.3). 
 
LEMMA 5.6.1. α(E) = E-E. 
 
Proof: According to Lemma 5.4.12, α(E) = E-E holds in the 
structure M given by Lemma 5.3.18, which is the same as the 
structure M given by Lemma 5.4.17. Therefore α(E) = E-E 
also holds in the structure M* given by Lemma 5.5.8, which 
is an expansion of M. QED  
 
DEFINITION 5.6.1. We say that x is critical if and only if 
x ∈ E-E ∧ 2xc1+1 ∈ E. 
 
LEMMA 5.6.2. Let p,x > 0, where p ∈ N and x is critical. 
Then p,2x+p are critical.  
 
Proof: Let p,x be as given. By Lemma 5.6.1, p,2x+p ∈ E-E. 
Note that pc1 ∈ α(E;1,<∞). Hence by Lemma 5.5.8 v), 2pc1+1 ∈ 
2α(E;1,<∞)+1 ⊆ E. Hence p is critical.  
 
By 2xc1+1 ∈ E and Lemma 5.5.8 v),  
 

|2xc1+1,c1| ≤ (2xc1+1)+(pc1-1) ≤ 4p|2xc1,c1|. 
(2xc1+1)+(pc1-1) = 2xc1+pc1 = (2x+p)c1 ∈ α(E;1,<∞). 
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2(2x+p)c1+1 ∈ 2α(E;1,<∞)+1 ⊆ E. 
 
Hence 2x+p is critical. QED 
 
LEMMA 5.6.3. Let x ≥ 1 be critical. Suppose that for all 
critical y ∈ [2,x], there is a critical z such that y ∈ 
{2z,2z+1}. Then x+1 is critical and there is a critical z 
such that x+1 ∈ {2z,2z+1}. 
 
Proof: Let x ≥ 1, and assume the hypothesis. If x = 1 then 
by Lemma 5.6.2, x+1 = 2 is critical and z = 1 is critical 
and x+1 ∈ {2z,2z+1}. So we can assume x ≥ 2. Hence x ∈ 
[2,x]. By hypothesis, let z be critical and x ∈ {2z,2z+1}. 
Then z ≥ 1 and z < x.  
 
Suppose z = 1. Then x ∈ {2,3}, and so x+1 is critical by 
Lemma 5.6.2. If x = 2 then x+1 ∈ {2(1),2(1)+1} and 1 is 
critical. If x = 3 then x+1 ∈ {2(2),2(2)+1} and 2 is 
critical.  
 
We may suppose z ≥ 2. By hypothesis, let w be critical, 
where z ∈ {2w,2w+1}. Then w ≥ 1, and  
 

x ∈ {4w,4w+1,4w+2,4w+3}. 
(x+1)c1 ∈ {4wc1+c1,4wc1+2c1,4wc1+3c1,4wc1+4c1}. 

 
(x+1)c1 ∈ {2(2wc1+1)+c1-2,2(2wc1+1)+2c1-2, 

2(2wc1+1)+3c1-2,2(2wc1+1)+4c1-2} 
 
Now each of these four terms lies in [2wc1+1,4(2wc1+1)], and 
2wc1+1 ∈ E (since w is critical). Therefore all four terms 
lie in α(E;1,<∞). Hence (x+1)c1 ∈ α(E;1,<∞). So by Lemma 
5.5.8 v), 2(x+1)c1+1 ∈ 2α(E;1,<∞)+1 ⊆ E.   
 
Since x is critical, x ∈ E-E. By Lemma 5.6.1, x+1 ∈ E-E. 
Hence x+1 is critical. 
 
Note that z+1 ∈ {2w+1,2w+2}. Since w is critical, by Lemma 
5.6.2, z+1 is critical.  
 
Using z ∈ {2w,2w+1}, x ∈ {4w,4w+1,4w+2,4w+3}, we see that 
x+1 ∈ {2z+1,2(z+1)} = {4w+1,4w+2,4w+3,4w+4}. We have that 
z,z+1 are critical.  
 
case 1. x+1 = 2z+1. Then there is a critical u such that 
x+1 ∈ {2u,2u+1}, by taking u = z. 
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case 2. x+1 = 2(z+1). Then there is a critical u such that 
x+1 ∈ {2u,2u+1}, by taking u = z+1.  
 
QED 
 
DEFINITION 5.6.2. Let C be the set of all 2xc1+1 such that  
 
i) x is critical ∧ x ≥ 1; 
ii) for all critical y ∈ [2,x], there exists critical z 
such that y ∈ {2z,2z+1}.  
 
LEMMA 5.6.4. min(C) = 2c1+1. C ⊆ E ∩ α(E;2,<∞). (∀u ∈ 
C)(u+2c1 ∈ C). C is M,E definable, with only the parameter 
c1.  
 
Proof: 1 is critical by Lemma 5.6.2. Hence 2c1+1 ∈ C, and 
2c1+1 is the least element of C.  
 
For the second claim, let y ∈ C, and write y = 2xc1+1, x 
critical, x ≥ 1. Hence y = 2xc1+1 ∈ E. Therefore, it 
suffices to verify that y ∈ α(E;2,<∞). 
 
If x = 1 then y ∈ α(E;2,<∞). Assume x ≥ 2. Therefore x ∈ 
[2,x]. Let x ∈ {2z,2z+1}, where z is critical. If z = 1 
then again y ∈ α(E;2,<∞).  
 
Assume z ≥ 2. Then z ∈ [2,x]. Let z ∈ {2w,2w+1}, where w is 
critical. Then x ∈ {4w,4w+2,4w+1,4w+3}. Also 2wc1+1 ∈ E. 
Clearly w ≥ 1. We have 
 

y = 2xc1+1 ∈ {8wc1+1,8wc1+4c1+1, 
8wc1+2c1+1,8wc1+6c1+1}. 

y ∈ {4(2wc1+1)-3,4(2wc1+1)+4c1-3, 
4(2wc1+1)+2c1-3,4(2wc1+1)+6c1-3}. 

 
Therefore y ∈ α(E;2,<∞), using 2wc1+1 ∈ E and c1 as the 
parameters, and noting that w ≥ 1. This establishes the 
second claim. 
 
For the third claim, let u ∈ C. Write u = 2xc1+1. Then x ≥ 1 
is critical. Also, for all critical y ∈ [2,x], there exists 
critical z such that y ∈ {2z,2z+1}. Hence by Lemma 5.6.3, 
x+1 is critical and there exists critical z such that x+1 ∈ 
{2z,2z+1}.  
 
We must verify that u+2c1 = 2xc1+1+2c1 = 2(x+1)c1+1 ∈ C. We 
have only to verify clause ii) in the definition of C with 
x+1 instead of x. Let y ∈ [2,x+1] be critical. If y ≤ x 



 659 

then there exists critical z such that y = {2z,2z+1}, since 
2xc1+1 ∈ C. Now suppose y = x+1. We have already established 
that x+1 is critical and there is a critical z such that 
x+1 ∈ {2z,2z+1}. This establishes the third claim.  
 
For the fourth claim, we must check that C ⊆ E can be 
defined by an E formula of L(E), using only the parameter 
c1. Note that v ∈ C if and only if v ∈ E and  
 

(∃x)(v = 2xc1+1 ∧ x is critical ∧ x ≥ 1 ∧  
(∀y ∈ [2,x])(y critical →  

(∃z)(z is critical ∧ y ∈ {2z,2z+1}))). 
 

(∃x)(v = 2xc1+1 ∧ x is critical ∧ x ≥ 1 ∧  
(∀ critical y)(y ∈ [2,x] →  

(∃z)(z is critical ∧ y ∈ {2z,2z+1}))). 
 

(∃x ∈ E-E)(v = 2xc1+1 ∧ x ≥ 1 ∧ 
(∀y ∈ E-E)(2yc1+1 ∈ E ∧ y ∈ [2,x] → 

(∃z ∈ E-E)(2zc1+1 ∈ E ∧ y ∈ {2z,2z+1}))). 
 

(∃x1,x2 ∈ E)(v = 2(x1-x2)c1+1 ∧ x1-x2 ≥ 1 ∧ 
(∀y1,y2 ∈ E)(2(y1-y2)c1+1 ∈ E ∧ y1-y2 ∈ [2,x] → 

(∃z1,z2 ∈ E)(2(z1-z2)c1+1 ∈ E ∧ y1-y2 ∈  
{2(z1-z2),2(z1-z2)+1}))). 

 
QED  
 
LEMMA 5.6.5. Suppose 2(E-E)c1+1 ¬⊆ C ∪ {1}. There exists an 
internal subset of C ∪ {1}, containing 1, and closed under 
+2c1. 
 
Proof: Let x ∈ E-E, 2xc1+1 ∉ C ∪ {1}. Then x > 1. By Lemma 
5.6.4, C ∩ [0,2xc1+1] is internal, and contains 2c1+1.  
 
We claim that C ∩ [0,2xc1+1] is closed under +2c1. To see 
this, let u ∈ C ∩ [0,2xc1+1]. By Lemma 5.6.4, u+2c1 ∈ C. 
Write u = 2yc1+1.  
 
If y < x then u+2c1 = 2yc1+1+2c1 = 2(y+1)c1+1 ≤ 2xc1+1. 
 
If y = x then u = 2xc1+1. This contradicts u ∈ C, 2xc1+1 ∉ 
C.  
 
If y ≥ x+1 then u ≥ 2(x+1)c1+1 > 2xc1+1. This contradicts u 
≤ 2xc1+1. This establishes the claim. 
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It is now clear that (C ∩ [0,2xc1+1]) ∪ {1} contains 1, and 
is closed under +2c1, and is internal. QED 
  
LEMMA 5.6.6. Suppose 2(E-E)c1+1 ⊆ C ∪ {1}. There exists an 
internal subset of C ∪ {1}, containing 1, and closed under 
+2c1.  
 
Proof: Assume 2(E-E)c1+1 ⊆ C ∪ {1}.  
 
Suppose C ∩ [0,c5] has no greatest element. Note that by 
Lemma 5.6.4, (C ∩ [0,c5]) ∪ {1} is an internal subset of E, 
containing 1.  
 
We claim that (C ∩ [0,c5]) ∪ {1} is closed under +2c1. To 
see this, let u ∈ (C ∩ [0,c5]) ∪ {1}. Let u = 2zc1+1. Since 
u is not the greatest element of (C ∩ [0,c5]), let 2zc1+1 < 
2wc1+1 ∈ (C ∩ [0,c5]) ∪ {1}. By Lemma 5.6.4, 2zc1+1+2c1 = 
2(z+1)c1+1 ∈ C. Since w ≥ z+1, we see that 2zc1+1+2c1 ≤ 
2wc1+1. Hence 2zc1+1+2c1 ∈ (C ∩[0,c5]) ∪ {1}. This 
establishes the claim. 
 
By the claim, it suffices to assume that C ∩ [0,c5] has a 
greatest element. Let u be the greatest element of C ∩ 
[0,c5]. We will derive a contradiction.   
 
Since C is closed under +2c1, u+2c1 ∈ C, u+2c1 > c5, c5-u < 
2c1. Since c5-u ∈ E-E, we have v = 2(c5-u)c1+1 ∈ 2(E-E)c1+1 ⊆ 
C ∪ {1}. 
 
Note that v < 2(2c1)c1+1 < c2, by Lemma 5.5.8 iv).    
 
Consider the following true statement about v,c1.  
 

(∃x,y ∈ E)(y ≤ x ∧ v = 2(x-y)c1+1). 
 
By Lemma 5.5.8 iii), let n ≥ 3 be so large that  
 

(∃x,y ∈ E)(y ≤ x < cn ∧ v = 2(x-y)c1+1). 
 
By Lemma 5.5.8 viii),  
 

(∃x,y ∈ E)(y ≤ x < c3 ∧ v = 2(x-y)c1+1). 
 
Fix x,y ∈ E, y ≤ x < c3, v = 2(x-y)c1+1. Then 2(x-y)c1+1 = 
2(c5-u)c1+1, x-y = c5-u. Hence  
 

c5 = u+(x-y). 
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By Lemma 5.6.4, u ∈ α(E;2,<∞). Since x-y = c5-u < 2c1, we 
have u > c5-2c1 > c4, using Lemma 5.5.8 iv).   
 
We claim that c5 ∈ α(E;2,<∞). To see this, write  
 

u = t(w1,...,wk), w1,...,wk ∈ E, k ≥ 1. 
2|w1,...,wk| ≤ u ≤ p|w1,...,wk|, p ∈ N. 

 
By Lemma 5.5.8 iv), since u > c4, we have  
 

x,y < c3 < |w1,...,wk| 
|w1,...,wk,x,y| = |w1,...,wk|  

2|w1,...,wk,x,y| ≤ u ≤ u+(x-y) = t(w1,...,wk)+(x-y)  
≤ 2p|w1,...,wk,x,y|. 

c5 ∈ α(E;2,<∞). 
 
using the representation c5 = t(w1,...,wk)+(x-y) in the 
parameters w1,...,wk,x,y ∈ E. But this contradicts Lemma 
5.5.8 iii). QED    
 
LEMMA 5.6.7. There exists an internal subset of C ∪ {1}, 
containing 1, and closed under +2c1. C ⊆ E ∩ (2(E-E)c1+1). 
 
Proof: The first claim is by Lemmas 5.6.5 and 5.6.6. For 
the second claim, C ⊆ E by Lemma 5.6.4. Let u ∈ C. Write u 
= 2xc1+1, x critical. Then x ∈ E-E. Hence u ∈ 2(E-E)c1+1. 
QED 
   
DEFINITION 5.6.3. Let I be the intersection of all internal 
sets containing 1, and closed under +2c1.  
 
By Lemma 5.6.7, I exists.  
 
LEMMA 5.6.8. The following hold. 
i. I is the least internal set which is closed under +2c1 
and contains 1.  
ii. I ⊆ C ∪ {1}.  
iii. The immediate successor in I of any x ∈ I is x+2c1.  
iv. Every internal nonempty subset of I has a least 
element.  
v. I is defined by an E formula of L*(E) with only the 
parameter c1.  
vi. I ⊆ [0,c2). 
 
Proof: By Lemma 5.5.8 vii), I is an internal set. By 
definition, it is closed under +2c1 and contains 1. Hence i) 
follows from the definition of I.  
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ii) follows from Lemma 5.6.7.  
 
For iii), it follows from ii) that every element of I is of 
the form 2xc1+1. Let u ∈ I. Write u = 2xc1+1. Now 2xc1+1+2c1 
= 2(x+1)c1+1 ∈ I. There is no room for any element of I 
strictly between 2xc1+1 and 2(x+1)c1+1 = u+2c1.   
 
For iv), let S ⊆ I be nonempty and internal. If S has no 
least element then let S* = {x ∈ I: x is below every 
element of S}. Obviously S* ⊆ I is a nonempty internal set 
containing 1 with no greatest element. Let u ∈ S*. Let u < 
v ∈ S*. Then u+2c1 ∈ I and u+2c1 ≤ v. Therefore u+2c1 ∈ S. 
Thus we have shown that S* is closed under +2c1, and 
contains 1. Therefore S* = I. This contradicts the 
definition of S*.  
 
For v), the natural formalization of the definition of I 
results in an E formula of L*(E) with only the parameter c1. 
 
For vi), by Lemma 5.5.8 iii), since the c's are unbounded 
in A, and I is bounded in A, let n ≥ 2 be such that I ⊆ 
[0,cn]. We view this inclusion as a statement about c1,cn. 
By Lemma 5.5.8 viii), the corresponding statement about 
c1,c2 holds. I.e., I ⊆ [0,c2]. QED  
 
LEMMA 5.6.9. Every element of I is of the form 2xc1+1, with 
x ∈ E-E. x ∈ I ∧ x > 1 → x-2c1 ∈ I.  
 
Proof: For the first claim, let u ∈ I. By Lemma 5.6.8, u ∈ 
C ∪ {1}. If u = 1 then set x = 0. If u ∈ C, apply the 
second claim of Lemma 5.6.7.  
 
For the second claim, let x ∈ I, x > 1, x-2c1 ∉ I. Then I ∩ 
[0,x) is an internal set which contains 1.  
 
We claim that I ∩ [0,x) is closed under +2c1. To see this, 
write x = 2c1z+1. Let u = 2c1w+1 ∈ I ∩ [0,x). Then w < z and 
2c1(w+1)+1 ∈ I.  
 
It remains to show that 2c1(w+1)+1 < x. I.e., w+1 < z. From 
w < z, we have w+1 ≤ z. So we merely have to eliminate the 
case w+1 = z.  
 
Suppose w+1 = z. Then w = z-1, u = 2c1(z-1)+1 = x-2c1 ∈ I. 
This contradicts x-2c1 ∉ I.  
 



 663 

We now see that I ∩ [0,x) is an internal set closed under 
+2c1, containing 1. By Lemma 5.6.8, I ∩ [0,x) = I, 
contradicting x ∈ I. QED 
 
LEMMA 5.6.10. The following hold. 
i. If 2xc1+1,2yc1+1 ∈ I then 2(x+y)c1+1 ∈ I.  
ii. If 2xc1+1,2yc1+1 ∈ I then 2xyc1+1 ∈ I.  
iii. If 2xc1+1,2yc1+1 ∈ I then 2(x-y)c1+1 ∈ I.  
iv. If 2xc1+1 ∈ I then 2x↑c1+1 ∈ I.  
v. If 2xc1+1 ∈ I then 2log(x)c1+1 ∈ I.   
 
Proof: For i), fix u = 2xc1+1 ∈ I. We can assume that x > 0. 
Let  
 

S = {v ∈ I: (∃y)(v = 2yc1+1 ∧ 2(x+y)c1+1 ∉ I)} =  
{v ∈ I: (∃y ∈ E-E)(v = 2yc1+1 ∧ 2(x+y)c1+1 ∉ I)}.  

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S is internal. Assume S is nonempty. By 
Lemma 5.6.8, let v = 2yc1+1 be the least element of S. 
Clearly v > 1, y > 0, and so by Lemma 5.6.9, v-2c1 = 2(y-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S. Hence 2(x+y-
1)c1+1 ∈ I. By Lemma 5.6.8, 2(x+y-1)c1+1+2c1 = 2c1(x+y)+1 ∈ 
I. This contradicts v ∈ S.   
 
For ii), fix u = 2xc1+1 ∈ I. We can assume that x > 0. Let  
 

S’ = {v ∈ I: (∃y)(v = 2yc1+1 ∧ 2(xy)c1+1 ∉ I)} =  
{v ∈ I: (∃y ∈ E-E)(v = 2yc1+1 ∧ 2(xy)c1+1 ∉ I)}. 

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S’ is internal. Assume S’ is nonempty. By 
Lemma 5.6.8, let v = 2yc1+1 be the least element of S’. 
Clearly v > 1, y > 0, and so by Lemma 5.6.9, v-2c1 = 2(y-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S’. Hence 2x(y-
1)c1+1 ∈ I. By the first claim, since 2xc1+1 ∈ I, we have 
2(x+x(y-1))c1+1 = 2c1(xy)+1 ∈ I. This contradicts v ∈ S'. 
 
For iii), fix u = 2yc1+1 ∈ I, and let  
 

S’’ = {v ∈ I: (∃x)(v = 2xc1+1 ∧ 2(x-y)c1+1 ∉ I)} =  
{v ∈ I: (∃x ∈ E-E)(v = 2xc1+1 ∧ 2(x-y)c1+1 ∉ I)} 

 
This equality holds by Lemma 5.6.9.  
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By Lemma 5.6.8, S’’ is internal. Assume S’’ is nonempty. By 
Lemma 5.6.8, let v = 2xc1+1 be the least element of S’’. 
Clearly v > 1, x > y, and so by Lemma 5.6.9, v-2c1 = 2(x-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S’’. Hence 2((x-1)-
y)c1+1 ∈ I. Now (x-1)-y = (x-y)-1 < x-y. Hence 2((x-y)-
1)c1+1 ∈ I. By Lemma 5.6.8, 2(x-y)c1+1 ∈ I. This contradicts 
v ∈ S''.   
 
For iv), let  
 

S* = {v ∈ I: (∃x)(v = 2xc1+1 ∧ 2x↑c1+1 ∉ I)} =  
{v ∈ I: (∃x ∈ E-E)(v = 2xc1+1 ∧ 2x↑c1+1 ∉ I)} 

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S* is internal. Assume S* is nonempty. By 
Lemma 5.6.8, let v = 2xc1+1 be the least element of S*. 
Clearly v > 1, x > 0, and so by Lemma 5.6.9, v-2c1 = 2(x-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S*. Hence 2(x-
1)↑c1+1 ∈ I. By the first claim, 2((x-1)↑+(x-1)↑)c1+1 = 
2x↑c1+1 ∈ I. This contradicts v ∈ S*.   
 
For v), let  
 

S** = {v ∈ I: (∃x)(v = 2xc1+1 ∧ 2log(x)c1+1 ∉ I)} =  
{v ∈ I: (∃x ∈ E-E)(v = 2xc1+1 ∧ 2log(x)c1+1 ∉ I)} 

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S** is internal. Assume S** is nonempty, By 
Lemma 5.6.8, let v = 2xc1+1 be the least element of S**. 
Clearly v > 1, x > 0, and so by Lemma 5.6.19, v-2c1 = 2(x-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S**. Hence 2log(x-
1)c1+1 ∈ I. Clearly log(x-1) ∈ {log(x)-1,log(x)}. Since 
2log(x)c1+1 ∉ I, we have log(x-1) = log(x)-1. Hence 
2(log(x)-1)c1+1 ∈ I. by Lemma 5.6.8, 2log(x)c1+1 ∈ I. This 
contradicts v ∈ S**. QED  
 
We use Lemmas 5.6.9, 5.6.10 to impose an arithmetic 
structure on I. We define 0’ = 1, 1’ = 2c1+1. Let x,y ∈ I, x 
= 2zc1+1, y = 2wc1+1. We define x +’ y = 2(z+w)c1+1, x-’y = 
2(z-w)c1+1, x •’ y = 2zwc1+1, x↑’ = 2z↑c1+1, log’(x) = 
2log(z)c1+1.   
 
DEFINITION 5.6.4. We introduce the relational structure  
 

M(I) = (I,<,0’,1’,+’,-’,•’,↑’,log’). 
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It is essential to note that by Lemma 5.6.8, M(I) is 
internal. I.e., the domain and component relations of M(I) 
are internal as relations. 
 
DEFINITION 5.6.5. Let h:I → E-E be the one-one function 
defined by  
 

h(2c1x+1) = x. 
 
Note that h may not be internal, because, for example, its 
values may not all lie in E. But h is a perfectly good 
external isomorphism from M(I) onto the structure  
 

M|rng(h) = (rng(h),<,0,1,+,-,•,↑,log) 
 
which is a substructure of (a reduct of) M*. Note also that 
M|rng(h) may not be internal, because rng(h) ⊆ E-E may not 
be a subset of E.   
 
Recall from section 5.1 that TR(Π0

1,L) is defined to be the 
set of all true Π0

1 sentences in the language based on 
<,0,1,+,-,•,↑,log. Here bounded quantifiers are allowed.  
 
It is immediate that M|rng(h) satisfies the true Π0

1 
sentences of L with no bounded quantifiers allowed. We have 
to bridge this gap.   
 
DEFINITION 5.6.6. Let PA(L) be the usual system of Peano 
arithmetic for the language L. Its nonlogical axioms are as 
follows.  
 
1. x+1 ≠ 0. 
2. x+1 = y+1 → x = y. 
3. 0+1 = 1. 
4. x+0 = x. 
5. x+(y+1) = (x+y)+1. 
6. x•0 = 0. 
7. x•(y+1) = x•y + x. 
8. ¬x < 0. 
9. x < y+1 ↔ (x < y ∨ x = y). 
10. x ≤ y → x < y ∨ x = y.  
11. 0↑ = 1. 
12. (x+1)↑ = x↑+x↑. 
13. log(0) = 0. 
14. y↑ ≤ x ∧ x < (y+1)↑ → log(x) = y. 
15. ϕ[x/0] ∧ (∀x)(ϕ → ϕ[x/x+1]) → ϕ, where ϕ is a formula 
in L.  
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DEFINITION 5.6.7. A strict Π0
1 sentence is a Π0

1 sentence 
without bounded quantifiers. 
 
LEMMA 5.6.11. TR(Π0

1,L) logically implies PA(L) without 15. 
M|rng(h) satisfies PA(L). M(I) satisfies PA(L).  
 
Proof: The axioms of PA(L) without 15 are clearly true 
strict Π0

1 sentences, and so by Lemma 5.5.8 i), they hold in 
M. Hence they also hold in the substructure M|rng(h) of M. 
By the external isomorphism h, they hold in M(I). 
 
For 15, first note that by Lemma 5.6.10, M(I) satisfies 
that every element > 0 has an immediate predecessor. 
Suppose that in M(I), ϕ defines a subset S of I containing 
0’ and closed under the +1 of M(I). Suppose S ≠ I.  
 
Since M(I) is internal, S is internal. Hence by Lemma 
5.6.8, I\S has a least element x ∈ I. Since x > 0’, x has 
an immediate predecessor y ∈ I, with y ∈ S. Hence x ∈ S, 
which is a contradiction. This establishes the second 
claim.  
 
The third claim follows by the isomorphism h. QED 
 
LEMMA 5.6.12. For every Π0

1(L) sentence ϕ there is a strict 
Π0

1(L) sentence ψ such that PA(L) proves ϕ ↔ ψ.  
 
Proof: By a well known normal form theorem, we fix a Π0

1(L) 
formula ρ(x,y) in L with the distinct free variables x,y 
only, such that the following holds. For all Π0

1(L) 
sentences ϕ, there exists n ∈ N such that PA(L) proves 
 

1) (∀x)(ρ(x,n*)) ↔ ϕ 
 
where n* is 1+1...+1, with n 1’s. See, e.g., [Si99], 
section II.2.  
 
From the work on Hilbert’s 10th problem, there exists k ≥ 1 
and two polynomials Q1(x1,...,xk,y), Q2(x1,...,xk,y), with 
nonnegative integer coefficients, such that   
 

2) (∀x)(ρ(x,y)) ↔  
(∀x1,...,xk)(Q1(x1,...,xk,y) ≠ Q2(x1,...,xk,y))) 

 
is true for all y ∈ N. Here all variables range over 
nonnegative integers. This follows immediately from the 
sharp form of the negative solution to Hilbert’s 10th 
problem that asserts that every recursively enumerable 
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subset of N is Diophantine. This is due to Y. Matiyasevich, 
J. Robinson, M. Davis, and H. Putnam. See, e.g., [Da73], 
[Mat93].  
 
Moreover, it is well known that for a given ρ(x,y), 
polynomials Q1,Q2 can be found such that PA proves: for all 
y, 2) holds. This is because the entire treatment of 
Hilbert’s 10th problem can be carried out straightforwardly 
within PA(L). We fix such polynomials Q1,Q2. 
 
(In fact, this treatment can be carried out in the very 
weak fragment of PA called EFA = exponential function 
arithmetic, which is IΣ0(exp). See [HP93], p. 37, and 
[GD82].)  
 
Now let ϕ be a Π0

1(L) sentence. Fix n such that 1) is 
provable in PA(L). Set y = n* in 2). Then PA(L) proves 
 

3) ϕ ↔ (∀x)(ρ(x,n*)) ↔ 
(∀x1,...,xk)(Q1(x1,...,xk,n*) ≠ Q2(x1,...,xk,n*)) 

 
and so we set  
 

ψ = (∀x1,...,xk)(Q1(x1,...,xk,n*) ≠ Q2(x1,...,xk,n*)). 
 
QED 
 
LEMMA 5.6.13. PA(L) + strict TR(Π0

1,L) logically implies 
TR(Π0

1,L). M|rng(h) and M(I) satisfy PA(L) + TR(Π0
1,L).  

 
Proof: For the first claim, let ϕ ∈ TR(Π0

1,L). By Lemma 
5.6.12, let ψ be strict TR(Π0

1,L), where PA(L) proves ψ → 
ϕ. Then PA(L) + strict TR(Π0

1,L) proves ϕ. Hence PA(L) + 
strict TR(Π0

1,L) proves TR(Π0
1,L).  

 
For the second claim, by Lemma 5.6.11, M|rng(h) and M(I) 
satisfy PA(L). Now obviously M|rng(h) satisfies strict 
TR(Π0

1,L)) since M does (Lemma 5.5.8 i)), and M|rng(h) is a 
substructure of M. Hence M(I) also satisfies strict 
TR(Π0

1,L). Hence by the first claim, M|rng(h) and M(I) 
satisfy TR(Π0

1,L).  QED 
 
Note that the definitions of CODE and INCODE from section 
5.3, apply without modification to the present context.  
 
LEMMA 5.6.14. Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where 
x1,...,xk ∈ E. Then CODE(cm;x1,...,xk) ∈ E, and 
INCODE(CODE(cm;x1,...,xk)) = P(x1,...,xk).  
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Proof: We essentially repeat the proof of Lemma 5.3.11, 
slightly adapted to the present context.  
 
Let k,n,m,x1,...,xk be as given. Note that  
 

(cm÷2)+1 ≤ (log(cm))↑ ≤ cm. 
2cm ≤ 4(log(cm))↑+P(x1,...xk)) ≤ 5cm. 

 
4((log(cm))↑+P(x1,...xk)) ∈ α(E;2,<∞). 
CODE(cm;x1,...,xk) ∈ 2α(E;2,<∞)+1. 

 
Hence CODE(cm;x1,...,xk) ∈ E by Lemma 5.5.8 v).  
 
We claim that  
 

1) log(CODE(cm;x1,...,xk)) = log(cm)+3. 
 
To see this, note that  
 

log(CODE(cm;x1,...,xk)) =  
log(8((log(cm))↑ + P(x1,...,xk))+1) =  
log(8(log(cm))↑ + 8P(x1,...,xk) + 1) =  
log((log(cm)+3)↑ + 8P(x1,...,xk) + 1) ≤  
log((log(cm)+3)↑ + log(cm)) = log(cm)+3 ≤  
log((log(cm)+3)↑ + 8P(x1,...,xk) + 1).  

 
Using 1),  
 

INCODE(CODE(cm;x1,...,xk)) = z ↔ 
8z ≤ CODE(cm;x1,...,xk)-(log(CODE(cm;x1,...,xk)))↑-1 < 8z+8 ↔ 

8z ≤ CODE(cm;x1,...,xk)-(log(cm)+3)↑-1 < 8z+8 ↔ 
8z ≤ CODE(cm;x1,...,xk)-8((log(cm))↑)-1 < 8z+8 ↔ 

8z ≤ 8P(x1,...,xk) < 8z+8. 
 
Hence  
 

INCODE(CODE(cm;x1,...,xk)) = P(x1,...,xk). 
 

QED  
 
The following will be used to give an interpretation of the 
∈ relation in the set theory K(Π) introduced below.  
 
LEMMA 5.6.15. There is an E formula σ(x1,x2) of L(E) such 
that the following holds. Let S be an internal set. There 
exist arbitrarily large y ∈ E such that S = {x ∈ E: 
σ(x,y)}. 
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Proof: Let S ⊆ E be internal. Let n ≥ 1 be such that S is 
cn-definable (see Lemma 5.5.4). By Lemma 5.5.8 vi), write  
 

1) S = {x ∈ E ∩ [0,cn]: t1(x,y1,...,y8) ∈ E} 
 
where y1,...,y8 ∈ E. This definition of S has the parameters 
cn,y1,...,y8. Here t1 is among the terms t1,t2,... given at 
the beginning of Lemma 5.5.8. Here t1 is defined 
independently of S. 
 
We now show that instead of using the 9 parameters 
cn,y1,...,y8 ∈ E above, we can use a single parameter y ∈ E. 
In particular, we claim that there are arbitrarily large y 
∈ E such that  
 
2) S = {x ∈ E: (∃z0,...,z8 ∈ E)(INCODE(y) = P(z0,...,z8) ∧  

x ≤ z0 ∧ tk(x,z1,...,z8) ∈ E}.  
 
To see this, first let x ∈ S. Then 1) holds with 
cn,y1,...,y8 ∈ E. Set y = CODE(cm;cn,y1,...,y8), where 
y1,...,y8,cn < cm. By Lemma 5.6.15, y ∈ E. Obviously y ≥ cm. 
We have 
 

x ∈ E ∩ [0,cn] ∧ t1(x,y1,...,y8) ∈ E. 
 
Set z0,...,z8 = cn,y1,...,y8, respectively. By Lemma 5.6.14,  
 

INCODE(y) = INCODE(CODE(cm;cn,y1,...,y8))  
= P(z0,...,z8). 

 
Also x ≤ z0, t1(x,z1,...,z8) ∈ E.  
 
On the other hand, suppose  
 

x ∈ E ∧ (∃z0,...,z8 ∈ E)(INCODE(y) = P(z0,...,z8) ∧  
x ≤ z0 ∧ t1(x,z1,...,z8) ∈ E}) 

 
where y = CODE(cm;cn,y1,...y8). 
 
Let z0,...,z8 ∈ E be such that  
 

INCODE(y) = P(z0,...,z8) ∧ x ≤ z0 ∧  
t1(x,z1,...,z8) ∈ E. 

 
By Lemma 5.6.14, INCODE(y) = P(cn,y1,...,y8). Hence cn = z0, 
y1 = z1, ..., y8 = z8, x ≤ cn, and t1(x,y1,...,y8) ∈ E. Hence 
by 1), x ∈ S.  
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It remains to see that S has been defined by an E formula 
of L(E) in x,y. It suffices to write  
 

INCODE(y) = P(z0,...,z8) 
 
as a quantifier free formula in L. This is clear from   
 

INCODE(y) = u ↔ 
8u ≤ y-(log(y))↑-1 < 8u+8. 

 
QED   
 
We are now prepared to streamline the structure M*, 
retaining only what is needed to complete the construction 
of a model of SMAH + TR(Π0

1,L).  
 
We have built quite a bit of complexity in M* in order to 
carry out the construction of arithmetic in M* via the 
internal structure M(I), and have related that arithmetic 
to the arithmetic of M on (a subset of) A in order to 
obtain Π0

1 correctness for M(I). 
 
Now that we have this machinery in place, we no longer need 
to work with any objects outside of E.  
 
Our simplification will be formulated in terms of a first 
order linearly ordered set theory. We will convert M* to a 
model of this linearly ordered set theory whose domain is a 
subset of E.  
 
We now present the language L# for linearly ordered set 
theory.  
 
DEFINITION 5.6.8. The language L# is based on the following 
primitives.  
 
i) variables vn, n ≥ 1; 
ii) the constant symbols dn, n ≥ 1;  
iii) the unary relation symbol NAT; 
iv) the binary relation symbols ∈,<; 
v) the constant symbols 0,1; 
vi) the unary function symbols ↑,log; 
vii) the binary function symbols +,-,•;  
viii) = (equality). 
 
Note that L# includes constant symbols dn, n ≥ 1, whereas L, 
L(E), and L*(E) do not include constant symbols cn, n ≥ 1. 
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The constants cn appeared only as distinguished elements of 
our interpretations of the languages L, L(E), and L*(E).  
 
DEFINITION 5.6.9. The terms of L# are built from the 
variables and the constant symbols of L#, using the 
function symbols. The atomic formulas of L# are of the form 
s = t, s < t, s ∈ t, where s,t are terms of L#. Formulas of 
L# are defined in the usual way using the usual connectives 
¬,∧,∨,→,↔, and the usual quantifiers ∀,∃. 
 
We now introduce the linearly ordered set theory K(Π) in 
the language L#.  
 
DEFINITION 5.6.10. K(Π) consists of the following axioms.  
 
1. < is a linear ordering (irreflexive, transitive, 
connected). 
2. x ∈ y → x < y. 
3. Let 1 ≤ n < m. Then dn < dm. 
4. Let ϕ be a formula of L# in which v1 is not free. Then 
(∃v1)(∀v2)(v2 ∈ v1 ↔ (v2 ≤ v3 ∧ ϕ)). 
5. Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L#. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and min. Let y1,...,yr ≤ min(di_1,...,di_r). Then 
ϕ(di_1,...,di_r,y1,...,yr) ↔ ϕ(di_r+1,...,di_2r,y1,...,yr). 
6. NAT defines a nonempty initial segment under <, with no 
greatest element, and no limit point, where all points are 
< d1, and whose first two elements are 0 < 1, such that +,-
,•,↑,log map NAT into NAT. 
7. (∀x)(if x has an element in NAT then x has a < least 
element).  
8. Let ϕ ∈ TR(Π0

1,L). Take the relativization of ϕ to NAT.  
9. +,-,•,↑,log have the default value 0 in case one or more 
arguments lie outside NAT. 
 
DEFINITION 5.6.11. We now define the structure M# = 
(D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2, ...) as follows. Recall 
that we have been using the structure M* = (A,<,0,1,+,-
,•,↑,log,E,c1,c2,...,X1,X2,...).  
 
By Lemma 5.6.8, I ⊆ E ∩ [0,c2). Let J be the initial 
segment of (E,<) determined by I. Take D = E\J ∪ I. I.e., D 
is the result of cutting down J to I in E. 
 
Define < in M# to be the restriction of < in M* to D. Take 
NAT(x) ↔ x ∈ I.  
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Define 0,1,+,-,•,↑,log of M# as follows. The 0,1 of M# are 
the same as the 0,1 of the structure M(I). The +,-,•,↑,log 
of M# restricted to I are the same as the +,-,•,↑,log of 
M(I). Finally, if one or more arguments lie outside I, then 
the +,-,•,↑,log of M# return the 0 of M(I).  
 
Let x,y ∈ D. Define  
 

x ∈ y ↔ (σ(x,y) ∧ x < y) 
 
where σ is given by Lemma 5.6.15.  
 
Finally, for n ≥ 1, define dn = cn+1.  
 
LEMMA 5.6.16. Let k ≥ 1, ϕ(v1,...,vk) be a formula of L# 
without any d’s. There exists an E formula ϕ’(x1,...,xk+1) of 
L*(E) such that the following holds. Let x1,...,xk ∈ D. Then 
 

ϕ(x1,...,xk) holds in M# ↔ 
ϕ’(x1,...,xk,c1) holds in M*. 

 
Proof: Let ϕ be as given. First, formally restrict the 
scope of all quantifiers to the formal property x ∈ E ∧ (x 
∈ I ∨ (∀v ∈ I)(v < x)). The extension of this property is 
D.  
 
Now replace all subformulas NAT(t) by (∃v)(v = t ∧ v ∈ I).  
 
Next unravel all subformulas s = t, s < t, by using new 
existential quantifiers relativized to I for subterms with 
0,1,+,-,•,↑,log. We can straightforwardly do this so that  
 
i. there is at most one occurrence of a function symbol in 
every remaining equation. 
ii. there are no occurrences of function symbols in every 
remaining inequality. 
 
Now replace v+w = z, v-w = z, v•w = z, v↑ = z, log(v) = z, 
respectively, by  
 
(v ∉ I ∨ w ∉ I ∧ z = 0) ∨ (v ∈ I ∧ w ∈ I ∧ v+'w = z). 
(v ∉ I ∨ w ∉ I ∧ z = 0) ∨ (v ∈ I ∧ w ∈ I ∧ v-'w = z). 
(v ∉ I ∨ w ∉ I ∧ z = 0) ∨ (v ∈ I ∧ w ∈ I ∧ v•'w = z). 
(v ∉ I ∧ z = 0) ∨ (v ∈ I ∧ v↑' = z). 
(v ∉ I ∧ z = 0) ∨ (v ∈ I ∧ log'(v) = z). 
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Then replace v+'w = z, v-'w = z, v•'w = z, v↑' = z, log'(v) 
= z, respectively, by their definitions given right after 
the proof of Lemma 5.6.10.  
 
Now replace 0 by 1 and 1 by 2c1+1. 
 
Next replace atomic subformulas z ∈ w by σ(z,w), given by 
Definition 5.6.3.  
 
Finally, replace all v ∈ I by the definition of I in 
Definition 5.6.3.  
 
The parameter c1, only, appears in the definition of I, and 
the definitions of 1,+,-,•,↑,log. QED 
 
LEMMA 5.6.17. M# = (D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) 
satisfies K(Π), where d1,d2,... forms a strictly increasing 
sequence from D without an upper bound.  
 
Proof: Axioms 1,2,3,9 are evident by construction.  
 
For axiom 4, let ϕ(v2,...,vk) be as given, k ≥ 1. Let 
x2,...,xk ∈ D. Define  
 

S = {x2 ∈ D: x2 ≤ x3 ∧ ϕ(x2,...,xk) holds in M#}. 
 
By Lemma 5.6.16, we can write S in the form 
 

S = {x2 ∈ D: x2 ≤ x3 ∧ ϕ’(x2,...,xk,c1) holds in M*} 
 
where ϕ’(v2,...,vk+1) is an E formula of L*(E). Hence S is 
internal. By Lemma 5.6.15, let y ∈ E, y > x3,c2, be such 
that  
 

S = {x ∈ E: σ(x,y)}. 
 
Note that since y ∈ E and y > c2, we have y ∈ D. 
 
Since S ⊆ D, y ∈ D, and S is strictly bounded above by y, 
we have  
 

S = {x ∈ D: x ∈M# y}. 
 
We now claim that   
 

(∀x2)(x2 ∈ y ↔ (x2 ≤ x3 ∧ ϕ(x2,...,xk))) 
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holds in M#. To see this, let x2 ∈ D, x2 ∈M# y. Then x2 ∈ S, 
and so x2 ≤ x3, and ϕ(x2,...,xk) holds in M#.  
 
Conversely, suppose x2 ∈ D, x2 ≤ x3, and ϕ(x2,...,xk) holds 
in M#. Then x2 ∈ S, and so x2 ∈M# y.  
 
For axiom 5, let r ≥ 1, ϕ(v1,...,v2r) be a formula in L#. Let 
1 ≤ i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the 
same order type and the same min. Let xr+1,...,x2r ∈ D, 
xr+1,...,x2r ≤ min(di_1,...,di_r). 
 
Let ϕ’(x1,...,x2r+1) be given by Lemma 5.6.16. Then for all 
x1,...,x2r ∈ D,  
 

ϕ(di_1,...,di_r,xr+1,...,x2r) holds in M# ↔ 
ϕ’(ci_1 +1,...,ci_r +1,xr+1,...,x2r,c1) holds in M*. 

 
ϕ(di_r+1,...,di_2r,xr+1,...,x2r) holds in M# ↔ 

ϕ’(ci_r+1 +1,...,ci_2r +1,xr+1,...,x2r,c1) holds in M*. 
 
By Lemma 5.5.8 viii), the right sides of the above two 
equivalences are equivalent. Hence the left sides of the 
above two equivalences are equivalent.  
 
For axiom 6, NAT defines a nonempty initial segment under < 
by construction, and is I. I has no greatest element, and 
no limit point by Lemmas 5.6.8, 5.6.9. NAT lives below d1 
since I ⊆ [0,c2), according to Lemma 5.6.8, and d1 = c2. The 
first two elements of NAT are the 0,1 of M# by 
construction.  
 
For axiom 7, by Lemma 5.6.8, I is internally well ordered 
in M*. By Lemma 5.6.16, NAT = I remains internally well 
ordered in M#.  
 
For axiom 8, NAT with the 0,1,<,+,-,•,↑,log of M# is the 
same as M(I). By Lemma 5.6.13, M(I) satisfies TR(Π0

1,L). 
Hence NAT with the 0,1,<,+,-,•,↑,log of M# satisfies the 
sentences in TR(Π0

1,L).   
 
The d's are unbounded in M# because the c's are unbounded 
in M*. QED 
 
We now put Lemma 5.6.17 into our usual format to be used in 
the next section. 
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LEMMA 5.6.18. There exists a countable structure M# = 
(D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) such that the 
following holds. 
i) < is a linear ordering (irreflexive, transitive, 
connected); 
ii) x ∈ y → x < y; 
iii) The dn, n ≥ 1, form a strictly increasing sequence of 
elements of D with no upper bound in D; 
iv) Let ϕ be a formula of L# in which v1 is not free. Then 
(∃v1)(∀v2)(v2 ∈ v1 ↔ (v2 ≤ v3 ∧ ϕ)); 
v) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L# not 
mentioning any constants dn, n ≥ 1. Let 1 ≤ i1,...,i2r, where 
(i1,...,ir) and (ir+1,...,i2r) have the same order type and 
min. Let y1,...,yr ≤ min(di_1,...,di_r). Then 
ϕ(di_1,...,di_r,y1,...,yr) ↔ ϕ(di_r+1,...,di_2r,y1,...,yr); 
vi) NAT defines a nonempty initial segment under <, with no 
greatest element, and no limit point, where all points are 
< d1, and whose first two elements are 0,1, respectively; 
vii) (∀x)(if x has an element obeying NAT then x has a < 
least element);  
viii) Let ϕ ∈ TR(Π0

1,L). The relativization of ϕ to NAT 
holds.  
ix) +,-,•,↑,log have the default value 0 in case one or 
more arguments lie outside NAT. 
 
Proof: This is immediate from Lemma 5.6.17. QED  
 
5.7. Transfinite induction, comprehension, 
indiscernibles, infinity, Π0

1 correctness.  
 
We now fix M# = (D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) as 
given by Lemma 5.6.18.  
 
While working in M#, we must be cautious. 
 
a. The linear ordering < may not be internally well 
ordered. In fact, there may not even be a < minimal element 
above the initial segment given by NAT.  
b. We may not have extensionality.  
 
Note that we have lost the internally second order nature 
of M* as we passed from M* to the present M# in section 
5.6. The goal of this section is to recover this internally 
second order aspect, and gain internal well foundedness of 
<.  
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To avoid confusion, we use the three symbols =, ≡, ≈. Here = 
is the standard identity relation we have been using 
throughout the book.  
 
DEFINITION 5.7.1. We use ≡ for extensionality equality in 
the form  
 

x ≡ y ↔ (∀z)(z ∈ x ↔ z ∈ y). 
 
DEFINITION 5.7.2. We use ≈ as a special symbol in certain 
contexts.  
 
DEFINITION 5.7.3. We write x ≈ ∅ if and only if x has no 
elements.  
 
We avoid using the notation {x1,...,xk} out of context, as 
there may be more than one set represented in this way.  
 
DEFINITION 5.7.4. Let k ≥ 1. We write x ≈ {y1,...,yk} if and 
only if  
 

(∀z)(z ∈ x ↔ (z = y1 ∨ ... ∨ z = yk)). 
 
LEMMA 5.7.1. Let k ≥ 1. For all y1,...,yk there exists x ≈ 
{y1,...,yk}. Here x is unique up to ≡. 
 
Proof: Let y = max(y1,...,yk). By Lemma 5.6.18 iv),  
 

(∃x)(∀z)(z ∈ x ↔ (z ≤ y ∧ (z = y1 ∨ ... ∨ z = yk))). 
 
The last claim is obvious. QED 
 
DEFINITION 5.7.5. We write x ≈ <y,z> if and only if there 
exists a,b such that  
 
i) x ≈ {a,b}; 
ii) a ≈ {y}; 
iii) b ≈ {y,z}. 
 
LEMMA 5.7.2. If x ≈ <y,z> ∧ w ∈ x, then w ≈ {y} ∨ w ≈ {y,z}. 
If x ≈ <y,z> ∧ x ≈ <u,v>, then y = u ∧ z = v. For all y,z, 
there exists x ≈ <y,z>. 
 
Proof: For the first claim, let x,y,z,w be as given. Let 
a,b be such that x ≈ {a,b}, a ≈ {y}, b ≈ {y,z}. Then w = a ∨ 
w = b. Hence w ≈ {y} ∨ w ≈ {y,z}. 
 
For the second claim, let x ≈ <y,z>, x ≈ <u,v>. Let  
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x ≈ {a,b}, a ≈ {y}, b ≈ {y,z} 
x ≈ {c,d}, c ≈ {u}, d ≈ {u,v}. 
 
Then  
 
(a = c ∨ a = d) ∧ (b = c ∨ b = d) ∧ (c = a ∨ c = b) ∧ (d = 
a ∨ d = b). 
 
Since a = c ∨ a = d, we have y = u ∨ (y = u = v). Hence y = 
u.  
 
We have b ≈ {y,z}, d ≈ {y,v}. If b = d then z = v. So we can 
assume b ≠ d. Hence b = c, d = a. Therefore u = y = z, y = u 
= v.   
 
For the third claim, let y,z. By Lemma 5.7.1, let a ≈ {y} 
and b ≈ {y,z}. Let x ≈ {a,b}. Then x ≈ <y,z>. QED  
 
DEFINITION 5.7.6. Let k ≥ 2. We inductively define x ≈ 
<y1,...,yk> as follows. x ≈ <y1,...,yk+1> if and only if 
(∃z)(x ≈ <z,y3,...,yk+1> ∧ z ≈ <y1,y2>). In addition, we 
define x ≈ <y> if and only if x = y. 
 
LEMMA 5.7.3. Let k ≥ 1. If x ≈ <y1,...,yk> and x ≈ 
<z1,...,zk>, then y1 = z1 ∧ ... ∧ yk = zk. For all y1,...,yk, 
there exists x such that x ≈ <y1,...,yk>. 
 
Proof: The first claim is by external induction on k ≥ 2, 
the case k = 1 being trivial. The basis case k = 2 is by 
Lemma 5.7.2. Suppose this is true for a fixed k ≥ 2. Let x ≈ 
<y1,...,yk+1>, x ≈ <z1,...,zk+1>. Let u,v be such that x ≈ 
<u,y3,...,yk+1>, x ≈ <v,z3,...,zk+1>, u ≈ <y1,y2>, v ≈ <z1,z2>. 
By induction hypothesis, u = v ∧ y3 = z3 ∧ ... ∧ yk+1 = zk+1. 
By Lemma 5.7.2, since u = v, we have y1 = z1 ∧ y2 = z2.  
 
The second claim is also by external induction on k ≥ 2, the 
case k = 1 being trivial. The basis case k = 2 is by Lemma 
5.7.2. Suppose this is true for a fixed k ≥ 2. Let 
y1,...,yk+2. By Lemma 5.7.2, let z ≈ <y1,y2>. By induction 
hypothesis, let x ≈ <z,y3,...,yk+2>. Then x ≈ <y1,...,yk+2>. 
QED 
 
DEFINITION 5.7.7. Let k ≥ 1. We say that R is a k-ary 
relation if and only if (∀x ∈ R)(∃y1,...,yk)(x ≈ 
<y1,...,yk>). If R is a k-ary relation then we define 
R(y1,...,yk) if and only if  
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(∃x ∈ R)(x ≈ <y1,...,yk>). 
 
Note that if R is a k-ary relation with R(y1,...,yk), then 
there may be more than one x ∈ R with x ≈ <y1,...,yk>.  
 
We use set abstraction notation with care.  
 
DEFINITION 5.7.8. We write  
 

x ≈ {y: ϕ(y)} 
 
if and only if  
 

(∀y)(y ∈ x ↔ ϕ(y)}. 
 
If there is such an x, then x is unique up to ≡. 
 
Let R,S be k-ary relations. The notion R ≡ S is usually too 
strong for our purposes.  
 
DEFINITION 5.7.9. We define R ≡’ S if and only if  
 

(∀x1,...,xk)(R(x1,...,xk) ↔ S(x1,...,xk)). 
 
DEFINITION 5.7.10. We define R ⊆' S if and only if  
 

(∀x1,...,xk)(R(x1,...,xk) → S(x1,...,xk). 
 
We now prove comprehension for relations. To do this, we 
need a bounding lemma. 
 
LEMMA 5.7.4. Let n,k ≥ 1, and x1,...,xk ≤ dn. There exists y 
≈ {x1,...,xk} such that y ≤ dn+1. There exists z ≈ <x1,...,xk> 
such that z ≤ dn+1. 
 
Proof: Let k,n,x1,...,xk be as given. By Lemmas 5.7.1 and 
5.7.3,  
 

(∃y)(y ≈ {x1,...,xk}). 
(∃z)(z ≈ <x1,...,xk>). 

 
By Lemma 5.6.18 iii), let r > n be such that  
 

(∃y ≤ dr)(y ≈ {x1,...,xk}). 
(∃z ≤ dr)(z ≈ <x1,...,xk>). 

 
By Lemma 5.6.18 v),  
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(∃y ≤ dn+1)(y ≈ {x1,...,xk}). 
(∃z ≤ dn+1)(z ≈ <x1,...,xk>). 

 
QED 
 
LEMMA 5.7.5. Let k,n ≥ 1 and ϕ(v1,...,vk+n) be a formula of 
L#. Let y1,...,yn,z be given. There is a k-ary relation R 
such that (∀x1,...,xk)(R(x1,...,xk) ↔ (x1,...,xk ≤ z ∧ 
ϕ(x1,...,xk,y1,...,yn))).  
 
Proof: Let k,n,m,ϕ,y1,...,yn,z be as given. By Lemma 5.6.18 
iii), let r ≥ 1 be such that y1,...,yn,z ≤ dr. By Lemma 
5.6.18 iv), let R be such that  
 

1) (∀x)(x ∈ R ↔ (x ≤ dr+1 ∧ (∃x1,...,xk ≤ z) 
(x ≈ <x1,...,xk> ∧ ϕ(x1,...,xk,y1,...,yn)))). 

 
Obviously R is a k-ary relation. We claim that   
 

(∀x1,...,xk)(R(x1,...,xk) ↔ (x1,...,xk ≤ z ∧  
ϕ(x1,...,xk,y1,...,yn))). 

 
To see this, fix x1,...,xk. First assume R(x1,...,xk). Let x 
≈ <x1,...,xk>, x ∈ R. By 1),  
 

x ≤ dr+1 ∧ (∃x1*,...,xk* ≤ z)(x = <x1*,...,xk*> ∧ 
ϕ(x1*,...,xk*,y1,...,yn)). 

 
Let x1*,...,xk* be as given by this statement. By Lemma 
5.7.3, x1* = x1, ..., xk* = xk. Hence x1,...,xk ≤ z ∧ 
ϕ(x1,...,xk,y1,...,yn).  
 
Now assume  
 

x1,...,xk ≤ z ∧ ϕ(x1,...,xk,y1,...,yn). 
 
By Lemma 5.7.4, let  
 

x ≈ <x1,...,xk> ∧ x ≤ dr+1. 
 
By 1), x ∈ R. Hence R(x1,...,xk). QED 
 
LEMMA 5.7.6. If x ≈ {y1,...,yk} then each yi < x. If x ≈ 
<y1,...,yk>, k ≥ 2, then each yi < x. If x ≈ <y1,...,yk>, k ≥ 
1, then each yi ≤ x. If R(x1,...,xk) then each xi < R. 
 
Proof: The first claim is evident from Lemma 5.6.18 ii). 
The second claim is by external induction on k ≥ 2. For the 
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basis case k = 2, note that if x ≈ <y,z> then y,z are both 
elements of elements of x, and apply Lemma 5.6.18 ii). Now 
assume true for fixed k ≥ 2. Let x ≈ <y1,...,yk+1>, and let z 
≈ <y1,y2>, x ≈ <z,y3,...,yk+1>, By induction hypothesis, 
z,y3,...,yk+1 < x, and also y1,y2 < x. 
 
The third claim involves only the new case k = 1, which is 
trivial.  
 
For the final claim, let R(x1,...,xk). Let x ≈ <x1,...,xk>, x 
∈ R. By the second claim and Lemma 5.6.18 iii), x1,...,xk ≤ 
x < R. QED 
 
DEFINITION 5.7.11. A binary relation is defined to be a 2-
ary relation. Let R be a binary relation. We "define"  
 

dom(R) ≈ {x: (∃y)(R(x,y))}. 
rng(R) ≈ {x: (∃y)(R(y,x))}. 

fld(R) ≈ {x: (∃y)(R(x,y) ∨ R(y,x)}. 
 
Note that this constitutes a definition of dom(R), rng(R), 
fld(R) up to ≡.  
 
LEMMA 5.7.7. For all binary relations R, dom(R) and rng(R) 
and fld(R) exist. 
 
Proof: Let R be a binary relation. By Lemma 5.6.18 iv), let 
A,B,C be such that  
 

(∀x)(x ∈ A ↔ (x ≤ R ∧ (∃y)(R(x,y))). 
(∀x)(x ∈ B ↔ (x ≤ R ∧ (∃y)(R(y,x))). 

(∀x)(x ∈ C ↔ (x ≤ R ∧ (∃y)(R(x,y) ∨ R(y,x)))). 
 
By Lemma 5.7.6,  
 

(∀x)(x ∈ A ↔ (∃y)(R(x,y)). 
(∀x)(x ∈ B ↔ (∃y)(R(y,x)). 

(∀x)(x ∈ C ↔ (∃y)(R(x,y) ∨ R(y,x))). 
 
QED 
 
DEFINITION 5.7.12. A pre well ordering is a binary relation 
R such that  
 
i) (∀x ∈ fld(R))(R(x,x)); 
ii) (∀x,y,z ∈ fld(R))((R(x,y) ∧ R(y,z)) → R(x,z)); 
iii) (∀x,y ∈ fld(R))(R(x,y) ∨ R(y,x)); 
iv) (∀x ⊆ fld(R))(¬(x ≈ ∅) → (∃y ∈ x)(∀z ∈ x)(R(y,z))). 
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Note that R is a pre well ordering if and only if R is 
reflexive, transitive, connected, and every nonempty subset 
of its field (or domain) has an R least element. 
 
Note that all pre well orderings are reflexive. Clearly for 
pre well orderings R, dom(R) ≡ rng(R) ≡ fld(R). 
 
Let R be a reflexive and transitive relation.  
 
DEFINITION 5.7.13. It will be convenient to write R(x,y) as 
x ≤R y, and write x =R y for x ≤R y ∧ y ≤R x. We also define 
x ≥R y ↔ y ≤R x, x <R y ↔ x ≤R y ∧ ¬y ≤R x, x >R y ↔ y <R x, 
and x ≠R y ↔ ¬x =R y.   
 
DEFINITION 5.7.14. Let R be a pre well ordering and x ∈ 
fld(R). We "define" the binary relations R|<x by  
 

(∀y,z)(R|<x(y,z) ↔ y ≤R z <R x)). 
 
Note that R|<x is unique up to ≡’. Also note that by Lemma 
5.7.5, R|<x exists. Furthermore, it is easy to see that 
R|<x is a pre well ordering. 
 
When we write R|<x, we require that x ∈ fld(R). 
 
DEFINITION 5.7.15. Let R,S be pre well orderings. We say 
that T is an isomorphism from R onto S if and only if  
 
i) T is a binary relation; 
ii) dom(T) ≡ dom(R), rng(T) ≡ dom(S); 
iii) Let T(x,y), T(z,w). Then x ≤R z ↔ y ≤S w; 
iv) Let x =R u, y =S v. Then T(x,y) ↔ T(u,v). 
 
LEMMA 5.7.8. Let R,S be pre well orderings, and T be an 
isomorphism from R onto S. Let T(x,y), T(z,w). Then x <R z 
↔ y <S w, and x =R z ↔ y =S w. 
 
Proof: Let R,S,T,x,y,z,w be as given. Suppose x <R z. Then y 
≤S w. If w ≤S y then z ≤R x. Hence y <R w. Suppose y <S w. 
Then x ≤R z. If z ≤R x then w ≤S y. Hence x <R z. Suppose x 
=R z. Then y ≤S w and w ≤S y. Hence y =S w. Suppose y =S w. 
Then x ≤R z and z ≤R x. Hence x =R z. QED 
 
LEMMA 5.7.9. Let R,S be pre well orderings. Let a,b ∈ 
dom(S). Let T be an isomorphism from R onto S|<a, and T* be 
an isomorphism from R onto S|<b. Then a =S b and T ≡’ T*.  
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Proof: Let R,S,a,b,T,T* be as given. Suppose there exists x 
∈ dom(R) such that for some y, ¬(T(x,y) ↔ T*(x,y)). By 
Lemma 5.6.18 iv), let x be R least with this property.  
 
case 1. (∃y)(T(x,y) ∧ ¬T*(x,y)). Let T(x,y), ¬T*(x,y). Also 
let T*(x,y*). If y =S y* then by clause iv) in the 
definition of isomorphism, T*(x,y). Hence ¬y =S y*.  
 
case 1a. y <S y*. Then y <S b. Let T*(x*,y).  
 
Suppose x* <R x. If ¬T(x*,y), then we have contradicted the 
choice of x. Hence T(x*,y). But this contradicts T(x,y) by 
Lemma 5.7.8.  
 
Suppose x ≤R x*. By T*(x,y*), T*(x*,y) and Lemma 5.7.8, y* 
≤S y. This is a contradiction.  
 
case 1b. y* <S y. Then y* <S a. Let T(x*,y*). By T(x,y) and 
Lemma 5.7.8, x* <R x. By the choice of x, since T(x*,y*), we 
have T*(x*,y*). By Lemma 5.7.8, since T*(x,y*), we have x =R 
x*. Since T(x,y), by Lemma 5.7.8 we have y =S y*. This is a 
contradiction.  
 
case 2. (∃y)(¬T(x,y) ∧ T*(x,y)). Let ¬T(x,y), T*(x,y). This 
is the same as case 1, interchanging a,b, and T,T*.  
 
We have now established that T ≡’ T*. If a <S b then a ∈ 
rng(T*) but a ∉ rng(T). This contradicts T ≡’ T*. If b <S a 
then b ∈ rng(T) but b ∉ rng(T*). This also contradicts T ≡’ 
T*. Therefore a =S b. QED  
 
DEFINITION 5.7.16. Let R,S be pre well orderings. Let T be 
an isomorphism from R onto S. Let x ∈ dom(R). We write T|<x 
for "the" restriction of T to first arguments u <R x. We 
write T|≤x for "the" restriction of T to first arguments u 
≤R x. Note that T|<x, T|≤x are each unique up to ≡'.   
 
LEMMA 5.7.10. Let R,S be pre well orderings. Let T be an 
isomorphism from R onto S, and T(x,y). Then T|<x is an 
isomorphism from R|<x onto S|<y.  
 
Proof: Let R,S,T,x,y be as given. It suffices to show that 
rng(T|<x) ≡ {b: b <S y}. Let b <S y. Let T(a,b). By Lemma 
5.7.8, a <R x. Hence b ∈ rng(T|<x). QED 
 
LEMMA 5.7.11. Let R,S be pre well orderings, T be an 
isomorphism from R onto S, and T* be an isomorphism from 
R|<x onto S|<y. Then T* ≡' T|<x and T(x,y).  
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Proof: Let R,S,T,T*,x,y be as given. Let T(x,y*). By Lemma 
5.7.10, T|<x is an isomorphism from R|<x onto S|<y*. By 
Lemma 5.7.9, y =S y* and T|<x ≡' T*. Hence T(x,y). QED 
 
DEFINITION 5.7.17. Let T be a binary relation. We write T-1 
for the binary relation given by T-1(x,y) ↔ T(y,x). By 
Lemma 5.7.5, T-1 exists. Obviously T-1 is unique up to ≡’. 
 
LEMMA 5.7.12. Let R,S be pre well orderings, and T be an 
isomorphism from R onto S. Then T-1 is an isomorphism from S 
onto R. 
 
Proof: Let R,S,T be as given. Obviously dom(T-1) ≡ dom(S) 
and rng(T-1) ≡ dom(R). Let T-1(x,y), T-1(z,w). Then T(y,x), 
T(w,z). Hence y ≤R w ↔ x ≤S z.  
 
Finally, let T-1(x,y), x =R u, y =S v. Then T(y,x), T(v,u), 
T-1(u,v). QED 
 
DEFINITION 5.7.18. Let R be a pre well ordering. We can 
append a new point ∞ on top and form the extended pre well 
ordering R+. The canonical way to do this is to use R itself 
as the new point. This defines R+ uniquely up to ≡'.  
 
Clearly R+|<∞ ≡' R. 
 
LEMMA 5.7.13. Let R,S be pre well orderings. Exactly one of 
the following holds. 
1. R,S are isomorphic. 
2. R is isomorphic to some S|<y, y ∈ dom(S). 
3. Some R|<x, x ∈ dom(R), is isomorphic to S. 
In case 2, the y is unique up to =S. In case 3, the x is 
unique up to =R. In all three cases, the isomorphism is 
unique up to ≡’. 
 
Proof: We first prove the uniqueness claims. For case 1, 
let T,T* be isomorphisms from R onto S. Then T,T* are 
isomorphisms from R onto S+|<∞. By Lemma 5.7.9, T ≡’ T*.  
 
For case 2, Let T be an isomorphism from R onto S|<y, and 
T* be an isomorphism from R onto S|<y*. Apply Lemma 5.7.9.  
 
For case 3, Let T be an isomorphism from R|<x onto S, and 
T* be an isomorphism from R|<x* onto S. By Lemma 5.7.12, T-1 
is an isomorphism from S onto R|<x, and T*-1 is an 
isomorphism from S onto R|<x*. Apply Lemma 5.7.9.  
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For uniqueness, it remains to show that at most one case 
applies. Suppose cases 1,2 apply. Let T be an isomorphism 
from R onto S, and T* be an isomorphism from R onto S|<y. 
Then T is an isomorphism from R onto S+|<∞, and T* is an 
isomorphism from R onto S+|<y. By Lemma 5.7.9, y is ∞, which 
is a contradiction.  
 
Suppose cases 1,3 hold. Let T be an isomorphism from R onto 
S, and T* be an isomorphism from R|<x onto S. Then T-1 is an 
isomorphism from S onto R+|<∞, and T*-1 is an isomorphism 
from S onto R+|<x. By Lemma 5.7.9, x is ∞, which is a 
contradiction.  
 
Suppose cases 2,3 hold. Let T be an isomorphism from R onto 
S|<y and T* be an isomorphism from R|<x onto S. By Lemma 
5.7.10, T|<x is an isomorphism from R|<x onto S|<z, where 
T(x,z). Hence T|<x is an isomorphism from R|<x onto S+|<z. 
Also T* is an isomorphism from R|<x onto S+|<∞. Hence by 
Lemma 5.7.9, z is ∞. This is a contradiction.   
 
We now show that at least one of 1-3 holds. Consider all 
isomorphisms from some R+|<x onto some S+|<y, x ∈ dom(R+), y 
∈ dom(S+). We call these the local isomorphisms. 
 
We claim the following, concerning these local 
isomorphisms. Let T be an isomorphism from R+|<x onto S+|<y, 
and T* be an isomorphism from R+|<x* onto S+|<y*. If x =R+ x* 
then y =S+ y* and T ≡' T*. If x <R+ x* then y <S+ y* and T ≡' 
T*|<x. If x* <R+ x then y* <S+ y and T* ≡' T|<x*. 
 
To see this, let T,T*,x,y be as given.  
 
case 1. x =R+ x*. Apply Lemma 5.7.9.  
 
case 2. x* <R+ x. Suppose y ≤S+ y*. Let T(x*,z), z <S+ y. By 
Lemma 5.7.10, T|<x* is an isomorphism from R+|<x* onto 
S+|<z. By Lemma 5.7.9, T* ≡' T|<x* and z =S+ y*. This is a 
contradiction. Hence y* <S+ y. By Lemma 5.7.10, T|<x* is an 
isomorphism from R+|<x* onto S+|<w, where T(x*,w), w <S+ y. 
By Lemma 5.7.9, T* ≡' T|<x*.  
 
case 3. x <R+ x*. Symmetric to case 2.  
 
By Lemma 5.7.5, we can form the union T of all of the local 
isomorphisms, since the underlying arguments are all in 
dom(R+) or dom(S+), both of which are bounded.  
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By the pairwise compatibility of the local isomorphisms, T 
obeys conditions iii),iv) in the definition of isomorphism. 
It is also clear that the domain of T is closed downward in 
R+, and the range of T is closed downward in S+. Hence 
dom(T) ≈ {u: u <R+ x}, rng(T) ≈ {v: v <S+ y}, for some x ∈ 
dom(R+), y ∈ dom(S+). Hence T is an isomorphism from R+|<x 
onto S+|<y.  
 
We now argue by cases.   
 
case 1. x,y are ∞. Then T is an isomorphism from R onto S. 
 
case 2. x is ∞, y ∈ dom(S). Then T is an isomorphism from R 
onto S|<y*, y^ defined below.  
 
case 3. x ∈ dom(R), y is ∞. Then T is an isomorphism from 
R|<x* onto S,  x^ defined below.  
 
case 4. x ∈ dom(R), y ∈ dom(S). Then T is an isomorphism 
from R|<x onto S|<y. Using Lemma 5.7.5, let T* be defined 
by  
 

T*(u,v) ↔  
T(u,v) ∨ (u =R x ∧ v =S y). 

 
Then T* is an isomorphism from R|<x^ onto S|<y^, where 
x^,y^ are respective immediate successors of x,y in R+,S+. 
This contradicts the definition of T. QED 
 
LEMMA 5.7.14. Let R,S,S* be pre well orderings. Let T be an 
isomorphism from R onto S, and T* be an isomorphism from S 
onto S*. Define T**(x,y) ↔ (∃z)(T(x,z) ∧ T*(z,y)), by Lemma 
5.7.5. Then T** is an isomorphism from R onto S*.  
 
Proof: Let R,S,S*,T,T*,T** be as given. Note that T** is 
defined up to ≡’. Obviously dom(T**) ≡ dom(R), rng(T**) ≡ 
dom(S*).  
 
Suppose T**(x,y), T**(x*,y*). Let T(x,z), T*(z,y), T(x*,w), 
T*(w,y*). Then x ≤R x* ↔ z ≤S w, z ≤R w ↔ y ≤S y*. Therefore 
x ≤R x* ↔ y ≤S y*.  
 
Suppose T**(x,y), x =R u, y =S’ v. Let T(x,z), T*(z,y). Then 
T(u,z), T*(z,v). Hence T**(u,v). QED 
 
We introduce the following notation in light of Lemma 
5.7.13.  
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DEFINITION 5.7.19. Let R,S be pre well orderings. We define 
 

R =** S ↔  
R,S are pre well orderings and R,S are isomorphic. 

 
R <** S ↔  

R,S are pre well orderings and there exists y ∈ fld(S) such 
that R and S|<y are isomorphic. 

 
R ≤** S ↔  

R <** S ∨ R =** S. 
 
LEMMA 5.7.15. In <**, the y is unique up to =S. <** is 
irreflexive and transitive on pre well orderings. =** is an 
equivalence relation on pre well orderings. ≤** is reflexive 
and transitive and connected on pre well orderings. Let 
R,S,S* be pre well orderings. (R ≤** S ∧ S <** S*) → R <** 
S*. (R <** S ∧ S ≤** S*) → R <** S*. R <** S ∨ S <** R ∨ R 
=** S, with exclusive ∨. R ≤** S ∨ S ≤** R. (R ≤** S ∧ S ≤** 
R) → R =** S. 
 
Proof: We apply Lemmas 5.7.13 and 5.7.14. For the first 
claim, if R <** S then we are in case 2 of Lemma 5.7.13, 
and the y is unique up to =S.  
 
For the second claim, <** is irreflexive since R <** R 
implies that cases 1,2 both hold in Lemma 5.7.13 for R,R. 
Also, suppose R <** S, S <** S*. Let T be an isomorphism 
from R onto S|<y, and T* be an isomorphism from S onto 
S*|<z. By Lemma 5.7.10, Let T** be an isomorphism from S|<y 
onto S*|<w. By Lemma 5.7.14, there is an isomorphism from R 
onto S*|<w. Hence R <** S*.  
 
For the third claim, note that R =** R because there is an 
isomorphism from R onto R by defining T(x,y) ↔ x =R y. Now 
suppose R =** S, and let T be an isomorphism from R onto S. 
By Lemma 5.7.12, T-1 is an isomorphism from S onto R. Hence 
S =** R. Finally, suppose R =** S, S =** S*, and let T be 
an isomorphism from R onto S, T* be an isomorphism from S 
onto S*. By Lemma 5.7.14, R =** S*.  
 
For the fourth claim, since R =** R, we have R ≤** R. For 
transitivity, let R ≤** S, S ≤** S*. If R <** S, S <** S*, 
then by the second claim, R <** S*, and so R ≤** S*. If R 
=** S, S =** S*, then by Lemma 5.7.14, R =** S*, and so R 
≤** S*. The remaining two cases for transitivity follow from 
the fifth and sixth claims. Connectivity of ≤** is by Lemma 
5.7.13.  
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For the fifth claim, let R ≤** S and S <** S*. By the second 
claim, we have only to consider the case R =** S. Let S be 
isomorphic to S*|<y. Since R is isomorphic to S, by the 
third claim, R is isomorphic to S*|<y. Hence R <** S*. 
 
For the sixth claim, let R <** S and S ≤** S*. By the second 
claim, we have only to consider the case S =** S*. Let R be 
isomorphic to S|<y. By Lemma 5.7.10, S|<y is isomorphic to 
S*|<z, for some z ∈ dom(S*). By the third claim, R is 
isomorphic to S*|<z. Hence R <** S*.   
 
The seventh and eighth claims are immediate from Lemmas 
5.7.12 and 5.7.13.  
 
For the ninth claim, let R ≤** S and S ≤** R. Assume R <** 
S. By the sixth claim R <** R, which is a contradiction. 
Assume S <** R. By the sixth claim, S <** S, which is also 
a contradiction. By the eighth claim, R ≤** S ∨ S ≤** R. 
Under either disjunct, R =** S. QED 
 
LEMMA 5.7.16. Every nonempty set of pre well orderings has 
a ≤** least element. 
 
Proof: Let A be a nonempty set of pre well orderings, and 
fix S ∈ A. We can assume that there exists R ∈ A such that 
R <** S, for otherwise, S is a ≤** minimal element of A.  
 
By Lemma 5.7.5, define  
 

B ≈ {y ∈ dom(S): (∃R ∈ A)(T =** S|<y)}. 
 
Let y be an S least element of B. Let R ∈ A be isomorphic 
to S|<y.  
 
We claim that R is a ≤** least element of A. To see this, by 
trichotomy, let R* <** R, R* ∈ A. Then R* <** S|<y, since R 
is isomorphic to S|<y.  
 
Let R* be isomorphic to (S|<y)|<z, z <S y. Then R* is 
isomorphic to S|<z, z <S y. This contradicts the choice of 
y. QED 
 
DEFINITION 5.7.20. For x,y ∈ D, we define x <# y if and 
only  
 

there exists a pre well ordering S ≤ y such that  
for every pre well ordering R ≤ x, R <** S. 
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We caution the reader that the ≤ in the above definition is 
not to be confused with ≤**. It is from the < of D in the 
structure M#. In particular, x,y generally will not be pre 
well orderings. Thus here we are treating R,S as points. 
 
DEFINITION 5.7.21. We define x ≤# y if and only if  
 

for all pre well orderings R ≤ x there exists a  
pre well ordering S ≤ y such that R ≤** S. 

 
LEMMA 5.7.17. <# is an irreflexive and transitive relation 
on D. ≤# is a reflexive and transitive relation on D. Let 
x,y ∈ D. x ≤# y ∨ y <# x. x <# y → x ≤# y. (x ≤# y ∧ y <# 
z) → x <# z. (x <# y ∧ y ≤# z) → x <# z. x ≤ y → x ≤# y. x 
<# y → x < y. x ≤# y ↔ ¬y <# x. x <# y ↔ ¬y ≤# x. 
 
Proof: For the first claim, <# is irreflexive since <** is 
irreflexive. Suppose x <# y and y <# z. Let S ≤ y be a pre 
well ordering such that for all pre well orderings R ≤ x, R 
<** S. Let S* ≤ z be a pre well ordering such that for all 
pre well orderings R ≤ y, R <** S*. Then S <** S*. Hence for 
all pre well orderings R ≤ x, R <** S <** S*. Hence for all 
pre well orderings R ≤ x, R <** S*, by the transitivity of 
<**. Since S* ≤ z, we have x ≤# z.  
 
For the second claim, x ≤# x since ≤** on pre well orderings 
is reflexive. Suppose x ≤# y and y ≤# z. Let R ≤ x. Let S ≤ 
y, R ≤** S. Let S* ≤ z, S ≤** S*. By the transitivity of 
≤**, R ≤** S*.  
 
For the third claim, let ¬(x ≤# y). Let R ≤ x be a pre well 
ordering such that for all pre well orderings S ≤ y, we have 
¬R ≤** S. We claim that y <# x. To see this, let S ≤ y be a 
pre well ordering. Then ¬R ≤** S. By Lemma 5.7.15, S <** R. 
 
For the fourth claim, let x <# y. Let S ≤ y be a pre well 
ordering such that for all pre well orderings R ≤ x, R <** 
S. Let R ≤ x be a pre well ordering. Then R ≤** S. Hence x 
≤# y. 
 
For the fifth claim, let x ≤# y and y <# z. Let S ≤ z be a 
pre well ordering such that for all pre well orderings R ≤ 
y, R <** S. Let R ≤ x be a pre well ordering. Let S* ≤ y be 
a pre well ordering such that R ≤** S*. Then S* <** S. By 
Lemma 5.7.15, R <** S. We have verified that x <# z.  
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For the sixth claim, let x <# y and y ≤# z. Let S ≤ y be a 
pre well ordering such that for all pre well orderings R ≤ 
x, R <** S. Let S* ≤ z be a pre well ordering such that S 
≤** S*. By Lemma 5.7.15, for all pre well orderings R ≤ x, R 
<** S*. Hence x <# z. 
 
The seventh claim is obvious.  
 
For the eight claim, let x <# y. Let S ≤ y be a pre well 
ordering, where for all pre well orderings R ≤ x, we have R 
<** S. If y ≤ x then S ≤ x, and so S <** S. This is a 
contradiction. Hence x < y.  
 
For the ninth claim, the converse is the first claim. 
Suppose x ≤# y ∧ y <# x. By the third claim, x <# x, which 
is impossible.  
 
For the tenth claim, the converse is the first claim. 
Suppose x <# y ∧ y ≤# x. By the third claim, y <# y, which 
is impossible.  QED 
 
We now define x =# y if and only if x ≤# y ∧ y ≤# x.  
 
LEMMA 5.7.18. =# is an equivalence relation on D. Let x,y ∈ 
D. x ≤# y ↔ (x <# y ∨ x =# y). x <# y ∨ y <# x ∨ x =# y, 
with exclusive ∨. 
 
Proof: For the first claim, reflexivity and symmetry are 
obvious, by Lemma 5.7.17. Let x =# y and y =# z. Then x ≤# y 
and y ≤# z. Hence x ≤# z. Also z ≤# y and y ≤# x. Hence z ≤# 
x. Therefore x =# z. 
 
For the second claim, let x,y ∈ D. By Lemma 5.7.17, x ≤# y 
∨ y <# x. By the first claim, x <#y ∨ y <# x or x =# y.  
 
To see that the ∨ is exclusive, suppose x <# y, y <# x. By 
Lemma 5.7.17, x <# x, which is a contradiction. Suppose x 
<# y, x =# y. By Lemma 5.7.17, x <# x, which is a 
contradiction. Suppose y <# x, x =# y. By Lemma 5.7.17, y 
<# y, which is a contradiction. QED 
 
DEFINITION 5.7.22. We say that S is x-critical if and only 
if  
 
i) S is a pre well ordering; 
ii) for all pre well orderings R ≤ x, R <** S; 
iii) for all y ∈ dom(S), S|<y is ≤** some pre well ordering 
R ≤ x.  
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LEMMA 5.7.19. Assume (∀y ∈ x)(y is a pre well ordering). 
Then there exists a pre well ordering S such that (∀R ∈ 
x)(R ≤** S) ∧ (∀u ∈ dom(S))(∃R ∈ x)(S|<u <** R). 
 
Proof: Let x be as given. Let x < dr, r ≥ 1. By Lemma 5.7.20 
iv), define  
 

E ≈ {y ≤ dr+1:  
(∃R,z)(R ∈ x ∧ y is an R|<z)}. 

 
By Lemma 5.7.5, we define  
 

S(u,v) ↔ 
u,v ∈ E ∧ u ≤** v. 

 
Then S is uniquely defined up to ≡’. By Lemmas 5.7.15, 
5.7.16, S is a pre well ordering.  
 
Let R ∈ x and z ∈ dom(R). By Lemma 5.6.18 iv),  
 

(∃y)(y is an R|<z). 
 
By Lemma 5.6.18 iii), let p ≥ r+1 be such that  
 

(∃y < dp)(y is an R|<z). 
 
By Lemma 5.7.20 v),  
 

(∃y < dr+1)(y is an R|<z). 
 
Hence every R|<z, R ∈ x, is isomorphic to an element of E. 
 
We claim that we can define an isomorphism TR from any given 
R ∈ x, onto S or a proper initial segment of S, as follows. 
TR relates each z ∈ dom(R) to the elements of E that are 
isomorphic to R|<z. Note that each z ∈ dom(R) gets related 
by TR to something; i.e., all of the R|<z lying in E.  
 
To verify the claim, we first show that rng(TR) is closed 
downward under ≤** in E. Fix TR(z,w). Let w* be an S least 
element of E, w* <** w, which is not in rng(TR). Then TR 
must act as an isomorphism from some proper initial segment 
J of R|<z onto S|<w*. We can assume J ∈ E (by taking an 
isomorphic copy). Hence TR(J,w*), contradicting that w* ∉ 
rng(TR).  
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Since rng(TR) is closed downward under ≤** in E, we see that 
rng(TR) ≡ E, or rng(TR) ≡ S|<v, for some v ∈ E. From the 
definition of TR, TR is an isomorphism from R onto S or a 
proper initial segment of S. Hence R ≤** S.  
 
Now let u ∈ dom(S). Then u is some R|<z, R ∈ x. Therefore u 
<** R, for some R ∈ x. QED   
 
LEMMA 5.7.20. Assume (∀y ∈ x)(y is a pre well ordering). 
Then there exists a pre well ordering S such that (∀R ∈ 
x)(R <** S) ∧ (∀R <** S)(∃y ∈ x)(R ≤** y). 
 
Proof: Let x be as given.  
 
case 1. x has a ≤** greatest element R. Set S ≡ R+. 
 
case 2. Otherwise. Set S to be as provided by Lemma 5.7.19 
applied to x.  
 
QED  
 
LEMMA 5.7.21. For all x, there exists an x-critical S. If S 
is x-critical then x < S. 
 
Proof: Let x be given. By Lemma 5.6.18 iv), define  
 

x* ≈ {R: R ≤ x ∧ R is a pre well ordering}. 
 
Let S be as provided by Lemma 5.7.20. Then S is x-critical.  
 
Now let S be x-critical. If S ≤ x then S <* S, which is 
impossible by ii) in the definition of x-critical. QED   
 
LEMMA 5.7.22. For all x, all x-critical S are isomorphic. 
For all x,y, x <# y if and only if (∃R,S)(R is x-critical ∧ 
S is y-critical ∧ R <** S). 
 
Proof: Let R,S be x-critical. Suppose R <** S, and let R 
=** S|<y. By clause iii) in the definition of x-critical, 
let S|<y ≤** R* ≤ x, R* a pre well ordering. By clause ii) 
in the definition of R is x-critical, R* <** R. Hence R ≤** 
R* <** R. This is a contradiction. Hence ¬(R <** S). By 
symmetry, we also obtain ¬(S <** R). Hence R,S are 
isomorphic.  
 
For the second claim, let x,y ∈ D. First assume x <# y. Let 
R be x-critical and S be y-critical. Let S* ≤ y be a pre 
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well ordering such that for all pre well orderings R* ≤ x, 
we have R* <** S*.  
 
We claim that R ≤** S*. To see this, suppose S* <** R, and 
let S* be isomorphic to R|<z. Since R is x-critical, let 
R|<z ≤** R* ≤ x, where R* is a pre well ordering. Then S* 
≤** R*. Since R* ≤ x, we have R* <** S*, which is a 
contradiction. Thus R ≤** S*.  
 
Note that S* <** S since S* ≤ y and S is y-critical. Hence R 
<** S.  
 
For the converse, assume R is x-critical, S is y-critical, 
and R <** S. Let R be isomorphic to S|<z. Since S is y-
critical, let S|<z ≤** R* ≤ y, where R* is a pre well 
ordering. Then R ≤** R* ≤ y.  
 
We claim that for all pre well orderings S* ≤ x, S* <** R*. 
To see this, let S* ≤ x be a pre well ordering. Since R is 
x-critical, S* <** R ≤** R* ≤ y.  
 
We have shown that x <# y using R* ≤ y, as required. QED   
 
LEMMA 5.7.23. Let n ≥ 1. For all x ≤ dn there exists x-
critical S < dn+1. dn <# dn+1.  
 
Proof: Let n ≥ 1 and x ≤ dn. By Lemmas 5.7.21 and 5.6.18 
ii), there exists m > n such that the following holds. 
 

(∃S < dm)(S is x-critical). 
 
By Lemma 5.6.18 v),  
 

(∃S < dn+1)(S is x-critical). 
 
For the second claim, by the first claim let R < dn+1, where 
R is dn-critical. Let S be dn+1-critical. Then R <** S. By 
Lemma 5.7.22, dn <# dn+1. QED 
 
LEMMA 5.7.24. If y ∈ x then x has a <# least element. Every 
first order property with parameters that holds of some x, 
holds of a <# least x. 0 is a <# least element.  
 
Proof: Let y ∈ x. By Lemma 5.6.18 ii), let n ≥ 1 be such 
that x ≤ dn. By Lemma 5.7.23, for each y ∈ x there exists a 
y-critical S < dn+1. By Lemma 5.6.18 iv), we can define  
 

B ≈ {S < dn+1 : (∃y ∈ x)(S is y-critical)} 
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uniquely up to ≡.  
 
By Lemma 5.7.16, let S be a <** least element of B. Let S 
be y-critical, y ∈ x. We claim that y is a <# minimal 
element of x. Suppose z <# y, z ∈ x. By Lemma 5.7.23, let R 
be z-critical, R ∈ B. By the choice of S, S ≤** R. By Lemma 
5.7.22, let R*,S* be such that R* is z-critical, S* is y-
critical, and R* <** S*. By the first claim of Lemma 
5.7.22, R <** S. This is a contradiction. 
 
For the second claim, let ϕ(y). By Lemma 5.6.18 ii), let y 
< dn. By Lemma 5.6.18 iv), let x ≈ {y < dn+1: ϕ(y)}. By the 
first claim, let y be a <# minimal element of x. Suppose 
ϕ(z), z <# y. Since z ∉ x, we have z ≥ dn+1. Since z <# y, 
we have z < y (Lemma 5.7.17). This contradicts y < dn+1 ∧ z ≥ 
dn+1.  
 
The third claim follows immediately from the last claim of 
Lemma 5.7.17. QED  
 
LEMMA 5.7.25. If x ≤ y then x ≤# y. If x ≤ y ≤ z and x =# z, 
then x =# y =# z.  
 
Proof: The first claim is trivial. 
 
For the second claim, let x ≤ y ≤ z, x =# z. Using the first 
claim and Lemmas 5.7.17, 5.7.18, x ≤# y ≤# z ≤# x. Hence x 
=# y =# z. QED 
 
From Lemma 5.7.25, we obtain a picture of what <# looks 
like.  
 
LEMMA 5.7.26. =# is an equivalence relation on D whose 
equivalence classes are nonempty intervals in D (not 
necessarily with endpoints). These are called the intervals 
of =#. x <# y if and only if the interval of =# in which x 
lies is entirely below the interval of =# in which y lies. 
There is no highest interval for =#. The d’s lie in 
different intervals of =#, each entirely higher than the 
previous. 
 
Proof: For the first claim, =# is an equivalence relation 
by Lemma 5.7.18. Suppose x < y, x =# y. By Lemma 5.7.25, 
any x < z < y has x =# z =# y. So the equivalence classes 
under =# are intervals in <.  
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For the second claim, let x <# y. Let z lie in the same 
interval of =# as x. Let w lie in the same interval of =# 
as y. Then x =* z, y =* w. By Lemma 5.7.18, z <# w. By 
Lemma 5.7.17, z < w.  
 
Conversely, assume the interval of =# in which x lies is 
entirely below the interval of =# in which y lies. Then ¬(x 
=# y). By Lemma 5.7.18, x <# y ∨ y <# x. The later implies 
y < x, which is impossible. Hence x <# y.  
 
For the final claim, by Lemma 5.7.23, each dn <# dn+1. By the 
second claim, the intervals of =# in which dn lies is 
entirely below the interval of =# in which dn+1 lies. QED 
 
Recall the component NAT in the structure M#. 
 
LEMMA 5.7.27. There is a binary relation RNAT (recursively 
defined natural numbers) such that  
i) dom(RNAT) ≈ {x: NAT(x)}; 
ii) (∀y)(RNAT(0,y) ↔ y is a <# least element); 
iii) (∀x)(NAT(x) → (∀w)(RNAT(x+1,w) ↔ (∃z)(RNAT(x,z) ∧ w 
is an immediate successor of z in <#))); 
iv) RNAT < d2. 
Any two RNAT’s (even without iv)) are ≡’. If NAT(x) then {y: 
RNAT(x,y)} forms an equivalence class under =#.  
 
Proof: We will use the following facts. The set of all <# 
minimal elements exists and is nonempty. For all y, the set 
of all immediate successors of y in <# exists and is 
nonempty. These follow from Lemmas 5.7.24, 5.7.26, and 
5.6.18 iv).  
 
DEFINITION 5.7.23. We say that a binary relation R is x-
special if and only if  
 
i) NAT(x); 
ii) dom(R) ≈ {y: y ≤ x}; 
iii) (∀y)(R(0,y) ↔ y is a <# minimal element); 
iv) (∀y ≤ x)(∀w)(R(y+1,w) ↔ (∃z)(R(y,z) ∧ w is an immediate 
successor of z in <#)). 
 
We claim that for all x with NAT(x), there exists an x-
special R. This is proved by induction, which is supported 
by Lemma 5.6.18 iv), vi), vii), and Lemma 5.7.5. The basis 
case x = 0 is immediate. 
 
For the induction case, let R be x-special. By Lemma 5.7.5, 
define  
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S(y,w) ↔ R(y,w) ∨ (y = x+1 ∧ 

(∃z)(R(x,z) ∧ w is an immediate successor of z in <#)). 
 
uniquely up to ≡'. We claim that S is x+1-special. It is 
clear that dom(S) ≈ {y: y ≤ x+1} since dom(R) ≈ {y: y ≤ x} 
and we can find immediate successors in <#. Also the 
conditions  
 

(∀y)(S(0,y) ↔ y is a <# minimal element). 
(∀y ≤ x)(∀w)(S(y+1,w) ↔  

(∃z)(R(y,z) ∧ w is an immediate successor of z in <#)). 
 
are inherited from R. To see that  
 

(∀w)(S(x+1,w) ↔ 
(∃z)(S(x,z) ∧ w is an immediate successor of z in <#)) 

 
we need to know that {z: R(x,z)} forms an equivalence class 
under =#. This is proved by induction on x from 0 through 
x.  
 
We have thus shown that there exists an x-special R for all 
x with NAT(x). Another induction on NAT shows that  
 

1) NAT(x) ∧ NAT(y) ∧ x ≤ y ∧ R is x-special ∧ 
S is y-special ∧ z ≤ x → 

R(z,w) ↔ S(z,w). 
 

We also claim that  
 

NAT(x) → 
there exists an x-special R < d2. 

 
To see this, let NAT(x). By Lemma 5.6.18 iii), let n > 1 be 
so large that  
 

(∃y < dn)(y is x-special). 
 
By Lemma 5.6.18 vi), x < d1. Hence by Lemma 5.6.18 v),  
 

(∃y < d2)(y is x-special). 
 
Because of this d2 bound, we an apply Lemma 5.7.5 to form a 
union RNAT of the x-special relations with NAT(x), uniquely 
up to ≡'. Claims i)-iii) are easily verified using 1). Thus 
we have  
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(∃R)(R is an RNAT ∧ R obeys clauses i)-iii)). 
 
Hence by Lemma 5.6.18 v),  
 

(∃R < d2)(R is an RNAT ∧ R obeys clauses i)-iii)). 
(∃R)(R obeys clauses i)-iv)). 

 
The remaining claims can be proved from properties i)-iii) 
by induction. QED 
 
DEFINITION 5.7.24. We fix the RNAT of Lemma 5.7.27, which 
is unique up to ≡’. 
 
The limit point provided by the next Lemma will be used to 
interpret ω. 
 
LEMMA 5.7.28. There is a <# least limit point of <#. I.e., 
there exists x such that  
i) (∃y)(y <# x); 
ii) (∀y <# x)(∃z <# x)(y <# z); 
iii) for all x* with properties i),ii), x ≤# x*. 
All <# least limit points of <# are =#, and < d2.  
 
Proof: We say that z is an ω if and only if z is a <# least 
limit point of <#; i.e., z obeys i)-iii).  
 
By an obvious induction, if NAT(x) then {z: (∃y ≤ 
x)(RNAT(y,z))} forms an initial segment of <#. Therefore 
rng(RNAT) forms an initial segment of <#. Since RNAT < d2, 
rng(RNAT) ⊆ [0,d2)). According to Lemma 5.7.24, let z be <# 
least such that (∀x ∈ rng(RNAT))(x <# z).  
 
It is clear that z obeys claims i),ii). Suppose x* has 
properties i),ii). By an obvious induction, we see that (∀y 
∈ rng(RNAT))(y <# x*). Hence z ≤# x*. Thus we have verified 
claim iii) for z. I.e., z is an ω. 
 
Suppose z,z* are ω's. By iii), z ≤# z*, z* ≤# z. Hence z =# 
z*.  
 
By Lemma 5.6.18 iii), let n > 1 be such that   
 

“there exists an ω < dn”. 
 
Hence By Lemma 5.6.18 v),  
 

“there exists an ω < d2”. 
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Finally, we establish that every ω is < d2. Suppose  
 

"there exists an ω > d2". 
 
By Lemma 5.6.18 v),  
 

"there exists an ω > d3". 
 
Hence the ω's form an interval, with an element < d2 and an 
element > d3. Hence d2 =# d3. This contradicts Lemma 5.7.26. 
QED 
 
We are now prepared to define the system M^. 
 
DEFINITION 5.7.25. M^ = (C,<,0,1,+,-
,•,↑,log,ω,c1,c2,...,Y1,Y2,...), where the following 
components are defined below. 
 
i) (C,<) is a linear ordering; 
ii) c1,c2,... are elements of C; 
iii) for k ≥ 1, Yk is a set of k-ary relations on C; 
iv) 0,1,ω are elements of C; 
v) +,-,• are binary functions from C into C; 
vi) ↑,log are unary functions from C into C. 
 
DEFINITION 5.7.26. For x ∈ D, we write [x] for the 
equivalence class of x under =#. Recall from Lemma 5.7.26 
that each [x] is a nonempty interval in (D,<).  
 
DEFINITION 5.7.27. We define C = {[x]; x ∈ D}. We define 
[x] < [y] ↔ x <# y. For all n ≥ 1, we define cn = [dn+1].  
 
DEFINITION 5.7.28. Let k ≥ 1. We define Yk to be the set of 
all k-ary relations R on C, where there exists a k-ary 
relation S on D, internal to M#, (i.e., given by a point in 
D), such that for all x1,...,xk ∈ C, 
 

R(x1,...,xk) ↔ 
(∃y1,...,yk ∈ D)(y1 ∈ x1 ∧ ... ∧ yk ∈ xk ∧ S(y1,...,yk)). 

 
Since k-ary relations S on D are required to be bounded in 
D, by Lemma 5.7.26 every R ∈ Yk is bounded in C. 
 
DEFINITION 5.7.29. By Lemma 5.7.28, we define the ω of M^ 
to be [z], where z is an ω of M#, as defined in the first 
line of the proof of Lemma 5.7.28.   
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DEFINITION 5.7.30. Define the following function f 
externally. For each x ∈ D such that NAT(x), let f(x) = {y: 
RNAT(x,y)}. Note that by Lemma 5.7.27, f(x) ∈ C. Note that 
the relation y ∈ f(x) is internal to M#. Also by Lemma 
5.7.28 and an internal induction argument, f is one-one.  
 
DEFINITION 5.7.31. We define 0 to be f(0) = [0], and 1 to 
be f(1). 
 
DEFINITION 5.7.32. For x,y such that NAT(x),NAT(y), we 
define  
 

f(x)+f(y) = f(x+y). 
f(x)-f(y) = f(x-y). 
f(x)•f(y) = f(x•y). 

f(x)↑ = f(x↑). 
log(f(x)) = f(log(x)). 

 
Here the operations on the left side are in M^, and the 
operations on the right side are in M#. Note that the above 
definitions of +,-,•,log on rng(f) are internal to M#. 
 
DEFINITION 5.7.33. Let u,v ∈ C, where ¬(u,v ∈ rng(f)). We 
define  
 

u+v = u-v = u•v = u↑ = log(u) = [0]. 
 
We now define the language L^ suitable for M^, without the 
c’s.  
 
DEFINITION 5.7.34. L^ is based on the following primitives.  
 
i) The binary relation symbol <; 
ii) The constant symbols 0,1,ω; 
iii) The unary function symbols ↑,log; 
iv) The binary function symbols +,-,•; 
v) The first order variables vn, n ≥ 1; 
vi) The second order variables Bnm, n,m ≥ 1; 
 
In addition, we use ∀,∃,¬,∧,∨,→,↔,=. Commas and 
parentheses are also used. “B” indicates “bounded set”. 
 
DEFINITION 5.7.35. The first order terms of L^ are 
inductively defined as follows. 
 
i) The first order variables vn, n ≥ 1 are first order terms 
of L^; 
ii) The constant symbols 0,1,ω are first order terms of L^; 
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iii) If s,t are first order terms of L^ then s+t, s-t, s•t, 
t↑, log(t) are first order terms of L^.  
 
DEFINITION 5.7.36. The atomic formulas of L^ are of the 
form  
 

s = t 
s < t 

Bnm(t1,...,tn) 
 

where s,t,t1,...,tn are first order terms and n ≥ 1. The 
formulas of L^ are built up from the atomic formulas of L^ 
in the usual way using the connectives and quantifiers.  
 
Note that there is no epsilon relation in L^.  
 
The first order quantifiers range over C. The second order 
quantifiers Bnk range over Yn. 
 
LEMMA 5.7.29. Let k ≥ 1 and R ⊆ Ck be M^ definable (with 
first and second order parameters allowed). Then 
{(x1,...,xk): R([x1],...,[xk])} is M# definable (with 
parameters allowed). If R is M^ definable without 
parameters, then {(x1,...,xk): R([x1],...,[xk])} is M# 
definable without parameters. 
 
Proof: The construction of M^ takes place in M#, where 
equality in M^ is given by the equivalence relation =# in 
M#. Note that =# is defined in M# without parameters. The 
<,0,1,ω of M^ are also defined without parameters.  
 
Let k ≥ 1. The relations in Yk are each coded by arbitrary 
internal k ary relations R in M#, where the application 
relation “the relation coded by R holds at points x1,...,xk” 
is defined in M# without parameters.  
 
Using these considerations, it is straightforward to 
convert M^ definitions to M# definitions. QED  
 
LEMMA 5.7.30. There exists a structure M^ = (C,<,0,1,+,-
,•,↑,log,ω,c1,c2,...,Y1,Y2,...) such that the following 
holds. 
i) (C,<) is a linear ordering;  
ii) ω is the least limit point of (C,<);  
iii) ({x: x < ω},<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
iv) For all x,y ∈ C, ¬(x < ω ∧ y < ω) → x+y = x•y = x-y = 
x↑ = log(x) = 0; 
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v) The cn, n ≥ 1, form a strictly increasing sequence of 
elements of C, all > ω, with no upper bound in C; 
vi) For all k ≥ 1, Yk is a set of k-ary relations on C whose 
field is bounded above; 
vii) Let k ≥ 1, and ϕ be a formula of L^ in which the k-ary 
second order variable Bkn is not free, and the variables Bmr 
range over Yr. Then (∃Bkn ∈ Yk)(∀x1,...,xk)(Bkn(x1,...,xk) ↔ 
(x1,...,xk ≤ y ∧ ϕ));  
viii) Every nonempty M^ definable subset of C has a < least 
element; 
ix) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L^. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and the same min. Let y1,...,yr ∈ C, y1,...,yr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr) ↔ 
ϕ(ci_r+1,...,ci_2r,y1,...,yr). 
 
Proof: We show that the M^ we have constructed obeys these 
properties. Claim i) is by construction, since <# is 
irreflexive, transitive, and has trichotomy. Claim ii) is 
by the definition of ω (see Definition 5.7.29). 
 
For claim iii), note that the f used in the construction of 
M^ defines an isomorphism from the ({x: NAT(x)},0,1,+,-
,•,↑,log) of M# onto the ({x: x < ω},<,0,1,+,-,•,↑,log) of 
M^. Now apply Lemma 5.6.18 viii).  
 
Claim iv) is by construction.  
 
For claim v), for all n ≥ 1, cn = [dn+1]. By Lemma 5.7.26, 
the cn's are strictly increasing. Let [x] ∈ C. By Lemma 
5.6.18 iii), let x < dm+1, in M#. By Lemma 5.7.17, ¬(dm+1 <# 
x). Therefore x ≤# dm+1. Hence [x] ≤ [dm+1] = cm. Hence the 
cn's have no upper bound in C. By Lemma 5.7.27, any ω of M# 
is <# d2 in M#. Hence ω < c1 in M^. 
 
Claim vi) is by construction. This uses that there is no <# 
greatest point in M# (Lemma 5.7.26). 
 
For claim vii), it suffices to show that every M^ definable 
relation R on C whose field is bounded above (≤ on C) lies 
in Yk. By Lemma 5.7.29, the k-ary relation S on D given by  
 

S(y1,...,yk) ↔ R([y1],...,[yk]) 
 
is M# definable. Since the field of R is bounded above (≤ on 
C), the field of S is bounded above (< on D). This uses 
that < on C has no greatest element (Lemma 5.7.26). Hence 
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we can take S to be internal to M#; i.e., given by a point 
in D. Therefore R ∈ Yk. 
 
For claim viii), let R be a nonempty M^ definable subset of 
C. By Lemma 5.7.29, S ≈ {y: [y] ∈ R} is nonempty and M# 
definable. By Lemma 5.7.24, let y be a <# least element of 
S.  
 
We claim that in M^, [y] is the < least element of R. To 
see this, let [z] ∈ R, [z] < [y]. Then z <# y and z ∈ S, 
which contradicts the choice of y.  
 
For claim ix), let ϕ(x1,...,x2r),i1,...,i2r,y1,...,yr be as 
given. Let i = min(i1,...,ir). Since y1,...,yr ≤ ci = [di+1], 
every element of the equivalence classes y1,...,yr is ≤# 
di+1. Hence we can write y1 = [z1],...,yr = [zr], where 
z1,...,zr ≤ di+1. 
 
By Lemma 5.7.29, the 2r-ary relation S on D given by  
 

S(w1,...,w2r) ↔  
ϕ([w1],...,[w2r]) holds in M^ 

 
is definable in M# without parameters.  
 
Note that min(i1+1,...,i2r+1) = i+1. Hence by Lemma 5.6.18 
v), we have  
 

S(di_1+1,...,di_r+1,z1,...,zr) ↔  
S(di_r+1+1,...,di_2r+1,z1,...,zr). 

 
Hence in M^, 
 

ϕ(ci_1,...,ci_r,[z1],...,[zr]) ↔ 
ϕ(ci_r+1,...,ci_2r,[z1],...,[zr]). 

 
ϕ(ci_1,...,ci_r,y1,...,yr) ↔ 
ϕ(ci_r+1,...,ci_2r,y1,...,yr). 

 
QED 
 
5.8. ZFC + V = L, indiscernibles, and Π0

1 
correct arithmetic. 
 
We fix M^ = (C,<,0,1,+,-,•,↑,log,ω,c1,c2,...,Y1,Y2,...) as 
given by Lemma 5.7.30. We work entirely within M^. E.g., we 
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treat C as the universe of points, and regard the elements 
of the Yk as the internal relations. 
 
In particular, if we say that R is an internal relation, 
then we mean that R is an element of some Yk. If we say that 
R is an M^ definable relation (first and second order 
parameters allowed), then we do not necessarily mean that R 
is an internal relation. However, by Lemma 5.7.30, vii), if 
R is an M^ definable relation which is bounded, then R is 
an internal relation; i.e., R is an element of some Yk. In 
fact, Yk is the set of all bounded M^ definable relations on 
C. 
 
DEFINITION 5.8.1. Functions are always identified with 
their graphs. We refer to the elements of Y1 as the internal 
sets. 
 
An important obstacle is that there is no way of showing, 
in M^, that the family of all internal subsets of an 
internal set is in any sense internal. E.g., no way of 
showing that they are all cross sections of some fixed 
internal binary relation.  
 
It would appear that this obstacle is fatal, as it 
indicates an inability to interpret the power set axiom, 
despite bounded comprehension, indiscernibility, and 
infinity.  
 
However, in this section, we argue carefully that we can 
still construct the constructible universe. Because of the 
explicitness of this construction, we can use 
indiscernibility to overcome this obstacle within the 
constructible universe.  
 
We first have to develop a pairing function. By an 
interval, we mean a set [x,y), where x,y ∈ C.  
 
LEMMA 5.8.1. Let k ≥ 1 and F be a k-ary M^ definable 
function, defined without second order parameters. For all 
x, {F(y1,...,yk): y1,...,yk < x} is bounded above. For all x, 
the restriction of F to [0,x)k is an internal function.  
 
Proof: Let k,F be as given, and let x ∈ C. Let n ≥ 1 be 
such that x and all parameters used in the definition of F 
are < cn. Let y1,...,yk < x. Let m > n be such that 
F(y1,...,yk) < cm. Consider the true statement  
 

F(y1,...,yk) < cm. 
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This is a statement involving cm and certain parameters < 
cn. By Lemma 5.7.30 ix), 
 

F(y1,...,yk) < cn+1. 
 
The second claim follows immediately by Lemma 5.7.30 vii). 
QED 
 
DEFINITION 5.8.2. For all x ∈ C, we write x+1 for the 
immediate successor of x in <.  
 
The above exists by Lemma 5.7.30 v),viii). This is a slight 
abuse of notation since x+1 already has a meaning, as + is 
a primitive of M^. However, note that by Lemma 5.7.30 
ii),iii), if x < ω then x+1 is also the immediate successor 
of x in <. 
 
LEMMA 5.8.2. Let x,y ∈ C, x > 0. There is a unique strictly 
increasing internal f with dom(f) = [0,x), rng(f) an 
interval, and f(0) = y.   
 
Proof: We first prove a strong form of uniqueness. Suppose 
x,x’,y ∈ C, x,x’ > 0, and let f,g be strictly increasing 
internal functions, where dom(f) = [0,x), dom(g) = [0,x’), 
and rng(f),rng(g) are intervals, and f(0) = g(0) = y. Then 
f,g agree on their common domain. To see this, suppose this 
is false. By Lemma 5.7.30 viii), let b be < least such that 
f(b) ≠ g(b). Obviously f(b) is the strict sup of the f(c), c 
< b, and g(b) is the strict sup of the g(c), c < b. Hence 
f(b) = g(b), which is a contradiction. Hence f,g agree on 
their common domain.  
 
For existence, fix x,y ∈ C. We prove that for all 0 < u ≤ 
x, there exists strictly increasing internal f such that 
dom(f) = [0,u), rng(f) is an interval, and f(0) = y.  
 
Suppose this is false. By Lemma 5.7.30 viii), let 0 < u ≤ x 
be < least such that this is false. For each 0 < v < u, let 
fv be the unique internal function which is strictly 
increasing with dom(fv) = [0,v), rng(fv) an interval, and 
f(0) = y.  
 
First suppose u is a limit. By the comparability, the 
union, f, of the fv, v < u, is a function M^ definable 
without second order parameters (but with second order 
quantifiers). Hence f is strictly increasing, with dom(f) = 
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[0,u), f(0) = y. By Lemma 5.7.30 viii), rng(f) must be an 
interval. We have now contradicted the choice of u. 
 
Now suppose u = v+1. If v = 0 then fu obviously exists. 
Hence v > 0. Let fv have range [y,z). Extend fv to f by 
setting f(v) = z. Again we have contradicted the choice of 
u. QED 
 
DEFINITION 5.8.3. We now define (x,y) <* (z,w) if and only 
if  
 
i) max(x,y) < max(z,w); or 
ii) max(x,y) = max(z,w) and (x,y) lexicographically 
precedes (z,w). 
 
LEMMA 5.8.3. Every M^ definable binary relation R that 
holds of some (x,y), x,y ∈ C, holds of a <* least (x,y). 
 
Proof: Let R be as given. The set of all max’s of pairs at 
which R holds is obviously a nonempty M^ definable subset 
of C. By Lemma 5.7.30 viii), let u be its < least element. 
By Lemma 5.7.30 viii), let x be the < least first term of a 
pair at which R holds, whose maximum is u. By Lemma 5.7.30 
viii), let y be the < least second term of a pair at which 
R holds, whose maximum is u, and whose first term is x. 
Then (x,y) is as required. QED 
 
LEMMA 5.8.4. There is an M^ definable binary function F:C2 
→ C, defined without parameters, such that for all x,y ∈ C, 
F(x,y) is the strict sup of all F(z,w) with (z,w) <* (x,y). 
F is unique.  
 
Proof: Define Q(u,G) if and only if  
 
1) G:{x: x < u}2 → C is internal, such that for all x,y < 
u, G(x,y) is the strict sup of all G(z,w), (z,w) <* (x,y).  
 
We claim that for all v,w < u, if Q(v,G) and Q(w,H), then 
G,H agree on their common domain. This is proved in the 
obvious way using Lemma 5.8.3. 
 
Define R(u) ↔ (∃G)(Q(u,G)). Suppose (∃u)(¬R(u)). 
 
By Lemma 5.7.30 viii), let u be < least such that ¬R(u). 
Then for all v < u, there exists G with Q(v,G).  
 
We thus see that for all v < u, there is a unique Gv with 
Q(v,Gv), and these various Gv, v < u, are comparable.  
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Obviously R(0), and so u > 0.  
 
Suppose u is a limit. By comparability, the union of the Gv, 
v < u, is an internal function G according to Lemma 5.8.1. 
It is obvious that Q(u,G). This contradicts the choice of 
u. 
 
Now suppose u = v+1. We will extend Gv to G as follows. 
Since Gv is internal, by Lemma 5.7.30 viii), let u1 be the 
strict sup of the values of Gv. By Lemma 5.8.2, let H be a 
strictly increasing internal function that maps [0,v) onto 
[u1,u2), and J be a strictly increasing internal function 
that maps [0,v] onto [u2,u3]. Now extend Gv to G by defining 
G(w,v) = H(w) and G(v,w) = J(w), where w ≤ v. Clearly 
Q(u,G). This contradicts the choice of u. 
 
We have thus established that for all u, R(u) holds.  
 
We now define F as follows. Let x,y ∈ C. Let G be the 
unique internal function given by R(u), with u = 
max(x,y)+1. Set F(x,y) = G(x,y). It is clear that F is as 
required. F is unique by Lemma 5.8.3. QED  
 
DEFINITION 5.8.4. We write P for the F constructed in the 
proof of  Lemma 5.8.4.  
 
LEMMA 5.8.5. For all x ∈ C, x ≤ P(0,x). Let x,y ∈ C. x > 0 
→ x,y < P(x,y). x,y ≤ P(x,y). P:C2 → C is a bijection.  
 
Proof: Suppose the first claim is false. By Lemma 5.7.30 
viii), let x be < least such that P(0,x) < x. Then for all 
z < x, z ≤ P(0,z). Hence x ≤ P(0,x), which is a 
contradiction. 
 
For the second claim, let x > 0. We have y ≤ P(0,y) < 
P(x,y), and x ≤ P(0,x) < P(x,0) ≤ P(x,y).  
 
The third claim follows from the first two claims.  
 
To see that P is one-one, let P(x,y) = P(x',y'). If (x,y) 
<* (x',y') then P(x,y) < P(x',y'). If (x',y') <* (x,y) then 
P(x',y') < P(x,y). Hence (x,y) = (x',y').  
 
To see that P is onto, let x be the least element of C that 
is not a value of P. By the first claim, if P(y,z) < x then 
(y,z) <* (0,x). It is easy to see that the strict sup of 
the (y,z) with P(y,z) < x exists. Then the value of P at 
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this strict sup must be x. Hence x is a value of P. This is 
a contradiction. QED   
 
DEFINITION 5.8.5. We inductively define P(x1,...,xk+1) = 
P(P(x1,x2),x3,...,xk+1), for k ≥ 1. Also define P(x) = x. This 
is our mechanism for coding sequences of points of standard 
finite length as points.  
 
LEMMA 5.8.6. In each arity k ≥ 1, P is a bijection. For all 
k ≥ 1, (∀x1,...,xk)(x1,...,xk ≤ P(x1,...,xk)). For all k,n ≥ 
1, (∀x1,...,xk)(x1,...,xk ≤ cn → P(x1,...,xk) < cn+1).   
 
Proof: The first claim is proved by external induction on 
the arity, using that P:C → C and P:C2 → C are bijections.  
 
The second claim is proved by external induction on k ≥ 1, 
using Lemma 5.8.5.  
 
For the third claim, let k,n ≥ 1 and x1,...,xk ≤ cn. By Lemma 
5.7.30 v), let m > n be such that P(x1,...,xk) < cm. By 
Lemma 5.7.30 ix), P(x1,...,xk) < cn+1. QED 
 
LEMMA 5.8.7. Let k ≥ 1 and R ⊆ Ck. Then R is an internal 
relation if and only if {P(x1,...,xk): R(x1,...,xk)} is an 
internal set. 
 
Proof: Let k,R be as given. In the interest of caution, 
rewrite this set as  
 

A = {y: (∃x1,...,xk)(y = P(x1,...,xk) ∧ R(x1,...,xk))}. 
 
Suppose R is an internal relation; i.e., R ∈ Yk. Then R is 
bounded. Hence by Lemma 5.8.1, A is bounded. By Lemma 
5.7.30 vii), A is an internal set; i.e., A ∈ Y1.  
 
Now suppose A is an internal set. Then A is bounded. Hence 
by Lemma 5.8.6, R is bounded.  
 
We claim that for all x1,...,xk ∈ C, 
 

R(x1,...,xk) ↔ P(x1,...,xk) ∈ A. 
 
To see this, suppose R(x1,...,xk). Then P(x1,...,xk) ∈ A. 
Suppose P(x1,...,xk) ∈ A. Let x1',...,xk' be such that 
P(x1,...,xk) = P(x1',...,xk') ∧ R(x1',...,xk'). Since P is 
one-one, we have x1 = x1',...,xk = xk', and R(x1,...,xk). 
Hence R is an internal relation, by Lemma 5.7.30 vii). QED 
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LEMMA 5.8.8. Any definable subset of C that contains 0 and 
is closed under +1, contains all x < ω. 
 
Proof: Let B ⊆ C be definable, contain 0, and be closed 
under +1. Let x < ω, x ∉ B. By Lemma 5.7.30 viii), let x be 
least such that x < ω, x ∉ B. Then x > 0. By Lemma 5.7.30 
iii), we have x-1 < x, and hence x-1 ∈ B. Therefore x ∈ B, 
which is a contradiction. QED 
 
Lemma 5.8.8 supports proof by internal induction on x < ω. 
 
DEFINITION 5.8.6. An internal finite sequence is an 
internal function whose domain is some [1,x], x < ω.  
 
We can use P to code internal finite sequences (from C) of 
indefinite length, as a single element of C.  
 
LEMMA 5.8.9. Let f:[1,x] → C, x < ω, be internal. There 
exists a unique internal g:[1,x] → C such that for all 1 ≤ 
u < x,  
i) g(1) = f(1); 
ii) g(u+1) = P(g(u),f(u+1)). 
For this g, we have g(x) ≥ max(f).  
 
Proof: Let f,x be as given. We prove by internal induction 
on z ≤ x, that there is an internal g:[1,z] → C such that 
for all 1 ≤ u < z, clauses i) and ii) hold. Internal 
induction below ω is supported by Lemma 5.8.8. The 
uniqueness of g can also be obtained using internal 
induction.  
 
Clearly max(f) exists by induction. Also by induction, for 
all 1 ≤ u ≤ v ≤ x, g(v) ≥ f(u). Hence g(x) ≥ max(f). QED 
 
We use Lemma 5.8.9 to code finite sequences. Let f:[1,x] → 
C, x < ω.  
 
DEFINITION 5.8.7. Define #(f) = P(x,g(x))+1, where g is 
given by Lemma 5.8.9. For empty f, define #(f) = 0. 
 
LEMMA 5.8.10. For all internal finite sequences f,f', if 
#(f) = #(f') then f = f'.  
 
Proof: Let f,f' be internal finite sequences. Let f:[1,x) → 
C, f':[1,y) → C. Suppose #(f) = #(f'). If x = 0 ∨ y = 0 
then #(f) = #(f') = 0, and hence x = y = 0. So we assume 
that x,y > 0.  
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Let g,g' be given by Lemma 5.8.9, for f,f', respectively. 
Then #(f) = #(f') = P(x,g(x))+1 = P(y,g'(y))+1. Hence 
P(x,g(x)) = P(y,g'(y)), x = y, g(x) = g'(y). Hence g(x) = 
g'(x).  
 
We now prove that f = f'. The case x = 1 is immediate, so 
we assume x > 1.  
 
We first prove by reverse induction that for all 1 < x’ ≤ x, 
f(x’) = f'(x’) ∧ g(x’) = g'(x’). The basis case is x’ = x. 
By Lemma 5.8.9, we have g(x) = P(g(x-1),f(x)), g'(x) = 
P(g'(x-1),f'(x)). Hence f(x) = f'(x) ∧ g(x) = g'(x).  
 
Suppose 2 < x' ≤ x, f(x') = f'(x'), g(x') = g'(x'). By Lemma 
5.8.9, g(x') = P(g(x'-1),f(x')), g'(x') = P(g'(x'-
1),f'(x')). Then g(x'-1) = g'(x'-1). By Lemma 5.8.9, g(x'-
1) = P(g(x'-2),f(x'-1)), g'(x'-1) = P(g'(x'-2),f'(x'-1)). 
Hence f(x'-1) = f'(x'-1). This establishes the induction 
step. 
 
So we have shown that for all 1 < x’ ≤ x, f(x’) = f'(x’) ∧ 
g(x’) = g'(x’). Hence f(2) = f'(2), g(2) = g'(2). By Lemma 
5.8.9, g(1) = g'(1) = f(1) = f'(1). Hence f = f'. QED 
 
LEMMA 5.8.11. (∀x)(∃y > x,ω)(∀z,w ≤ x)(P(z,w) < y).  
 
Proof: Let x ∈ C. By Lemma 5.7.30 v), ω < c1, and we can 
let x ≤ cn. By Lemma 5.8.6, for all k ≥ 1 and z1,...,zk ≤ cn, 
P(z1,...,zk) < cn+1 and ω < cn+1. QED 
 
LEMMA 5.8.12. (∀x)(∃y > x,ω)(∀z,w < y)(P(z,w) < y).  
 
Proof: Let x be given. Let u = max(x,ω). Informally, we 
want to construct u < P(u,u) < P(P(u),P(u)) < ... and take 
the sup. We can obviously prove by internal induction 
(Lemma 5.8.8) that for all n < ω, there exists unique 
internal fn:[1,n] → C such that fn(1) = u, and for all 1 ≤ m 
< n, fn(m+1) = P(fn(m),fn(m)). By internal induction, these 
fn are comparable, and so we can form their union F as an M^ 
definable function F with domain {n: 0 < n < ω}.  
 
By Lemma 5.8.1, F is an internal function. Also by internal 
induction, for all 0 < n < ω, 
 

F(0) = u, F(n+1) = P(F(n),F(n)). 
 
By Lemma 5.7.30 viii), let the strict sup of the values of 
F be y. We claim that  
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(∀z,w < y)(P(z,w) < y). 

 
Let z,w < y. Let z,w ≤ F(n). Then  
 

P(z,w) ≤ P(F(n),F(n)) = F(n+1) < y. 
 
QED 
 
According to Lemma 5.8.12, for x ∈ C, we let P*(x) be the 
least y > x,ω such that for all z,w < y, P(z,w) < y.  
 
LEMMA 5.8.13. Let f be an internal finite sequence, rng(f) 
⊆ [0,x]. Then max(f) < #(f) < P*(x). 
 
Proof: Let f be as given. If f is empty then #(f) = 0 and 
we are done. We can assume that f:[1,n] → [0,x], where 1 ≤ 
n < ω. Then ω < P*(x). Let g be given by Lemma 5.8.9. By 
internal induction, for all 1 ≤ i ≤ n, g(i) < P*(x). Hence 
P(n,g(n)) < P(ω,g(n)) < P*(x). Therefore #(f) = P(n,g(n))+1 
≤ P(ω,g(n)) < P*(x). By Lemma 5.8.9, max(f) ≤ g(n) < #(f) < 
P*(x). QED 
 
We will need a notation for reverse finite sequence coding.  
 
DEFINITION 5.8.8. Let y ∈ C and 1 ≤ i,n < ω. We define 
y[i:n] to be the i-th term in the finite sequence of length 
n coded by y, if this exists; undefined otherwise. I.e., 
y[i:n] is f(i), 
 

where i ≤ n and f is such that  
f:[1,n] → C, #(f) = y,  

provided f exists; 
undefined otherwise. 

 
By Lemma 5.8.10, the choice of f here, if it exists, is 
unique. 
 
LEMMA 5.8.14. x[i:n] forms an M^ definable partial function 
from C × [0,ω)2 into C without parameters. Let f:[1,n] → C 
be internal, 1 ≤ n < ω. The maximum value max(f) of f 
exists. There exists a unique x such that for all i ≤ n, 
f(i) = x[i:n]. max(f) < x < P*(max(f)). 
 
Proof: The first claim is obvious from the internal 
definition of x[i:n] above.  
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Now let f:[1,n] → C. For the second claim, an easy 
induction, using Lemma 5.7.30 i)-iii), shows that for all 1 
≤ i ≤ n, the maximum value of f on [0,i] exists.  
 
By definition, #(f) = P(n,u)+1, for some u. Obviously u is 
unique, and we set x = #(f). Since rng(f) ⊆ [0,max(f)], we 
have max(f) < x = #(f) < P*(max(f) by Lemma 5.8.13.  QED 
 
M^, with its internal well foundedness (Lemma 5.7.30 viii)) 
and bounded comprehension (Lemma 5.7.30 vii)), is a 
relatively familiar context in which to work, compared with 
the earlier contexts in this chapter.  
 
In order to construct the constructible hierarchy, we will 
use the usual language of set theory, L(∈,=).  
 
DEFINITION 5.8.9. We take L(∈,=) to be based on ∈,=, 
variables vn, n ≥ 1, and ¬,∧,∀.  
 
By the internal induction in Lemma 5.8.8, and Lemma 5.7.30 
iii), we take internal arithmetic for granted, formulated 
on [0,ω).  
 
In particular, we have access to the internal set GN of all 
Gödel numbers of formulas of L(∈,=).   
 
DEFINITION 5.8.10. Let R be an internal binary relation. We 
let R# = P*(y), where y is least such that (∀x ∈ fld(R))(x 
< y).  
 
The idea is that R# is large enough to accommodate all of 
the internal finite sequence codes that we need, in the 
sense of Lemma 5.8.14.  
 
We wish to formally define the notion SAT(R,n,x,m).  
 
DEFINITION 5.8.11. The intended meaning of SAT(R,n,x,m) is 
that  
 
i) R is a binary relation; 
ii) n ∈ GN, x < R#; 
iii) the subscript of every free variable in the formula ϕ 
of L(∈,=) with Gödel number n is ≤ m < ω; 
iv) (fld(R),R) satisfies ϕ at the partial assignment 
x[1:m],x[2:m],...,x[m:m]. 
 
Note that we allow R to be empty.  
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In order for clause iv) to hold, we require that 
x[1:m],x[2:m],...,x[m:m] ∈ fld(R).  
 
Note that if m = 0 then the partial assignment in clause 
iv) is empty.  
 
In order to make this definition over M^, we first need the 
following. 
 
LEMMA 5.8.15. Let R be an internal binary relation. There 
exists a unique internal ternary relation SATR ⊆ GN × [0,R#) 
× [0,ω) satisfying the usual Tarski satisfaction 
conditions.  
 
Proof: Let R be as given. Note that in M^, the code of 
every finite length sequence form fld(R) is < R#, by Lemma 
5.8.14. The uniqueness of SATR(n,x,m) is proved by internal 
induction on n. For existence, prove by internal induction 
on r < ω that there is a ternary relation Tr ⊆ GN|r × [0,R#) 
× [0,ω), that satisfies the usual Tarski satisfaction 
conditions for all n ∈ GN|r. Here GN|r is the set of all n 
∈ GN which is at most r. Also prove by internal induction 
on r < ω that each Tr is unique, and the Tr’s are 
compatible, in the sense that they agree on their common 
domain. Furthermore, each Tr ⊆ [0,R#]3. By Lemma 5.7.30, we 
can take SATR to be the union of the Tr’s. Finally, an 
internal induction shows that SATR is unique. QED 
 
DEFINITION 5.8.12. We now define SAT(R,n,x,m) if and only 
if R is a binary relation, and SATR(n,x,m) holds, where 
SATR(n,x,m) is given by Lemma 5.8.15.  
 
DEFINITION 5.8.13. Let R be an internal binary relation. We 
say that n,x,m is a code over R if and only if  
 
i) n ∈ GN; 
ii) 1 ≤ m < ω; 
iii) x < R# is greater than all elements of fld(R). 
 
We remark that condition iii) is convenient because x does 
not interfere with the elements of fld(R). 
 
DEFINITION 5.8.14. If n,x,m is a code over R then we write 
H(R,n,x,m) for  
 

{y: (∃z)(z[1:m] = y ∧ z[2:m] = x[2:m] ∧ ... ∧ z[m:m] = 
x[m:m] ∧ SAT(R,n,z,m))}. 
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Note that in the above definition, we use x[2:m],...,x[m:m] 
but not x[1:m]. This means that we can easily modify x 
without changing H(R,n,x,m). We will exploit this freedom 
below.   
 
We think of H(R,n,x,m) as the internal subset of fld(R) 
that is coded by the code n,x,m. Informally, the 
H(R,n,x,m), where n,x,m is a code over R, code exactly the 
“subsets of fld(R) that are first order definable over R”. 
The case R = ∅ is handled appropriately with this notation.  
 
DEFINITION 5.8.15. We say that n,x,m is a minimal code over 
R if and only if n,x,m is a code over R such that  
 
i) for all codes n’,x’,m’ over R, if H(R,n’,x’,m’) = 
H(R,n,x,m) then P(n,x,m) ≤ P(n’,x’,m’); 
ii) for all y ∈ fld(R), H(R,n,x,m) ≠ {z: R(z,y)}.   
 
Thus the minimal codes over R code exactly the R definable 
subsets of fld(R) that are not already of the form {z: 
R(z,y)}, y ∈ fld(R). Also, by minimality, no two distinct 
minimal codes over R code the same subset of fld(R). 
 
Minimal codes are preferred codes used in order to ensure 
the propagation of extensionality as we construct the 
constructible hierarchy.  
 
LEMMA 5.8.16. Let ϕ(v1,...,vm), m ≥ 1, be a formula of 
L(∈,=) with Gödel number n. Let R be an internal binary 
relation. Then SAT(R,n,x,m) holds if and only if 
ϕ(x[1:m],...,x[m:m]) holds in (fld(R),R). H(R,n,x,m) = {y: 
ϕ(y,x[2:m],...,x[m:m]) holds in (fld(R),R)}.   
 
Proof: Left to the reader. Note that ϕ,m,n are standard. 
QED 
 
LEMMA 5.8.17. Let ϕ(v1,...,vm), m ≥ 1, be a formula of 
L(∈,=). Let R be an internal binary relation, and z1,...,zm-1 
∈ fld(R). Then {y: ϕ(y,z1,...,zm-1) holds in (fld(R),R)} is 
either of the form {y: R(y,x)}, x ∈ fld(R), or of the form 
H(R,n’,x',m’), for some unique minimal code n’,x',m’ over 
R, but not both.  
 
Proof: Use Lemma 5.8.16. Note that ϕ,m,n are standard. 
Assume that  
 

{y: ϕ(y,z1,...,zm-1) holds in (fld(R),R)} 
is not of the form {y: R(y,x)}, x ∈ fld(R). 
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Let f:[1,m] → C, where f(2) = z1,...,f(m) = zm-1, and where 
f(1) is the least point greater than all elements of 
fld(R). Let x = #f. Then x < R# = P*(f(1)), is greater than 
all elements of fld(R), and  
 

H(R,n,x,m) = {y: ϕ(y,z1,...,zm-1) holds in (fld(R),R)}. 
 
So we can minimize over the relevant n,x,m in order to 
obtain the required minimal code n’,x,m’ over R. By the 
definition of minimal codes over R, the or is exclusive. 
QED  
 
We are now ready to construct the binary relation FODO(R), 
for internal R, obtained by “adjoining” all sets first 
order definable over (fld(R),R) to R.  
 
DEFINITION 5.8.16. We say that a binary relation R is 
adequate if and only if  
 

R(0,1) ∧ (∀x)(¬R(x,0)). 
 
In particular, for adequate R, we have 0,1 ∈ fld(R).  
 
For internal adequate binary relations R, we construct 
FODO(R) as follows. 
 
DEFINITION 5.8.17. We define FODO(R)(u,v) if and only if 
either R(u,v), or  
 
i) there exists a minimal code n,x,m over R such that v = 
P(n,x,m); 
ii) u ∈ H(R,n,x,m). 
 
The reason that we need the adequacy of R is that ∅ = {x: 
R(x,0)}, and so there is no minimal code n,x,m over R with 
H(R,n,x,m) = ∅. It will be convenient to have the sets with 
minimal codes over R be nonempty. 
 
DEFINITION 5.8.18. Let R be an internal binary relation. We 
say that R is extensional if and only if for all x,y ∈ 
fld(R), (∀z)(R(z,x) ↔ R(z,y)) → x = y.  
 
DEFINITION 5.8.19. We say that a binary relation R is 
sharply extended by a binary relation S if and only if  
 
i) (∀x ∈ fld(S)\fld(R))(∀y ∈ fld(R))(y < x); 
ii) (∀x,y ∈ fld(R))(R(x,y) ↔ S(x,y)). 
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iii) S(x,y) ∧ y ∈ fld(R) → x ∈ fld(R). 
iv) fld(R) is a proper subset of fld(S). 
 
LEMMA 5.8.18. Let R be an internal adequate binary 
relation. Then FODO(R) is an internal adequate binary 
relation. In addition, R extensional → FODO(R) extensional. 
FODO(R) sharply extends R. (∀x,y)(R(x,y) → x < y) → 
(∀x,y)(FODO(R)(x,y) → x < y).    
 
Proof: Let R be as given. Note that FODO(R) is bounded by 
R#. By Lemma 5.6.30 vii), FODO(R) is internal. We claim 
that  
 

1) v ∈ fld(R) → 
FODO(R)(u,v) ↔ R(u,v). 

 
2) FODO(R)(u,v) → 

u ∈ fld(R). 
 
For 1), let v ∈ fld(R). If R(u,v) then FODO(R)(u,v). 
Suppose FODO(R)(u,v). Assume ¬R(u,v). Let v = P(n,x,m), 
where n,x,m is a minimal code over R. Then x is greater 
than all elements of fld(R). Hence x > v, which is 
impossible.  
 
For 2), let FODO(R)(u,v). If R(u,v) then obviously u ∈ 
fld(R). So we can let v = P(n,x,m), n,x,m a minimal code 
over R. Then u ∈ H(R,n,x,m) ⊆ fld(R).  
 
FODO(R) is adequate since R ⊆ FODO(R) and by 1), 
FODO(R)(u,0) → R(u,0), which is impossible.  
 
Assume R is extensional. We claim that FODO(R) is 
extensional. Suppose  
 

3) (∀x)(FODO(R)(x,y) ↔ FODO(R)(x,z)). 
 
case 1. y,z ∈ fld(R). Since R is extensional, y = z. 
 
case 2. y,z ∉ fld(R). Let y = P(n,x,m), z = P(n’,x’,m’), 
where n,x,m and n’,x’,m’ are minimal codes over R. By 
2),3), H(R,n,x,m) = H(R,n’,x’,m’). Hence P(n,x,m) ≤ 
P(n’,x’,m’) ≤ P(n,x,m). So P(n,x,m) = P(n’,x’,m’) = y = z.  
 
case 3. y ∈ fld(R), z ∉ fld(R). Let z = P(n,x,m), n,x,m a 
minimal code over R, H(R,n,x,m) ≠ {z: R(z,y)}, H(R,n,x,m), 
and {z: R(z,y)} ⊆ dom(R). This contradicts 3).  
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case 4. y ∉ fld(R), z ∈ fld(R). This leads to a 
contradiction as in case 3.  
 
We have thus derived y = z from 3), and FODO(R) is 
extensional.  
 
We claim that FODO(R) sharply extends R. For i) of the 
definition of sharply extended, let x ∈ 
fld(FODO(R))\fld(R), y ∈ fld(R). Then x = P(n,u,m), where 
n,u,m is a minimal code over R. Hence u is greater than all 
elements of fld(R), and so x > y.  
 
For ii), use 1). 
 
For iii), use 2).   
 
For iv), note that {x ∈ fld(R): ¬R(x,x)} cannot be of the 
form {y: R(y,x)}, x ∈ fld(R). Let n,x,m be a minimal code 
over R such that H(R,n,x,m) = {x ∈ fld(R): ¬R(x,x)}. THen 
P(n,x,m) ∈ fld(FODO(R))\fld(R).  
 
Hence by Lemma 5.8.17, fld(R) = H(R,n,x,m), for some 
minimal code n,x,m over R. Hence fld(R) = {y: 
FODO(R)(y,x)}. Therefore fld(R) ≠ fld(FODO(R)).  
 
For the last claim, assume (∀x,y)(R(x,y) → x < y). Let 
FODO(R)(x,y). By construction, either R(x,y) or  
 

x ∈ fld(R) ∧ y is some P(n,z,m), 
where z is greater than all elements of fld(R). 

 
In either case, x < y. QED 
 
LEMMA 5.8.19. Let R be an internal adequate binary 
relation. Every set definable in (fld(R),R) is of the form 
{x: FODO(R)(x,y)}, where y ∈ fld(FODO(R)). 
 
Proof: By the construction of FODO(R), and Lemmas 5.8.17, 
5.8.18. QED  
 
Here we have interpreted Lemma 5.8.19 as a scheme of 
assertions about M^, where we take “definable” in the 
external sense. However, we also want to interpret Lemma 
5.8.19 in a stronger, internal sense - using SATR from Lemma 
5.8.15. This stronger form of Lemma 5.8.19 can also be 
proved with the help of internal inductions.  
 
We now wish to transfinitely iterate the FODO operation. 
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The base of the transfinite iteration will be the adequate 
relation  
 

R0(x,y) ↔ 
x = 0 ∧ y = 1. 

 
In order to accomplish this, we must be a bit careful. 
Firstly, we must note that, conceptually, we are 
manipulating internal relations, and these internal 
relations are not points; they are elements of Y2. 
Furthermore, these internal relations are not even coded as 
points. In contrast, recall that internal finite sequences 
f of points are coded as points using f#.  
 
Secondly, note that the operation that sends appropriate R 
to FODO(R) is even further removed from being an object. It 
is merely a description of a relationship between objects 
(not even between points), given in a first order way, 
without parameters, over M^. 
 
Our strategy is to properly define what we mean by a 
transfinite iteration of the operation up through a point, 
as an object. The objects for this purpose are the elements 
of the Yk, k ≥ 1. These are components of M^.  
 
DEFINITION 5.8.20. Let T be a k+1-ary relation, k ≥ 1. For x 
∈ C, we write Tx for the cross section {(y1,...,yk): 
T(x,y1,...,yk)}.  
 
Note that Tx is a k-ary relation.  
 
LEMMA 5.8.20. Let x ∈ C. There is a unique internal ternary 
relation T such that  
i) T0 = R0; 
ii) For all y < x, Ty+1 = FODO(Ty);  
iii) For all limits y ≤ x, Ty = ∪z<yTz;  
iv) For all y ≤ x, Ty is adequate; 
v) For all y > x, Ty = ∅. 
 
Proof: Define Γ(T,x) if and only if x ∈ C ∧ T is an 
internal ternary relation obeying i)-v).  
 
We first claim that for all x,T,T',  
 

Γ(T,x) ∧ Γ(T',x) → T = T'. 
 
Suppose this is false. Choose x to be least such that  
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(∃T,T')(Γ(T,x) ∧ Γ(T',x) ∧ T ≠ T'. 
 
Clearly x ≠ 0, since T0 = T'0 = R0. Hence x > 0. 
 
Let x = z+1. Let  
 

Γ(T,z+1), Γ(T’,z+1),Tz+1 ≠ T’z+1. 
FODO(Tz) ≠ FODO(T’z). 

Tz ≠ T’z. 
 
This contradicts the choice of x.  
 
Finally, let x be a limit. We claim that  
 

(∀z < x)(Tz = T’z). 
 
To see this, let z < x. Let T* be the restriction of T to 
triples whose first argument is ≤ z, and T*' be the 
restriction of T* to triples whose first argument is ≤ z. 
Then Γ(T*,z), Γ(T*',z). Hence T* = T*'. This is a 
contradiction.  
 
The first claim has been established. In fact, it is now 
clear that the T's such that (∃x)(Γ(T,x)) are comparable in 
that any two agree on their common domain.  
 
To prove existence, let u > 0, and suppose  
 

(∀x < u)(∃T)(Γ(T,x)). 
 
We now show  
 

(∃T)(Γ(T,u)). 
 
The case u = 0 is obvious, by defining  
 

T(a,b,c) ↔ a = 0 ∧ R0(b,c). 
 
Assume u is a successor, u = v+1. Let Γ(T,v). Define  
 

T’(a,b,c) ↔ 
T(a,b,c) ∨ (a = v+1 ∧ FODO(Tv)(b,c)). 

 
To see that T’ is internal, it suffices to show that T’ is 
bounded. This follows from the boundedness of T and 
FODO(Tv).  
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Note that by Lemma 5.8.18, FODO(Tv) = T’v+1 is adequate. 
Also,  
 

x ≤ v → T’x = Tx. 
T’v+1 = FODO(Tv) = FODO(T’v). 

Γ(T’,v+1), Γ(T’,u). 
 
Assume u is a limit. Define  
 

T*(a,b,c) ↔ 
a < u ∧ (∃T)(Γ(T,a) ∧ T(a,b,c)). 

 
To see that T* is internal, it suffices to show that T* is 
bounded. We have (∀a < u)(∃!T)(Γ(T,a)), by the first claim 
(uniqueness). 
 
Let a < u < cn, n ≥ 1. By Lemma 5.7.30 ix), we have 
 

(∃w)(∃T)(Γ(T,a) ∧ T lies entirely below w). 
(∃w < cn+1)(∃T)(Γ(T,a) ∧ T lies entirely below w). 

(∃T)(Γ(T,a) ∧ T lies entirely below cn+1). 
T* lies entirely below cn+1. 

T* is internal. 
 
Let a < u. Let  
 

Γ(T,0), Γ(T,a), Γ(T’,a+1). 
 
From the definition of T* and the uniqueness/comparability 
(first claim),   
 

T*0 = T0, T*a = Ta = T’a, T*a+1 = T’a+1. 
T0 = R0, T*a+1 = FODO(T’a) = FODO(T*a). 
All of these relations are adequate. 

 
Now let z < u be a limit. Let Γ(z,T’’). Then  
 

T’’z = T*z. 
T’’z = ∪a<zT’’a = ∪a<zT*a. 

 
Hence T* obeys i)-v) for Γ(T*,u), except clause iii) holds 
only for y < u. To fix this, define  
 

T**(a,b,c) ↔ 
T*(a,b,c) ∨ (a = u ∧ (∃a < u)(T*(a,b,c))). 

 
It is easy to see that T**u is adequate. Then Γ(T**,u). QED 
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DEFINITION 5.8.21. For each x ∈ C, we let L(x) = Tx, where T 
is the ternary relation given by Lemma 5.8.20. I.e., where 
Γ(T,x) as defined in the proof of Lemma 5.8.20. Thus each 
L(x) ∈ Y2. 
 
DEFINITION 5.8.22. For each x ∈ C, we define L[x] = 
fld(L(x)). Note that L[0] = {0,1}, and that L[x] ⊆ C. 
 
DEFINITION 5.8.23. We define L[∞] as the union of the L[x].  
 
We caution the reader that L[∞] ⊆ C is not internal, 
because it is not bounded. It is, however, M^ definable 
without any parameters.  
 
DEFINITION 5.8.24. We define L(∞) be the union of the L(x).  
 
Thus L(∞)(x,y) if and only if there exists z ∈ C such that 
L(z)(x,y). Obviously L(∞) ⊆ C2. 
 
The various L[x] correspond to the initial segments of the 
constructible hierarchy. The various L(x) correspond to the 
epsilon relations on the initial segments of the 
constructible hierarchy. L[∞] corresponds to the class of 
constructible sets. L(∞) corresponds to the epsilon 
relation on the class of constructible sets.  
 
Clearly L(∞) is the version of the epsilon relation on the 
constructible sets in M^, and is a binary relation. Its 
field is L[∞].  
 
We caution the reader that L[x] may not be an initial 
segment of points, and may not be a subset of [0,x). It may 
have elements that are greater than x.  
 
LEMMA 5.8.21. L(0) = R0. For all x ∈ C, L(x+1) = FODO(L(x)). 
For all limits x ∈ C, L(x) is the union of the L(y), y < x. 
For all x < y, L(x) is sharply extended by L(y). Each L(x) 
is extensional. Each L(x) has L(x)(y,z) → y < z.   
 
Proof: L(0) = T, where Γ(T,0). Hence L(0) = R0. L(x+1) = 
Tx+1, where Γ(T,x+1). Hence L(x+1) = FODO(Tx). Let T’ be the 
restriction of T to triples whose first argument is ≤ x. 
Then Γ(T’,x), T’x = Tx, L(x+1) = FODO(T’x) = FODO(L(x)).  
 
Let x be a limit. L(x) = Tx, where Γ(T,x). Now Tx = ∪y<xTy. 
By using restrictions as in the previous paragraph, we see 
that for all y < x, Ty = L(y). Hence L(x) = Tx = ∪y<xTy.    
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For the fourth claim, fix x. We prove by transfinite 
induction on y that  
 

x < y → L(x) is sharply extended by L(y). 
 
This is obvious for y = x.  
 
Suppose y > x, and L(x) is sharply extended by L(y). By 
Lemma 5.8.18, L(y) is sharply extended by L(y+1). Since 
L(x) is sharply extended by L(y), clearly L(x) is sharply 
extended by L(y+1). 
 
Suppose y > x, where y is a limit, and L(x) is sharply 
extended by every L(z), x ≤ z < y. We claim that L(x) is 
sharply extended by L(y). To see this, first let u ∈ 
fld(L(y))\fld(L(x)), v ∈ fld(L(x)). Let u ∈ 
fld(L(z))\fld(L(x)), x < z < y. Since L(z) is sharply 
extended by L(x), we have u < v.  
 
Next let u,v ∈ fld(L(x)). If L(x)(u,v) then obviously 
L(y)(u,v). If L(y)(u,v) then let x < z < y, L(z)(u,v). 
Since L(x) is sharply extended by L(z), we have L(x)(u,v).  
 
Now let L(y)(u,v), v ∈ fld(L(x)). Let u ∈ L(z), where x < z 
< y. Since L(z) is sharply extended by L(y), L(z)(u,v). 
Since L(x) is sharply extended by L(z), we have u ∈ L(x).  
 
Finally, fld(L(x)) is a proper subset of fld(L(y)) since 
fld(L(x)) is a proper subset of fld(L(x+1)) ⊆ fld(L(y)), by 
Lemma 5.8.18.  
 
For the fifth claim, we argue by transfinite induction on 
x. L(0) = R0 is extensional. Suppose L(x) is extensional. By 
Lemma 5.8.18, L(x+1) = FODO(L(x)) is extensional. Suppose x 
is a limit, where for all y < x, L(y) is extensional. Let 
a,b ∈ fld(L(x)), (∀z)(L(x)(z,a) ↔ L(x)(z,b)). Let a,b ∈ 
fld(L(y)), y < x. Since L(x) is a sharp extension of L(y), 
we have (∀z)(L(y)(z,a) ↔ L(y)(z,b)). Since L(y) is 
extensional, a = b. 
 
For the sixth claim, we argue by transfinite induction on 
x. Obviously L(0)(y,z) → y < z since L(0) = R0. Suppose  
 

(∀y,z)(L(x)(y,z) → y < z). 
 
By Lemma 5.8.18,  
 

(∀y,z)(L(x+1)(y,z) → y < z). 
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Let x be a limit, where  
 

(∀y < x)(∀u,v)(L(y)(u,v) → u < v). 
 
Let L(x)(u,v). Let L(y)(u,v), y < x. Then u < v. QED 
 
DEFINITION 5.8.25. Let x ∈ L[∞]. We write lrk(x) for the 
least y such that x ∈ L[y+1]. This is the L rank of x. Note 
that lrk is a function from C into C that is M^ definable 
without parameters. 
 
LEMMA 5.8.22. Let x,y ∈ C. L(∞)(x,y) → (lrk(x) < lrk(y) ∧ 
x < y). L(∞)(x,y) ↔ L(lrk(y)+1)(x,y). L[∞] ∩ [0,x) ⊆ L[x]. 
 
Proof: Let L(∞)(x,y). Let L(z)(x,y). By Lemma 5.8.21, x < 
y. Also, let y ∈ L[u+1]\L[u]. Then lrk(y) = u, u+1 ≤ z. By 
Lemma 5.8.21, z = u+1 ∨ L(u+1) is sharply extended by L(z). 
Therefore x ∈ L(u+1), L(u+1)(x,y), x ∈ L(u). Hence lrk(x) < 
lrk(y) = u. This also establishes the second claim.  
 
We prove the final claim by transfinite induction on x. We 
have L[∞] ∩ [0,0) ⊆ L[0], vacuously.  
 
Suppose L[∞] ∩ [0,x) ⊆ L[x]. We want L[∞] ∩ [0,x] ⊆ 
L[x+1]. It suffices to prove x ∈ L[∞] → x ∈ L[x+1]. Assume 
x ∈ L[∞]\L[x+1]. Let x ∈ L[y]. Then y > x+1. Since L[y] 
sharply extends L[x+1], x is greater than all elements of 
L[x+1]. Since L[x+1] sharply extends L[x], there is an 
element of L[x+1] that is greater than all elements of 
L[x], and L[x] ⊇ [0,x). Hence there is an element of L[x+1] 
that is ≥ x. This is a contradiction.  
 
Suppose x is a limit, where for all y < x, 
 

L[∞] ∩ [0,y) ⊆ L[y]. 
 
We claim that  
 

L[∞] ∩ [0,x) ⊆ L[x]. 
 
To see this, let z ∈ L[∞], z < x. Let z < y < x. Then z ∈ 
L[y], z ∈ L[x]. QED  
 
DEFINITION 2.8.26. A Δ0 formula of L(∈,=) is a formula of 
L(∈,=) in which all quantifiers are ∈ bounded; i.e.,  
 

(∃x ∈ y) 
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(∀x ∈ y) 
 
where x,y are distinct variables.  
 
LEMMA 5.8.23. Let ϕ(x1,...,xk) be a Δ0 formula of L(∈,=). 
Let y1,...,yk,z,w be such that y1,...,yk ∈ L[z],L[w]. Then 
ϕ(y1,...,yk) holds in (L[z],L(z)) if and only if ϕ(y1,...,yk) 
holds in (L[w],L(w)) if and only if ϕ(y1,...,yk) holds in 
(L[∞],L(∞)).  
 
Proof: Here k,ϕ are standard. The first claim is by 
external induction on the number of occurrences of 
variables in ϕ. Use Lemma 5.8.21 (sharp extensions). QED 
 
LEMMA 5.8.24. Extensionality, pairing, and union hold in 
(L[∞],L(∞)). 
 
Proof: For extensionality, let x,y ∈ L[u], where (∀z)(z ∈ x 
↔ z ∈ y) holds in (L[∞],L(∞)). By Lemma 5.8.23, (∀z)(z ∈ x 
↔ z ∈ y) holds in (L[u],L(u)). By Lemma 5.8.21, x = y. 
Since u is arbitrary, extensionality holds in (L[∞],L(∞)). 
 
For pairing, let x,y ∈ L[u]. By Lemma 5.8.19, let z ∈ 
L[u+1] be such that (∀w)(w ∈ z ↔ (w = x ∨ w = y)) holds in 
L[u+1]. By Lemma 5.8.21 (sharp extensions), (∀w)(w ∈ z ↔ 
(w = x ∨ w = y)) holds in (L[∞],L(∞)). Since u is 
arbitrarily, pairing holds in (L[∞],L(∞)). 
 
For union, let x ∈ L[u]. By Lemma 5.8.19, let y in L[u+1] 
be such that  
(∀z)(z ∈ y ↔ (∃w)(z ∈ w ∧ w ∈ x)) holds in 
(L[u+1],L(u+1)). By Lemmas 5.8.21 (sharp extensions) and 
5.8.23, (∀z)(z ∈ y ↔ (∃w)(z ∈ w ∧ w ∈ x)) holds in 
(L[∞],L(∞)). Since u is arbitrary, union holds in 
(L[∞],L(∞)). QED 
 
LEMMA 5.8.25. Infinity holds in (L[ω+1],L(ω+1)). Infinity 
holds in (L[∞],L(∞)).  
 
Proof: Infinity has the form  
 

(∃x)(∅ ∈ x ∧ (∀y ∈ x)(y ∪ {y} ∈ x)) 
 
which makes perfectly good sense in the presence of 
extensionality, union, and pairing. It is clear that 0 
serves as the ∅ in (L[∞],L(∞)). 
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We say that a set is epsilon connected if and only if any 
two elements are either equal, or one is an element of the 
other.  
 
Prove by internal induction on n < ω that “the epsilon 
connected transitive sets are linearly ordered by epsilon, 
and there is a largest epsilon connected transitive set” 
holds in (L[n],L(n)). For each n < ω, let h(n) be the 
witness to this statement in (L[n+1],L(n+1)). Prove by 
internal induction on n < ω that h(0) = ∅, and “h(n+1) = 
h(n) ∪ {h(n)}” holds in (L[n+2],L(n+2)). Prove that for all 
u ∈ L(ω), (∃n < ω)(u = h(n)) if and only if “u is epsilon 
connected and transitive” holds in (L[ω],L(ω)). By Lemma 
5.8.19, let x ∈ L(ω+1), where (∀y)(L(ω+1)(y,x) ↔ (∃n < 
ω)(y = h(n)). Then in (L[ω+1],L(ω+1)), x is a witness for 
Infinity.  
 
To see that Infinity holds in (L[∞],L(∞)), apply Lemma 
5.8.21, with parameters x,0. QED 
 
LEMMA 5.8.26. Every L(x) is internally well founded. L(∞) 
is internally well founded. Foundation holds in every 
(L[x],L(x)). Foundation holds in (L[∞],L(∞)).  
 
Proof: The first claim follows from the internal well 
foundedness of < by Lemma 5.8.21. The internal well 
foundedness of < is by Lemma 5.7.30 viii). The remaining 
claims follow easily from the first claim, using Lemma 
5.8.23. QED 
 
LEMMA 5.8.27. Let n ≥ 1 and ϕ1,...,ϕn be formulas of L(∈,=) 
that begin with, respectively, existential quantifiers 
(∃y1),...,(∃yn). For all z there exists w > z such that the 
following holds. Let 1 ≤ i ≤ n. Let the free variables of ϕi 
be assigned elements of L[z]. If ϕi holds in (L[∞],L(∞)) 
then (∃yi ∈ L[w])(ϕi(yi)) holds in (L[∞],L(∞)).  
 
Proof: By Lemma 5.8.1, we can choose internal witness 
functions f1,...,fk, whose domains are Cartesian powers of 
L[z]. By applying the lrk function to the values of the 
f's, we see that the set A of values of lrk(z), z a value 
of the f's, must be internal - again using Lemma 5.8.1. 
Take w to be the strict sup of A. QED 
 
LEMMA 5.8.28. Let ϕ(v1,...,vk) be a formula of L(∈,=). For 
all z there exists w > z such that the following holds. Let 
y1,...,yk ∈ L[w]. Then ϕ(y1,...,yk) holds in (L[∞],L(∞)) if 
and only if ϕ(y1,...,yk) holds in (L[w],L(w)). 
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Proof: Without loss of generality, we can assume that 
ϕ(v1,...,vk) is in prenex normal form. Let ϕ1,...,ϕn be a 
listing of all direct subformulas of ϕ, and duals of 
subformulas of ϕ, which begin with an existential 
quantifier.  
 
Informally, we define, internally, an infinite sequence z < 
w1 < w2 < ... as follows. w1 is the least w > z given by 
Lemma 5.8.27 for ϕ1,...,ϕn. Suppose wj has been defined, j ≥ 
1. wj+1 is the least w > wj given by Lemma 5.8.27 with z set 
to wj.  
 
We convert this to a construction within M^ as follows. 
First prove that for all n < ω, there is a unique finite 
sequence f:[1,n] → C, where f(1) = w1 and each f(i+1) is 
obtained from f(i) according to the previous paragraph. 
This yields a function g:[1,ω) → C by taking the  union of 
these f's. Now apply Lemma 5.8.1 to show that g is 
internal. In particular, g is bounded, and so we let w be 
the strict sup of the values of g.  
 
An external induction argument shows that for all y1,...,yk 
∈ L[w] and 1 ≤ i ≤ n,  
 

ϕi(y1,...,yk) holds in (L[∞],L(∞)) ↔ 
ϕi(y1,...,yk) holds in (L[w],L(w)). 

 
The induction is on the number of quantifiers present in ϕi. 
Since ϕ is among the ϕ1,...,ϕn, we are done. QED 
 
DEFINITION 2.8.27. Collection is the scheme 
 

(∀x ∈ y)(∃z)(ϕ) → (∃w)(∀x ∈ y)(∃z ∈ w)(ϕ) 
 
where ϕ is a formula of L(∈,=), x,y,z,w are distinct 
variables, and w is not free in ϕ. 
 
LEMMA 5.8.29. Every instance of Separation holds in 
(L[∞],L(∞)). Every instance of Collection holds in 
(L[∞],L(∞)).  
 
Proof: Consider (∃x)(∀y)(y ∈ x ↔ (y ∈ z ∧ ϕ)), where x,y,z 
are distinct variables and x is not free in ϕ. Let z ∈ 
L[∞]. Let u be such that z and all parameters in ϕ lie in 
L[u].  
 
By Lemma 5.8.28, let v > u be such that for all y ∈ L[v],  
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ϕ(y) holds in (L[∞],L(∞)) ↔ 
ϕ(y) holds in (L[v],L(v)). 

 
Let b ∈ L[v+1], where  
 

(∀y)(L(∞)(y,b) ↔  
((y ∈ z ∧ ϕ(y)) holds in (L[v],L(v))). 

 
Then 
 

(∀y)(y ∈ b ↔ (y ∈ z ∧ ϕ)) 
 
holds in (L[∞],L(∞)).  
 
Now consider  
 

(∀x ∈ y)(∃z)(ϕ) → (∃w)(∀x ∈ y)(∃z ∈ w)(ϕ), 
 
where x,y,z,w are distinct variables and w is not free in 
ϕ. Let y ∈ L[∞]. Let u be such that y and all parameters in 
ϕ lie in L[u]. Assume (∀x ∈ y)(∃z)(ϕ) holds in (L[∞],L(∞)). 
 
By Lemma 5.8.22, L(∞)(x,y) → x < y. For each x such that 
L(∞)(x,y), we can consider the < least u such that (∃z ∈ 
L[u])(ϕ holds in (L[∞],L(∞))). This gives us an M^ 
definable function to which we can apply Lemma 5.8.1, and 
then take its strict sup, v, using Lemma 5.7.30 viii). By 
Lemma 5.8.19, set w ∈ L[v+1], where (∀v)(L(∞)(v,w) ↔ v ∈ 
L[u]). QED 
 
DEFINITION 5.8.28. Let ZF\P be all axioms of ZF less Power 
Set, using Collection. 
 
LEMMA 5.8.30. Every axiom of ZF\P with Collection holds in 
(L[∞],L(∞)). 
 
Proof: From Lemmas 5.8.24, 5.8.25, 5.8.26, 5.8.29, 5.8.30. 
QED  
 
Note that we have shown that all axioms of ZFC hold in 
(L[∞],L(∞)), with the exceptions of Power Set and Choice. 
In fact, we have verified Collection, which implies 
Replacement (in the presence of separation).  
 
We now show that the power set axiom holds in (L[∞],L(∞)) 
using indiscernibility.  
 



 726 

LEMMA 5.8.31. For all n ≥ 2, L[cn] ⊆ [0,cn+1). 
 
Proof: Let n ≥ 2. Now L[cn] is internal, and in particular, 
bounded. By Lemma 5.7.30 v), let m > n be such that L[cn] ⊆ 
[0,cm). We can view this as a true statement about cn,cm. By 
Lemma 5.7.30 ix), the statement is true of cn,cn+1. I.e., 
L[cn] ⊆ [0,cn+1). QED  
 
DEFINITION 5.8.29. It is very convenient to define x ⊆* y 
if and only if  
 

x ∈ L[∞] ∧ (∀z ∈ L[∞])(L(∞)(z,x) → L(∞)(z,y)). 
 
Also, x ⊆** y if and only if  
 

x ∈ L[∞] ∧ (∀z ∈ L[∞])(L(∞)(z,x) → z ∈ L[y]). 
 
LEMMA 5.8.32. Let x ⊆** c2. Then x < c3.  
 
Proof: Suppose  
 

1) (∃x ≥ c3)(x ⊆** c2).  
 
By Lemma 5.7.30 ix), for every n ≥ 3,  
 

2) (∃x ≥ cn)(x ⊆** c2).  
 
For each n ≥ 3, let J(n) be the < least x ≥ cn such that x 
⊆** c2.  
 
Note that the J(n), n ≥ 3, are uniformly defined from c2,cn 
without parameters. 
 
Fix n ≥ 3. By Lemma 5.7.30 v), let m > n, and J(n) < cm. By 
Lemma 5.7.30 ix), J(n) < cn+1.  
 
We have established that for all n ≥ 3,  
 

cn ≤ J(n) < cn+1 ∧  
“J(n) ⊆ L[c2]” holds in (L[∞],L(∞)). 

 
In particular, for all n ≥ 3, J(n) < J(n+1). 
 
Let y ∈ L[c2]. By Lemma 5.8.32, y < c3. By Lemma 5.7.30 ix),  
 

L(∞)(y,J(4)) ↔ L(∞)(y,J(5)). 
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This is because J(4),J(5) are defined the same way from 
c2,c4 and from c2,c5, respectively, without parameters. I.e.,  
 

3) (∀y ∈ L[c2])(L(∞)(y,J(4)) ↔ L(∞)(y,J(5))). 
 
By the construction of J, we have  
 

4) J(4) ⊆** c2. 
J(5) ⊆** c2. 

(∀y ∈ L[∞])(L(∞)(z,J(4)) → y ∈ L[c2]). 
(∀y ∈ L[∞])(L(∞)(z,J(5)) → y ∈ L[c2]). 

 
By 3),4), and extensionality in (L[∞],L(∞)), we have J(4) = 
J(5). This contradicts J(4) < J(5).  
 
We have thus refuted 1). Hence  
 

(∀x)(x ⊆** c2 → x < c3).  
 
QED 
 
LEMMA 5.8.33. Let n ≥ 2 and x ⊆** cn. Then x < cn+1.  
 
Proof: By Lemmas 5.8.32 and 5.7.30 ix). QED   
 
LEMMA 5.8.34. Power Set holds in (L[∞],L(∞)). 
 
Proof: Let x ∈ L[∞]. By Lemma 5.7.30 v), let x ∈ L[cn], n ≥ 
2. Let y ⊆* x. Then y ⊆** cn. By Lemma 5.8.33, y < cn+1.  
 
By Lemma 5.7.30 v), let y ∈ L[cm], m ≥ n+2. By Lemma 5.7.30 
ix), y ∈ L[cn+2]. We have thus shown that for all y, 
 

1) y ⊆* x → y ∈ L[cn+2]. 
 

Clearly {y ∈ L[cn+2]: y ⊆* x} is definable in 
(L[cn+2],L(cn+2)). Hence by Lemma 5.8.19, there exists z ∈ 
L[cn+2+1] such that  
 

2) (∀y)(y ⊆* x ↔ (L(cn+2+1)(y,z))). 
 
It follows that in (L[∞],L(∞)), z is the power set of x, 
using Lemma 5.8.21 (sharp extensions). Since x ∈ L[∞] is 
arbitrary, power set holds in (L[∞],L(∞)). QED 
 
LEMMA 5.8.35. ZF holds in (L[∞],L(∞)). All sentences in 
TR(Π0

1,L) hold in (L[∞],L(∞)).  
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Proof: The first claim follows from Lemmas 5.8.30 and 
5.8.34. For the second claim, from the proof of Lemma 
5.8.25, we see that the finite von Neumann ordinals of 
(L[∞],L(∞)) are in order preserving one-one correspondence 
with {x: x < ω}. Therefore the 0,1,+,-,•,↑,log of 
(L[∞],L(∞)) is isomorphic to the 0,1,+,-,•,↑,log of M^, by 
M^ induction, given the one-one correspondence and the 
operations are all internal to M^. The second claim now 
follows from Lemma 5.7.30 iii). QED  
 
LEMMA 5.8.36. There exists a countable model M+ of ZF + 
TR(Π0

1,L), with distinguished elements d1,d2,..., such that  
i) The d’s are strictly increasing ordinals in the sense of 
M+, without an upper bound; 
ii) Let r ≥ 1, and i1,...,i2r ≥ 1, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and min. Let R be a 
2r-ary relation M+ definable without parameters. Let 
α1,...,αr ≤ min(di_1,...,di_r). Then R(di_1,...,di_r,α1,...,αr) 
↔ R(di_r+1,...,di_2r,α1,...,αr). 
 
Proof: Take M+ to be (L[∞],L(∞)). By Lemma 5.8.35, we have 
ZF + TR(Π0

1,L) in M+.  
 
For all n ≥ 1, take dn to be the minimum ordinal of 
(L[∞],L(∞)) lying outside L[c2n]. In fact, dn ∈ L[c2n+1] is 
the set of all ordinals in L[c2n], in the sense of 
(L[∞],L(∞)).  
 
Note that dn ≥ c2n by Lemma 5.8.22. Also, since dn is defined 
without parameters from c2n, we have dn < c2n+1. I.e., for all 
n, c2n ≤ dn < c2n+1. Hence claim i) holds.   
 
Let R be a 2r-ary relation M+ definable without parameters. 
Then R is a 2r-ary relation on L[∞] that is M^ definable 
without parameters. Let (i1,...,ir) and (ir+1,...,i2r) have 
the same order type and min. Let the min be j. Let α1,...,αr 
≤ dj, where the α’s are ordinals in the sense of M+. In 
particular, α1,...,αr are ordinals of (L[∞],L(∞)). It 
follows that α1,...,αr < c2j+1.  
 
We claim that  
 

1) R(di_1,...,di_r,α1,...,αr) ↔  
R(di_r+1,...,di_2r,α1,...,αr) 

 
holds in M+. To see this, replace each di_p by its definition 
in M^ from c2i_p. Then 1) can be viewed as an assertion in M^ 
involving the parameters  
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2) c2i_1,...,c2i_r on the left. 
c2i_r+1,...c2i_2r on the right. 

α1,...,αr ≤ c2j+1. 
j = min(i1,...,i2r). 

 
We can treat c2j as an additional parameter. So we have the 
parameters  
 

3) c2i_1,...,c2i_r on the left, without c2j. 
c2i_r+1,...c2i_2r on the right, without c2j. 

α1,...,αr,c2j ≤ c2j+1. 
j = min(i1,...,i2r). 

 
The 2j must occupy the same positions in i1,...,ir as they 
do in ir+1,...,i2r. Therefore, in 3), the remaining c's on 
the left have the same order type as the remaining c's on 
the right. But they do not necessarily have the same min. 
So we can insert a dummy variable at the end for c2j+1. Thus 
we have  
 

4) c2i_1,...,c2i_r,c2j+1 on the left, without c2j. 
c2i_r+1,...c2i_2r,c2j+1 on the right, without c2j. 

α1,...,αr,c2j ≤ c2j+1. 
j = min(i1,...,i2r). 

 
We now see that the equivalence holds because of Lemma 
5.7.30 ix). QED  
 
LEMMA 5.8.37. There exists a countable model M+ of ZFC + V = 
L + TR(Π0

1,L), with distinguished elements d1,d2,..., such 
that  
i) The d’s are strictly increasing ordinals in the sense of 
M+, without an upper bound; 
ii) Let r ≥ 1, and i1,...,i2r ≥ 1, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and min. Let R be a 
2r-ary relation M+ definable without parameters. Let 
α1,...,αr ≤ min(di_1,...,di_r). Then R(di_1,...,di_r,α1,...,αr) 
↔ R(di_r+1,...,di_2r,α1,...,αr). 
 
Proof: We could have proved the stronger form of Lemma 
5.8.36, with ZFC + V = L instead of ZF. However, this would 
require a bit more than the usual hand waving with regards 
to internalized constructibility. So we have choose to wait 
until we have Lemma 5.8.36, with its honest to goodness 
model of ZF.  
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Start with the structure given by Lemma 5.8.36. Take the 
usual inner model of L. Ordinals are preserved. So we take 
the same d's, and i) is immediate. We still have TR(Π0

1,L), 
and since this inner model is definable without parameters, 
we preserve ii). QED  
  
5.9. ZFC + V = L + {(∃κ)(κ is strongly k-
Mahlo)}k + TR(Π0

1,L), and 1-Con(SMAH). 
 
We fix a countable model M+ and d1,d2,..., as given by Lemma 
5.8.37. We will show that M+ satisfies, for each k ≥ 1, that 
“there exists a strongly k-Mahlo cardinal”.  
 
In section 4.1, we presented a basic discussion of n-Mahlo 
cardinals and strongly n-Mahlo cardinals. The formal 
systems MAH, SMAH, MAH+, and SMAH+, were introduced in 
section 4.1 just before Theorem 4.1.7.   
 
Recall the partition relation given by Lemma 4.1.2. Note 
that Lemma 4.1.2 states this partition relation with an 
infinite homogenous set. A closely related partition 
relation was studied in [Sc74], for both infinite and 
finite homogenous sets. In [Sc74] it is shown that this 
closely related partition relation with finite homogenous 
sets produces strongly Mahlo cardinals of finite order, 
where the order corresponds to the arity of the partition 
relation.  
 
We give a self contained treatment of the emergence of 
strongly Mahlo cardinals of finite order from this related 
partition relation for finite homogenous sets. We have been 
inspired by [HKS87], which also contains a treatment of 
essentially the same partition relation, and answers some 
questions left open in [Sc74]. Our main combinatorial 
result, in the spirit of [Sc74], is Theorem 5.9.5. This is 
a theorem of ZFC, and so we use it within M+. 
 
We then show that this partition relation for finite 
homogenous sets holds in M+. As a consequence, M+ has 
strongly Mahlo cardinals of every finite order.  
 
DEFINITION 5.9.1. We write S ⊆ On to indicate that S is a 
set of ordinals.  
 
The only proper class considered in this section is On, 
which is the class of all ordinals. Hence S must be bounded 
in On. 
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DEFINITION 5.9.2. We write sup(S) for the least ordinal 
that is at least as large as every element of S.  
 
DEFINITION 5.9.3. We write [S]k for the set of all k element 
subsets of S. We say that f:[S]k → On is regressive if and 
only if for all A ∈ [S\{0}]k, f(A) < min(A).  
 
DEFINITION 5.9.4. We say that E is min homogeneous for f if 
and only if E ⊆ S and for all A,B ∈ [E]k, if min(A) = 
min(B) then f(A) = f(B). 
 
DEFINITION 5.9.5. We write R(S,k,r) if and only if S ⊆ On, 
k,r ≥ 1, and for all regressive f:[S]k → On, there exists 
min homogenous E ∈ [S]r for f. 
 
DEFINITION 5.9.6. We say that S ⊆ On is closed if and only 
if the sup of every nonempty subset of S lies in S. Thus ∅ 
is closed. Note that every nonempty closed S has sup(S) ∈ 
S.  
 
DEFINITION 5.9.7. Let f:[S]k → On. When we write 
f(α1,...,αk), we mean f({α1,...,αk}), and it is assumed that 
α1 < ... < αk.  
 
LEMMA 5.9.1. The following is provable in ZFC. Suppose 
R(S,k,r), where S ⊆ On\ω. Let n ≥ 1 and f1,...,fn each be 
regressive functions from [S]k into On. There exists E ∈ 
[S]r which is min homogenous for f1,...,fn. 
 
Proof: Let S,k,r,n,f1,...,fn be as given. Let H:(sup(S)+1)1+n 
→ sup(S)+1 be such that  
 
i) For all ω ≤ α ≤ sup(S) and β1,...,βn ≤ α, H(α,β1,...,βn) < 
α; 
ii) For all ω ≤ α ≤ sup(S) and β1,...,βn,γ1,...,γn ≤ α, 
H(α,β1,...,βn) = H(α,γ1,...,γn) → (β1 = γ1 ∧ ... ∧ βn = γn). 
 
We can find such an H because for all α ≥ ω, |αn| = |α|. 
 
Let g:[S]k → On be defined as follows. g(x1,...,xk) = 
H(x1,f1(x1,...,xk),...,fn(x1,...,xk)).  
 
To see that g is regressive, let x1 < ... < xk be from S. 
Then ω ≤ x1,...,xk, and so  
 

f1(x1,...,xk),...,fn(x1,...,xk) < x1. 
g(x1,...,xk) =  
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H(x1,f1(x1,...,xk),...,fn(x1,...,xk)) < x1. 
 
By R(S,k,r), let E ∈ [S]r be min homogenous for g. To see 
that E is min homogenous for f1,...,fn, let V1,V2 ⊆ E be k 
element sets with the same minimum, say α ∈ E. Then ω ≤ α 
and g(V1) = g(V2). Hence 
 

H(α,f1(V1),...,fn(V1)) = H(α,f1(V2),...,fn(V2)). 
 
By ii), each fi(V1) = fi(V2). QED 
 
LEMMA 5.9.2. The following is provable in ZFC. Let S be a 
closed set of infinite ordinals, none of which are strongly 
inaccessible cardinals. Then ¬R(S,3,5).  
 
Proof: Let S be as given, and assume R(S,3,5). Then |S| ≥ 5. 
We assume that this S has been chosen so that max(S) = α is 
least possible. Then 
 
i. S is a closed set of infinite ordinals with max(S) = α. 
ii. S contains no strongly inaccessible cardinals. 
iii. R(S,3,5). 
iv. If S’ is a closed set of infinite ordinals containing 
no strongly inaccessible cardinals, max(S’) < α, then 
¬R(S',3,5).  
 
In particular,  
 
v. For all δ < α, ¬R(S ∩ δ+1,3,5). 
 
We will obtain a contradiction. Note that α is infinite, 
but not a strongly inaccessible cardinal. By i) and |S| ≥ 5, 
we see that α > ω. 
 
case 1. α is a limit ordinal, but not a regular cardinal. 
Let cf(α) = β < α, and let {αγ: γ < β} be a strictly 
increasing transfinite sequence of ordinals that forms an 
unbounded subset of α, where α0 > β. Note that β is a 
regular cardinal. 
 
For δ < α, we write τ[δ] for the least γ such that δ ≤ αγ.  
 
For each γ < β, let fγ:[S ∩ αγ+1]

3 → On be regressive, where 
there is no min homogenous E ∈ [S ∩ αγ+1]

5 for fγ.  
 
Let g:[S]3 → On be defined as follows. g(x,y,z) = 
fτ[z](x,y,z) if z < α; 0 otherwise. Note that in the first 
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case, z < α, we have z ≤ ατ[z] < α, and x,y,z ∈ S ∩ ατ[z]+1. 
Hence in the first case, fτ[z](x,y,z) is defined. 
 
Let h:[S]3 → On be defined by h(x,y,z) = τ[y] if τ[y] < x; 0 
otherwise. 
 
Let h’:[S]3 → On be defined by h’(x,y,z) = τ[z] if τ[z] < x; 
0 otherwise. 
 
Let J:[S]3 → On be defined by J(x,y,z) = 1 if z < α; 0 
otherwise.  
 
Let K:[S]3 → On be defined by K(x,y,z) = 1 if y < β; 0 
otherwise. 
 
Let T:[S]3 → On be defined by T(x,y,z) = 1 if z < β; 0 
otherwise.   
 
Obviously g,h,h’,J,K,T are regressive. By R(S,3,5) and 
Lemma 5.9.1, let E ∈ [S]5 be min homogenous for 
g,h,h’,J,K,T.  
 
Write E = {x,y,z,w,u}<. Suppose u = α. Then J(x,y,u) = 
J(x,y,w) = 0, and so w = u = α, which is impossible. Hence 
u < α.  
 
Now suppose y < β. Then K(x,y,z) = K(x,z,u) = 1, and so z < 
β. Hence T(x,y,z) = T(x,y,u) = 1. Therefore u < β. Hence 
τ[b] = 0 for all b ∈ E. 
 
We now claim that E is min homogenous for f0. To see this, 
let V1,V2 ⊆ E be 3 element sets with the same min. Since 
τ[max(V1)] = τ[max(V2)] = 0, we see that g(V1) = g(V2) = 
f0(V1) = f0(V2). This establishes the claim.  
 
Since y < β, we have E ⊆ S ∩ α0+1 (using α0 > β). This min 
homogeneity contradicts the choice of f0. Hence y < β has 
been refuted.  
 
We have thus shown that β ≤ y,z,w,u < α. Hence 
τ[z],τ[w],τ[u] < y. Since h’(y,z,w) = h’(y,z,u), we have τ[w] 
= τ[u]. Since h(y,z,w) = h(y,w,u), we have τ[z] = τ[w].  
 
We claim that E is min homogenous for fτ[u]. To see this, let 
V1,V2 ⊆ E be 3 element sets with the same min. Then 
τ[max(V1)] = τ[max(V2)] = τ[u]. Hence g(V1) = g(V2) = fτ[u](V1) 
= fτ[u](V2). This establishes the claim. This min homogeneity 
contradicts the choice of fτ[u].  
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case 2. α is a regular cardinal or a successor ordinal. In 
an abuse of notation, we reuse several letters from case 1.  
 
Since α > ω is not strongly inaccessible, let β < α, 2β ≥ α. 
Let K:α → ℘(β) be one-one, where ℘(β) is the power set of 
β. Obviously β ≥ ω. 
 
Let f:[S ∩ β+1]3 → On be regressive, where there is no min 
homogenous E ∈ [S ∩ β+1]5 for f.  
 
Let f’:[S]3 → On extend f with the default value 0. 
 
Let g:[S]3 → On be defined by g(x,y,z) = min(K(y) Δ K(z)) 
if this min is < x; 0 otherwise. Since K is one-one, we are 
not taking min of the empty set, and so g is well defined. 
 
Let h:[S]3 → On be defined by h(x,y,z) = 1 if y ≤ β; 0 
otherwise.  
 
Let h’:[S]3 → On be defined by h’(x,y,z) = 1 if z ≤ β; 0 
otherwise.  
 
Obviously f’,g,h,h' are regressive. By R(S,3,5) and Lemma 
5.9.1, let E ∈ [S]5 be min homogenous for f’,g,h,h'. Write E 
= {x,y,z,w,u}<. If y ≤ β then h(x,y,z) = 1, and hence 
h(x,w,u) = 1. Therefore w ≤ β. Also h’(x,y,w) = 1. Hence 
h’(x,y,u) = 1, and so u ≤ β. Since E is min homogenous for 
f’, clearly E is min homogenous for f (using u ≤ β). This 
contradicts the choice of f. 
 
So we have established that y > β. Note that  
 

g(y,z,w) = min(K(z) Δ K(w)) 
g(y,z,u) = min(K(z) Δ K(u)) 
g(y,w,u) = min(K(w) Δ K(u)) 

 
since K is one-one, and these min's are < β < y. Therefore  
 

g(y,z,w) = g(y,z,u) = g(y,w,u). 
min(K(z) Δ K(w)) = min(K(z) Δ K(u)) = min(K(w) Δ K(u)). 

 
This is a contradiction. Hence the Lemma is proved. QED 
 
LEMMA 5.9.3. The following is provable in ZFC. Let k ≥ 0 and 
S be a closed set of infinite ordinals, none of which are 
strongly k-Mahlo cardinals. Then ¬R(S,k+3,k+5). 
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Proof: We proceed by induction on k ≥ 0. The case k = 0 is 
from Lemma 5.9.2. Suppose this is true for a fixed k ≥ 0. We 
want to prove this for k+1.  
 
Assume this is false for k+1, k ≥ 0. As in Lemma 5.9.2, we 
minimize max(S). Thus we start with the following 
assumptions, and derive a contradiction:  
 
i. S is a closed set of infinite ordinals with max(S) = α, 
ii. S contains no strongly (k+1)-Mahlo cardinals.  
iii. R(S,k+4,k+6). 
iv. If S’ is a closed set of infinite ordinals containing 
no strongly (k+1)-Mahlo cardinals, max(S’) < α, then 
¬R(S’,k+4,k+6). 
v. If S’ is a closed set of infinite ordinals containing no 
strongly k-Mahlo cardinals, then ¬R(S’,k+3,k+5). 
 
In particular,  
 
vi. For all β < α, ¬R(S ∩ β+1,k+4,k+6). 
 
We will obtain a contradiction. Note that α is infinite but 
not a strongly (k+1)-Mahlo cardinal. By iii), |S| ≥ k+6, and 
α > ω.  
 
We first prove that α is a limit ordinal. Suppose α = β+1. 
Then S ∩ β+1 = S ∩ α = S\{α}, and so by vi), 
¬R(S\{α},k+4,k+6). 
 
Let G:[S\{α}]k+4 → On be regressive, where there is no min 
homogenous E ∈ [S\{α}]k+6 for G.  
 
Let G*:[S]k+4 → On extend G with default value 0.  
 
Let H:[S]k+4 → On be defined by H(x1,...,xk+4) = 1 if xk+4 = 
α; 0 otherwise. 
 
Obviously G*,H are regressive. By R(S,k+4,k+6) and Lemma 
5.9.1, let E ∈ [S]k+6 be min homogenous for G*,H. Write E = 
{u1,...,uk+6}<.  
 
Suppose uk+6 = α. Then H(u1,...,uk+3,uk+6) = 1 = H(u1,...,uk+4). 
Hence uk+4 = uk+6 = α. This is impossible. Hence uk+6 < α, 
{u1,...,uk+6} ⊆ S\{α}. Obviously {u1,...,uk+6} is min 
homogenous for G. This is a contradiction.  
 
Thus we have shown that α is a limit ordinal > ω.  
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Since α is not strongly (k+1)-Mahlo, let A be a closed and 
unbounded subset of [ω,α], where ω ∈ A, and no element of A 
is a strongly k-Mahlo cardinal.  
 
By assumptions vi,v, for each β < α, let 
 
i) fβ:[S ∩ β+1]

k+4 → On be regressive, where there is no min 
homogenous E ∈ [S ∩ β+1]k+6 for fβ. 
ii) gβ:[A ∩ β+1]

k+3 → On be regressive, where there is no 
min homogenous E ∈ [A]k+5 for gβ. 
 
For all x ∈ [ω,α), let β[x] be the greatest β ∈ A such that 
β ≤ x. Let γ[x] be the least γ ∈ A such that x < γ.  
 
Let f’:[S]k+4 → On be defined by f’(x1,...,xk+4) = 
fγ[x_k+4](x1,...,xk+4) if xk+4 < α; 0 otherwise.  
 
Let g’:[S]k+4 → On be defined by g’(x1,...,xk+4) = 
gβ[x_k+4](β[x1],...,β[xk+3]) if xk+4 ∈ [ω,α) ∧ β[x1] < ... < 
β[xk+4]; 0 otherwise. 
 
Let h:[S]k+4 → On be defined by h(x1,...,xk+4) = 1 if xk+4 = 
α; 0 otherwise. 
 
For 1 ≤ i ≤ k+3, let Ji:[S]k+4 → On be defined by  
 

Ji(x1,...,xk+4) = 1  
if  β[xi] < β[xi+1];  

0 otherwise. 
 
Obviously f’,g',h,J1,...,Jk+3 are regressive. By R(S,k+4,k+6) 
and Lemma 5.9.1, let E ∈ [S]k+6 be min homogenous for 
f’,g’,h,J1,...,Jk+3. Write E = {u1,...,uk+6}<. Obviously, u1 is 
infinite, and so β[u1] is defined. 
 
Suppose uk+6 = α. Then h(u1,...,uk+3,uk+6) = h(u1,...,uk+3,uk+5) 
= 1, and so uk+5 = α. This is impossible. Hence uk+6 < α. 
 
Suppose β[ui] = β[ui+1] < β[ui+2], for some 1 ≤ i ≤ k+2. Then 
Ji(u1,...,uk+4) = 0 ∧ Ji(u1,...,ui,ui+2,...,uk+5) = 1. This is a 
contradiction. 
 
Suppose β[ui] < β[ui+1] = β[ui+2], for some 2 ≤ i ≤ k+2. Then 
Ji(u1,...,uk+4) = 1 ∧ Ji(u1,...,ui-1,ui+1,...,uk+5) = 0. This is 
also a contradiction.  
 
We claim that  
 



 737 

1) β[u2] = ... = β[uk+4] ∨  
β[u1] < ... < β[uk+4]. 

 
To see this, suppose ¬(β[ui] < β[ui+1]), 1 ≤ i ≤ k+3. Then 
β[ui] = β[ui+1]. Hence β[u1] = ... = β[ui] = β[ui+1] = ... = 
β[uk+4].  
 
Under the first disjunct of 1), Jk+3(u1,...,uk+4) = 0 = 
Jk+3(u1,...,uk+2,uk+4,uk+5) = Jk+3(u1,...,uk+2,uk+5,uk+6). Hence 
β[uk+4] = β[uk+5] = β[uk+6]. 
 
Under the second disjunct of 1), Jk+3(u1,...,uk+4) = 1 = 
Jk+3(u1,...,uk+2,uk+4,uk+5) = Jk+3(u1,...,uk+2,uk+5,uk+6). Hence 
β[uk+4] < β[uk+5] < β[uk+6]. 
 
We have thus shown that  
 

2) β[u2] = ... = β[uk+6] ∨ 
β[u1] < ... < β[uk+6]. 

 
case 1. β[u2] = ... = β[uk+6]. We claim that E is min 
homogenous for fγ[u_k+6]. To see this, let V1,V2 ⊆ E be k+4 
element sets with the same min. Then β[max(V1)] = β[max(V2)] 
= β[uk+6], γ[max(V1)] = γ[max(V2)] = γ[uk+6], f’(V1) = f’(V2), 
and uk+6 < α. Hence fγ[u_k+6](V1) = fγ[u_k+6](V2). This establishes 
the claim. This contradicts the choice of fγ[u_k+6].  
 
case 2. β[u1] < ... < β[uk+6]. We claim that 
β[u1],β[u2],...,β[uk+5]} is min homogenous for gβ[u_k+6]. To see 
this, let V1,V2 ⊆ {β[u1],β[u2],...,β[uk+5]} be k+3 element 
subsets with the same min. Then g’(V1 ∪ {β[uk+6]}) = g’(V2 ∪ 
{β[uk+6]}) = gβ[u_k+6](V1) = gβ[u_k+6](V2), using uk+6 < α. This 
establishes the claim. Note that {β[u1],β[u2],...,β[uk+5]} ⊆ 
A ∩ β[uk+6]+1, uk+6 < α, β[uk+6] < α. But this contradicts the 
choice of gβ[u_k+6].  
 
We have derived the required contradiction, and the Lemma 
has been proved. QED 
 
LEMMA 5.9.4. The following is provable in ZFC. For all 
integers k ≥ 0 and ordinals α, if R(α+1\ω,k+3,k+5) then 
there is a strongly k-Mahlo cardinal ≤ α.  
 
Proof: Let k ≥ 0 and R(α+1\ω,k+3,k+5). Note that S = α+1\ω 
is a closed set of infinite ordinals. By Lemma 5.9.3, if 
none of them are strongly k-Mahlo cardinals, then 
¬R(S,k+3,k+5). Hence α+1\ω contains a strongly k-Mahlo 
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cardinal. Therefore there is a strongly k-Mahlo cardinal ≤ 
α. QED 
 
We will not need the following result, which is of 
independent interest. 
 
THEOREM 5.9.5. The following is provable in ZFC. Let k < ω 
and α be an ordinal. Then R(α\ω,k+3,k+5) if and only if 
there is a strongly k-Mahlo cardinal ≤ α. 
 
Proof: Let R(α\ω,k+3,k+5). It is immediate that 
R(α+1\ω,k+3,k+5). By Lemma 5.9.4, there is a strongly k-
Mahlo cardinal ≤ α.  
 
Now let κ ≤ α be strongly k-Mahlo. It follows easily from 
[Sc74] that R(κ,k+3,k+5). Hence R(α,k+3,k+5). QED 
 
We now return to the model M+ of ZFC + V = L + TR(Π0

1,L) 
given by Lemma 5.8.37. 
 
LEMMA 5.9.6. Let k,r ≥ 1 be standard integers. Then 
R(dr+2+1\ω,k,r) holds in M+. 
 
Proof: Let k be as given. We argue in M+. By Lemma 5.8.37, 
M+ satisfies ZFC + V = L. 
 
Suppose R(dr+2+1\ω,k,r) fails in M+. We can choose 
f:[dr+2+1\ω]k → On to be least in the constructible 
hierarchy such that f is regressive and there is no E ∈ 
[dr+2+1\ω]r that is min homogenous for f. Note that f is M+ 
definable from dr+2.   
 
We claim that {d2,...,dr+1} is min homogenous for f. To see 
this, let 2 ≤ i1 < ... < ik ≤ r+1, and 2 ≤ j1 < ... < jk ≤ 
r+1, where i1 = j1. By Lemma 5.8.37 ii), for all α ≤ di_1,  
 

f(di_1,...,di_k) = α ↔ f(dj_1,...,dj_k) = α. 
 
Since f is regressive, choose α = f(di_1,...,di_k) < di_1. By 
Lemma 5.8.37 ii),   
 

f(di_1,...,di_k) = α ↔ f(dj_1,...,dj_k) = α. 
f(dj_1,...,dj_k) = α = f(di_1,...,di_k). 

 
Note that by Lemma 5.8.37, d2 > ω. Hence {d2,...,dr+1} ⊆ 
dr+2+1\ω is min homogenous for f. But this contradicts the 
choice of f. QED 
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LEMMA 5.9.7. Let k ≥ 0 be a standard integer. Then “there 
exists a strongly k-Mahlo cardinal” holds in M+. As a 
consequence, ZFC + V = L + {there exists a strongly k-Mahlo 
cardinal}k + TR(Π0

1,L) is consistent.  
 
Proof: Immediate from Lemmas 5.8.37, 5.9.4, and 5.9.6. QED  
 
LEMMA 5.9.8. ZFC proves that Proposition C implies 1-
Con(SMAH).  
 
Proof: We argue in ZFC + Proposition C. Now the entire 
reversal from section 5.1 through Lemma 5.9.7 was conducted 
within ZFC. So M+ is available, and we know that SMAH holds 
in M+. Let SMAH prove ϕ, where ϕ is a Σ01 sentence of L. 
Since SMAH holds in M+, so does ϕ. If ϕ is false then ¬ϕ ∈ 
TR(Π0

1,L), in which case ¬ϕ holds in M+. This contradicts 
that ϕ holds in M+. Hence ϕ is true. (Here the outermost ¬ 
in ¬ϕ is pushed inside). QED  
 
THEOREM 5.9.9. None of Propositions A,B,C are provable in 
SMAH, provided MAH is consistent. They are provable in MAH+. 
These claims are provable in RCA0. 
 
Proof: Suppose Proposition C is provable in SMAH. By Lemma 
5.9.8, SMAH proves the consistency of SMAH. By Gödel’s 
second incompleteness theorem, SMAH is inconsistent. By the 
last claim of Theorem 4.1.7, it follows that MAH is 
inconsistent. Both Propositions A,B each imply Proposition 
C over RCA0 (see Lemma 4.2.1).  
 
The second claim is by Theorem 4.2.26. These claims are 
provable in RCA0 since RCA0 can recognize proofs, and prove 
the Gödel second incompleteness theorem. QED 
 
We now provide more refined information. 
 
Recall the formal system ACA’ from Definition 1.4.1.  
 
LEMMA 5.9.10. The derivation of 1-Con(SMAH) from 
Proposition C, in sections 5.1-5.9, can be formalized in 
ACA’. I.e., ACA’ proves that each of Propositions A,B,C 
implies 1-Con(SMAH).  
 
Proof: Most of the development lies within RCA0. But since 
we are stuck using ACA' already in section 5.2, we will use 
the stronger fragment ACA0 of ACA' instead of RCA0 for the 
discussion. We regard Proposition C, which is readily 
formalized in ACA0 (or even RCA0), as the hypothesis, which 
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we take as implicit in the section by section analysis 
below. 
 
section 5.1. All within ACA0. 
 
section 5.2. All within ACA0 except Lemma 5.2.5. Lemma 5.2.5 
is a sharp form of the usual Ramsey theorem on N. This is 
provable in ACA'. In fact, it is provably equivalent to 
ACA' over RCA0. Hence Lemma 5.2.12 is provable in ACA'.  
 
section 5.3. All within ACA0, from Lemma 5.2.12. In the 
proof of Lemma 5.3.3, we apply the compactness theorem to a 
set T of sentences that is Π0

1. T has bounded quantifier 
complexity, and the proof that every finite subset of T has 
a model, and the proof that every finite subset of T has a 
model can be formulated and proved in ACA0. The application 
of compactness to obtain a model M of T can be formalized 
in ACA0. In fact, we obtain a model M of T with a 
satisfaction relation, within ACA0. In the proof, we then 
adjust M by taking an initial segment. This construction 
can also be formalized in ACA0. However, we lose the 
satisfaction relation within ACA0, and cannot recover it 
even within ACA'. Nevertheless, we retain a satisfaction 
relation for all formulas whose quantifiers are bounded in 
the adjusted M, since this restricted satisfaction relation 
is obtained from the satisfaction relation for the original 
unadjusted M in ACA0. The statement of Lemma 5.3.18 has 
bounded quantifier complexity, and so is formalizable in th 
language of ACA0. We conclude that Lemma 5.3.18, with 
bounded satisfaction relation, is provable in ACA0 from 
Lemma 5.2.12. This bounded satisfaction relation 
incorporates the constants from M. 
 
section 5.4. All within ACA0, from Lemma 5.3.18. The 
quantifiers in E formulas of L(E) are required to be 
bounded in the structure M. Hence the E formulas of L(E) 
are covered by the bounded satisfaction relation for M. 
Since only E formulas of L(E) are considered, Lemma 5.4.17 
is provable in ACA0 from Lemma 5.3.18.  
 
section 5.5. All within ACA', from Lemma 5.4.17. Lemma 
5.5.1 involves arbitrary formulas of L(E), and so it needs 
ACA' to formulate, using partial satisfaction relations for 
M. The induction hypothesis as stated in the proof of Lemma 
5.5.1 is Σ11 (or Π1

1), and therefore the induction, as it 
stands, is not formalizable in ACA'. However, this can be 
fixed. We fix n, the number of quantifiers, and form the 
satisfaction relation for n quantifier formulas, for M, in 



 741 

ACA'. We then prove the displayed equivalence by all 0 ≤ n' 
≤ n by induction on n'. This modification reduces the 
induction to an arithmetical induction, well within ACA'. 
Note that we can use Lemma 5.5.1 to construct the full 
satisfaction relation for M from the bounded satisfaction 
relation for M, within ACA0. Also, the construction of the 
sets Xk can easily be formalized in ACA'. In the proof of 
Lemma 5.5.4, second order quantification in formulas of the 
language L*(E) are removed. This removal allows us to 
construct the satisfaction relation for M* from the 
satisfaction relation for M, within ACA0. This allows us to 
argue freely within ACA0 throughout the rest of section 5.5. 
We conclude that Lemma 5.5.8, with satisfaction relation, 
is provable in ACA' from Lemma 5.4.17.  
 
section 5.6. The formalization in ACA0 is straightforward 
through the development of internal arithmetic in Lemma 
5.6.12, via the internal structure M(I). The substructure 
M|rng(h) is defined arithmetically, with an arithmetic 
isomorphism from M(I) onto M|rng(h). The satisfaction 
relation for M|rng(h) is constructed from the satisfaction 
relation for M(I) via the isomorphism, within ACA0. Hence 
the statement and proof that M|rng(h) satisfies PA(L) + 
TR(Π0

1,L) lie within ACA0. It immediately follows, in ACA0, 
that M(I) satisfies PA(L) + TR(Π0

1,L). It is clear that the 
use of h and M|rng(h) is an unnecessary convenience that 
causes no difficulties within ACA0. The conversion to 
linearly ordered set theory is by explicit definition, and 
so Lemma 5.6.20, with satisfaction relation, is provable in 
ACA0 from Lemma 5.5.8. 
 
section 5.7. The development through Lemma 5.7.28 is 
internal to M#, and so cause no difficulties within ACA0. In 
the subsequent construction of M^, we use equivalence 
classes under a definable equivalence relation as points. 
Instead of using the actual equivalence classes, we can 
instead use the equivalence relation as the equality 
relation. The sets Yk become families of relations that 
respect the equality relation. The construction is by 
explicit definition, and so we obtain a version of the M^ 
of Lemma 5.7.30 using this equality relation, with a 
satisfaction relation. We can then factor out by the 
equality relation, using a set of representatives of the 
equivalence classes. Specifically, taking the numerically 
least element of each equivalence class as the 
representative of that equivalence class. All of this can 
easily be done in ACA0. Hence Lemma 5.7.30, with 
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satisfaction relation, is provable in ACA0 from Lemma 
5.6.20. 
 
section 5.8. All within ACA0 from Lemma 5.7.30. This is an 
inner model construction that is totally definable. Hence 
Lemma 5.8.37, with satisfaction relation, is provable in 
ACA0 from Lemma 5.7.30. 
 
section 5.9. Using the satisfaction relation for M+, we see 
that M+ satisfies ZFC + V = L + SMAH + Π0

1(L), within ACA0. 
Again using the satisfaction relation for M+, we have 1-
Con(SMAH), within ACA0.  
 
From these considerations, we see that ACA' + Proposition C 
proves 1-Con(SMAH). Since B → A → C in RCA0, we have that 
ACA' + Proposition A, and ACA' + Proposition B, also prove 
1-Con(SMAH). QED 
  
We conjecture that RCA0 proves that Propositions A,B,C each 
imply 1-Con(SMAH).  
 
DEFINITION 5.9.8. The system EFA = exponential function 
arithmetic is in the language 0,<,S,+,-,•,↑,log, and 
consists of the axioms for successor, defining equations 
for <,+,-,•,↑,log and induction for all Δ0 formulas in 
0,<,S,+,-,•,↑,log.  
 
EFA is essentially the same as the system IΣ0(exp). See 
[HP93]. 
 
Also recall the following result from Chapter 4.  
 
THEOREM 4.4.11. Propositions A,B,C are provable in ACA’ + 
1-Con(MAH). 
 
Thus we have  
 
THEOREM 5.9.11. ACA’ proves the equivalence of each of 
Propositions A,B,C and 1-Con(MAH), 1-Con(SMAH). 
 
Proof: We have only to remark that EFA proves 1-Con(MAH) → 
1-Con(SMAH). This is from Lemma 4.1.7. QED  
 
THEOREM 5.9.12. None of Propositions A,B,C are provable in 
any set of consequences of SMAH that is consistent with 
ACA’. The preceding claim is provable in RCA0. For finite 
sets of consequences, the first claim is provable in EFA. 
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Proof: Suppose Proposition C is provable in T, where  
 

SMAH proves T. 
T + ACA’ is consistent. 
T proves Proposition C. 

 
Let T* be finitely axiomatized, where 
 

SMAH proves T*. 
T* + ACA' is consistent. 
T* proves Proposition C. 

 
By Theorem 5.9.11, T* proves 1-Con(SMAH). In particular, T* 
proves Con(T* + ACA'), using that T* + ACA' is finite, and 
SMAH proves T* + ACA'. By Gödel’s second incompleteness 
theorem, T* + ACA' is inconsistent. This is a 
contradiction. The argument is obviously formalizable in 
RCA0. If T is already finite, then there is no need for 
RCA0, and we can use EFA = IΣ0(exp) instead. QED 
 

CHAPTER 6.  
FURTHER RESULTS 
 
6.1. Propositions D-H. 
6.2. Effectivity. 
6.3. A Refutation. 
 
6.1. Propositions D-H. 
 
Our treatment of Propositions A,B,C culminated with 
Theorems 5.9.9, 5.9.11, and 5.9.12 at the end of Chapter 5.  
 
In this section, we consider five Propositions D-H that 
have the same metamathematical properties as Propositions 
A,B,C. We will also consider some variants of Propositions 
D-H that do not share these properties, or whose status is 
left open.  
 
Recall the main theorems of Chapter 5 (in section 5.9), 
which are Theorems 5.9.9, 5.9.11, and 5.9.12. Examination 
of the proofs of these three Theorems reveal that Theorem 
5.9.11 with 1-Con(SMAH) is the key. If ACA’ proves the 
equivalence of a statement with 1-Con(SMAH) then all of the 
other properties provided by these three Theorems quickly 
follow.   
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Accordingly, we establish these same three Theorems for 
Propositions D-H by showing that they are also each 
equivalent to 1-Con(SMAH) over ACA’.  
 
We begin with Proposition D (see below), which is a 
sharpening of Proposition B. Proposition D immediately 
implies Propositions A-C over RCA0.  
 
Note that Propositions A-C are based on ELG. Examination of 
the proof of Proposition B in Chapter 4 shows that we can 
separately weaken the conditions on f,g in different ways. 
Also, we can place an inclusion condition on the starting 
set A1. As usual, we use | | for the sup norm, or max. This 
results in Proposition D below. 
 
DEFINITION 6.1.1. We say that f is linearly bounded if and 
only if f ∈ MF, and there exists d such that for all x ∈ 
dom(f),  
 

f(x) ≤ d|x|. 
 
We let LB be the set of all linearly bounded f. 
 
DEFINITION 6.1.2. We say that g is expansive if and only if 
g ∈ MF, and there exists c > 1 such that for all but 
finitely many x ∈ dom(f), 
 

c|x| ≤ g(x) 
 
We let EXPN be the set of all expansive g. 
 
Recall the definitions of MF, SD (Definition 1.1.2), and 
ELG, EVSD (Definitions 2.1, 2.2). 
 
PROPOSITION D. Let f ∈ LB ∩ EVSD, g ∈ EXPN, E ⊆ N be 
infinite, and n ≥ 1. There exist infinite A1 ⊆ ... ⊆ An ⊆ N 
such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅;  
iii) A1 ⊆ E. 
 
Note that ELG ⊆ LB ∩ EVSD ∩ EXPAN, and so Proposition D 
immediately implies Proposition B.  
 
Proposition D is the strongest Proposition that we prove in 
this book (from large cardinals). 
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Recall that Propositions A-C are official statements of 
BRT. More accurately, Proposition B is really an infinite 
collection of statements of BRT.  
 
Proposition D not a statement (or statements) of BRT for 
two reasons.  
 
a. There is no common set of functions used for f,g 
(asymmetry). 
b. The set E is used as data, rather than just f,g.  
 
Features a,b both suggest very natural expansions of BRT. 
Feature a suggests “mixed BRT”, where one uses several 
classes of functions instead of just one. One can go 
further and use several classes of sets as well.  
 
Feature b in Proposition D suggests another very natural 
expansion of BRT. In BRT, we consider statements of the 
form  
 

given functions there are sets such that  
a given Boolean relation holds between the sets  

and their images under the functions. 
 
We can expand BRT with 
 

given functions and sets there are sets such that  
a given Boolean relation holds between the sets  

and their images under the functions. 
 
We will not pursue such expansions of BRT in this book.  
 
We remark that feature b can be removed (in some contexts 
such as here) by introducing a new function h and asserting 
that A1 ⊆ hN (obviously hN = rng(h)).  
 
We now prove Proposition D in SMAH+ by adapting the proof of 
Proposition B in SMAH+ given in section 4.2.  
 
We fix f,g,E as given by Proposition D. Analogously to 
section 4.2, we let f be p-ary, g be q-ary. We fix an 
integer b ≥ 1 such that for all x ∈ Np and y ∈ Nq, 
 
i. if |x|,|y| > b then  
 

|x| < f(x) ≤ b|x|. 
 (1 + 1/b)|y| ≤ g(y). 
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ii. if |x| ≤ b then f(x) ≤ b2.  
 
Note how our inequalities are weaker than those used in 
section 4.2.  
 
We also fix n ≥ 1 and a strongly pn-1-Mahlo cardinal κ. 
 
The first place in section 4.2 that needs to be modified is 
at Lemma 4.2.2. Here we must use the given infinite set E ⊆ 
N.  
 
LEMMA 4.2.2’. There exist infinite sets E ⊇ E0 ⊇ E1 ⊇ ... 
indexed by N, such that for all i ≥ 0, ϕ ∈ AF(L), lth(ϕ) ≤ 
i, and increasing partial h1,h2:V(L) → N adequate for ϕ with 
rng(h1),rng(h2) ⊆ Ei, we have Sat(M,ϕ,h1) ↔ Sat(M,ϕ,h2). 
 
Proof: See the proof of Lemma 4.2.2. QED 
 
Lemma 4.2.3 do not involve our inequalities i,ii, and 
therefore require no modification. 
 
We need to sharpen Lemma 4.2.4 for later purposes, since we 
do not have an upper bound for g. We use the # notation 
that was introduced much later just before Lemma 4.2.16.  
 
LEMMA 4.2.4’. Let ϕ ∈ AS(L*). Sat(M*,ϕ) if and only if ϕ ∈ 
T. <* is a linear ordering on N*. Let n ≥ 0, t ∈ CT(L*), 
#(t) ≤ n. Then t < cn+1 ∈ T.  
 
Proof: For the first claim, see the proof of Lemma 4.2.4. 
For the last claim, let i = lth(t < cn+1). The unique 
increasing bijection h:V(L) → Ei has Val(M,t’,h) < h(vn+1), 
where t’ is the result of replacing each ci by vi, using the 
indiscernibility of Ei. Argue as before. QED   
 
Lemmas 4.2.5 - 4.2.8 do not involve our inequalities i,ii, 
and therefore require no modification. 
 
We sharpen Lemma 4.2.9 for later purposes, since we do not 
have an upper bound for g. 
 
LEMMA 4.2.9’. These definitions of <**, +**, f**, g** are 
well defined. Let t ∈ CT(L**), #(t) ≤ α. Then t <** cα+1**.  
 
Proof: Use Lemma 4.2.4’ and the proof of Lemma 4.2.9. QED 
 
Lemmas 4.2.10' - 4.2.14' do not involve our inequalities 
i,ii. 



 747 

 
We need to weaken Lemma 4.2.15, in light of our 
inequalities i,ii. 
 
LEMMA 4.2.15’. Let x1,...,xp,y1,...,yq ∈ N**, where 
|x1,...,xp|,|y1,...,yq| >** b^. Then  
 

|x1,...,xp| <** f**(x1,...,xp) ≤** b|x1,...,xp|. 
(1 + 1/b)|y1,...,yq| ≤** g**(y1,...,yq). 

 
If |x1,...,xp| ≤** b^ then f(x1,...,xp) ≤** b2^. 
 
Proof: See the proof of Lemma 4.2.15. QED 
 
We aim for a modification of the crucial well foundedness 
given by Lemma 4.2.19. This was stated using all elements 
of N**. In other words, for all terms in CT(L**). We cannot 
establish such a well foundedness result in the present 
setting for all terms in CT(L**). We have weakened the 
inequalities for f**,g** too much. 
 
However, we can establish this well foundedness result for 
the restricted class of terms, CT(L**\g) consisting of all 
closed terms of L** in which g does not appear. 
 
LEMMA 4.2.16’. Let t ∈ CT(L**). #(t) = -1 ↔ Val(M**,t) is 
standard. Suppose #(t) = cα. Then cα** ≤ Val(M**,t) <** 
cα+1**. Let s ∈ CT(L**\g). Suppose #(s) = cα. There exists a 
positive integer d such that cα** ≤** Val(M**,s) <** dcα** 
<** cα+1**. 
 
Proof: For the equivalence in the first claim, see the 
proof of Lemma 4.2.16. For the remaining claims, use 
induction on s,t, Lemmas 4.2.4’, 4.2.9’, 4.2.15’, and the 
proof of Lemma 4.2.16. QED 
 
Lemmas 4.2.17, 4.2.18 do not involve our inequalities i,ii, 
and therefore require no modification. 
 
DEFINITION 6.1.3. It is convenient to write VCT(L**\g) for 
the set of values of terms in CT(L**\g).  
 
DEFINITION 6.1.4. Let s be a rational number. We write <s**’ 
for the relation on VCT(L**\g) given by x <s** y ↔ sx <** 
y. 
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LEMMA 4.2.19'. Let s be a rational number > 1. There exists 
k ≥ 1 such that for all x1 <s**' x2 <s**' ... <s**' xk, we 
have 2x1 <**' xk. 
 
Proof: See the proof of Lemma 4.2.19. QED 
 
Lemma 4.2.20 has to be weakened as follows.  
 
LEMMA 4.2.20’. Let s be a rational number > 1. The relation 
<s**’ on VCT(L**\g) is transitive, irreflexive, and well 
founded. 
 
Proof: We adapt the proof of Lemma 4.2.20 with the 
following modification. In the fourth paragraph, d ∈ N\{0} 
is fixed such that Val(M**,t) <** dcα**, using Lemma 4.2.16. 
Here we use Lemma 4.2.16' under the assumption that t ∈ 
VCT(L**\g). QED  
 
DEFINITION 6.1.5. Let s = 1 + 1/2b for using Lemma 4.2.20'.   
 
LEMMA 4.2.21’. There is a unique set W such that W = {x ∈ 
VCT(L**\g) ∩ nst(M**): x ∉ g**W}. For all α < κ, cα** ∉ 
rng(f**),rng(g**). In particular, each cα** ∈ W.  
 
Proof: Note that g**:NST(M**)q → NST(M**), but 
g**:(VCT(L**\g) ∩ nst(M**))q → VCT(L**\g) ∩ nst(M**) may be 
false. So we regard g** as a partial function from 
(VCTM(L**\g) ∩ nst(M**))q into VCT(L**\g) ∩ nst(M*). Note 
that g** is strictly dominating from nst(M**) into 
nst(M**), in the sense of <s**, by 4.2.15'. Since <s** is 
well founded on VCT(L**\g) ∩ nst(M**), we can apply the 
Complementation Theorem for Well Founded Relations, proved 
in section 1.3 to obtain the first claim.  
  
For the second claim, write cα** = f**(x1,...,xp). By Lemma 
4.2.15’, each xi <** cα**. By Lemma 4.2.18, f**(x1,...,xp) 
<** cα**. This is a contradiction. The same argument applies 
to g**.  
 
The third claim follows immediately from the second claim. 
QED 
 
Lemma 4.2.22 - Theorem 4.2.26, Corollary 4.2.27, go through 
using the present W ⊆ VCT(L**\g) ∩ nst(M**), instead of the 
W ⊆ nst(M**) in section 4.2. We have shown the following.  
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THEOREM 6.1.1. Proposition D is provable in SMAH+. For fixed 
arity of f and fixed n ≥ 1, Proposition D is provable in 
SMAH.  
 
We now adapt section 4.4 to Proposition D. We redefine the 
p,q,b-structures, p,q,b;r-structures, p,q,b;n,r-special 
structures, p,q,b;r-types, p,q,b;n,r-special types, to take 
into account the weaker inequalities now placed on f,g. 
Specifically, clauses 4,5 in the definition of p,q,b-
structure should now read 
 
4’. f* obeys the above two inequalities for membership in 
LB(p,b) ∩ EVSD(p,b) given above right after we introduced 
Proposition D, internally in M*. 
5’. g* obeys the above two inequalities for membership in 
EXPN(q,b), given above right after we introduced 
Proposition D, internally in M*. 
 
These modified notions are written with ’. 
 
The entire development of section 4.4 goes through without 
modification until we arrive at Theorem 4.4.11.  
 
THEOREM 4.4.11’. Proposition D is provable in ACA’ + 1-
Con(MAH). 
 
Proof: We argue in ACA’ + 1-Con(MAH). Let p,q,b,n ≥ 1, and f 
∈ LB(p,b) ∩ EVSD(p,b), g ∈ EXPN(q,b). Let r be given by 
Lemma 4.4.10’. By Ramsey’s theorem for 2r-tuples in ACA’, 
we can find a p,q,b;r-structure’ M = 
(N,0,1,<,+,f,g,c0,c1,...), where c0,c1,... ∈ E. Let τ be its 
p,q,b;r-type’. By Lemma 4.4.10’, τ is a p,q,b,n,r-special’ 
type. By Lemma 4.4.2, M is a p,q,b;r;n-special' structure. 
Let D1 ⊆ ... ⊆ Dn ⊆ N, where D1 ⊆ {c0,c1,...} ⊆ E, and each 
fDi ⊆ Di+1 ∪. gDi+1, and D1 ∩ fDn = ∅. This is Proposition D, 
thus concluding the proof. QED 
 
THEOREM 6.1.2. ACA’ proves the equivalence of Proposition D 
and 1-Con(MAH), 1-Con(SMAH).  
 
Proof: This is immediate from Theorems 4.4.11’, 5.9.11, and 
that Proposition D immediately implies Proposition B. QED 
 
Recall that Proposition D is the strongest Proposition that 
we prove in this book (using large cardinals).  
 
There are some natural variants of Proposition D, some of 
which are provable in RCA0, and some of which are refutable.  
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PROPOSITION D[1]. Let f,g ∈ EVSD, E ⊆ N be infinite, and n 
≥ 1. There exist infinite A1 ⊆ ... ⊆ An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅;  
iii) A1 ⊆ E. 
 
Proposition D[1] is refutable in RCA0. In fact, in section 
6.3, we refute the following in RCA0. 
 
PROPOSITION α. For all f,g ∈ SD ∩ BAF there exist A,B,C ∈ 
INF such that 

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
Note Proposition α follows immediately from Proposition 
D[1], even without E. This is because from the former, we 
get  
 

A ∪. fA ⊆ B ∪. gB 
 A ∪. fB ⊆ C ∪. gC 

B ⊆ C 
A ∪. fA ⊆ C ∪. gB. 

 
Therefore Proposition D[1] is refutable in RCA0 even if we 
remove E.  
 
However, we can use EVSD if we drop the inclusions on the 
A’s. 
 
PROPOSITION D[2]. Let f,g ∈ EVSD, E ⊆ N be infinite, and n 
≥ 1. There exist infinite sets A1,...,An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) for all 1 ≤ i ≤ n, A1 ∩ fAn = ∅; 
iii) A1 ⊆ E. 
 
The weakness in Proposition D[2] stems from the fact that 
we drop the tower condition, and use the same subscript 
twice on the right sides, and have no tower.  
 
THEOREM 6.1.3. Proposition D[2] is provable in RCA0.  
 
Proof: Let f,g,E,n be as given. Let t >> n ≥ 1. By a 
straightforward combinatorial argument, for all t ≥ 1, we 
can find an infinite E’ ⊆ E such that  
 
a. f,g are strictly dominating on the elements of their 
respective domains whose sup norm is at least min(E’). 
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b. the values of all terms in f,g and elements of E’, using 
at most t applications of functions, and at least one 
application of a function, lie outside E’.  
 
We now inductively define A1,...,An. Set A1 = E’. Suppose 
A1,...,Ai have been defined for 1 ≤ i < n, where each Aj is 
an infinite subset of [min(E’),∞). Set Ai+1 to be the unique 
subset of fAi such that fAi ⊆ Ai+1 ∪. gAi+1. This unique Ai+1 
exists by i) above and Lemma 3.3.3. Also Ai+1 is infinite 
since fAi is infinite (using a) above).  
 
It is clear by the construction of the A’s, that all 
elements of the fAi and gAi meet the criterion in b) above 
for t = n+1, so that their values lie outside E’ = A1. This 
establishes Proposition D[2] in RCA0. QED 
 
Continuing with our use of EVSD, it is natural to consider 
the following.  
 
PROPOSITION D[3]. Let f,g ∈ EVSD and n ≥ 1. There exist 
infinite sets A1,...,An ⊆ N such that  
i) for all 1 ≤ i < j,k ≤ n, fAi ⊆ Aj ∪. gAk; 
ii) A1 ∩ fAn = ∅. 
 
However, Proposition α is an obvious consequence of 
Proposition D[3] even for the case n = 3. So Proposition 
D[3] is refutable in RCA0. 
 
PROPOSITION D[4]. Let f,g ∈ EVSD, E ⊆ N be infinite, and n 
≥ 1. There exist infinite sets A1,...,An ⊆ N such that  
i) for all 1 ≤ i < j,k ≤ n, fAi ⊆ Aj ∪. gAk; 
ii) A1 ⊆ E. 
 
THEOREM 6.1.4. Proposition D[4] is provable in RCA0.  
 
Proof: Let f,g,E be as given. Let m be such that f,g are 
strictly dominating on [m,∞). Let B be unique such that B ⊆ 
[m,∞) ⊆ B ∪. gB. Set A1 = E ∩ [m,∞), A2 = ... = An = B. QED 
 
PROPOSITION D[5]. Let f,g ∈ EVSD (ELG, ELG ∩ SD ∩ BAF), E ⊆ 
N be infinite, and n ≥ 1. There exist A1,...,An ⊆ N such 
that  
i) for all 1 ≤ i < j,k ≤ n, fAi ⊆ Aj ∪. gAk; 
ii) for all 1 ≤ i ≤ n, Ai ∩ E is infinite.  
 
We do not know the status of Proposition D[5], other than 
it follows immediately from Proposition D.  
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We now present the remaining Propositions E,F that have the 
same metamathematical properties as Propositions A,B,C,D. 
These two propositions use ELG ∩ SD ∩ BAF.  
 
DEFINITION 6.1.6. The powers of 2 are the integers 
1,2,4,8,... . For E ⊆ N, we write 2(E) for {2n: n ∈ E}. 
 
PROPOSITION E. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ B ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION F. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION G. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION H. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, where A ∩ B contains infinitely many powers of 
2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
Note that Propositions E-H are statements in BRT, where the 
BRT setting consists of "subsets of N with infinitely many 
powers of 2", and ELG ∩ SD ∩ BAF. Propositions E,F,G 
immediately follow from Proposition D, using E = 2(N).  
 
LEMMA 6.1.5. The following is provable in RCA0. D → E → F 
→ G → H.  
 
Proof: For D → E, let E = 2(N). For E → F, use the 
derivation 
 

fA ⊆ B ∪. gB 
fB ⊆ C ∪ gC 

B ⊆ C 
C ∩ gB = ∅ 

fA ⊆ C ∪. gB. 
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F → G → H is immediate. QED 
 
We also consider two additional variants.  
 
PROPOSITION E[1]. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ B ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION G[1]. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
THEOREM 6.1.6. Proposition E[1] is provable in RCA0.   
 
Proof: Let f,g,E be as given. We follow the proof of Lemma 
3.12.7. In the proof of Theorem 3.2.5, we can arrange that 
A ⊆ E. So in the proof of Lemma 3.12.7, we can assume that 
A ⊆ E. We also have A ⊆ B, A ⊆ C. QED  
 
We do not know the status of Proposition G[1], even if we 
use ELG instead of ELG ∩ SD ∩ BAF. Obviously, this follows 
from Proposition D with E = 2(N). 
 
Until Theorem 6.1.10, we work in RCA0 and assume Proposition 
H. 
 
LEMMA 6.1.7. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
infinite A,B,C ⊆ N such that  

fA ⊆ C ∪. gB 
fB ⊆ C ∪. gC 
A ⊆ B,2(N). 

 
Proof: Let f,g be as given. Let A,B,C be given by 
Proposition G. Replace A by A ∩ B ∩ 2(N), which is infinite. 
QED 
 
LEMMA 6.1.8. The function f:N → N given by f(n) = 1 if n is 
a power of 2; 0 otherwise, lies in BAF. 
 
Proof: Note that n is a power of 2 if and only if n = 
2log(n). QED 
 
LEMMA 5.1.7'. Let f,g ∈ ELG ∩ SD ∩ BAF. There exist f’,g’ ∈ 
ELG ∩ SD ∩ BAF such that the following holds. Let S ⊆ N. 
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i) g’S = g(S*) ∪ 12S+2 ∪ (f(S*) ∩ 2(N+2)). 
ii) f'S = f(S*) ∪ g'S ∪ 12f(S*)+2 ∪ 2S*+1 ∪ 3S*+1. 
 
Proof: Let f,g ∈ ELG ∩ SD ∩ BAF, where f:Np → N and g:Nq → 
N. We define g’:Nq+p → N as follows. Let x1,...,xq,y1,...,yp 
∈ N.  
 
case 1. x1,...,xq > y1,...,yp. Set g’(x1,...,xq,y1,...,yp) = 
g(x1,...,xq).  
 
case 2. y1,...,yp > x1,...,xq and f(y1,...,yp) ∈ 2(N+2). Set 
g’(x1,...,xq,y1,...,yp) = f(y1,...,yp).  
 
case 3. Otherwise. Set g'(x1,...,xq,y1,...,yp) = 
12|x1,...,xq,y1,...,yp|+2. 
 
We define f’:N5p+q+p → N as follows. Let 
x1,...,x5p,y1,...,yq,z1,...,zp ∈ N.  
 
case a. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| = |x4p+1,...,x5p|. Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = g’(y1,...,yq,z1,...,zp). 
 
case b. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| < min(x4p+1,...,x5p). Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = f(x4p+1,...,x5p). 
 
case c. |y1,...,yq+1,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x4p+1,...,x5p| < min(x3p+1,...,x4p|. Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = 12f(x3p+1,...,x4p)+2.  
 
case d. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(x2p+1,...,x3p). Set 
f’(x1,...,x3p,y1,...,yq,z1,...,zp| = 2|x2p+1,...,x3p|+1. 
 
case e. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |x2p+1,...,x3p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(x2p+1,...,x3p|. Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = 3|xp+1,...,x2p|+1. 
 
case f. Otherwise. Set f’(x1,...,x5p,y1,...,yq,z1,...,zp) = 
2|x1,...,x5p,y1,...,yq,z1,...,zp|+1. 
 
Note that in case 1, |x1,...,xq,y1,...,yp| = |x1,...,xq|, and 
in case 2, |x1,...,xq,y1,...,yp| = |y1,...,yp|. Also note 
that in cases a)-e),  
 

|x1,...,x5p,y1,...,yq,z1,...,zp| = |y1,...,yq,z1,...,zp| 
|x1,...,x5p,y1,...,yq,z1,...,zp| = |x4p+1,...,x5p| 
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|x1,...,x5p,y1,...,yq,z1,...,zp| = |x3p+1,...,x4p| 
|x1,...,x5p,y1,...,yq,z1,...,zp| = |x2p+1,...,x3p| 
|x1,...,x5p,y1,...,yq,z1,...,zp| = |xp+1,...,x2p| 

 
respectively. Hence f',g' ∈ ELG ∩ SD ∩ BAF.  
 
Let S ⊆ N. From S, case 1 produces exactly g(S*). Case 2 
produces exactly f(S*) ∩ 2(N+2). Case 3 produces exactly 
12S+2. This establishes i). 
 
Case a) produces exactly g’S. Case b) produces exactly 
f(S*). Case c) produces exactly 12f(S*)+2. Case d) produces 
exactly 2S*+1. Case e produces exactly 3S*+1.  
 
Case f) produces exactly 2S*+1 since 2min(S)+1 is not 
produced. This is because 2min(S)+1 is produced from case 
f) if and only if all of the arguments are min(S), which 
can only happen under case a). This establishes ii). QED 
 
LEMMA 6.1.9. 12E+2, 6E, 2E+1 ∪ 3E+1, 2(N+2) are pairwise 
disjoint, with the sole exception of 2E+1 ∪ 3E+1 and 2(N+2).  
 
Proof: Obviously, 12E+2, 6E, 2E+1 ∪ 3E+1 are pairwise 
disjoint by divisibility considerations. Also 12n+2 = 2m → 
6n+1 = 2m-1, which is impossible for m ≥ 3. QED 
 
LEMMA 5.1.8'. Let f,g ∈ ELG ∩ SD ∩ BAF and rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  

i) fA ∩ 6N ⊆ B ∪ gB; 
ii) fB ∩ 6N ⊆ C ∪ gC; 
iii) fA ∩ 2N+1 ⊆ B; 
iv) fA ∩ 3N+1\2(N+2) ⊆ B; 
v) fB ∩ 2N+1 ⊆ C; 
vi) fB ∩ 3N+1\2(N+2) ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ fB = ∅. 
 
Proof: Let f,g be as given. Let f’,g’ be given by Lemma 
5.1.7'. Let A,B,C ⊆ N be given by Lemma 6.1.7 for f’,g’. 
Then A,B,C are infinite, and 

f’A ⊆ C ∪. g’B 
f’B ⊆ C ∪. g’C 

A ⊆ B,2(N). 
 
Since we can shrink A to any infinite subset, we will 
assume that A ⊆ 2(N+2). 
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Let n ∈ B. Then 12n+2 ∈ g'B ∩ f'B, and so 12n+2 ∈ C ∪ g'C. 
Now 12n+2 ∉ C by C ∩ g'B = ∅. Hence 12n+2 ∈ g'C. Therefore 
12n+2 ∈ 12C+2. Hence n ∈ C. So we have established that A ⊆ 
B ⊆ C.  
 
We now verify all of the required conditions i)–viii) above 
using the three sets A*,B*,C*.  
 
Firstly note that A* ⊆ B* ⊆ C* ⊆ N\{0}. To see this, first 
observe that min(A) ≥ min(B) ≥ min(C). Now let n ∈ A*. Then 
n ∈ B ∧ n > min(A) ≥ min(B). Hence n ∈ B*. Thus A* ⊆ B*. 
The same argument establishes B* ⊆ C*. 
 
We now claim that A* ∩ f(B*) = ∅. Let n ∈ A*, n ∈ f(B*). 
Then n ∈ f(B*) ∩ 2(N+2), n ∈ g'B, n ∈ C. This is a 
contradiction.  
 
Next we claim that C* ∩ g(C*) = ∅. This follows from C ⊆ 
C*, g(C*) ⊆ g'C, and C ∩ g'C = ∅.  
 
Now we claim that f(A*) ∩ 6N ⊆ B* ∪ g(B*). To see this, let 
n ∈ f(A*) ∩ 6N. Then n ∈ f’A, n ∈ C ∪ g’B.   
 
case 1. n ∈ C. Now 12n+2 ∈ g’C and 12n+2 ∈ 12f(A*)+2 ⊆ f’A. 
Since C ∩ g’C = ∅, we have 12n+2 ∉ C. Also 12n+2 ∈ C ∪ 
g’B. Hence 12n+2 ∈ g’B. Therefore 12n+2 ∈ 12B+2, and so n ∈ 
B. Since n ∈ f(A*) and f is strictly dominating, we have n 
> min(A) ≥ min(B). Hence n ∈ B*. 
 
case 2. n ∈ g’B. Since n ∈ 6N, n ∈ g(B*). This establishes 
the claim. 
 
Next we claim that f(B*) ∩ 6N ⊆ C* ∪ g(C*). To see this, 
let n ∈ f(B*) ∩ 6N. Then n ∈ f’B. Hence n ∈ C ∪ g’C.  
 
case 1'. n ∈ C. Since n ∈ f(B*) and f is strictly 
dominating, we have n > min(B) ≥ min(C). Hence n ∈ C*. 
 
case 2'. n ∈ g’C. Since n ∈ 6N, we have n ∈ g(C*). This 
establishes the claim. 
 
Now we claim that f(A*) ∩ 2N+1, f(A*) ∩ 3N+1\2(N+2) ⊆ B*. To 
see this, let n ∈ f(A*), n ∈ 2N+1 ∪ 3N+1, n ∉ 2(N+2). Note 
that n ∉ rng(g'). Also, n ∈ f'A, n ∈ C ∪ g'B. Hence n ∈ C, 
12n+2 ∈ g'C, 12n+2 ∉ C. Now 12n+2 ∈ 12f(A*)+2 ⊆ f'A ⊆ C ∪ 
g'B, 12n+2 ∈ g'B, n ∈ B. Since f is strictly dominating, n 
> min(A) ≥ min(B), and so n ∈ B*.  
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Finally we claim that f(B*) ∩ 2N+1, f(B*) ∩ 3n+1\2(N+2) ⊆ 
C*. To see this, let n ∈ f(B*), n ∈ 2N+1 ∪ 3N+1, n ∉ 2(N+2). 
Note that n ∉ rng(g'). Also, n ∈ f'B, n ∈ C ∪ g'C. Hence n 
∈ C, 12n+2 ∈ g'C, 12n+2 ∉ C. Now 12n+2 ∈ 12f(B*)+2 ⊆ f'B ⊆ 
C ∪ g'C. Hence 12n+2 ∈ g'C, n ∈ C. Since f is strictly 
dominating, n > min(B) ≥ min(C), and so n ∈ C*. QED 
 
The proof of 1-Con(SMAH) from Proposition C given in 
Chapter 5 is strictly modular, in that we can start with 
Lemma 5.1.8 instead of Proposition C.  
 
Here we repeat the proof in Chapter 5 using Lemma 5.1.8' 
instead of Lemma 5.1.8. However, Lemma 5.1.8' is slightly 
weaker than Lemma 5.1.8, because of the weakened clauses 
iv) and vi), where we use 3N+1\2(N+2) instead of 3N+1.  
 
So we need to identify the few places at which we use 3N+1 
and make sure that we can get away with 3N+1\2(N+2) instead.  
 
By examination of the proofs, we obtain the following 
series of slightly weakened Lemmas from the end of sections 
5.1 - 5.5. Finally, we show that we obtain Lemma 5.6.20 
without modification.  
 
LEMMA 5.2.12'. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 48N. There exists (D1,...,Dr) such that  
i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 48α(r,Di;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di;1,r)+1, 3α(r,Di;1,r)+1\2(N+2) 
⊆ Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3 ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3. 
 
LEMMA 5.3.18'. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...) such that the following 
holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
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iv) Let r,n ≥ 1, t(v1,...,vr) be a term of L, and x1,...,xr ≤ 
cn. Then t(x1,...,xr) < cn+1;  
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1\2(A+2) ⊆ E; 
vi) Let r ≥ 1, a,b ∈ N, and ϕ(v1,...,vr) be a quantifier 
free formula of L. There exist d,e,f,g ∈ N\{0} such that 
for all x1 ∈ α(E;1,<∞), (∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ 
ϕ(x1,...,xr)) ↔ dx1+e ∉ E ↔ fx1+g ∈ E; 
vii) Let r ≥ 1, p ≥ 2, and ϕ(v1,...,v2r) be a quantifier free 
formula of L. There exist a,b,d,e ∈ N\{0} such that the 
following holds. Let n ≥ 1 and x1,....,xr ∈ α(E;1,<∞) ∩ 
[0,cn]. Then  
(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr)) ↔  
aCODE(cn+1;x1,...,xr)+b ∉ E ↔  
dCODE(cn+1;x1,...,xr)+e ∈ E. Here CODE is as defined just 
before Lemma 5.3.11; 
viii) Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where x1,...,xk 
∈ α(E;1,<∞). Then CODE(cm;x1,...,xk) ∈ E; 
ix) Let r ≥ 1 and t(v1,...,v2r) be a term of L. Let i1,...,i2r 
≥ 1 and y1,...,yr ∈ E, where (i1,...,ir) and (ir+1,...,i2r) 
have the same order type and min, and y1,...,yr ≤ 
min(ci_1,...,ci_r). Then  
t(ci_1,...,ci_r,y1,...,yr) ∈ E ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. 
 
Lemma 5.4.12 uses 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E. However, 
we only have 3α(E;1,<∞)+1\2(A+2) ⊆ E. So it suffices to 
augment the displayed derivation in Lemma 5.4.12 with the 
second derivation  
 

t(x1,...,xk) < cn+1. 
2cn+1+t(x1,...,xk)+3,3cn+1+t(x1,...,xk)+2 ∈ α(E;1,<∞). 

3(2cn+1+t(x1,...,xk)+2)+1, 2(3cn+1+t(x1,...,xk)+3)+1 ∈ E. 
6cn+1+3t(x1,...,xk)+7, 6cn+1+2t(x1,...,xk)+7 ∈ E. 
(6cn+1+3t(x1,...,xk)+7)-(6cn+1+2t(x1,...,xk)+7) =  

t(x1,...,xk) ∈ E-E. 
 
provided we verify that  
 
3(2cn+1+t(x1,...,xk))+1 ∉ 2(A+2) ∨ 3(2cn+1+t(x1,...,xk)+2)+1 ∉ 

2(A+2). 
 
This is evident, since any two powers of 2 that are ≥ 4 
cannot differ by 6.  
 
LEMMA 5.4.17'. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...), and terms t1,t2,... of L, 
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where for all i, ti has variables among v1,...,vi+8, such 
that the following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1 and t(v1,...,vr) be a term of L, and 
x1,...,xr ≤ cn. Then t(x1,...,xr) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1\2(A+2) ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L(E). Let 1 
≤ i1,...,i2r < n, where (i1,...,ir) and (ir+1,...,i2r) have the 
same order type and the same min. Let y1,...,yr ∈ E, 
y1,...,yr ≤ min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr)c_n 
↔ ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n. 
 
LEMMA 5.5.8'. There exists a countable structure M* = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...), where for all i 
≥ 1, Xi is the set of all i-ary relations on A that are cn-
definable for some n ≥ 1; and terms t1,t2,... of L, where 
for all i, ti has variables among x1,...,xi+8, such that the 
following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements of E\α(E;2,<∞) with no upper bound in 
A; 
iv) For all r,n ≥ 1, ↑r(cn) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1\2(A+2) ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let k ≥ 1, m ≥ 0, and ϕ be an E formula of L*(E) in 
which R is not free, where all first order variables free 
in ϕ are among x1,...,xk+m+1. Then xk+1,...,xk+m+1 ∈ E → 
(∃R)(∀x1,...,xk ∈ E)(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)); 
viii) Let r ≥ 1, and ϕ(x1,...,x2r) be an E formula of L*(E) 
with no free second order variables. Let 1 ≤ i1,...,i2r, 
where (i1,...,ir) and (ir+1,...,i2r) have the same order type 
and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Lemma 5.6.2 involves reproving a weak form of Lemma 5.4.12 
using a related construction. Here 3α(E;1,<∞)+1 ⊆ E can 
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also be replaced by 3α(E;1,<∞)+1\2(A+2), also by the same 
method.  
 
In the remainder of section 5.6, we do not use 
3α(E;1,<∞)+1\2(A+2) ⊆ E. Hence we obtain Lemma 5.6.20. We 
have proved the following.  
 
THEOREM 6.1.10. ACA' proves that each of Propositions A-H 
are equivalent to Con(SMAH). 
 
Proof: We have completed the proof that ACA' proves 
Proposition H implies 1-Con(SMAH). The result follows by 
Lemmas 5.9.11 and 6.1.5. QED   
 
6.2. Effectivity.  
 
We begin with a straightforward effectivity result 
concerning Propositions A-H. Specifically, we show that 
Propositions A-H hold in the arithmetic sets. Later we will 
show that Propositions C,E-H hold in the recursive sets.  
 
We don’t know if any or all of Propositions A,B,D hold in 
the recursive sets. We conjecture that  
 
i. None of Propositions A,B,D hold in the recursive sets.  
ii. This fact can be proved in ACA’. 
 
DEFINITION 6.2.1. Let ACA+ be the formal system consisting 
of ACA0 and “for all x ⊆ ω, the ω-th Turing jump of x 
exists”.  
 
See [Si99,09], p. 404, where ACA+ is written as ACA0+. ACA+ 
is a proper extension of ACA’ that allows us to handle ω 
models of ACA0.  
 
Note that the countable ω models of ACA0, ACA', ACA are the 
same as the countable families of subsets of N that are 
closed under relative arithmeticity, as induction is 
automatic in ω models. (Here ACA is ACA0 with induction for 
all formulas, and is a proper extension of ACA').  
 
THEOREM 6.2.1. Let X be any of Propositions A-H. The 
following are provably equivalent in ACA+. 
i. X is true. 
ii. X is true in the arithmetic sets. 
iii. X is true in every countable ω model of ACA0. 
iv. X is true in some countable ω model of ACA0. 
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v. 1-Con(MAH). 
vi. 1-Con(SMAH). 
 
Proof: Let X be as given. We argue in ACA+. By Theorems 
5.9.11, 6.1.2, and 6.1.10, X is equivalent to 1-Con(MAH), 
1-Con(SMAH). Hence i,v,vi are equivalent. It suffices to 
prove vi → iii → ii → iv → vi. 
 
Since ACA' proves X is equivalent to 1-Con(SMAH), we see 
that in any ω model of ACA0, X is equivalent to 1-Con(SMAH).  
 
For vi → iii, suppose 1-Con(SMAH). Then 1-Con(SMAH) is true 
in any ω model of ACA0. Hence X is true in every ω model of 
ACA0, and therefore iii,ii,iv.  
 
iii → ii → iv is trivial.  
 
For iv → vi, suppose X is true in some countable ω model of 
ACA0. Then 1-Con(SMAH) is true in some ω model of ACA0. 
Hence 1-Con(SMAH). QED 
 
We are now going to show that Propositions C,E-H hold in 
the recursive subsets of N. Propositions C,E-H, when stated 
in the recursive sets, become Π0

4 statements. 
 
We shall see that Propositions C,E-H hold in the smaller 
family of infinite sets with primitive recursive 
enumeration functions.  
 
We also show that all of these variants of C,E-H are 
provably equivalent to 1-Con(SMAH) in ACA'. 
 
We conjecture that a more careful argument will show that 
Propositions C,E-H hold in the yet smaller family of 
infinite superexponentially Presburger sets. In light of 
the primitive recursive decision procedure for 
superexponential Presburger arithmetic, Propositions C,E-H, 
when stated in the superexponentially Presburger sets, 
become Π0

2 statements. This topic will be discussed at the 
end of this section. 
 
Recall TM(0,1,+,-,•,↑,log), ETM(0,1,+,-,•,↑,log), BAF, 
EBAF, from Definitions 5.1.1 - 5.1.7. According to Theorem 
5.1.4, BAF = EBAF.  
 
DEFINITION 6.2.2. Sometimes we will omit some items among 
0,1,+,-,•,↑,log when using this notation. E.g., terms in 
TM(0,1,+,-) use only 0,1,+,-, and not •,↑,log. E.g., terms 
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and formulas in ETM(0,1,+) use only 0,1,+. In ETM(___) we 
always use <,= as the relations for the quantifier free 
formulas.   
 
We will develop explicit infinite sets of indiscernibles 
for functions in BAF, in the appropriate sense, using 
iterated base 2 exponentials. It is particularly convenient 
to use the following definition for our purposes.  
 
DEFINITION 6.2.3. Let f:Nk → N. An SOI for f is a set A ⊆ N 
such that for all x,y ∈ Ak,  
 

if x,y ∈ Ak are order equivalent  
(i.e., have the same order type)  

then f(x) and f(y) have the same sign  
(i.e., either > 0 or = 0). 

 
We first define the set of functions Γ(ℜ). For this 
purpose, we take +’, 
-’,↑’ to be the ordinary addition, subtraction, and base 2 
exponentiation functions from ℜ2 into ℜ (↑' maps ℜ into ℜ). 
 
It will be important to recall that, according to section 
5, we use +,-,•,↑,log for functions from and into N, where -
,log are modified so that they are N valued. We call this N 
arithmetic. 
 
On the other hand, +',-',↑' take arguments and values from 
ℜ, and we call this Z arithmetic.  
 
In this section, we will not use real numbers after we have 
proved Lemma 6.2.6.  
 
DEFINITION 6.2.4. Γ(ℜ) is the set of all functions from ℜ 
into ℜ that are given by terms in 0,1,+’,-’,↑’ in only the 
variable x.  
 
DEFINITION 6.2.5. By positive, we will always mean > 0. By 
negative, we will always mean < 0. 
 
LEMMA 6.2.2. Every function in Γ(ℜ) is eventually positive, 
eventually negative, or eventually zero. 
 
Proof: Γ(ℜ) is a small fragment of what are called the exp-
log functions. Thus the statement is a special case of a 
well known theorem of Hardy from [Ha10]. QED 
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LEMMA 6.2.3. Let f:N → N be given by a term in TM(0,1,+,-
,↑). There exists f* ∈ Γ(ℜ) such that for sufficiently 
large x ∈ N, f(x) = f*(x). f is eventually positive or 
eventually zero. 
 
Proof: By induction on t ∈ TM(0,1,+,-,↑). Suppose that we 
have defined r* with the required property, for all terms r 
in TM(0,1,+,-,↑) with less symbols that t has.  
 
case 1. t is 0,1,v. Set t* = t. 
 
case 2. t is s↑. Set t* = s*↑. 
 
case 3. t is r-s. By the induction hypothesis, for 
sufficiently large x ∈ N, t(x) = r*(x)-s*(x). By Lemma 
6.2.2, r*(x)-’s*(x) is either eventually ≥ 0 or eventually < 
0. In the former case, set t* = r*-'s*. In the latter case, 
set t* = 0.  
 
The final claim follows from the first claim and Lemma 
6.2.2. QED 
 
LEMMA 6.2.4. Let f:N → N be given by a term in ETM(0,1,+,-
,↑). There exists f* ∈ Γ(ℜ) such that for sufficiently 
large x ∈ N, f(x) = f*(x). f is eventually positive or 
eventually zero. 
 
Proof: We first claim the following. Let ϕ(v) be a 
quantifier free formula in 0,1,+,-,↑,<. Then either ϕ(x) is 
true for all sufficiently large x ∈ N, or ϕ(x) is false for 
all sufficiently large x ∈ N. The claim is proved by 
induction on ϕ.  
 
The atomic cases are s(x) < t(x), s(x) = t(x). In either 
case, apply Lemma 6.2.3 to s(x)-t(x) and t(x)-s(x). Then  
 

s(x)-t(x) is eventually positive or eventually zero. 
t(x)-s(x) is eventually positive or eventually zero. 

 
If s(x)-t(x) is eventually positive then s(x) < t(x) and 
s(x) = t(x) are eventually false. If t(x)-s(x) is 
eventually positive then s(x) < t(x) is eventually true and 
s(x) = t(x) is eventually false.  
 
Suppose s(x)-t(x) is not eventually positive and t(x)-s(x) 
is not eventually positive. Then s(x)-t(x) and t(x)-s(x) 
are both eventually zero. Hence s(x) = t(x) eventually 
holds. This establishes the claim.  
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Now write f as an extended term t from ETM(0,1,+,-,↑), 
according to Definition 5.1.5.  We can assume that t has at 
most the variable v and does not use •,log. Apply the claim 
to each of the finitely many cases in t. Then only one case 
applies for all sufficiently large x ∈ N. Let this be the 
j-th case, 1 ≤ j ≤ n+1. Then t = tj holds eventually. Apply 
Lemma 6.2.3 to tj. QED  
 
The structure (N,+) has been extensively studied, and its 
first order theory is called Presburger arithmetic. It has 
a well known decision procedure, conducted well within PRA. 
This is proved using quantifier elimination in an expanded 
language. See [Pr29], [En72]. 
 
The structure (N,+,↑) has also been studied, and its first 
order theory is called (base 2) exponential Presburger 
arithmetic. It also has a decision procedure, conducted 
well within PRA. Again this is proved using quantifier 
elimination in an expanded language. See [Se80], [Se83], 
[CP85]. Appendix B provides a self contained exposition of 
this result by F. Point.  
 
DEFINITION 6.2.6. Recall from Definition 5.3.6 that ↑p is 
0↑...↑, and ↑p(n) = n↑...↑, where there are p ↑’s, p ≥ 0. ↑0 
= 0. For E ⊆ N, define  
 

↑E = {↑p: p ∈ E}, for E ⊆ N. 
mesh(E) = min(E ∪ {x-y > 0: x,y ∈ E}). 

 
THEOREM 6.2.5. The first order theory of the structure 
(N,+,↑) is primitive recursive. Suppose the sentence 
(∀n1,...,nk)(∃m)(ϕ(n,m)) holds in (N,+,↑). There exists p ≥ 
1 such that (∀n1,...,nk)(∃m ≤ ↑p(|n1,...,nk|))(ϕ(n,m)) holds 
in (N,+,↑).  
 
Proof: This result first appeared in [Se80] and [Se83]. It 
is implicit in [CP86]. For a clearer, self contained 
exposition, see Theorem 3.3 in Appendix B by F. Point. QED 
 
Recall the definition of an SOI for f:Nk → N. It is 
convenient to use the following weaker notion.  
 
DEFINITION 6.2.7. Let f:Nk → N. A restricted SOI for f is a 
set A ⊆ N such that for all x,y ∈ Ak,  
 

if x,y ∈ Ak are each strictly increasing  
then f(x) and f(y) have the same sign  



 765 

(either > or =). 
 
LEMMA 6.2.6. Let f:Nk → N be given by a term in TM(0,1,+,-
,↑). If mesh(A) is sufficiently large then ↑A is a 
restricted infinite SOI for f.  
 
Proof: We prove by induction on k ≥ 1 that this is true for 
all such f:Nk → N. For k = 1, let f:N → N be as given. By 
Lemma 6.2.4, let t be such that f has constant sign on 
[t,∞). Then for mesh(A) ≥ t, ↑A is a restricted infinite 
SOI for f.  
 
Now fix k ≥ 1, and let f:Nk+1 → N be as given. By Lemma 
6.2.4,  
 

(∀x ∈ Nk)(∃t ∈ N) 
(f(x,m) has constant sign for m ≥ t). 

 
By Lemma 6.2.5, let p ∈ N be such that  
 

(∀x ∈ Nk) 
(f(x,m) has constant sign for m ≥ ↑p(|x|)). 

 
1) (∀x ∈ Nk)(the eventual sign of f(x,_)  

is the sign of f(x,↑p(|x|)). 
 
We now apply the induction hypothesis to the k-ary function 
f(x,↑p(|x|)) to obtain the following. 
 

2) (∀A ⊆ N)(mesh(A) sufficiently large →  
(∀x,y ∈ (↑A)k)(x,y strictly increasing →  

f(x,↑p(|x|), g(y,↑p(|y|) have the same sign)). 
 
By 1),2), 
 

 3) (∀A ⊆ N)(mesh(A) sufficiently large →  
(∀x,y ∈ (↑A)k)(x,y strictly increasing →  

f(x,x’), f(y,y’) have the same sign  
provided x’≥ ↑p(|x|, y’ ≥ ↑p(|y|))). 

 
We now claim that  
 

(∀A ⊆ N)(mesh(A) sufficiently large → 
A is a restricted SOI for f). 

 
To see this, let mesh(A) be sufficiently large, and x,y ∈ 
(↑A)k+1 be strictly increasing. Then  
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4) x1 < ... < xk, and xk+1 > ↑p(|x1,...,xk|). 
y1 < ... < yk, and yk+1 > ↑p(|y1,...,yk|). 

 
This is because we can write 
 

|x1,...,xk| = ↑u, xk+1 = ↑v, u,v ∈ A, 
where v-u is sufficiently large. 

v-u > p. 
↑p(|x1,...,xk|) = ↑p(↑u) = ↑(p+u)  

< ↑v = ↑p(|x1,...,xk|). 
 
By 3),4),  
 

f(x1,...,xk,xk+1), f(y1,...,yk,yk+1) 
have the same sign. 

 
This verifies the claim. QED 
 
LEMMA 6.2.7. Let f:Nk → N be given by a term in ETM(0,1,+,-
,↑). There are finitely many functions g1,...,gn whose 
domains are various Nk’, k’ < k, and whose range is a subset 
of N, given by terms in TM(0,1,+,-,↑), such that any common 
restricted infinite SOI for g1,...,gn is an infinite SOI for 
f. 
 
Proof: Let f be as given. Enumerate the order types of k-
tuples from N, by α1,...,αn. Pick the unique representatives 
β1,...,βn which are k-tuples whose range is an interval 
[1,p], 1 ≤ p ≤ n. Set gi(x1...,xk) = 
f(x[βi[1]],...,x[βi[k]]). Each gi handles the order type αi 
in the definition of SOI. QED 
 
LEMMA 6.2.8. Let f:Nk → N be given by a term in ETM(0,1,+,-
,↑). If mesh(A) is sufficiently large, then ↑A is an 
infinite SOI for f.   
 
Proof: Let f be as given, and let g1,...,gn be as given by 
Lemma 6.2.7. By Lemma 6.2.6, for all 1 ≤ i ≤ n, if mesh(A) 
is sufficiently large then ↑A is a restricted SOI for gi. 
Hence if mesh(A) is sufficiently large then ↑A is a common 
restricted SOI for g1,...,gn. Now apply Lemma 6.2.7. QED  
 
We now wish to establish Lemma 6.2.8 for ETM(0,1,+,-
,•,↑,log). We do this by showing that • and log can be 
eliminated in these terms, when restricting to ↑([r,∞)), 
provided r is sufficiently large.  
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DEFINITION 6.2.8. Let n,k ≥ 1. The n,k-terms are the terms 
v1,...,vn, and vi+j, where 1 ≤ i ≤ n, 1 ≤ j ≤ k. 
 
DEFINITION 6.2.9. An n,k-ordering consists of an ordering 
of the n,k-terms. I.e., a listing  
 

α1 rel α2 rel ... rel αn(k+1) 
 
where each rel is either < or =, and α1,...,αn(k+1) is an 
enumeration without repetition of the n,k-terms.  
 
An n,k-ordering may or may not hold, given an assignment of 
elements of N to the variables v1,...,vn. 
 
Example 1. v1 < v1+1 < v1+2 < v2 = v3 < v2+1 = v3+1 < v2+2 = 
v3+2 is a 3,2-ordering which holds for some v1,v2,v3 ∈ N. 
E.g., v1 = 0, v2 = v3 = 3. 
 
Example 2. v1 < v2 < v3 < v1+1 < v2+1 < v3+1 < v1+2 < v2+2 < 
v3+2 is a 3,2-ordering which does not hold for any v1,v2,v3 ∈ 
N. From v3 < v1+1, we obtain v3 ≤ v1, contradicting v1 < v3.  
 
We can obviously view every n,k-ordering as a conjunction 
of comparisons between all pairs of the n-terms. Only some 
of these conjunctions of comparisons hold for some choice 
of v1,...,vn ∈ N. 
 
DEFINITION 6.2.10. Let X be an n,k-ordering. We write α <X 
β, α =X β, for n,k-terms α,β, according to the relevant 
position of α,β in X. Here <X and =X are transitive. Define 
α >X β ↔ α <X β, α ≥X β ↔ β ≤X α. 
 
DEFINITION 6.2.11. The signed X sums are of the form  
 

β1↑ ± β2↑ ± ... ± βm↑. 
0. 

 
where  
 
i. m ≥ 1. 
ii. β1,...,βm are n,k-terms. 
iii. β1 >X β2 >X ... >X βm holds in the n,k-ordering X. 
iv. There is no consecutive pair + βi↑,- βi+1↑ for which βi =X 
βi+1+1. For this purpose, β1↑ is considered to be + β1↑.  
v. There is no consecutive pair - βi↑,+ βi+1↑ for which βi =X 
βi+1+1 in X.  
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We evaluate signed X sums at elements of N only, and we 
always associate to the left  
 

(...(β1↑ ± β2↑) ± ... ± βm↑). 
 
where each ± is + or -, both interpreted in the usual way 
using N arithmetic; i.e., - indicates cutoff subtraction. 
Also note that the first summand, β1↑, is not signed, which 
has the same effect as + β1↑.  
 
It is clear that the evaluation of a signed X sum is the 
same as the evaluation in Z arithmetic, since cutoff 
subtraction never gets triggered.  
 
Conditions iv,v in Definition 6.2.10 rule out the 
possibility of an obvious simplification in signed X sums, 
corresponding to the ordinary algebraic laws 2p+1-2p = 2p, 
and -2p+1+2p = -2p.  
 
DEFINITION 6.2.12. Let X be an n,k-ordering. For X sums λ, 
we write lth(λ) for the number of summands in λ, and #(λ) 
for the largest j such that some vi+j is a summand. We take 
lth(0) = #(0) = 0. Also, if λ has no vi+j (i.e., λ consists 
entirely of variables), then #(λ) = 0. Obviously #(λ) ≤ k. 
 
LEMMA 6.2.9. Let n ≥ 3 and X be an n,n2-ordering. Let t = 
y1↑ ± y2↑ ± ... ± ym↑ be parenthesized in any way, where 
{y1,...,ym} ⊆ {v1,...,vn}, and the y’s are distinct, m ≥ 1. 
There exists a signed X sum t*, with lth(t*) ≤ m and #(t*) ≤ 
m2, which agrees with t at all v1,...,vn ∈ N for which X is 
true. Here t (and of course t*) are evaluated using N 
arithmetic. 
 
Proof: Fix n,X as given. We prove the claim by induction on 
1 ≤ m ≤ n.  
 
The basis case m = 1 is trivial. Now fix 1 ≤ m ≤ n, and 
assume that the claim is true for all 1 ≤ m' < m. We now 
prove the claim for m.  
 
Let t = y1↑ ± y2↑ ± ... ± ym↑ be parenthesized in any way, 
where {y1,...,ym} ⊆ {v1,...,vn}, and the y’s are distinct.  
 
First suppose t is (r)+(s), lth(r)+lth(s) = m. By the 
induction hypothesis, let r*,s* be signed X sums, 
lth(r*),lth(s*) < m, #(r*),#(s*) ≤ (m-1)2, where r agrees 
with r* provided X holds, and s agrees with s* provided X 
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holds. Then t agrees with (r*)+(s*) provided X holds. Write 
t = (r*)+(s*) as  
 

1) t = (β1↑ ± ... ± βp↑) + (γ1↑ ± ... ± γq↑)  
with N arithmetic for t, and Z arithmetic for the  

two summands on the right,  
provided X holds. 

 
Since we are using Z arithmetic on the right, we can 
rearrange the terms on the right. Place γ1 and the ±γ’s in 
their appropriate positions amongst the β’s, in X, resulting 
in  
 

2) t = δ1↑ ± ... ± δp+q↑  
with N arithmetic on the left and Z arithmetic on the 

right,  
provided X holds. 

 
so that we have δ1 ≥X ... ≥X δp+q. Note that conditions iii-v 
in Definition 6.2.11, may fail for the right side of 3).  
 
We continue to work in Z arithmetic. We iterate a process, 
which, at each stage, shortens the right side of 2). Recall 
that p+q ≤ m. So the process will continue for at most m 
steps. The process runs as follows. Choose any i such that 
the consecutive pair ± δi↑,± δi+1↑ violates any of conditions 
iii-v. Remove or replace ± δi↑ ± δi+1↑ as follows.  
 
case 1. δi = δi+1 in X.  
 
Replace + δi↑ + δi+1↑ by (δi+1)↑. 
Replace - δi↑ - δi+1↑ by - (δi+1)↑.  
Remove + δi↑ - δi+1↑. 
Remove - δi↑ + δi+1↑. 
 
case 2. δi = δi+1+1 in X. 
 
Replace + δi↑ - δi+1↑ by + δi+1↑. 
Replace - δi↑ + δi+1↑ by - δi+1↑. 
 
If at some stage, there are no terms left, then the result 
is 0.  
 
These replacements are of course valid in Z arithmetic. So 
it is clear that this process results in a signed X term t* 
such that  
 

3) t = t* 



 770 

with N arithmetic on the left and Z arithmetic on the 
right, 

provided X holds. 
 
Note that every step in the process raises the constants 
used by at most 1. In addition, lth(t*) ≤ lth(r*)+lth(s*) ≤ 
m. Hence #(t*) ≤ (m-1)2+m ≤ m2.  Also, t* is of form 3), 
where the δ's must obey the conditions iii-v in the 
definition of signed X sum. So t* is the desired signed X 
sum. 
 
Finally, suppose t is (r)-(s), lth(r)+lth(s) = m. By the 
induction hypothesis, let r*,s* be signed X sums, 
lth(r*),lth(s*) < m, #(r*),#(s*) ≤ (m-1)2, where r agrees 
with r* provided X holds, and s agrees with s* provided X 
holds. Then 
 

4) t = (β1↑ ± ... ± βp↑) - (γ1↑ ± ... ± γq↑) 
with N arithmetic on the left and Z arithmetic for the  

two summands on the right,  
provided X holds. 

 
We can obviously assume that p,q ≥ 1. The - on the right is 
in N arithmetic. We will convert to Z arithmetic by 
comparing  
 

β1↑ ± ... ± βp↑ 
γ1↑ ± ... ± γq↑ 

 
simply on the basis of X, and not dependent on the values 
of variables. Recall that the β’s are strictly decreasing in 
X, and the γ’s are strictly decreasing in X.  
 
Let i ∈ [0,min(p,q)] be greatest such that the first i 
terms of β1↑ ± ... ± βp↑ and the first i terms of γ1↑ ± ... ± 
γq↑ are equal according to X (with the same signs).  
 
If ± βi+1 <X ± γi+1 then for all x1,...,xn obeying X, 
 

β1↑ ± ... ± βp↑ < γ1↑ ± ... ± γq↑  
with Z arithmetic. 

 
If ± βi+1 >X ± γi+1 then for all x1,...,xn obeying X, 
 

β1↑ ± ... ± βp↑ > γ1↑ ± ... ± γq↑ 
with Z arithmetic. 
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It might be the case that i+1 > min(p,q). In this event, 
use 0 for the nonexistent term.  
 
In the former case, use the signed X sum 0. In the latter 
case, rewrite 4) as 
 

5) t = β1↑ ± ... ± βp↑ - γ1↑ ± ... ± γq↑ 
with N arithmetic on left and Z arithmetic on right, 

provided X holds. 
 
where the second group of ± are reversed from what they were 
in 4). Now treat 5) as we treated 1), obtaining the form 2) 
with decreasing terms. QED 
 
LEMMA 6.2.10. Let t = y1↑ ± y2↑ ± ... ± ym↑ be parenthesized 
in any way, where the y’s are distinct variables from 
{v1,...,vn}.  
i. t is equivalent to a term in ETM(0,1,+,-,↑). 
ii. log(t) is equivalent to a term in ETM(0,1,+,-).  
iii. ± y1↑ ± y2↑ ± ... ± ym↑, interpreted in Z arithmetic, is 
equivalent, in absolute value, to a term in ETM(0,1,+,-,↑). 
 
Proof: Let t be as given. By Lemma 6.2.9, we obtain a 
system of signed X sums equivalent to t, under X, for the 
various n,n2-orderings. This provides the appropriate 
definition by cases of t. This establishes i). 
 
For ii), note that under each of these n,n2-orderings X, t 
is equivalent to a signed X sum, which takes one of the 
form  
 

0. 
β↑. 

(...(β1↑ + β2↑ ...). 
(...(β1↑ - β2↑ ...). 

 
where in the last two cases, the number of β's is 2 or 
greater. Note that we have, respectively,  
 

log(t) = 0. 
log(t) = β. 
log(t) = β1. 

 log(t) = β1-1. 
 
which gives rise to a definition of log(t) by cases. The 
cases are given by the various n,n2-orderings. This provides 
the appropriate definition by cases of log(t). This 
establishes ii). 
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For iii), let any n,n-ordering X be given. If the greatest 
y's under X appear with +, then we use ± y1↑ ± y2↑ ± ... ± 
yn↑. Otherwise, we reverse the ±. Then we rewrite in 
descending y's under X, and left associate, obtaining an 
equivalent expression in N arithmetic. No given the 
appropriate definition by cases, where the cases are given 
by the X's. QED 
 
LEMMA 6.2.11. Let s = y1↑ ± y2↑ ± ... ± yp↑ and t = z1↑ ± z2↑ 
± ... ± zq↑ be parenthesized in any way, where 
{y1,...,yp,z1,...,zq} ⊆ {x1,...,xn}, and y1,...,yp,z1,...,zq 
are distinct variables. Then s•t is equivalent to a term r 
∈ ETM(0,1,+,-,↑) whose variables are among 
y1,...,yp,z1,...,zq.  
 
Proof: Let s,t,y1,...,yp,z1,...,zq,n be as given.  
 
According Lemma 6.2.9, under each such n,n2-ordering X, we 
can write s,t as signed X sums  
 

s = (α1↑ ± ... ± αb↑). 
t = (β1↑ ± ... ± βc↑). 

 
where the left sides use N arithmetic and the right sides 
use Z arithmetic. 
 
We now have  
 

(s)•(t) = γ1↑ ± ... ± γbc↑. 
 
where the left side uses N arithmetic and the right side 
uses Z arithmetic. Here each γ↑ takes the form  
 

αi↑•βj↑ = (αi+βj)↑. 
 
and hence each γ takes the form αi+βj. We can now treat the 
various γi as new variables, and get an appropriate 
definition by cases for γ1↑ ± ... ± γbc↑ using Lemma 6.2.10 
iii). We can then substitute the sums αi+βj for the new 
variables, and get the desired definition by cases for 
(s)•(t). QED 
 
DEFINITION 6.2.13. Let p ≥ 0. We define TM(0,1,+,-
,•,↑,log:p) as the terms in TM(0,1,+,-,•,↑,log) where every 
occurrence of every variable is followed by (at least) p 
↑’s.  
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DEFINITION 6.2.14. We define ETM(0,1,+,-,•,↑,log:p) as the 
terms in ETM(0,1,+,•,↑,log) where every occurrence of every 
variable is followed by (at least) p ↑’s. This applies to 
occurrences in both the terms and the quantifier free 
formulas. 
 
As usual, we can omit some of the symbols 0,1,+,-,•,↑,log, 
for the above definition.  
 
LEMMA 6.2.12. Let p ≥ 1 and t ∈ TM(0,1,+,-,↑:p). Then t is 
equivalent to a term of the form s1↑ ± ... ± sk↑, 
parenthesized in some way, where each si ∈ TM(0,1,+,-,↑:p-
1). 
 
Proof: Let p ≥ 1. We define * by recursion on terms t ∈ 
TM(0,1,+,-,↑;p). The basis cases are t = 0,1,↑p(xn). Define 
0* = ↑p(x1)-↑p(x1). 1* = 0↑. ↑p(xn)* = ↑p(xn). t↑* = t*↑. 
(s+t)* = s*+t*. (s-t)* = s*-t*. QED 
 
LEMMA 6.2.13. Let t ∈ ETM(0,1,+,-,•,↑,log:p), p ≥ 1, with 
at most one occurrence of log and • combined. Then t is 
equivalent to a term t* ∈ ETM(0,1,+,-,↑:p-1). 
 
Proof: By Lemma 6.2.12, this holds if there are no 
occurrences of log and •. We can assume that either there 
is a unique occurrence of • and no occurrence of log, or 
there is a unique occurrence of log and no occurrence of •. 
Thus we have a split into the following two cases. 
 
case 1. log(u) is a subterm of t. Then u ∈ TM(0,1,+,-,↑:p). 
By Lemma 6.2.12, write  
 

u = t1↑ ± ... ± tk↑ 
 
parenthesized in some way, where t1,...,tk ∈ TM(0,1,+,-,↑:p-
1). Introduce distinct variables y1,...,yk for t1,...,tk. By 
Lemma 6.2.10, log(y1↑ ± ... ± yk↑) is equivalent to some 
term α(y1,...,yk) ∈ ETM(0,1,+,-) . By substitution, log(u) = 
log(t1↑ ± ... ± tk↑) is equivalent to a term α(t1,...,tk) ∈ 
ETM(0,1,+,-,↑;p-1). Replace log(u) in t by α(t1,...,tk), and 
expand to a term t* in ETM(0,1,+,-,↑). In this expansion, 
we use the same cases that we use for α(t1,...,tk), moving 
these cases out in front. Therefore t* ∈ ETM(0,1,+,-,↑:p-
1).       
 
case 2. r•s is a subterm of t. Then r,s ∈ TM(0,1,+,-,↑:p). 
By Lemma 6.2.12, write  
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r = r1↑ ± ... ± rp↑ 
s = s1↑ ± ... ± sq↑ 

 
parenthesized in some way, where r1,...,rp,s1,...,sq ∈ 
TM(0,1,+,-,↑;p-1). Introduce distinct variables 
y1,...,yp,z1,...,zq for r1,...,rp,s1,...,sq. By Lemma 6.2.11, 
(y1↑ ± ... ± yp)•(z1↑ ± ... ± zq↑) is equivalent to some term 
β(y1,...,yp,z1,...,zq) ∈ ETM(0,1,+,-,↑) = ETM(0,1,+,-,↑:0). 
By substitution, r•s = (r1↑ ± ... ± rp↑)•(s1↑ ± ... ± sq↑) is 
equivalent to the term β(s1,...,sp,t1,...,tq) ∈ ETM(0,1,+,-
,↑:p-1). Replace r•s in t by β(s1,...,sp,t1,...,tq), and 
expand to a term t* in ETM(0,1,+,-,↑). In this expansion, 
we use the same cases that we use for α(t1,...,tk), moving 
these cases out in front. Therefore t* ∈ ETM(0,1,+,-,↑:p-
1).  
 
QED  
 
LEMMA 6.2.14. Let t ∈ ETM(0,1,+,-,•,↑,log:p), p ≥ n ≥ 1, 
with at most n occurrences of log and • combined. Then t is 
equivalent to a term t* ∈ ETM(0,1,+,-,↑:p-n).  
 
Proof: We argue by induction on n ≥ 1, that the statement is 
true for all p ≥ n ≥ 1. The case n = 1 is Lemma 6.2.13. 
Suppose this is true for a fixed n ≥ 1. Let t ∈ ETM(0,1,+,-
,•,↑,log:p), p ≥ n+1 ≥ 1, with exactly n+1 occurrences of 
log and • combined.  
 
It is clear that there is an occurrence of log(u) where u 
has no log or •, or there is an occurrence of u•v, where u,v 
have no occurrence of log or •. I.e., there is a subterm s ∈ 
TM(0,1,+,-,•,↑,log) of t with exactly one occurrence of log 
and • combined. It is obvious that s ∈ TM(0,1,+,-
,•,↑,log:p).  
 
By Lemma 6.2.13, s is equivalent to a term r ∈ ETM(0,1,+,-
,↑:p-1). Replace s in t by r, and expand the result to a 
term t’ by bring the cases inside r outside. Note that the 
cases inside r contain no occurrences of log and •. Then t’ 
∈ ETM(0,1,+,-,•,↑,log:p-1) has at most n occurrences of log 
and • combined. Now apply the induction hypothesis to t’ to 
obtain the required t* ∈ ETM(0,1,+,-,↑:(p-1)-n))  
= ETM(0,1,+,-,↑:p-(n+1)). QED 
 
LEMMA 6.2.15. Let t ∈ ETM(0,1,+,-,•,↑,log:p), p ≥ 1, with 
at most p occurrences of log and • combined. Then t is 
equivalent to a term t* ∈ ETM(0,1,+,-,↑). 
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Proof: Immediate from Lemma 6.2.14. QED 
 
LEMMA 6.2.16. Let f:Nk → N be given by a term in 
ETM(0,1,+,-,•,↑,log). If mesh(A) is sufficiently large, 
then ↑A is an infinite SOI for f. 
 
Proof: Let f be given by t ∈ ETM(0,1,+,-,•,↑,log) with at 
most p occurrences of log and • combined, p ≥ 1.  
 
Let t’ be the result of replacing every occurrence of every 
variable v in t by ↑p(v). Then t’ ∈ ETM(0,1,+,-,•,↑,log:p). 
By Lemma 6.2.15, let t’ be equivalent to t’* ∈ ETM(0,1,+,-
,↑). 
 
According to Lemma 6.2.8,  
 

if mesh(A) is sufficiently large,  
then ↑A is an infinite SOI for t’*,  

and hence for t’. 
 
Obviously,  
 

if mesh(A) ≥ p and ↑A is an infinite SOI for t’,  
then ↑(A+p) is an infinite SOI for t. 

 
Therefore, 
 

if mesh(A) is sufficiently large,  
then ↑A is an infinite SOI for t.  

 
QED 
 
We can usefully sharpen the indiscernibility given by Lemma 
6.2.16.  
 
Recall Definition 5.2.2 of #(ϕ) in Definition  
 
LEMMA 6.2.17. Fix r ≥ 1. If mesh(A) is sufficiently large, 
then ↑A is an infinite set of indiscernibles for all 
quantifier free formulas ϕ of (N,0,1,+,-,•,↑,log) with #(ϕ) 
≤ r.  
 
Proof: Let r ≥ 1. For each such ϕ(v1,...,vr), define  

 
fϕ(x1,...,xr) = 1 if ϕ(x1,...,xr); 0 otherwise.   

 
Then fϕ ∈ BAF. Now apply Lemma 6.2.16 to each fϕ. The Lemma 
follows easily. QED 
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We now provide a required link between Lemma 6.2.16 and 
Chapter 4 in order to show that Propositions C,E-H hold in 
the recursive subsets of N – and in fact, in the subsets of 
N that have primitive recursive enumerations.   
 
Let us now look at the proof given in Chapter 4 of 
Proposition B in ACA’ + 1-Con(MAH), with an eye towards 
showing that Propositions C,E-H hold in the sets with 
primitive recursive enumeration functions. This is Theorem 
4.4.11.  
 
Our strategy is to first rework much of sections 4.3 and 
4.4 primitive recursively.  
 
Before getting into full details, we now illustrate the 
power of Lemma 6.2.17 for this purpose. Note that in the 
proof of Theorem 4.4.11, we took the following step, which 
must now be avoided: 
 

...By Ramsey’s theorem for 2r-tuples in ACA’,  
we can find a p,q,b;r-structure  

M = (N,0,1,<,+,f,g,c0,c1,...). ... 
 
The notion of p,q,b;r-structure was defined just before 
Lemma 4.4.2. Note that in this context of N, the atomic 
indiscernibility clause 7’ is the only substantial clause.  
 
We avoid this use of Ramsey’s theorem for f,g ∈ BAF, as 
follows.  
 
LEMMA 6.2.18. Let p,q,b,r ≥ 1, f ∈ ELG(p,b), g ∈ ELG(q,b), 
f,g ∈ SD ∩ BAF. Then (N,0,1,<,+,f,g,(↑A)1,(↑A)2,...) is a 
p,q,b;r-structure, provided mesh(A) is sufficiently large. 
Here (↑A)1,(↑A)2,... is the strictly increasing enumeration 
of the set ↑A. 
 
Proof: Lemma 6.2.17 takes care of clause 7’. So this is 
immediate. QED  
 
Lemma 6.2.18 takes care of one crucial step in the proof of 
Theorem 4.4.11. We still have to show that the D1 ⊆ ... ⊆ 
Dn ⊆ N there can be taken to be recursive, or even have 
primitive recursive enumeration functions.   
 
Let us now proceed systemically. Our first aim is to obtain 
a new form of Theorem 4.3.8, and use it in an adaptation of 
section 4.4.  
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Recall the definition of a special SOI for f:Np → N in 
Definition 4.3.6. We repeat this definition, by rearranging 
its components. 
 
DEFINITION 6.2.15. Let f:Np → N and A ⊆ N. We say that A is 
a special SOI for f if and only if the following holds.  
 
a. The truth value of any statement  
 

f(x1,...,xp) < f(y1,...,yp) 
 
where x1,...,xp,y1,...,yp ∈ A, depends only on the order type 
of the 2p-tuple (x1,...,xp,y1,...,yp). 
 
b. Let x1,...,xp,y1,...,yp ∈ A. Suppose (x1,...,xp) and 
(y1,...,yp) have the same order type. Suppose also that for 
all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). Then i) 
f(x1,...,xp) ≤ f(y1,...,yp); ii) if f(x1,...,xp) < 
f(y1,...,yp) then f(y1,...,yp) is greater than all 
f(z1,...,zp), |z1,...,zp| ≤ |x1,...,xp|. 
 
The conditions on x,y ∈ Ap in b) play an important role. We 
say that x,y are specially related if and only if the 
conditions on x,y ∈ Ap in b) hold.  
 
Recall the key indiscernible stretching Lemma 4.3.5. Since 
ACA’ was being used freely, we did not consider any 
effectivity issues with regard to Lemma 4.3.5. We will 
refine Lemma 4.3.5 below. First we need a Lemma. 
 
LEMMA 6.2.19. For all p ≥ 1 there is a primitive recursive 
function f:N2 → N such that the following holds. Let 
x0,...,xn ∈ Np, c ∈ N, where n = f(c,|x1|) and each |xi+1| ≤ 
|xi|+c. Then there exists 1 ≤ i < j ≤ n such that xi,xi+1 are 
specially related. 
 
Proof: Fix p ≥ 1. The statement  
 

1) (∀c,x0)(∃n)(∀x1,...,xn ∈ Np) 
((∀i ≤ n-1)(|xi+1|≤ |xi|+c) →  

(∃i < j)(xi,xi+1 obey b)) 
 
is provable in the formal system WKL0 (see [Si99]), as 
follows. Assume false, and fix c,x0. Then apply WKL0 to 
produce an infinite counterexample x0,x1,... ∈ Np. Then 
choose an infinite subsequence so that the p-tuples have 
the same order type and the first terms are all = or all <. 
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Iterate this construction for p steps, arriving at an 
infinite counterexample y0,y1,... where for all 1 ≤ i ≤ p, 
the i-th coordinates are all = or all <. For j large 
enough, y0,yj are specially related. This is a 
contradiction. 
 
It is obvious that 1) is in Π0

2 form, and so we can apply 
our Theorem that every Π0

2 sentence provable in WKL0 has a 
primitive recursive bounding function. See [Si99,09], p. 
37, p. 381. QED  
 
LEMMA 4.3.5’. The following is provable in ACA’. Let q ≥ 3p 
≥ 1, and f:[0,q]p → N. Assume [0,q] is a special SOI for f. 
There exists primitive recursive g:Np → N such that N is a 
special SOI for g, where g|[0,q]p is isomorphic to f in the 
following sense. For all x,y ∈ [0,q]p, f(x) ≤ f(y) ↔ g(x) ≤ 
g(y).  
 
Proof: Let p,q,f be as given. The proof of Lemma 4.3.5 
begins by putting the following recursive relation ≤* on Np. 
x ≤* y if and only if there exists α,β ∈ [0,q]p such that  
 
i. (x,y) and (α,β) have the same order type. 
ii. f(α) ≤ f(β).  
 
In the proof of Lemma 4.3.5, it is shown that ≤* is 
reflexive, connected, transitive, and its order type, 
modulo =*, is finite or ω.  
 
Then we defined g:Np → N by  
 

g(x) is the position in ≤* of x counting from 0. 
 
We proved that g is as required here, except for “primitive 
recursive”. We did not address any issues of effectivity 
for g in the proof of Lemma 4.3.5.  
 
Thus it suffices to prove that g is primitive recursive.  
 
We say that a finite or infinite sequence x0,x1,... ∈ Np is 
complete if and only if each xi <* xi+1, and every y ∈ Np is 
equivalent (=*) to some xi. By the proof of Lemma 4.3.5, 
there is a complete sequence.  
 
Suppose x0,...,xn is a finite complete sequence. We claim 
that g is elementary recursive. Let x ∈ Np. Return i such 
that x =* xi.  
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So we will assume that complete sequences are infinite. We 
fix a complete sequence x0,x1,... . Obviously, all complete 
sequences are equivalent (=*), term by term.  
 
We claim that for all x ∈ Np there exists y ∈ Np such that  
 

1) |y| ≤ |x|+2p+p. 
y is an immediate successor of x in <*. 

 
To see this, let x = (x1,...,xp), and let y = (y1,...,yp) be 
an immediate successor of x in <* with least possible |y|. 
Assume |y| > |x| + 2p + p. 
 
Let yi be a greatest coordinate of y. We claim that the 
greatest coordinate of y bigger than yi is yi-1. To see 
this, suppose otherwise, and let y’ be the result of 
decrementing the yi’s in y by 1. Then x,y’ and x,y have the 
same order type, and so x <* y’. Also y’,y obeys the 
hypotheses of clause b), and so y’ ≤* y. Hence y’ is another 
immediate successor of x in <* of lower |y’|. This 
contradicts the choice of y. 
 
Now the same argument will not show that the greatest 
coordinate of y bigger than yi-1 is yi-2. However, this 
argument does show that the greatest coordinate of y bigger 
than yi-1 is at least yi-3. This is because we can drop the 
yi,yi-1 in y by 2 each. We repeat this argument p times, 
thereby obtaining min(y) > |x|+p. Then we can push all of 
the coordinates of y down by p, obtaining another immediate 
successor of x in <* of lower | |. This is a contradiction.  
 
Next we claim that for all x ∈ Np, not minimal in <*, there 
exists y ∈ Np such that  
 

2) |y| ≤ |x|+2p+p. 
y is an immediate predecessor of x in <*. 

 
To see this, let x = (x1,...,xp), and let y = (y1,...,yp) be 
an immediate predecessor of x in <* with least possible 
|y|. Assume |y| > |x| + 2p + p. 
 
Let yi be a greatest coordinate of y. If we raise the yi in 
y by 1 then we obtain z with y ≤* z <* x. Hence y =* z.  
 
We now claim that the greatest coordinate of y bigger than 
yi is yi-1. To see this, suppose otherwise, and let y’ be 
the result of decrementing the yi’s in y by 1. Then y’ <* x. 
Since y =* z, we have y =* y’. Hence y’ is another 
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immediate predecessor of x in <* of lower |y’|. This 
contradicts the choice of y. 
 
Now the same argument will not show that the greatest 
coordinate of y bigger than yi-1 is yi-2. However, we now 
show that the greatest coordinate of y bigger than yi-1 is 
at least yi-3. This is because if otherwise, we can first 
raise the yi,yi-1 in y by 2 each, with =*. Then we drop the 
yi,yi-1 in y by 2, also with =*, contradicting the choice of 
y. 
 
We repeat this argument p times, thereby obtaining min(y) > 
|x|+p. Then we can push all of the coordinates of y first 
up by p, and then down by p, obtaining another immediate 
predecessor of x in <* of lower | |. This is a 
contradiction. 
 
We now claim the following. Let x <* y <* z. There exists w 
such that  
 

3) |w| ≤ |x|+|z|+p. 
x <* w <* z. 

 
To see this, choose y such that x <* y <* z, where |y| is 
minimal. Assume |y| > |x|+|z|+p. We can move a nonempty 
tail of the coordinates of y that are > |x|+|z|, down by 1, 
obtaining y’, with x <* y’ <* z. This contradicts the 
choice of y.  
 
Note that 3) gives us a bounded search algorithm for 
testing whether z is an immediate successor of x in <*. 
 
From 1),2), we have  
 

4) (∀i ≥ 1)(|xi-1|,|xi+1| ≤ |xi|+2p+p). 
 
We say that a complete sequence is minimal if and only if 
each xi has minimum |xi| among the x =* xi.  
 
We can now build a minimal complete sequence 
algorithmically. Let x1 be any <* minimal element of Np. 
Suppose xi has been defined. Search among the y with |y| ≤ 
|xi|+2p+p for an immediate successor y of xi in <*. By 1), 
there is such a y. By the previous paragraph, we can test 
whether y is an immediate successor of xi in <*.  
 
This construction provides a complete sequence x0,x1,... and 
an algorithm for producing xi from i. It is easy to see that 



 781 

the running time of this algorithm is bounded by an 
iterated exponential. I.e., x0,x1,... is elementary 
recursive.  
 
However, we still have to show that the function  
 

g(x) = the unique n such that x = xn 
 
is primitive recursive. For this, we use Lemma 6.2.19. Let 
x ∈ Np. Let x = xn. We need to give an upper bound on n, 
primitive recursively in x.  
 
Consider the sequence  
 

x = xn,xn-1,...,x0 ∈ Np. 
 
Let f:N2 → N be the primitive recursive function given by 
Lemma 6.2.19. If n ≥ f(2p+p,|x|) then by Lemma 6.2.19,  
 

there exists 1 ≤ i ≤ n such that xi+1,xi  
are specially related. 

 
But then, xi+1 ≤* xi, which is a contradiction. Hence we have 
the primitive recursive upper bound  
 

n ≤ f(2p+p,|x|). 
 
We can now compute g(x) primitive recursively, by computing 
x0,x1,... elementary recursively, out to f(2p+p,|x|)+1 terms 
and testing for x =* xi. QED 
 
The following adds to Lemma 4.3.7. 
 
LEMMA 4.3.7’. The following is provable in ACA’. Every true 
ν(p,q,ψ) is primitive recursively true. 
 
Proof: Let ν(p,q,ψ) be true. As in the proof of Lemma 
4.3.7, there exists f:[0,q]p → N in the sense of Lemma 
4.3.5’. Now apply Lemma 4.3.4’ and 4.3.6. QED 
 
The following adds to Lemma 4.3.8.  
 
THEOREM 4.3.8’. The following is provable in ACA’. Every 
true λ(k,n,m,R1,...,Rn-1) is primitive recursively true.  
 
Proof: Use Lemma 4.3.7’ and the proof of Theorem 4.3.8. QED 
 
Recall these definitions made in section 4.4: 
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p,q,b-structure. (Definition 4.4.2) 

p,q,b;r-structure. (Definition 4.4.4) 
p,q,b;r,n-special structure. (Definition 4.4.5) 

p,q,b;r-type. (Definition 4.4.7) 
p,q,b;r,n-special type. (Definition 4.4.7) 

 
We need modified forms of the last four of these notions. 
For this purpose, let M* be a p,q,b;r-structure. Recall 
that M*<r> is the set of all values of closed terms of 
length ≤ r in M*. By the almost strict dominance of +*,f*,g* 
in M*, we see that M*<r> has order type ω.  
 
DEFINITION 6.2.16. We say that M* is a p,q,b;r-
structure/prim if and only if  
 
i. M* is a p,q,b;r-structure. 
ii. Every element of M* is the value of a closed term. 
iii. The <* relation on closed terms is primitive 
recursive. 
 
DEFINITION 6.2.17. A p,q,b;r-type/prim is the type of some  
p,q,b;r-structure/prim. 
 
DEFINITION 6.2.18. We say that h:N → M* is primitive 
recursive if and only if there is a primitive recursive 
function h’ from N into closed terms such that the value in 
M* of each h’(n) is h(n).  
 
DEFINITION 6.2.19. A p,q,b;r,n-special structure/prim is a  
p,q,b;r,n-structure/prim in which witnessing D’s can be 
found whose enumeration functions are primitive recursive.  
 
DEFINITION 6.2.20. A p,q,b;r,n-special type/prim is the 
p,q,b;r-type of some p,q,b;r,n-special structure/prim. 
 
The following adds to Lemma 4.4.4. 
 
LEMMA 4.4.4’. The following is provable in RCA0. Let M* be a 
p,q,b;r-structure. Then M*<r> is of order type ω. There is 
an increasing primitive recursive bijection f:N → M*<r>. 
Every p,q,b;r-type is a p,q,b;r-type/prim.  
 
Proof: Let M* be a p,q,b;r-structure, M* = 
(N*,0*,1*,<*,+*,f*,g*,c0*,...). Let α be a closed term of 
length at most r, representing an element of M*<r>, in 
which some ci appears. The value of α must lie in 
[ci*,ci+1*), where i is greatest such that ci appears in α. 
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There are only finitely many such α for each i. Also, if no 
ci appears in α then the value of α lies in [0,c1), and 
there are only finitely many of these α, as well. Hence the 
order type of M*<r> is ω. Furthermore, there are obvious 
double exponential bounds on the sizes of these finite 
sets. We can use the p,q,b;r-type of M* and the restricted 
indiscernibility of the c*’s to obtain the increasing 
primitive recursive bijection f:N → M*<r>.  
 
Let τ be the p,q,b;r-type of the p,q,b;r-structure M. We can 
build another p,q,b;r-structure on the basis of τ using the 
appropriate equivalence relation on terms of bounded 
length, so that the equivalence classes are finite. This 
construction is very effective in τ, and results in a 
p,q,b;r-structure/prim. QED  
 
The following adds to Lemma 4.4.7.  
 
LEMMA 4.4.7’. The following is provable in RCA0. Every 
p,q,b;r,n-special type is a p,q,b;r,n-special type/prim.  
 
Proof: Let τ be a p,q,b;r,n-special type. By Lemma 4.4.4’, τ 
is a p,q,b;r-type/prim. From the proofs of Lemmas 4.4.5 and 
4.4.6, we see that RCA0 proves that the witnesses to τ being 
a p,q,b;r,n-special type are the same as the witnesses to 
some λ(k,n,p+q+2,R1,...,Rn-1) explicitly produced from 
p,q,b,r,n,τ. Since τ is a p,q,b;r,n-special type, 
λ(k,n,p+q+2,R1,...,Rn-1) it true. By Theorem 4.3.7’, 
λ(k,n,p+q+2,R1,...,Rn-1) is primitively recursively true. 
Hence τ is a p,q,b;r,n-special type/prim. QED  
 
The following adds to Lemma 4.4.10. 
 
LEMMA 4.4.10’. The following is provable in ACA’ + 1-
Con(MAH). (∀p,q,b,n ≥ 1)(∃r)(∀τ)(τ is a p,q,b;r-type → τ is 
a p,q,b;r,n-special type/prim). 
 
Proof: By Lemma 4.4.7’ and 4.4.10. QED  
 
THEOREM 6.2.20. Propositions C,E-H are primitive 
recursively true. I.e., there exist infinite A,B,C whose 
enumeration functions are primitive recursive. This is 
provable in ACA’ + 1-Con(MAH). 
 
Proof: We argue in ACA’ + 1-Con(MAH). Let p,q,b,n ≥ 1, and f 
∈ ELG(p,b), g ∈ ELG(q,b), where f,g ∈ SD ∩ BAF. Let r be 
given by Lemma 4.4.10’. By Lemma 6.2.18, we can find a 
p,q,b;r-structure M = (N,0,1,<,+,f,g,c0,c1,...), where the 
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c’s form a primitive recursive sequence of powers of 2. By 
Lemma 4.4.10’, τ is a p,q,b,n,r-special type/prim. Let M* = 
(N*,0*,1*,<*,+*,f*,g*,c0*,c1*,...) be a p,q,b;n,r-special 
structure/prim with p,q,b;r-type τ. Let D1* ⊆ ... ⊆ Dn* ⊆ 
M*<r> be infinite, where D1* ⊆ {c0*,c1*,...}, each f*Di* ⊆ 
Di+1* ∪. g*Di+1*, and D1* ∩ f*Dn* = ∅, and where the 
enumeration functions of the D*’s are primitive recursive. 
Since M,M* have the same p,q,b;r-type, M*<r> and M<r> are 
isomorphic by a primitive recursive bijection. This 
isomorphism sends D1*,...,Dn* to infinite D1 ⊆ ... ⊆ Dn ⊆ 
M<r> with primitive recursive enumeration functions, where 
D1 ⊆ {c0,c1,...} ⊆ N↑, and each fDi ⊆ Di+1 ∪. gDi+1, and D1 ∩ 
fDn = ∅. QED   
 
Note that Theorem 6.2.20 provides us with explicitly Π0

3 
forms of Propositions C,E-H as stated in Appendix A.  
 
COROLLARY 6.2.21. Theorems 5.9.11 and 5.9.12 apply to 
Propositions C[prim], E[prim], F[prim], G[prim], H[prim].  
 
Proof: By Theorem 6.2.20 and the fact that Propositions 
C[prim], E[prim], F[prim] immediately imply Propositions 
C,F,G. QED  
 
Recall the tameness of the structure (N,+,↑) used in Lemma 
6.2.5.  
 
DEFINITION 6.2.21. The superexponential is the function f:N 
→ N given by f(n) = 2^2^...^2, where there are n 2's. Here 
f(0) = 1, f(1) = 2.  
 
We claim the same kind of tameness holds for (N,+,↑). This 
follows from the fact that the superexponential f satisfies 
the Semenov conditions discussed in section 4 of Appendix 
B.  
 
The nontrivial fact that we need to verify is that for all 
m ≥ 1, the residues of the values of f mod m are ultimately 
periodic.  
 
Thus it follows from [Se83] that (N,+f) has a natural 
expansion with elimination of quantifiers, and (N,+,f) is 
primitive recursively decidable. We make the following 
definitions.  
 
LEMMA 6.2.22. If m is odd then the residues of 
f(0),f(1),... mod m are ultimately periodic.  
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Proof: Let 2k be congruent to 1 mod m. Let r > s ≥ 1 be such 
that g(r) ≡ g(s) mod k. Then g(r+1) ≡ g(s+1) mod m. To see 
this, we have to check that  
 

2f(r) - 2f(s) ≡ 0 mod m. 
 

Obviously,  
 

2f(r) - 2f(s) = 2f(s)(2f(r)-f(s) - 1). 
 
Since k|f(r)-f(s), we see that 2f(r)-f(s) = (2k)(f(r)-f(s))/k. 
Since 2k ≡ 1 mod m, we see that 2f(r)-f(s) ≡ 1 mod m.  
 
Hence we have periodicity for f(n), n ≥ r, with period r-s. 
QED 
 
LEMMA 6.2.23. If n ≥ 1 then the residues of g(0),g(1),... 
mod n are ultimately periodic.  
 
Proof: Write n = 2rm, where m ≥ 1 is odd. Then the residues 
of f(n),f(n+1),... mod n are just the residues of 
f(n)/2r,f(n+1)/2r,... mod m, multiplied by 2r. Since the 
later residues are ultimately periodic, the former residues 
are ultimately periodic. QED 
 
THEOREM 6.2.24. Let f be the superexponential. The first 
order theory of the structure (N,+,f) is primitive 
recursive.  
 
Proof: By Lemma 6.2.23, f obeys the Semenov conditions from 
section 4 of Appendix B. QED 
 
DEFINITION 6.2.22. The Presburger sets are the sets 
definable in (N,+). The exponentially Presburger sets are 
the sets definable in (N,+,↑). The superexponentially 
Presburger sets are the sets definable in (N,+,f), where f 
is the superexponential.  
 
As stated earlier, we conjecture that a more careful 
argument will show that Propositions C,E-H hold in the 
superexponentially Presburger sets.  
 
In light of the primitive recursive decision procedure for 
superexponential Presburger arithmetic in Theorem 6.2.24, 
Propositions C,E-H, when stated in the superexponentially 
Presburger sets, become Π0

2 statements. We conjecture that 
these Π0

2 statements are provably equivalent to 1-Con(SMAH) 
in ACA'.  
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6.3. A Refutation. 
 
In Proposition A, can we replace ELG by the simpler and 
more basic SD? We refute this in a strong way. In 
particular, we refute Proposition C with ELG removed.  
 
PROPOSITION α. For all f,g ∈ SD ∩ BAF there exist A,B,C ∈ 
INF such that 

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

   
We will even refute the following weaker Proposition. 
 
PROPOSITION β. Let f,g ∈ SD ∩ BAF. There exist A,B,C ⊆ N, 
|A| ≥ 4, such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
We assume Proposition β, and derive a contradiction.  
 
We begin with a modification of Lemmas 5.1.6 and 5.1.7. 
Basically, these go through without any change in the 
proof, but we provide some additional details.   
 
LEMMA 5.1.6'. Let f,g ∈ SD ∩ BAF. There exist f',g' ∈ SD ∩ 
BAF such that the following holds. 
i) g'S = g(S*) ∪ 6S+2; 
ii) f'S = f(S*) ∪ g'S ∪ 6f(S*)+2 ∪ 2S*+1 ∪ 3S*+1. 
 
Proof: In the proof of Lemma 5.1.6, f',g' are constructed 
explicitly from f,g. It is obvious that if f,g ∈ SD ∩ BAF, 
then f',g' ∈ SD ∩ BAF. The verification goes through 
without change. QED 
 
LEMMA 5.1.7'. Let f,g ∈ SD ∩ BAF and rng(g) ⊆ 6N. There 
exist A ⊆ B ⊆ C ⊆ N\{0}, |A| ≥ 3, such that  
i) fA ∩ 6N ⊆ B ∪ gB; 
ii) fB ∩ 6N ⊆ C ∪ gC; 
iii) fA ∩ 2N+1 ⊆ B; 
iv) fA ∩ 3N+1 ⊆ B; 
v) fB ∩ 2N+1 ⊆ C; 
vi) fB ∩ 3N+1 ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ fB = ∅; 
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Proof: In the proof Lemma 5.1.6, f',g' are constructed 
explicitly from f,g. Then A,B,C are used from Proposition 
C, and it is verified that A ⊆ B ⊆ C, A* ⊆ B* ⊆ C* ⊆ N\{0}, 
and A*,B*,C* obey i) - viii). Suppose f,g ∈ SD ∩ BAF, 
rng(g) ⊆ 6N. Then f',g' ∈ SD ∩ BAF, and we take A,B,C from 
Proposition β, |A| ≥ 4. The same argument shows that A ⊆ B 
⊆ C, A* ⊆ B* ⊆ C* ⊆ N\{0}, and A*,B*,C* obey i) - viii). 
Obviously |A*| ≥ 3. QED  
 
LEMMA 6.3.1. Suppose n > m ∧ x > c ∧ 48n↑-24m = 48x↑-24c. 
Then n = x ∧ m = c. 
 
Proof: Let n,m,x,c be as given. Then  
 

48n↑-48x↑ = 24m-24c. 
2(n↑-x↑) = m-c. 

n ≠ x → max(n,x)↑ ≤ |2(n↑-x↑)| = |m-c| < max(n,x). 
n = x, m = c. 

QED 
 
Define f:N5 → N as follows. Let a,b,c,d,e ∈ N.  
 
case 1. a = b = c ∧ |a,b,c,d,e| = e. Define f(a,b,c,d,e) = 
e+1. 
 
case 2. a = b > c ∧ |a,b,c,d,e| = e. Define f(a,b,c,d,e) = 
e+2. 
 
case 3. a = b < c ∧ |a,b,c,d,e| = e. Define f(a,b,c,d,e) = 
48e↑+12. 
 
case 4. a < b = c ∧ |a,b,c,d,e| = e. Define f(a,b,c,d,e) = 
48e↑-24d. 
 
case 5. a < b ∧ a = c ∧ |a,b,c,d,e| = e. Define 
f(a,b,c,d,e) = 48e↑-24(d+1). 
 
case 6. a > b = c ∧ |a,b,c,d,e| = e. Define f(a,b,c,d,e) = 
48e↑-24(d+2). 
 
case 7. otherwise. Define f(a,b,c,d,e) = |a,b,c,d,e|+1. 
 
Define g:N5 → 6N as follows. Let n,t,m,r,s ∈ N.  
 
case 1. n = t > m > r, s = 48n↑-24m. Define g(n,t,m,r,s) = 
48n↑-24r. 
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case 2. n > t = m > r, s = 48n↑-24m. Define g(n,t,m,r,s) = 
48n↑+12. 
 
case 3. otherwise. Define g(n,t,m,r,s) = 48|n,t,m,r,s|+6. 
 
Note the modest use of t in the definition of g.  
 
LEMMA 6.3.2. f,g ∈ SD ∩ BAF. For all S ⊆ N, S*+1 ∪ S*+2 ∪ 
{48n↑+12: n ∈ S*} ∪ {48n↑-24(m+j): n,m ∈ S* ∧ m ≤ n ∧ j ≤ 
2} ⊆ fS. The outputs of cases 1-3 in the definition of g 
are pairwise disjoint. 
 
Proof: Let S ⊆ N. At arguments from S, case 1 in the 
definition of f produces S+1; case 2 produces S*+2, case 3 
produces 48n↑+12, n ∈ S*; case 4 produces the 48n↑-24m, n,m 
∈ S*, m ≤ n; case 5 produces the 48n↑-24(m+1), n,m ∈ S*, m 
≤ n, and case 6 produces the 48n↑-24(m+2), n,m ∈ S*, m ≤ n. 
(In cases 4-6, additional integers can be produced). Since 
e > 0 → 48e↑-24(e+2) > e, we see that f ∈ SD ∩ BAF. 
 
Note that if n > m > r then 48n↑-24r > 24n↑ > n, and 48n↑-
24r > 48n↑-24m. Also, if n > m > r then 48n↑+12 > 48n↑-
24m,n. Hence g ∈ SD ∩ BAF.  
 
The three cases in the definition of g yield integers 
congruent to 24,12,6 modulo 48, respectively. QED 
 
We now apply Lemma 5.1.7' to f,g. Fix A,B,C according to 
Lemma 5.1.7'. 
 
LEMMA 6.3.3. Let n ∈ C. There is at most one m ∈ C such 
that m < n ∧ 48n↑-24m ∈ C. 
 
Proof: Let m,m' ∈ C, m < m' < n, 48n↑-24m,48n↑-24m' ∈ C. 
Then g(n,n,m',m,48n↑-24m') = 48n↑-24m. Hence 48n↑-24m ∈ C ∩ 
gC, which contradicts Lemma 5.1.7' vii). QED 
 
LEMMA 6.3.4. Let n ∈ A*. Then (∀m ∈ C*)(m < n → 48n↑-24m ∉ 
C).  
 
Proof: Let n ∈ A*, m ∈ C*, m < n, 48n↑-24m ∈ C. Then 
g(n,m,m,min(C),48n↑-24m) = 48n↑+12 ∈ gC. By Lemma 5.1.7' 
vii), 48n↑+12 ∉ C. By Lemma 6.3.2, 48n↑+12 ∈ fA ∩ 6N. By 
Lemma 5.1.7' i), we have 48n↑+12 ∈ B ∪ gB. Hence 48n↑+12 ∈ 
gB. Let 48n↑+12 = g(a,t,b,c,d), a,t,b,c,d ∈ B. Then case 2 
applies and g(a,t,b,c,d) = 48a↑+12, d = 48a↑-24b, a > b > 
c. Obviously a = n and b ∈ B*. 
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Thus we have b < n, and 48n↑-24b ∈ B, b,n ∈ B. Note that m 
< n, 48n↑-24m ∈ C, m,n ∈ C. By Lemma 6.3.3, m = b < a = n. 
Hence m ∈ B*, m < n, 48n↑-24m ∈ B.  
 
By Lemma 6.3.2, m+1,m+2 ∈ fB. By Lemma 5.1.7' viii), we 
have m+1,m+2 ∉ A. In particular, m+1,m+2 ≠ n. Since m < n, 
we have m+2 < n. Let i ∈ {1,2} be such that m+i is odd, m+i 
< n. By Lemma 5.1.7' v), m+i ∈ C.  
 
By Lemma 6.3.3, 48n↑-24(m+i) ∉ C. Note that n,m ∈ B*, m < 
n, and so by Lemma 6.3.2, 48n↑-24(m+i) ∈ fB. By Lemma 
5.1.7' ii), 48n↑-24(m+i) ∈ C ∪ gC, 48n↑-24(m+i) ∈ gC. Let 
48n↑-24(m+i) = g(x,t,b,c,d), x,t,b,c,d ∈ C. Then case 1 
applies and g(x,t,b,c,d) = 48x↑-24c, d = 48x↑-24b, x > b > 
c. By Lemma 6.3.1, x = n ∧ m+i = c < b. Hence b < n, 48n↑-
24b = d ∈ C, b,n ∈ C. By Lemma 6.3.3, b = m. This 
contradicts b > m+i. QED 
 
THEOREM 6.3.5. Proposition α is refutable in RCA0. In fact, 
Proposition β is refutable in RCA0. 
 
Proof: Let s,n ∈ A*, s < n. This is supported by |A| ≥ 3. 
Hence s ∈ C*. By Lemma 6.3.4, 48n↑-24s ∉ C. By Lemma 6.3.2, 
48n↑-24s ∈ fA. By Lemma 5.1.7' i), we have 48n↑-24s ∈ B ∪ 
gB, 48n↑-24s ∈ gB. Let 48n↑-24s = g(a,t,b,c,d), a,t,b,c,d ∈ 
B. Then case 1 applies, and g(a,t,b,c,d) = 48a↑-24c, a > b 
> c, d = 48a↑-24b. By Lemma 6.3.1, a = n ∧ c = s. Now b < n 
∧ 48n↑-24b ∈ B. Clearly b ∈ B* ⊆ C*. This contradicts Lemma 
6.3.4. QED  
 
 

APPENDIX A 
 

PRINCIPAL CLASSES OF  
FUNCTIONS AND SETS 

 
 
N is the set of all nonnegative integers. |x| is max(x).  
 
MF is the set of all functions whose domain is a subset of 
some Nk and whose range is a subset of N.  
 
SD is the set of all f ∈ MF such that for all x ∈ dom(f), 
f(x) > |x|. 
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EVSD is the set of all f ∈ MF such that for all but 
finitely many x ∈ dom(f), f(x) > |x|. 
 
ELG is the set of all f ∈ MF such that there exist c,d > 1 
obeying the following condition. For all but finitely many 
x ∈ dom(f), c|x| ≤ f(x) ≤ d|x|.  
 
LB is the set of all f ∈ MF such that there exists d 
obeying the following condition. For all x ∈ dom(f), |x| ≤ 
d|x|.  
 
EXPN is the set of all f ∈ MF such that there exists c > 1 
obeying the following condition. For all but finitely many 
x ∈ dom(f), c|x| ≤ f(x). 
 
BAF is the set of all f ∈ MF which can be written using 
0,1,+,-,•,↑,log, where x-y = max(x-y,0), x↑ = 2x, log(x) = 
floor(log(x)) if x > 0; 0 otherwise. Closure under 
definition by cases, using <,=, is derived in section 5.1.  
 
INF is the set of all infinite subsets of N. 
 

PRINCIPAL FORMAL SYSTEMS 
 
 
The systems RCA0, WKL0, ACA0 , ATR0, Π1

1-CA0 of Reverse 
Mathematics (see section 0.4). 
 
The systems ACA', ACA+ (Definitions 1.4.1, 6.2.1).  
 
The systems ZFC, MAH, SMAH, MAH+, SMAH+. MAH = ZFC + {there 
exists an n-Mahlo cardinal}n. SMAH = ZFC + {there exists a 
strongly n-Mahlo cardinal}n. MAH+ = ZFC + (∀n < ω)(∃κ)(κ is 
an n-Mahlo cardinal). SMAH+ = ZFC + (∀n < ω)(∃κ)(κ is a 
strongly n-Mahlo cardinal). (Definitions 4.1.1, 4.1.2).  
 

INDEPENDENT PROPOSITIONS 
 
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist 
infinite A1 ⊆ ... ⊆ An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
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ii) A1 ∩ fAn = ∅. 
 
PROPOSITION C. For all f,g ∈ ELG ∩ SD ∩ BAF, there exist 
A,B,C ∈ INF such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
∪. is disjoint union. Its presence indicates that its left 
and right sides are disjoint sets.  
 
Trivial implications: B → A → C.  
 
Proposition A is the Principal Exotic Case, which arises in 
Chapter 3 (see section 3.13). Proposition B is proved in 
Chapter 4 in ACA' + 1-Con(SMAH). Proposition C is shown in 
Chapter 5 to imply 1-Con(SMAH) in ACA'.  
 
In section 6.1, we treat the following five Propositions. 
 
PROPOSITION D. Let f ∈ LB ∩ EVSD, g ∈ EXPN, E ⊆ N be 
infinite, and n ≥ 1. There exist infinite A1 ⊆ ... ⊆ An ⊆ N 
such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅;  
iii) A1 ⊆ E. 
 
PROPOSITION E. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ B ∪. gB 
fB ⊆ C ∪. gC 

 
PROPOSITION F. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ C ∪. gB 
fB ⊆ C ∪. gC 

 
PROPOSITIOIN G. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ C ∪. gB 
fB ⊆ C ∪. gC 

 
PROPOSITIOIN H. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, where A ∩ B contains infinitely many powers of 
2, such that  

fA ⊆ C ∪. gB 
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fB ⊆ C ∪. gC 
 
Each of these seven Propositions are shown in ACA' to be 
equivalent to 1-Con(SMAH). 
 
Trivial implications: D → B → A → C, and D → E → F → G 
→ H.  
 
In section 6.2, we treat the following arithmetic forms.  
 
PROPOSITION C[prim]. For all f,g ∈ ELG ∩ SD ∩ BAF, there 
exist A,B,C ∈ INF with primitive recursive enumeration 
functions, such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
PROPOSITION E[prim]. For all f,g ∈ ELG ∩ SD ∩ BAF there 
exist A ⊆ B ⊆ C ⊆ N with primitive recursive enumeration 
functions, each containing infinitely many powers of 2, 
such that  

fA ⊆ B ∪. gB 
fB ⊆ C ∪. gC 

 
PROPOSITION F[prim]. For all f,g ∈ ELG ∩ SD ∩ BAF there 
exist A ⊆ B ⊆ C ⊆ N with primitive enumeration functions, 
each containing infinitely many powers of 2, such that  

fA ⊆ C ∪. gB 
fB ⊆ C ∪. gC 

 
PROPOSITION G[prim]. For all f,g ∈ ELG ∩ SD ∩ BAF there 
exist A,B,C ⊆ N with primitive recursive enumeration 
functions, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ C ∪. gB 
fB ⊆ C ∪. gC 

 
PROPOSITION H[prim]. For all f,g ∈ ELG ∩ SD ∩ BAF there 
exist A,B,C ⊆ N with primitive enumeration functions, where 
A ∩ B contains infinitely many powers of 2, such that  

fA ⊆ C ∪. gB 
fB ⊆ C ∪. gC 

 
 

APPENDIX B - FRANCOISE POINT. 
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