CHAPTER 4.
PROOF OF PRINCIPAL EXOTIC CASE

4.1. Strongly Mahlo Cardinals of Finite Order.
4.2. Proof using Strongly Mahlo Cardinals.
4.3. Some Existential Sentences.
4.4. Proof using 1-consistency.

4.1. Strongly Mahlo Cardinals of Finite Order.

The large cardinal properties used in this book are the strongly Mahlo cardinals of order \(n \), where \(n \in \omega \). These are defined inductively as follows.

DEFINITION 4.1.1. The strongly 0-Mahlo cardinals are the strongly inaccessible cardinals (uncountable regular strong limit cardinals). The strongly \(n+1 \)-Mahlo cardinals are the infinite cardinals all of whose closed unbounded subsets contain a strongly \(n \)-Mahlo cardinal.

It is easy to prove by induction on \(n \) that for all \(n < m < \omega \), every strongly \(m \)-Mahlo cardinal is a strongly \(n \)-Mahlo cardinal.

There is a closely related notion: \(n \)-Mahlo cardinal.

DEFINITION 4.1.2. The 0-Mahlo cardinals are the weakly inaccessible cardinals (uncountable regular limit cardinals). The \(n+1 \)-Mahlo cardinals are the infinite cardinals all of whose closed unbounded subsets contain an \(n \)-Mahlo cardinal.

Again, for all \(n < m < \omega \), every \(m \)-Mahlo cardinal is an \(n \)-Mahlo cardinal.

NOTE: Sometimes (strongly) \(n \)-Mahlo cardinals are called (strongly) Mahlo cardinals of order \(\leq n \). Also, sometimes what we call \(n \)-Mahlo cardinals are called weakly \(n \)-Mahlo cardinals.
The well known relationship between n-Mahlo cardinals and strongly n-Mahlo cardinals is given as follows.

THEOREM 4.1.1. The following is provable in ZFC. Let \(n < \omega \).
A cardinal is strongly n-Mahlo if and only if it is n-Mahlo and strongly inaccessible. Under the GCH, a cardinal is strongly n-Mahlo if and only if it is n-Mahlo.

Proof: For the first claim, note that it is obvious for \(n = 0 \). Assume that every strongly inaccessible n-Mahlo cardinal is strongly n-Mahlo. Let \(\kappa \) be a strongly inaccessible n+1-Mahlo cardinal. Let \(A \subseteq \kappa \) be closed and unbounded. Since \(\kappa \) is strongly inaccessible, the set \(B \subseteq \kappa \) consisting of the strong limit cardinals in \(A \) is closed and unbounded. Let \(\lambda \in B \) be an n-Mahlo cardinal. As previously remarked, \(\lambda \) is an inaccessible cardinal. Since \(\lambda \) is a strong limit cardinal, \(\lambda \) is a strongly inaccessible cardinal. By the induction hypothesis, \(\lambda \) is a strongly n-Mahlo cardinal. We have thus shown that every closed unbounded \(A \subseteq \kappa \) contains a strongly n-Mahlo element. Hence \(\kappa \) is strongly n+1-Mahlo.

For the final claim, assume the GCH. By an obvious induction, every strongly n-Mahlo cardinal is an n-Mahlo cardinal. For the converse, let \(\kappa \) be an n-Mahlo cardinal. As previously remarked, \(\kappa \) is a weakly inaccessible cardinal. Hence \(\kappa \) is a strongly inaccessible cardinal (by GCH). By the first claim, \(\kappa \) is a strongly n-Mahlo cardinal. QED

We now develop the essential combinatorics of strongly Mahlo cardinals of finite order used in this Chapter.

DEFINITION 4.1.3. Let \([A]^n \) be the set of all n element subsets of \(A \). Sometimes we write \(x \in [A]^n \) in the form \(\{x_1,...,x_n\} \) to indicate that the \(x_i \) are strictly increasing. Let \(A \) be a set of ordinals. We say that \(f:[A]^n \rightarrow \omega \) is regressive if and only if for all \(x \in [A \setminus \{0\}]^n \), \(f(x) < \min(x) \).

DEFINITION 4.1.4. We say that \(E \) is min homogenous for \(f:[A]^n \rightarrow \omega \) if and only if \(E \subseteq A \) and for all \(x,y \in [E]^n \), \(\min(x) = \min(y) \rightarrow f(x) = f(y) \).

LEMMA 4.1.2. Let \(n \geq 0 \), \(\kappa \) a strongly n-Mahlo cardinal, \(A \subseteq \kappa \) unbounded, and \(f:[A]^{n+2} \rightarrow \kappa \) be regressive. For all \(\alpha < \kappa \),
there exists $E \subseteq A$ of order type α which is min homogenous for f.

Proof: This result originally appeared in [Sc74], in somewhat sharper form, using different notation. We present the proof in [HKS87], p. 147, using Erdös-Rado trees.

DEFINITION 4.1.5. Let A be a set of ordinals with at least two elements. An A-tree is an irreflexive transitive relation T with field A such that

i. $\alpha \ T \ \beta \rightarrow \alpha < \beta$.

ii. $\left\{ \beta : \beta \ T \ \alpha \right\}$ is linearly (and hence well) ordered by T.

DEFINITION 4.1.6. Let $m \geq 2$, A be a nonempty set of ordinals, and $f : [A]^n \rightarrow \text{On}$ be regressive. The Erdős-Rado tree $E^R(f)$ is the unique A-tree T with field A such that for all $\alpha, \beta \in A, \alpha \ T \beta$ if and only if

i. $\alpha < \beta$.

ii. For all $\gamma_1, \ldots, \gamma_{m-1} \ T \alpha$ with $\gamma_1 < \ldots < \gamma_{m-1}, f(\{\gamma_1, \ldots, \gamma_{m-1}, \alpha\}) = f(\{\gamma_1, \ldots, \gamma_{m-1}, \beta\})$.

To see that there is such a unique T, build $E^R(f, \alpha), \alpha \in A$, by transfinite recursion on $\alpha \in A$. Here $E^R(f, \alpha)$ is $E^R(f)$ restricted to $A \cap \alpha$. The details are left to the reader.

DEFINITION 4.1.7. For $\alpha \in A$, the height of α in $E^R(f)$ is the order type of $\left\{ \beta : \beta \ E^R(f) \ \alpha \right\}$. We say that $\alpha, \beta \in A$ are siblings in $E^R(f)$ if and only if they are distinct, and have the same strict predecessors in $E^R(f)$. For ordinals γ, let $E^R(f)[<\gamma]$ be the restriction of $E^R(f)$ to the elements of A (vertices) of height $< \gamma$.

We now assume that $f : [A]^{n+2} \rightarrow \text{On}$ is regressive and $\text{sup}(A)$ is a strongly inaccessible cardinal κ. Observe that for all $\alpha \in A$, the number of siblings of α in $E^R(f)$ is at most the number of functions from α^{n+1} into α, which is at most $2^{\alpha^{n+1}} + \omega$. Next observe that by transfinite induction on $\alpha < \kappa$, $E^R(f)[<\alpha]$ has $< \k \alpha$ vertices. Hence for all $\alpha < \kappa$, $E^R(f)$ has a vertex of height α. By the construction of $E^R(f)$, every vertex has height $< \kappa$.

Now observe that if $n = 0$ then the set of strict predecessors of every element of $E^R(f)$ is min homogeneous for f. This establishes the Lemma for the basis case $n = 0$.
Suppose that the Lemma holds for a fixed \(n \geq 0 \). Let \(\kappa \) be a strongly \(n+1 \)-Mahlo cardinal, \(A \subseteq \kappa \) be unbounded, \(\alpha < \kappa \), and \(f:[A]^{n+3} \to \kappa \) be regressive. We use the Erdős-Rado tree \(\text{ERT}(f) \).

Since \(\kappa \) is strongly inaccessible, \(C = \{ \lambda < \kappa : \lambda \) is a limit ordinal \(\) and \(\text{ERT}(f)[<\lambda] \) is an \(A \cap \lambda \)-tree and \(A \cap \lambda \) is unbounded in \(\lambda \} \) is a closed and unbounded subset of \(\kappa \). Since \(\kappa \) is a strongly \(n+1 \)-Mahlo cardinal, fix \(\lambda < \kappa \) to be a strongly \(n \)-Mahlo cardinal \(> \alpha \) such that \(\text{ERT}(f)[<\lambda] \) is an \(A \cap \lambda \)-tree and \(A \cap \lambda \) is unbounded in \(\lambda \).

Let \(v \) be a vertex of \(\text{ERT}(f) \) of height \(\lambda \). Let \(B = \{ w : w \in \text{ERT}(f) v \} \). Then \(B \) is an unbounded subset of \(\lambda \).

\(B \) naturally gives rise to a regressive function \(f^*:[B]^{n+2} \to \lambda \) by taking \(f^*(x) = f(x \cup \{ \gamma \}) \), where \(\gamma \in B \), \(\gamma > \max(x) \).

Note that this definition is independent of the choice of \(\gamma \).

By the induction hypothesis, let \(E \subseteq B \) be min homogenous for \(f^* \), \(E \) of order type \(\alpha \). Then \(E \subseteq B \subseteq A \) is min homogenous for \(f \). QED

DEFINITION 4.1.8. For all ordinals \(\alpha \), let \(\alpha' \) be the least infinite cardinal \(> \alpha \). Let \(f:[A]^n \to \kappa \). We say that \(f \) is next regressive if and only if every \(f(x_1, \ldots, x_n) < \min(x_1, \ldots, x_n)^+ \).

LEMMA 4.1.3. Let \(n \geq 0 \), \(\kappa \) a strongly \(n \)-Mahlo cardinal, and \(A \subseteq \kappa \) be unbounded. For all \(\alpha < \kappa \), there exists \(E \subseteq A \) of order type \(\alpha \) such that for all \(i \in \omega \), \(E \) is min homogenous for \(f_i \).

Proof: This is by a straightforward modification of the proof of Lemma 4.1.2. Modify the definition of the Erdős-Rado tree \(\text{ERT}(f) \) accordingly, and derive a similar upper bound on the number of siblings of a vertex in \(\text{ERT}(f) \). QED

Let \(n \geq 1 \) and \(f:[A]^n \to \kappa \). We wish to define \(n+1 \) kinds of infinite sets \(E \subseteq A \) for \(f \).

DEFINITION 4.1.9. We say that \(E \) is of kind 0 for \(f \) if and only if \(f \) is constant on \([E]^n \), where the constant value is less than the strict sup of \(E \).
DEFINITION 4.1.10. We say that E is of kind $1 \leq j \leq n$ for f if and only if the following holds. For all $\{x_1, \ldots, x_n\} < \{x_1, \ldots, x_j, y_{j+1}, \ldots, y_n\} \subseteq E$, $f(x_1, \ldots, x_n) = f(x_1, \ldots, x_j, y_{j+1}, \ldots, y_n)$ is greater than every element of $E < x_j$ and smaller than every element of $E > x_j$.

For $E \subseteq \text{On}$ and $\delta < \text{ot}(E)$, we write $E[\delta]$ for the δ-th element of E.

We fix $H: \text{On}^{\omega} \to \text{On}\setminus\{0\}$, where H is one-one and for all $x \in \text{On}^{\omega}$, $H(x) < \max(x)^+$.

LEMMA 4.1.4. Let $n \geq 1$, κ a strongly n-Mahlo cardinal, and $A \subseteq \kappa$ unbounded. For all $i \in \omega$, let $f_i: [A]^{n+1} \to \kappa$. For all $\alpha < \kappa$, there exists $E \subseteq A$ of order type α such that the following holds. For all $i \in \omega$, there exists $0 \leq j \leq n+1$ such that E is of kind j for f_i.

Proof: Let $n, \kappa, A, f_i, \alpha$ be as given. We can assume that $\alpha > \omega$, $A \subseteq \kappa \setminus \omega$, and there is an infinite cardinal strictly between any two elements of A. We can also assume that for all $\alpha_1, \ldots, \alpha_{n+1} < \beta$ from A, $f_i(\alpha_1, \ldots, \alpha_{n+1}) < \beta$.

For all $i \in \omega$, define $g_{i,0}(u, x_1, \ldots, x_{n+1}) < 1+f_i(x_1, \ldots, x_{n+1})$ if $f_i(x_1, \ldots, x_{n+1}) \leq u$; 0 otherwise.

For $1 \leq j \leq n+1$, define $g_{i,j}(u, x_{j+1}, \ldots, x_{n+2})$ as follows. Let $z_1 < \ldots < z_j < u$ be such that $f_i(z_1, \ldots, z_j, x_{j+1}, \ldots, x_{n+1}) \neq f_i(z_1, \ldots, z_j, x_{j+2}, \ldots, x_{n+2})$ and $f_i(z_1, \ldots, z_j, x_{j+1}, \ldots, x_{n+1}) \leq u$. Set $g_{i,j}(u, x_{j+1}, \ldots, x_{n+2}) = H(z_1, \ldots, z_j, f_i(z_1, \ldots, z_j, x_{j+1}, \ldots, x_{n+1}))$. If such z’s do not exist, then set $g_{i,j}(u, x_{j+1}, \ldots, x_{n+2}) = 0$.

Note that each $g_{i,j}$ is next regressive. By Lemma 4.1.3, let $E' \subseteq A \setminus \omega$ be min homogeneous for all $g_{i,j}$, where E' has cardinality $\geq \aleph_\omega(\alpha+\omega)$ = the first strong limit cardinal $> \alpha+\omega$.

We can partition the tuples from E' of length $\leq 2n+2$ in a strategic way, with 2^{ω} pieces, and apply the Erdős-Rado theorem to obtain $E \subseteq E'$ with order type α, with the following three properties. Write $E[1], E[2], \ldots$ for the first ω elements of E. Let $i \in \omega$.

1) For all $\{x_1, \ldots, x_{n+1}\} \in [E]^{n+1}$, $f_i(x_1, \ldots, x_{n+1}) \in E \to f_i(x_1, \ldots, x_{n+1}) \in \{x_1, \ldots, x_{n+1}\}$.
2) Suppose \(f_i \{E[2], \ldots, E[n+2]\} = f_i \{E[n+3], \ldots, E[2n+3]\} \). Then \(f_i \) is constant on \([E]^{n+1}\).

3) Suppose \(1 \leq j \leq n+1 \), and \(f_i \{E[2], E[4], \ldots, E[2j], E[2j+4], E[2j+6], \ldots, E[2n+4]\} \subseteq (E[2j-1], E[2j+1]) \). Then \(E \) is of kind \(j \) for \(f_i \).

For the remainder of the proof, we fix \(i \in \omega \). The first case that applies is the operative case.

case 1. \(f_i \{E[2], E[4], \ldots, E[2n+2]\} \leq E[1] \). Then
\[
g_{i,0} \{E[1], E[2], E[4], \ldots, E[2n+2]\} = 1 + f_i \{E[2], E[4], \ldots, E[2n+2]\} > 0.
\]
Since \(E \) is min homogenous for \(g_{i,0} \) we see that for all \(x, y \in [E]^{n+1} \) such that \(\min(x), \min(y) \geq E[2] \), we have
\[
g_{i,0} (\{E[1]\} \cup x) = g_{i,0} (\{E[1]\} \cup y) = 1 + f_i (x) = 1 + f_i (y).
\]
In particular, \(f_i \{E[2], \ldots, E[n+2]\} = f_i \{E[n+3], \ldots, E[2n+3]\} \). By 2), \(f_i \) is constant on \([E]^{n+1}\). Hence \(E \) is of kind 0 for \(f_i \).

case 2. Let \(j \) be the greatest element of \([1, n+1]\) such that
\(f_i \{E[2], E[4], \ldots, E[2n+2]\} \in (E[2j-1], E[2j+1]) \). Note that
\[
g_{i,j} \{E[2j+1], E[2j+2], E[2j+4], \ldots, E[2n+4]\} = g_{i,j} \{E[2j+1], E[2j+4], E[2j+6], \ldots, E[2n+6]\}.
\]
Suppose the main clause in the definition of
\(g_{i,j} \{E[2j+1], E[2j+2], E[2j+4], \ldots, E[2n+4]\} \) holds, with \(z_1 < \ldots < z_j \leq E[2j+1] \). Since \(H \) is nonzero, the main clause in the definition of
\(g_{i,j} \{E[2j+1], E[2j+4], E[2j+6], \ldots, E[2n+6]\} \) holds with, say, \(w_1 < \ldots < w_j \leq E[2j+1] \). Hence
\[
H (z_1, \ldots, z_j, f_i (z_1, \ldots, z_j, E[2j+2], E[2j+4], \ldots, E[2n+2])) = H (w_1, \ldots, w_j, f_i (w_1, \ldots, w_j, E[2j+4], E[2j+6], \ldots, E[2n+4])).
\]
Therefore \(z_1, \ldots, z_j = w_1, \ldots, w_j \), respectively, and
\[
f_i (z_1, \ldots, z_j, E[2j+2], E[2j+4], \ldots, E[2n+2]) = f_i (w_1, \ldots, w_j, E[2j+4], E[2j+6], \ldots, E[2n+4]).
\]
This contradicts the choice of \(z_1, \ldots, z_j \).

Hence the main clause in the definition of
\(g_{i,j} \{E[2j+1], E[2j+2], E[2j+4], \ldots, E[2n+4]\} \) fails. In particular, it fails with \(z_1, \ldots, z_j = E[2], E[4], \ldots, E[2j] \), respectively. Then
\[
f_i \{E[2], E[4], \ldots, E[2n+2]\} = f_i \{E[2], E[4], \ldots, E[2j], E[2j+4], E[2j+6], \ldots, E[2n+4]\}.
\]
By 3), \(E \) is of kind \(j \) for \(f_i \).

case 3. Otherwise. Then
\[
f_i \{E[2], E[4], \ldots, E[2n+2]\} \in \{E[1], E[3], \ldots, E[2n+1]\}, \text{ or } f_i \{E[2], E[4], \ldots, E[2n+2]\} \geq E[2n+3].
\]
The first disjunct is impossible by 1), and the second disjunct is impossible by the assumption on \(A \).
We have thus shown that for some \(j \in [0, n+1] \), \(E \) is of kind \(j \) for \(f_i \). Since \(i \) is arbitrarily chosen from \(\omega \), we are done.

QED

Definition 4.1.11. Let \(f: [A]^n \rightarrow \kappa \) and \(E \subseteq A \). We define \(fE \) to be the range of \(f \) on \([E]^n \).

Lemma 4.1.5. Let \(n, m \geq 1, \kappa \) a strongly \(n \)-Mahlo cardinal, and \(A \subseteq \kappa \) unbounded. For all \(i \in \omega \), let \(f_i : [A]^{n+1} \rightarrow \kappa \), and let \(g_i : [A]^m \rightarrow \omega \). There exists \(E \subseteq \kappa \) of order type \(\omega \) such that

1. for all \(i \in \omega \), \(f_i \) is either constant on \([E]^{n+1} \), with constant value \(< \text{sup}(E) \), or \(f_i E \) is of order type \(\omega \) with the same sup as \(E \);
2. for all \(i \in \omega \), \(g_i \) is constant on \([E]^m \).

Proof: Let \(n, m, \kappa, A, f_i, g_i \) be as given. Apply Lemma 4.1.4 to obtain \(E' \subseteq \kappa \) of order type \(\aleph_0(\omega) \) such that the following holds. For all \(i \in \omega \) there exists \(0 \leq j \leq n+1 \) such that \(E \) is of kind \(j \) for \(f_i \). By the Erdös-Rado theorem, let \(E \subseteq E' \) be of order type \(\omega \), where for all \(i \in \omega \), \(g_i \) is constant on \([E]^m \). Write \(E = \{E[1], E[2], \ldots\} \).

Let \(i \in \omega \) and \(E \) be of kind \(j \) for \(f_i \). If \(j = 0 \) then \(f_i \) is constant on \([E]^{n+1} \), where the constant value is less than \(\text{sup}(E) \).

Now suppose \(1 \leq j \leq n+1 \). For all \(\{x_1, \ldots, x_{n+1}\} \),
\[
\{x_1, \ldots, x_j, y_{j+1}, \ldots, y_{n+1}\} \subseteq E, \quad f_i\{x_1, \ldots, x_{n+1}\} = f_i\{x_1, \ldots, x_j, y_{j+1}, \ldots, y_{n+1}\} \text{ is greater than every element of } E \text{ and smaller than every element of } E > x_j.
\]
Since we can set \(x_j \) to vary among \(E[j], E[j+1], \ldots \), we see that \(f_i E \) has the same sup as \(E \). In particular, \(f_i E \) is infinite.

Also, for any particular \(E[p] \), the values \(f_i\{x_1, \ldots, x_{n+1}\} < E[p] \), \(x_1 < \ldots < x_{n+1} \subseteq A \), can arise only if \(x_j \leq E[p+1] \). Since the arguments \(x_{j+1}, \ldots, x_{n+1} \) don't matter (kind \(j \) for \(f_i \)), there are at most finitely many such values.

We have shown that \(f_i E \) has at most finitely many elements not exceeding any given element of \(E \). Therefore \(f_i E \) has order type \(\leq \omega \). Since \(f_i E \) is infinite, the order type of \(f_i E \) is \(\omega \). QED

We now switch over to ordered tuples. Let \(f : A^n \rightarrow \kappa \) and \(E \subseteq A \). Here we also define \(fE \) to be the range of \(f \) on \(E^n \).
LEMMA 4.1.6. Let $n, m \geq 1$, κ a strongly n-Mahlo cardinal, and $A \subseteq \kappa$ unbounded. For all $i \in \omega$, let $f_i : A^{n+1} \to \kappa$, and let $g_i : A^m \to \omega$. There exists $E \subseteq \kappa$ of order type ω such that

i) for all $i \geq 1$, $f_i E$ is either a finite subset of $\text{sup}(E)$, or of order type ω with the same sup as E;

ii) for all $i \in \omega$, $g_i E$ is finite.

Proof: Let $n, m, \kappa, A, f_i, g_i$ be as given. Each f_i gives rise to finitely many corresponding $f_{i, \sigma}$, where σ ranges over the order types of $n+1$ tuples. Also each g_i gives rise to finitely many corresponding $g_{i, \sigma}$, where σ ranges over the order types of m tuples. Any $f_i E$ is the union of the $f_{i, \sigma} E$, and any $g_i E$ is the union of the $g_{i, \sigma} E$. Choose E according to Lemma 4.1.5. Then E will be as required. QED

DEFINITION 4.1.12. Let SMAH+ be $\text{ZFC} + (\forall n < \omega) (\exists \kappa) (\kappa$ is a strongly n-Mahlo cardinal). Let SMAH be $\text{ZFC} + \{(\exists \kappa) (\kappa$ is a strongly n-Mahlo cardinal)$\}_{n < \omega}$.

DEFINITION 4.1.13. Let MAH+ be $\text{ZFC} + (\forall n < \omega) (\exists \kappa) (\kappa$ is an n-Mahlo cardinal). Let MAH be $\text{ZFC} + \{(\exists \kappa) (\kappa$ is an n-Mahlo cardinal)$\}_{n < \omega}$.

We will use the following (known) relationship between SMAH+, MAH+, SMAH, and MAH.

DEFINITION 4.1.14. The system EFA = exponential function arithmetic is defined to be the system $I \Sigma_0 (\exp)$; see [HP93].

THEOREM 4.1.7. SMAH+ and MAH+ prove the same Π_2^1 sentences. SMAH and MAH prove the same Π_2^1 sentences. SMAH is 1-consistent if and only if MAH is 1-consistent. SMAH is consistent if and only if MAH is consistent. These results are provable in EFA.

Proof: We first prove the following well known theorem in ZFC.

1) Let $n \geq 0$. Every n-Mahlo cardinal is an n-Mahlo cardinal in the sense of L.

The basis case asserts that every weakly inaccessible cardinal is a weakly inaccessible cardinal in L. This is particularly well known and easy to check.
Fix \(n \geq 0 \) and assume that every \(n \)-Mahlo cardinal is an \(n \)-Mahlo cardinal in \(L \). Let \(\kappa \) be an \(n+1 \)-Mahlo cardinal. Let \(A \subseteq \kappa \), \(A \in L \), where \(A \) is closed and unbounded in \(\kappa \) (in the sense of \(L \)). Let \(\lambda \in A \) be an \(n \)-Mahlo cardinal. Then \(\lambda \in A \) is an \(n \)-Mahlo cardinal in \(L \). Hence \(\kappa \) is an \(n+1 \)-Mahlo cardinal in \(L \).

If \(T \) is a sentence or set of sentences in the language of set theory, then we write \(T^{(L)} \) for the relativization of \(T \) to Gödel's constructible universe \(L \).

For the first claim, let \(\text{SMAH}^+ \) prove \(\phi \), where \(\phi \) is \(\Pi^1_2 \). By Lemma 4.1.1, \(\text{MAH}^+ + \text{GCH} \) proves \(\phi \). Hence \(\text{ZFC} + \text{MAH}^{+(L)} + \text{GCH}^{(L)} \) proves \(\phi^{(L)} \) by, e.g., [Je78], section 12. Therefore \(\text{ZFC} + \text{MAH}^{+(L)} \) proves \(\phi^{(L)} \) by, e.g., [Je78], section 13. By the Shoenfield absoluteness theorem (see, e.g., [Je78], p. 530), \(\text{ZFC} + \text{MAH}^{+(L)} \) proves \(\phi \). By 1), \(\text{MAH}^+ \) proves \(\phi \).

For the second claim, we repeat the proof of the first claim for any specific level of strong Mahloness.

For the third claim, assume \(1 \)-\text{Con(MAH)}). Let \(\phi \) be a \(\Sigma^0_1 \) sentence provable in \(\text{SMAH} \). By the second claim, \(\phi \) is provable in \(\text{MAH} \). Hence \(\phi \) is true.

For the final claim, assume \(\text{Con(MAH)} \). Then \(\text{MAH} \) does not prove \(1 = 0 \). By the second claim, \(\text{SMAH} \) does not prove \(1 = 0 \). Hence \(\text{Con(SMAH)} \). QED

Theorem 4.1.7 tells us that for the purposes of this book, \(\text{SMAH}^+ \) and \(\text{SMAH} \) are equivalent to \(\text{MAH}^+ \) and \(\text{MAH} \). We will always use \(\text{SMAH}^+ \) and \(\text{SMAH} \).