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ABSTRACT. We present a way out of Russell’s paradox for
sets in the form of a direct weakening of the usual
inconsistent full comprehension axiom scheme, which, with
no additional axioms, interprets ZFC. In fact, the
resulting axiomatic theory 1) is a subsystem of ZFC +
“there exists arbitrarily large subtle cardinals”, and 2)
is mutually interpretable with ZFC + the scheme of
subtlety.

1. NEWCOMP.

Bertrand Russell [Ru1902] showed that the Fregean scheme of
full comprehension is inconsistent. Given the intuitive
appeal of full comprehension (for sets), this inconsistency
is known as Russell’s Paradox (for sets). The modern view
is to regard full comprehension (for sets) as misguided,
and thereby regard Russell’s Paradox (for sets) as a
refutation of a misguided idea.

We first give an informal presentation of the axiom scheme
investigated in this paper. Informally, the full
comprehension axiom scheme in the language L(Œ) with only
the binary relation symbol Œ and no equality, is, in the
context of set theory,

Every virtual set forms a set.

We use the term “virtual set” to mean a recipe that is
meant to be a set, but may be a “fake set” in the sense
that it does not form a set. The recipes considered here
are of the form {x: j}, where j is any formula in L(Œ).

Other authors prefer to use the term “virtual class”,
reflecting the idea that {x: j} always forms a class, with
the understanding that x ranges over sets. Our terminology
reflects the intention to consider only sets, and construct
a powerful set existence axiom.

We say that {x: j} forms a set if and only if there is a
set whose elements are exactly the y such that j. Here y
must not be free in j (and must be different from x). Thus
{x: j} forms a set is expressed by
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($y)("x)(x Œ y ´ j).

Russell showed that

{x: x œ x} forms a set

leads to a contradiction in pure logic.

Our way out of Russell’s Paradox is to modify the
inconsistent Fregean scheme in this way:

Every virtual set forms a set, or _____.

We refer to what comes after “or” as the “escape clause”.
The escape clause that we use involves only the extension
of the virtual set and not its presentation.

We are now ready to present the comprehension axiom scheme.

NEWCOMP. Every virtual set forms a set, or, outside any
given set, has two inequivalent elements, where all
elements of the virtual set belonging to the first belong
to the second.

To avoid any possible ambiguity, we make the following
comments (as well as give a formal presentation in section
2).

1. For Newcomp, we use only the language L(Œ), which does
not have equality.
2. Here “inequivalent” means “not having the same
elements”.
3. The escape clause asserts that for any set y, there are
two unequal sets z,w in the extension of the virtual set,
neither in y, such that every element of z in the extension
of the virtual set is also an element of w.

We will show that

a) Newcomp is provable in ZFC + “there exists arbitrarily
large subtle cardinals”;
b) Newcomp is provable in ZFC + V = L + SSUB, where SSUB is
what we call the scheme of subtlety;
c) Newcomp and ZFC + SSUB are mutually interpretable;
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d) Newcomp is interpretable in ZFC + “there exists a subtle
cardinal”, but Newcomp is not provable there, assuming that
the latter is consistent;
e) all of the above are provable in the weak fragment of
arithmetic EFA (exponential function arithmetic);
f) Newcomp and ZFC + SSUB are equiconsistent, in the sense
that their consistencies are provably equivalent in EFA.

As usual, ZFC is formulated with equality; i.e., in the
language L(Œ,=).

The interpretation of ZFC + SSUB in Newcomp presented here
(or coming out of here) takes the following form (when
straightforwardly adjusted). Sets in ZFC + SSUB are
interpreted to be sets in Newcomp. Membership and equality
between the sets in ZFC + SSUB are interpreted as two
separate relations between sets in Newcomp defined by two
separate formulas with exactly two free variables (no
parameters). As normally required of interpretations, the
usual connectives and quantifiers are interpreted without
change. Every theorem of ZFC + SSUB becomes a theorem of
Newcomp when so interpreted.

There is an appropriate sense in which this interpretation
is a well founded interpretation. Specifically, it is
provable in Newcomp that every set has a minimal element
under the above interpretation of the epsilon relation of
ZFC + SSUB. We can then draw conclusions such as
conservative extension results in the form: any sentence of
a certain kind provable in ZFC + SSUB is provable in
Newcomp. However, the statement of such results involves
various coding apparatus available in Newcomp, and we do
not go into this matter here. Suffice it to say that, in an
appropriate sense, every arithmetical theorem of ZFC + SSUB
is a theorem of Newcomp (and vice versa).

In the interpretation of Newcomp in ZFC + “there exists a
subtle cardinal”, the sets in Newcomp are interpreted to be
some portion of the sets in ZFC + “there exists a subtle
cardinal”, (an initial segment, possible proper, of the
constructible hierarchy), and membership between sets in
Newcomp is interpreted as membership between sets in ZFC +
“there exists a subtle cardinal”. As normally required of
interpretations, the usual connectives and quantifiers are
interpreted without change. Every theorem of Newcomp
becomes a theorem of ZFC + “there exists a subtle cardinal”
when so interpreted.
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Of course, when interpreting Newcomp in ZFC + “there are
arbitrarily large subtle cardinals”, we can use the
identity interpretation, since Newcomp is provable there.

The system ZFC + SSUB has logical strength a shade below
that of ZFC + SUB, where SUB is “there exists a subtle
cardinal”, and substantially stronger than the well studied
large cardinal axioms weaker than SUB, such as the
existence of Mahlo, weakly compact, or indescribable
cardinals. In the well known Chart of Cardinals in [Ka94],
p. 471, subtle fits strictly below k Æ (w)<w

2, and strictly
above (in logical strength) “indescribable”, well within
the cardinals that are compatible with V = L.

2. SOME FORMALITIES.

We let L(Œ) be ordinary classical first order predicate
calculus with only the binary relation symbol Œ (no
equality). We assume that x,y,z are distinct variables
among the infinitely many variables used in L(Œ).

Let j be a formula in L(Œ). We write z ≡ w for ("u)(u Œ z
´ u Œ w).

NEWCOMP. Let j be a formula of L(Œ) in which y,z,w are not
free. ($y)("x)(x Œ y ´ j) ⁄ ("y)($z,w)(z,w œ y Ÿ ÿz ≡ w Ÿ
j[x/z] Ÿ j[x/w] Ÿ ("x)((j Ÿ x Œ z) Æ x Œ w)).

The following definition is used in [Ba75] and [Fr01]. We
say that an ordinal l is subtle if and only if

i) l is a limit ordinal;
ii) Let C Õ l be closed and unbounded, and for each a < l
let Aa Õ a be given. There exists a,b Œ C, a < b, such that
Aa = Ab « a.

It is well known that every subtle ordinal is a subtle
cardinal (see [Fr01], p. 3).

We will use the following schematic form of subtlety. SSUB
is the following scheme in the language of ZFC with Œ,=.
Let j,y be formulas, where we view j as carving out a class
on the variable x, and y as carving out a binary relation
on the variables x,y. Parameters are allowed in j,y.
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if j defines a closed and unbounded class of ordinals and y
defines a system Aa Õ a, for all ordinals a, then there
exists a,b Œ C, a < b, where Aa = Ab « a.

This concludes the definitions that are used in the list of
agenda items a) - f) at the end of section 1.

In [Fr02] we define l to be inclusion subtle if and only if
i) l is a limit ordinal;
ii) Let C Õ l be closed and unbounded, and for each a < l
let Aa Õ a be given. There exists a,b Œ C, a < b, such that
Aa Õ Ab.

There is a corresponding scheme SISUB (scheme of inclusion
subtlety).

if j defines a closed and unbounded class of ordinals, and
y defines a system Aa Õ a, for all ordinals a, then there
exists a,b Œ C, a < b, such that Aa Õ Ab.

LEMMA 2.1. An ordinal is subtle if and only if it is
inclusion subtle.

Proof: This is Theorem 1.2 of [Fr02]. QED

THEOREM 2.2. SISUB and SSUB are provably equivalent in ZFC.

Proof: This is in clear analogy with Lemma 2.1. The proof
is an obvious adaptation of that of Lemma 2.1. QED

In [Fr02] we define l to be weakly inclusion subtle over d
if and only if
i) l,d are ordinals;
ii) For each a < l let Aa Õ a be given. There exists d £ a <
b such that Aa Õ Ab.

There is a corresponding scheme SWISUB (scheme of weak
inclusion subtlety). This is the natural principle used to
prove Newcomp in section 3 (we will also use V = L).

if y defines a system Aa Õ a, for all ordinals a, then
there exist arbitrarily large ordinals a < b such that Aa Õ
Ab.

LEMMA 2.3. The least weakly inclusion subtle ordinal over d
≥ 2, if it exists, is a subtle cardinal.
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Proof: This is Theorem 1.6 of [Fr02]. QED

THEOREM 2.4. SWISUB and SSUB are provably equivalent in ZFC
+ ÿSUB.

Proof: This will be an adaptation of the proof of Lemma
2.3. We work in SWISUB + ÿSUB. Let a closed unbounded class
C of ordinals, and Aa Õ a, ordinals a, be appropriately
given. By Theorem 2.2, it suffices to find a,b Œ C, a < b,
such that Aa Õ Ab. By Lemma 2.3, there is no weakly
inclusion subtle ordinal. So for each g, we have a
counterexample Da Õ a, a < g, to g is weakly inclusion
subtle.

We now proceed exactly as in the proof of Theorem 1.6 in
[Fr02]. QED

COROLLARY 2.5. ZFC + SSUB and ZFC + SWISUB are mutually
interpretable and equiconsistent (in the sense that the
consistency statements are provably equivalent in EFA).

Proof: The interpretation will be V if there is no subtle
cardinal, and V(l) if there is a subtle cardinal and l is
the least subtle cardinal. QED

For the interpretation of ZFC + SSUB in Newcomp, we will
use another modification of SSUB that is weaker than
SWISUB. We call it the scheme of very weak inclusion
subtlety, written SVWISUB.

if y defines a system Aa Õ a, for all ordinals a, then
there exist 2 £ a < b such that Aa Õ Ab.

THEOREM 2.6. SVWISUB and SSUB are provably equivalent in
ZFC + ÿSUB.

Proof: The same as for Theorem 2.4. In Theorem 1.6 of
[Fr02], set d = 2. QED

COROLLARY 2.7. ZFC + SSUB and ZFC + SVWISUB are mutually
interpretable and equiconsistent (in the sense that the
consistency statements are provably equivalent in EFA).

Proof: Same as for Corollary 2.5. QED

In section 5, we will interpret SVWISUB in Newcomp +
Extensionality.
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3. PROOF AND INTERPRETATION OF NEWCOMP.

THEOREM 3.1. Newcomp is provable in ZFC + V = L + SWISUB.
In particular, it is provable in ZFC + V = L + SSUB, and
interpretable in ZFC + SSUB. Newcomp is interpretable in
ZFC + “there exists a subtle cardinal”.

Proof: We work in ZFC + V = L + SWISUB. Let S be a proper
class given by a formula with set parameters.

Suppose there exists a such that the x Œ S for which S « x
Œ V(a) forms a proper class. By replacement, outside of any
given set, there exists x,y Œ S, x ≠ y, such that S « x = S
« y, and we have verified Newcomp for S. So we assume that
for all a, {x Œ S: S « x Œ V(a)} is a set.

We now construct a one-one surjective function F:S Æ On
such that

*) for all x,y Œ S, if x Œ y then F(x) < F(y).

For each a, we define a one-one partial function Fa:S Æ On
with domain {x Œ S: S « x Œ V(ga)} and range an ordinal,
obeying property *) on its domain. Here ga will be a
strictly increasing ordinal valued function of a. Moreover,
each of the functions Fa will be strictly extended by the
later ones. By the first paragraph in this proof, these
domains are sets.

We start the construction with F0 = 0 and ga = 0. Suppose Fa

has been defined for all 0 £ b < a, according to the
previous paragraph, where each function is extended by the
later ones. Define If a is a limit ordinal, then take Fa to
be the union of the Fb, b < a, and ga to be the sup of the
gb, b < a. Suppose a = b+1. Define ga to be the least ordinal
> gb such that {x Œ S: S « x Œ V(gb)} ≠ {x Œ S: S « x Œ
V(ga)}. Obviously ga exists since the left side is a set and
S forms a proper class. Define Fa to be any one-one
extension of Fb, with domain {x Œ S: S « x Œ V(ga)}, which
is onto an ordinal, and where all new values of Fa are
greater than any values of the old Fb.

Finally, define F:S Æ On as the union of the Fa, over all
ordinals a. Since the ga are strictly increasing, every
element of S lies in the domain of some Fa. Since each Fa is
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one-one, clearly Fa is one-one. It is also clear that F is
onto.

We now verify condition *). Let x,y Œ S, x Œ y. Let a be
least such that y Œ dom(Fa). Write a = b+1. Then y Œ S, S «
y Œ V(gb+1). Note that x Œ S, S « x Œ V(d), for some d < gb+1.
By the definition of gb+1, we see that x Œ S, S « x Œ V(gb).
Hence x Œ dom(Fb), y œ dom(Fb). By the construction of Fb+1,
we have F(x) < F(y).

It is clear that we cannot make this construction in a
definable manner; e.g., S may be all of V. However, V = L
provides the needed definable well ordering of V to make
this construction go through.

We now define Aa Õ a for all ordinals a. Recall that F is
one-one onto. Take Aa = {F(x): x Œ S « F-1a}, where F-1a is
the inverse image of the function F at the point a. Suppose
x Œ S « F-1a. By condition *) in the construction of F, we
have F(x) < F(F-1a) = a. Thus we see that Aa Õ a.

By SWISUB, let a < b be arbitrarily large ordinals such that
Aa Õ Ab. Then {F(x): x Œ S « F-1a} Õ {F(x): x Œ S « F-1b}.
Since F:S Æ On is one-one, we have {x: x Œ S « F-1a} Õ {x:
x Œ S « F-1b}, S « F-1a Õ S « F-1b. Also, since F is one-
one, F-1a and F-1b can be taken to lie outside any given set
and are distinct elements of S. We have thus verified the
escape clause in Newcomp.

For the second claim, obviously SWISUB is derivable from
SSUB, and ZFC + V = L + SSUB is interpretable in ZFC + SSUB
by relativizing to L. For the third claim, obviously ZFC +
SSUB is interpretable in ZFC + “there exists a subtle
cardinal” by using the model (V(k),Œ) of SSUB, where k is
the least subtle cardinal. QED

THEOREM 3.2. Newcomp is provable in ZFC + “there are
arbitrarily large subtle cardinals”.

Proof: Assume that the virtual set S does not form a set.
As in the proof of Theorem 3.1, we can assume that for all
a, {x Œ S: S « x Œ V(a)} is a set.

We cannot build all of the one-one partial functions Fa:S Æ
On that were constructed in the proof of Theorem 3.1 with
the aid of V = L. But we can define the ga, for all ordinals
a, easily within ZFC. Now let w be the given set in the
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escape clause of Newcomp, and k be a subtle cardinal such
that w Œ V(k). In ZFC, we can well order the set {x Œ S: S
« x Œ V(gk)}. We then use this well ordering in order to
define the partial functions Fa:S Æ On as in the proof of
Theorem 3.1, for a £ k. The final function Fk is one-one
from a subset of S onto an ordinal ≥ k, and obeys x Œ y Æ
Fk(x) < Fk(y).

As in the proof of Theorem 3.1, for a < k, define Aa =
{F(x): x Œ S « F-1a}. As before, Aa Õ a. Since k is a subtle
cardinal, there are arbitrarily large a < b < k such that Aa

Õ Ab. Again, we have S « F-1a Õ S « F-1b for each such
choice of a < b < k. Note that there are k choices of such
pairs {a,b}, where these unordered pairs are pairwise
disjoint. Thus there are k choices {F-1a,F-1b}, where these
unordered pairs are pairwise disjoint. Hence for one of
these pairs, both elements lie outside w. QED

THEOREM 3.3. Newcomp is not provable in ZFC + V = L +
“there exists a subtle cardinal”, assuming the latter is
consistent. Newcomp is not provable in ZFC together with
any existential sentence in the language of set theory with
equality and the power set operation, with bounded
quantifiers allowed, assuming the latter is consistent.

Proof: Let M be a model of ZFC + V = L + “there exists a
subtle cardinal”. Let k be any subtle cardinal in the sense
of M. Let M’ be the same as M if M satisfies “there is no
strongly inaccessible cardinal > k”; otherwise M’ is the
restriction of M to the sets of rank less than the first
inaccessible cardinal > k in the sense of M. Then M’
satisfies ZFC + V = L.

In M’, we construct a definable assignment Aa Õ a, ordinals
a, as follows. If a > k is a successor ordinal, let Aa =
{0,a-1}. If a > k is a limit ordinal of cofinality < a, let
Aa be an unbounded subset of a of order type cf(a) whose
first two elements are 1,cf(a). If a > k is the next
cardinal after the cardinal b, let Aa = {2} » [b,a). For a £
k, let Aa = a. Note that the strict sup of every Aa is a.

We claim that k < a < b and Aa Õ Ab is impossible. If this
holds then either a,b are both successor ordinals, or a,b
are both nonregular limit ordinals, or a,b are both
successor cardinals. The first and third cases are
dispensed with immediately. For the second case, we have
cf(a) = cf(b) and Aa,Ab have order type cf(a) < a. Since Aa
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has strict sup a and Ab has strict sup b > a, this is
impossible.

We can now convert this construction to a counterexample to
Newcomp. The conversion is according to the proof of
Theorem 2.5, iii) Æ i), in [Fr02], with l = On and d = k.
For the convenience of the reader, we repeat the relevant
part from there with l = On and d = k, in the next three
paragraphs, working within M’.

We define f:On Æ V as follows. f(a) = {f(b): b Œ Aa}. By
transfinite induction, each f(a) has rank a. Let S be the
range of f. Then S is a transitive set of rank l, where S
has exactly one element of each rank < l.

We claim that f(a) Õ f(b) Æ Aa Õ Ab. To see this, suppose
f(a) Õ f(b). Then {f(m): m Œ Aa} Õ {f(m): m Œ Ab}. Since f
is one-one, Aa Õ Ab.

Suppose there exists a 2 element chain {x Õ≠ y} Õ S,
rk(x),rk(y) ≥ k. Since x Õ≠ y, we have rk(x) £ rk(y), and
hence k £ rk(x) < rk(y). Write rk(x) = a and rk(y) = b. Then
x = f(a) and y = f(b). Therefore Aa Õ Ab. Since k £ a < b,
this contradicts the choice of (Aa).

We now claim that S provides a counterexample to Newcomp in
M’. Clearly S is a proper class in M’. However, there are
no x,y Œ S, x ≠ y, outside of V(k), with S « x Õ y.

For the second claim, we again begin with a model M of ZFC
+ ($x1,…,xk)(j), where j is a bounded formula in Œ,=, and
the power set operation. Fix a limit cardinal k in M such
that ($x1,…,xk Œ V(k))(j) holds in M. Choose a well ordering
X of V(k) in M, and pass to the submodel L[X] of M. Finally,
let M’ is L[X] if there is no strongly inaccessible
cardinal above k in the sense of L[X]; otherwise M’ is the
result of chopping off at the first strongly inaccessible
cardinal above k in the sense of L[X]. Then M’ satisfies ZFC
+ ($x1,…,xk)(j). Now repeat the above argument for the first
claim to show that M’ does not satisfy Newcomp. QED

4. NEWCOMP + EXT IN NEWCOMP.

In this section, we give an interpretation of Newcomp +
Extensionality in Newcomp.
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Let us be precise about what these two theories are. Recall
that Newcomp is formulated as a scheme in L(Œ); i.e.,
without equality. See section 2.

However, we formulate Newcomp + Ext in L(Œ,=); i.e., with
equality. This is convenient for section 5. The axioms of
Newcomp + Ext, in addition to the logical axioms for
L(Œ,=), including the equality axioms for L(Œ,=), are

EXTENSIONALITY. ("z)(z Œ x ´ z Œ y) Æ x = y.

NEWCOMP. Let j be a formula of L(Œ,=) in which y,z,w are
not free. ($y)("x)(x Œ y ´ j) ⁄ ("y)($z,w)(z,w œ y Ÿ ÿz =
w Ÿ j[x/z] Ÿ j[x/w] Ÿ ("x)((j Ÿ x Œ u) Æ x Œ v)).

We first give the interpretation (and its verification),
where a few points remain to be handled formally, as noted.
We follow this by a formal treatment of the few remaining
points.

In Newcomp, we define x ≡ y if and only if ("z)(z Œ x ´ z
Œ y).

Sitting in Newcomp, we call a set x extensional if and only
if for any finite sequence x1 Œ x2 Œ ... Œ xk = x, k ≥ 2,
for all y, we have x1 ≡ y Æ y Œ x2. This is a place where
we need to fill in some details, because we don’t have
natural numbers and finite sequences readily available in
Newcomp.

We interpret the sets for Newcomp + Ext to be the
extensional sets. Membership is interpreted as membership.
Equality is interpreted as ≡ in Newcomp.

We first check that the interpretations of the equality
axioms of Newcomp + Ext are provable in Newcomp.

For the equality axioms, it remains to prove the
interpretations of

x = y Æ (z Œ x Æ z Œ y)
x = y Æ (x Œ z Æ y Œ z).

Let x,y,z be extensional. Assume the interpretation of x =
y. This is ("w)(w Œ x ´ w Œ y). Obviously z Œ x Æ z Œ y.
We need to check that x Œ z Æ y Œ z. Assume x Œ z. We
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apply the definitional of extensional to x Œ z. Since x ≡
y, we have y Œ z.

We now check that the interpretation of Ext is provable in
Newcomp.

Extensionality reads

("z)(z Œ x ´ z Œ y) Æ x = y.

The first crucial Lemma we need is that every element of an
extensional set is extensional. This is informally clear,
but we will give a careful proof in Newcomp later.

Let x,y,z be extensional. Assume the interpretation of
("z)(z Œ x ´ z Œ y). Then for all extensional z, z Œ x ´
z Œ y. Now let z be arbitrary. If z Œ x then z is
extensional, and hence z Œ y. If z Œ y then z is
extensional, and hence z Œ x. Thus we conclude that x ≡ y,
which is the interpretation of x = y.

We now come to the Newcomp axiom scheme. We want to
interpret the universal closure of the Newcomp axiom

1) {x: j} forms a set or, outside any given set, there
exists y,z, ÿy = z, j[x/y], j[x/z], with ("x Œ y)(j Æ x Œ
z)

where y,z are not free in j. Let v1,...,vk be a complete
list of the free variables in this Newcomp axiom, without
repetition.

The interpretation of the universal closure of the above
Newcomp axiom is the sentence

2) For all extensional v1,...,vk, ($ extensional y)("
extensional x)(x Œ y ´ j*) or, for any extensional w, there
exist extensional y,z œ w, with ÿy ≡ z, j*[x/y], j*[x,z],
and (" extensional x Œ y)(j* Æ x Œ z)

where j* is the result of relativizing all quantifiers in j
to the extensional sets, and replacing = with ≡.

We can rewrite 2) in Newcomp as

3) For all extensional v1,...,vk, ($ extensional y)("
extensional x)(x Œ y ´ j*) or, for any extensional w, there
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exist extensional y,z œ w, with ÿy ≡ z, j*[x/y], j*[x,z],
and ("x Œ y)(j* Æ x Œ z).

We will actually prove the following strengthening of 3) in
Newcomp. Let j’ be j* Ÿ x is extensional.

4) For all extensional v1,...,vk, ($ extensional y)("x)(x Œ
y ´ j’) or, for any w, there exists y,z œ w, with ÿy ≡ z,
j’[x/y], j’[x,z], and ("x Œ y)(j’ Æ x Œ z).

Let us verify that 4) Æ 3) in Newcomp. Clearly ("x)(x Œ y
´ j’) implies (" extensional x)(x Œ y ´ j*) since if x is
extensional, then j’ ´ j*. Also, any such y,z in 4) are
extensional because of the construction of j’. In addition,
("x Œ y)(j’ Æ x Œ z) implies ("x Œ y)(j* Æ x Œ z). To see
this, assume ("x Œ y)(j’ Æ x Œ z), and let x Œ y and j*.
Since y is extensional, x is extensional, and so j’, and
hence x Œ z.

Note that 4) is almost in the form of the universal closure
of a Newcomp axiom. The problem is the displayed
existential quantifier. In Newcomp we obviously have

5) For all extensional v1,...,vk, ($y)("x)(x Œ y ´ j’) or,
for any w, there exists y,z œ w, with ÿy ≡ z, j’[x/y],
j’[x,z], and ("x Œ y)(j’ Æ x Œ z).

It remains to prove in Newcomp,

6) For all extensional v1,...,vk, ($y)("x)(x Œ y ´ j’) Æ ($
extensional y)("x)(x Œ y ´ j’).

We first claim that

7) For all extensional v1,…,vk, ("x,u)(x ≡ u Æ (j’ ´
j’[x/u]))

where u is not free in j’ and not among v1,…,vk.

To prove 7), first note that we have

8) For all extensional v1,…,vk, ("x,u)(x = u Æ (j ´
j[x/u]))*

since this is the interpretation of a theorem of logic, and
we have secured the interpretation of the equality axioms.
Hence we have
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9) For all extensional v1,…,vk, ("x,u)(x ≡ u Æ (j* ´
j*[x/u])).

For the next paragraph, we will need a second crucial
Lemma. If x is extensional and x ≡ y, then y is extensional.
This is informally clear, but we will give a careful proof
in Newcomp later.

To finish the proof of 7), let v1,…,vk be extensional and
let x ≡ u. If j’ then x is extensional, and so u is
extensional. Also j*, and so by 9), j*[x/u]. Hence j’[x/u].
For the other direction, if j’[x/u] then u is extensional,
and so x is extensional. Also j*[x/u], and so j*. Hence j’.
This verifies 7).

We now complete the verification of 6) in Newcomp. Let
v1,…,vk be extensional, and let ("x)(x Œ y ´ j’). Then y is
a set of extensional sets. By 9), y is a set of extensional
sets, where any set equivalent to an element of y is an
element of y. It is informally clear that y itself is
extensional.

Thus we need a third crucial Lemma. If x is a set of
extensional sets, and ("y,z)((y Œ x Ÿ y ≡ z) Æ z Œ x),
then x is extensional.

This completes the verification of the interpretation of
Newcomp + Ext in Newcomp.

We now formally treat extensional sets and the three
crucial Lemmas used above. We will work entirely within
Newcomp.

LEMMA 4.1. Separation holds. I.e., ($y)("x)(x Œ y ´ (x Œ a
Ÿ j)), where y is not free in j.

Proof: {x: x Œ a Ÿ j} does not have two inequivalent
elements outside a. So it forms a set. QED

By Lemma 4.1, we can use the notation y ≡ {x: x Œ a Ÿ j}
for ("x)(x Œ y ´ (x Œ a Ÿ j)}. This determines x up to
equivalence.

LEMMA 4.2. For any x,y, there exists z such that ("w)(w Œ z
´ (w Œ x ⁄ w ≡ y)).
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Proof: {w: w Œ x ⁄ w ≡ y} does not have two inequivalent
elements outside x. So it forms a set. QED

By Lemma 4.2, we can use the notation z ≡ x » {y} for
("w)(w Œ z ´ (w Œ x ⁄ w ≡ y)). This determines z up to
equivalence. We also use the notation z ≡ {y} for ("w)(w Œ
z ´ w ≡ y), which also determines z up to equivalence.

Recall that, informally in Newcomp, a set x is extensional
if and only if for any finite sequence x1 Œ x2 Œ ... Œ xk =
x, k ≥ 2, for all y, if x1 ≡ y then y Œ x2.

To formalize this, we use the notion of an x-set, for any
set x.

An epsilon closed subset of a set b is w Õ b such that any
element of an element of w that lies in b lies in w.

An x-set is a set b such that

i) All sets equivalent to x lie in b;
ii) Every epsilon closed subset of b containing all sets
equivalent to x, is equivalent to b.

We say that x is 1-extensional if and only if every set
equivalent to an element of x is an element of x.

We say that x is extensional if and only if every element
of every x-set is 1-extensional.

We could have used a simpler notion of x-set: x Œ b, and
every epsilon closed subset of b containing x as an element
is equivalent to b. However, the proofs with the present
notion are simpler.

LEMMA 4.3. Let b be an x-set. Assume y ≡ {x}. Then any c ≡ b
» {y} is a y-set.

Proof: Clearly every set equivalent to y lies in c. Let z
be an epsilon closed subset of c containing all sets
equivalent to y. Then all sets equivalent to x lie in z.
Let w ≡ z « b. We claim that w is an epsilon closed subset
of b containing all sets equivalent to x. To see this, let
v Œ u Œ w, v Œ b. Then v Œ u Œ z and v Œ c, and so v Œ z,
and hence v Œ w. This establishes the claim.
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Since b is an x-set, w ≡ b. It remains to show that z
contains all elements of c that are not in b. I.e., z
contains all sets equivalent to y. This we already have.
QED

LEMMA 4.4. Every element of an extensional set is
extensional.

Proof: Let x Œ y, where y is extensional. Every element of
every y-set is 1-extensional. Let u be an element of some
x-set b. Let y ≡ {x}. Let c ≡ b » {y}. By Lemma 4.3, c is a
y-set and u Œ c. Hence u is 1-extensional. QED

LEMMA 4.5. If x ≡ y then every x-set is a y-set.

Proof: Let b be an x-set. We verify that b is a y-set.
Clearly every set equivalent to y lies in b. Suppose z is
an epsilon closed subset of b containing all sets
equivalent to y as an element. Then z is an epsilon closed
subset of b containing all sets equivalent to x as an
element, and so z ≡ b. QED

LEMMA 4.6. If x is extensional and x ≡ y, then y is
extensional.

Proof: Suppose z is an element of some y-set. By Lemma 4.5,
z is an element of some x-set, and so z is 1-extensional.
QED

LEMMA 4.7. Let b be an x-set and y be an element of an
element of b. Then there is an x-set c such that y Œ c.

Proof: Let b,x,y be as given. Let y Œ z Œ b. Let d ≡ b »
{y}, and c ≡ {z Œ d: z Œ b ⁄ z is an element of an element
of b}. Clearly b Õ c and y Œ c.

Suppose w is an epsilon closed subset of c containing all
sets equivalent to x. Let w’ ≡ w « b. We claim that w’ is
an epsilon closed subset of b containing all sets
equivalent to x. To see this, let v Œ u Œ w’, v Œ b. Then
u,v Œ c, and so v Œ w’. This establishes the claim. Hence
w’ ≡ b.

It remains to verify that c Õ w. The elements of c that are
not in b are elements of elements of b. Since w is an
epsilon closed subset of c, the elements of c not in b lie
in w. QED
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LEMMA 4.8. Let b ≡ {u}. Then b is a u-set.

Proof: Clearly b contains all sets equivalent to u. Let z
be an epsilon closed subset of b containing all sets
equivalent to u. Then obviously z ≡ b. QED

LEMMA 4.9. Let b be an x-set, y Œ b, ÿy ≡ x. There exists z
Œ x such that y is an element of some z-set.

Proof: Let w be the set of all elements of b that lie in
some z-set, z Œ x, together with the sets equivalent to x.
It suffices to show that b Õ w. For this it suffices to
show that w is an epsilon closed subset of b containing all
sets equivalent to x. I.e., w is an epsilon closed subset
of b.

Let u Œ v Œ w, u Œ b. First suppose v ≡ x. Let c ≡ {u}. By
Lemma 4.8, c is a u-set, u Œ x, with u Œ c. Hence u Œ w.

Now suppose ÿv ≡ x. Then v lies in some z-set, z Œ x. By
Lemma 4.7, since u Œ v, we see that u lies in some z-set, z
Œ x. Hence u Œ w. QED

LEMMA 4.10. Let x be a 1-extensional set of extensional
sets. Then x is extensional.

Proof: Let x be as given, and let y be an element of some
x-set b. If y ≡ x then y is 1-extensional. If ÿy ≡ x then
by Lemma 4.9, y is an element of some z-set with z Œ x. So
y is 1-extensional. QED

THEOREM 4.11. Newcomp + Extensionality is interpretable in
Newcomp.

Proof: By the argument given before the Lemmas. The three
crucial Lemmas that were cited are Lemmas 4.4, 4.6, and
4.10, respectively.

5. ZFC + V = L + SVWISUB IN NEWCOMP.

In light of Theorem 4.11, we have only to interpret ZFC + V
= L + SVWISUB in Newcomp + Extensionality. Throughout this
section, we work within Newcomp + Ext.
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We will use the term “virtual set” whenever we have a
definable property of sets presented as {x: j}, with
parameters allowed.

Until the proof of Lemma 5.39 is complete, we will work
entirely within the system Newcomp + Ext.

We will use abstraction notation with braces to indicate
virtual sets. We say that these expressions exist to
indicate that they form sets.

All lower case letters will represent sets (not virtual
sets).

It is convenient to adopt the following terminology. Let A
be a virtual set. An expansion in A consists of two
elements x,y Œ A such that x ≠ y and x « A Õ y. We say that
an expansion lies outside z if and only if neither
component is a member of z. We say that an expansion meets
z if and only if at least one component is a member of z.

Obviously, we can reformulate Newcomp in these two ways:

If all expansions in a virtual set meet some given set,
then the virtual set forms a set.

If no expansion in a virtual set lies outside some given
set, then the virtual set forms a set.

LEMMA 5.1. Any virtual subset of a set forms a set. The
empty set exists. The intersection of any virtual set with
a set forms a set. For all x,y, x » {y} exists. For all k ≥
0 and x1,...,xk, {x1,...,xk} exists.

Proof: The first claim is obvious since all expansions of
the virtual subset lie in the set. The second and third
claims follow immediately from the first claim. For the
fourth claim, note that every expansion in x » {y} meets x.
The fifth claim follows from the second and fourth claims.
QED

LEMMA 5.2. Let A be a transitive virtual set. The
expansions in A are exactly the x,y Œ A with x Õ≠ y.

Proof: For the forward direction, let x,y Œ A, x ≠ y, x « A
Õ y. Then x Õ y by the transitivity of A. The reverse
direction is immediate. QED
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We write <y,z> = {{y},{y,z}}.

LEMMA 5.3. x » {{y}: y Œ x} exists. x » {{y,z}: y,z Œ x}
exists. x » {{y,z}: y,z Œ x} » {{{y}}: y Œ x} exists. x »
{{y,z}: y,z Œ x} » {<y,z>: y,z Œ x} exists.

Proof: Observe that all four virtual sets are transitive,
and so we can apply Lemma 5.2. For the first claim, note
that no expansions lie outside x. For the second claim,
note that no expansions lie outside x » {{y}: y Œ x}. For
the third claim, note that no expansions lie outside x »
{{y,z}: y,z Œ x}. For the fourth claim, we show that no
expansions lie outside x » {{y,z}: y,z Œ x} » {{{y}}: y Œ
x}. Let <a,b>,<c,d> be an expansion in x » {{y,z}: y,z Œ x}
» {<y,z>: y,z Œ x} outside x » {{y,z}: y,z Œ x} » {{{y}}:
y Œ x}. Then {{a},{a,b}} Õ {{c},{c,d}}, a ≠ b, c ≠ d. Hence
the left and right sides have two elements, and each
consist of a set with one element and a set with two
elements. So {a} = {c} and {a,b} = {c,d}. Hence a = c and b
= d. QED

We write x•x for {<y,z>: y,z Œ x}. A binary relation on x
is a subset of x•x. We often use R for binary relations,
and write R(a,b) for <a,b> Œ R.

Note that by Lemma 5.1, all virtual binary relations on x
exist (as sets). Using (x•x)(x•x), we can simulate all
virtual 4-ary relations on x as sets in the obvious way. We
can continue doubling the arity in this way, thus making
available all Cartesian powers of x by obvious simulation.
This is very powerful, in light of separation (Lemma 5.1),
and means that, in an appropriate sense, we have full
second order logic over (x,Œ) at our disposal.

We caution the reader that the existence of x•y is
apparently not available in Newcomp + Ext. Even the more
fundamental x » y is apparently not available in Newcomp +
Ext.

We say that x is well founded if and only if for all
nonempty y Õ x, there exists z Œ y such that z has no
elements in common with y.

We define W(x) if and only if x is transitive and well
founded.
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We wish to extract an “ordinal” out of the x with W(x). Of
course, we can’t construct anything like von Neumann
ordinals. Instead, we develop the usual rank comparison
relation on x, and use its equivalence classes to simulate
ordinals.

We define C(R,x,y) if and only if

i) W(x), W(y), and x•y exists;
ii) R Õ x•y;
iii) for all z Œ x and w Œ y, R(z,w) if and only if ("a Œ
z)($b Œ w)(R(a,b)).

LEMMA 5.4. There is at most one R Õ x•y with C(R,x,y).

Proof: Let C(R,x,y), C(R’,x,y), R ≠ R’. Then W(x), W(y),
and x•y exists. Let z Œ x be epsilon least such that ($w Œ
y)(R(z,w) ´ ÿR’(z,w)). Then ("a Œ z)("b Œ y)(R(a,b) ´
R’(a,b)). Hence ("a Œ z)($b Œ w)(R(a,b)) ´ ("a Œ z)($b Œ
w)(R’(a,b)). Hence R(z,w) ´ R’(z,w). QED

LEMMA 5.5. Let C(R,x,y) and z Õ y be transitive. Then C(R «
x•z,x,z).

Proof: By Lemma 5.1, W(z) and x•z exists. Let u Œ x and v Œ
z. Then R(u,v) if and only if ("a Œ u)($b Œ v)(R(a,b) Ÿ
<a,b> Œ x•z). QED

LEMMA 5.6. Let C(R,x,y), C(R’,x,z). Then ("z Œ x)("w Œ y «
z)(R(z,w) ´ R’(z,w)).

Proof: By Lemma 5.5, C(R « x•z,x,z), C(R’ « x•z,x,z). By
Lemma 5.4, R « x•z = R’ « x•z. QED

LEMMA 5.7. Let W(x), W(y), and x•y exist. Let A be a
virtual set of transitive subsets of y s•uch that for all z
Œ A, there exists R with C(R,x,z). Then there exists R’
with C(R’,x,»A).

Proof: First of all, »A is a transitive subset of y, so
W(»A). By Lemma 5.4, for all z Œ A, there exists a unique
Rz with C(Rz,x,z). Since these Rz are subsets of x•y, we can
set R’ to be the union of the Rz, and know that R’ exists.
Let a Œ x and b Œ »A. We verify that R’(a,b) ´ ("c Œ a)($d
Œ b)(R’(a,b)). Let b Œ z Œ A. The Rz(a,b) ´ ("c Œ a)($d Œ
b)(Rz(a,b)). By Lemam 5.6, for all a Œ x and b Œ z, Rz(a,b)
´ R’(a,b). QED
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LEMMA 5.8. Let W(x), W(y), and x•y exist. There exists a
unique R such that C(R,x,y). In particular, if W(x) then
there exists a unique R such that C(R,x,x).

Proof: Uniqueness is by Lemma 5.4. For existence, let x,y
be as given. We first claim that every z Œ y is an element
of a transitive set w Õ y such that for some R, C(R,x,w).
Suppose this is false, and let z Œ y be an epsilon minimal
counterexample.

Now every w Œ z is an element of a transitive set u Õ y
such that for some R, C(R,x,u). Let z* be the union of all
transitive u Õ y such that for some R, C(R,x,u). By Lemma
5.7, z Õ z* and z* is a transitive subset of y and for some
R, C(R,x,z*). Fix such an R. Now z* » {z} is a transitive
subset of y. Define R’(a,b) ´ (R(a,b) ⁄ (b = z Ÿ ("c Œ
a)($d Œ b)(R(c,d)))). Then C(R’,x,z* » {z}). This
contradicts the choice of z.

We have thus shown that every z Œ y is an element of a
transitive set w Õ y such that for some R, C(R,x,w). To
complete the proof, apply Lemma 5.7.

The second claim is from the first claim and Lemma 5.3. QED

LEMMA 5.9. Let C(R,x,x). Then R is reflexive, transitive,
connected.

Proof: Let C(R,x,x). Suppose R is not reflexive, and let y
Œ x be epsilon minimal such that ÿR(y,y). Then R(x,x) is
immediate.

Suppose R is not transitive, and let y,z,w be a
counterexample to transitivity, with y chosen to be epsilon
minimal. Assume ("a Œ y)($b Œ z)(R(a,b)), ("a Œ z)($b Œ
w)(R(a,b)). Let a Œ y. Fix b Œ z, R(a,b). Fix c Œ w,
R(b,c). By the minimality of y, R(a,c).

Suppose R is not connected, and let y,z be a counterexample
to connectivity with y chosen to be epsilon minimal. Now
ÿ("a Œ y)($b Œ z)(R(a,b)), ÿ("a Œ z)($b Œ y)(R(a,b)). Let
a Œ y, ("b Œ z)(ÿR(a,b)). Let b Œ z, ("c Œ y)(ÿR(b,c)).
Then ÿR(a,b), ÿR(b,a). This contradicts the minimality of
y. QED
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Let W(x). We write £(x) for the unique R such that C(R,x,x).
We write ≡(x) for the relation £(x)(a,b) Ÿ £(x)(b,a). We
write <(x) for the relation <(x)(a,b) Ÿ ÿ£(x)(b,a).
Analogously for >(x).

The mere appearance of any of the four expressions defined
in the previous paragraph will be taken to imply that W(x).

LEMMA 5.10. If W(x), a Œ b Œ x, then <(x)(a,b). If W(x) and
x is nonempty then x has the epsilon minimum element ∅ and
£(x) has the unique minimum element ∅. If W(x) and x has
more than one element then £(x) without ∅ has the unique
minimum element {∅}.

Proof: Let a,b be a counterexample where a is epsilon
minimal. We first show that £(x)(a,b). Let c Œ a. Then
<(x)(c,a). Hence ("c Œ a)($d Œ b)(£(x)(c,d)). Therefore
£(x)(a,b).

Now suppose £(x)(b,a). Then ("c Œ b)($d Œ a)(£(x)(c,d)).
Let d Œ a, £(x)(a,d). This contradicts the epsilon
minimality of a.

Now let W(x) and x be nonempty. Let u be an epilson minimal
element of x. Since x is transitive, u = ∅. Obviously, ∅ is
£(x) minimum. Also if v Œ x is nonempty, then <(x)(∅,x).

Now assume that x has more than one element. Let v be an
epsilon minimal element of x\{∅}. Since x is transitive,
the only element of v is ∅, and so v = {∅}. Also £({∅},u)
for all u Œ x\{∅}, since £(∅,w) for all w Œ x. Let b Œ x,
b ≠ ∅,{∅}. Let c Œ b, c ≠ ∅. Then £(x)(b,{∅}) is
impossible since ÿ£(x)(c,∅). Hence the uniqueness of {∅} as
a minimum element of £(x) without ∅ is established. QED

LEMMA 5.11. Assume W(x), a,b Œ x. <(x)(a,b) if and only if
($d Œ b)(£(x)(a,d)).

Proof: Let a,b Œ x be a counterexample to the forward
direction, where a is epsilon minimal. We have <(x)(a,b),
ÿ($d Œ b)(£(x)(a,d)).

Now ÿ£(x)(b,a). Hence ÿ("d Œ b)($c Œ a)(£(x)(b,a)). Fix d Œ
b such that ("c Œ a)(<(x)(c,d)). We need only show that
£(x)(a,d). Let c Œ a. Then <(x)(c,d). By the epsilon
minimality of a, let £(x)(c,e), e Œ d. We have thus shown
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that ("c Œ a)($e Œ d)(£(x)(c,e). This verifies that
£(x)(a,d).

For the reverse direction, let d Œ b, £(x)(a,d). By Lemma
5.10, <(x)(d,b). Hence <(x)(a,b). QED

LEMMA 5.12. If W(x) then <(x) is well founded. £(x) is
connected.

Proof: Let u be a nonempty subset of x. Let y Œ x be
epsilon minimal such that ($b Œ u)(≥(x)(y,b)). Let
<(x)(z,y). We claim that z œ u. Suppose z Œ u. By Lemma
5.11, let £(x)(z,w), w Œ y. This contradicts the epsilon
minimality of y.

We have shown that no z Œ u has <(x)(z,y). We would be done
if y Œ u. However, let b Œ u, ≥(x)(y,b). We can rule out
>(x)(y,b) since by Lemma 5.11, some element of y would
dominate b under ≥(x). Hence ≡(x)(y,b). Therefore b Œ u is
<(x) minimal as required.

Since C(£(x),x,x), by Lemma 5.9, £(x) is connected. QED

This completes our treatment of “ordinals” in Newcomp +
Ext. Specifically, we use the £(x), <(x), ≡(x), for x with
W(x).

A major difficulty arises because we apparently cannot
prove the existence of x » y, even if W(x) and W(y).
Because of this, we don’t have flexibility in constructing
relations between different sets.

We have discovered a way of comparing £(x) and £(y) for at
least the relevant x,y, even though we don’t have x » y.
This will be good enough for our purposes.

An x-system is an S Õ x•x such that

i) W(x);
ii) (S(a,b) Ÿ ≡(x)(a,c) Ÿ ≡(x)(b,d)) Æ S(c,d);
iii) S(a,b) Æ <(x)(b,a);
iv) the least strict upper bound of the b’s such that
S(a,b) is given by a;
v) for all a,b, if <(x)(a,b) and ("y)(S(a,y) Æ S(b,y)),
then a = ∅ or a = {∅}.
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In order to get a clear understanding of x-systems, look at
the cross sections {b: S(a,b}}. These cross sections are
essentially sets of “ordinals” with “strict sup” a. They
have the property that the only proper inclusions between
them are the cross sections of ∅,{∅}, which are the “0” and
“1” of <(x). In other words, from the point of view of full
set theory, an x-system is a counterexample to “rk(x) is
weakly inclusion subtle over 2”, in the sense of [Fr02],
using the elements of x under the equivalence relation
“having the same rank”, where the counterexample also obeys
Lemma 2.3 of [Fr02].

In Theorem 2.5 of [Fr02], we use such a counterexample to
weak inclusion subtlety over 2 to construct a transitive
set where the only proper inclusions among elements have
left side ∅ or {∅}. We want to carefully perform this
construction here in Newcomp + Ext.

We define D(S,f) if and only if

i) S is an x-system for some necessarily unique x;
ii) f is a univalent set of ordered pairs (function) with
domain x;
iii) for all y Œ x, f(y) = {f(z): S(y,z)}.

We will need the following technical modification. D(S,f,a)
if and only if

i) S is an x-system for some necessarily unique x;
ii) a Œ x;
iii) f is a univalent set of ordered pairs (function) with
domain {b: £(x)(b,a)};
iv) £(x)(y,a) Æ f(y) = {f(z): S(y,z)}.

LEMMA 5.13. Fix D(S,f,a) and D(S,g,b), where S is an x-
system. f,g agree on their common domain. If c Œ x then the
restriction h of f to {d: £(x)(d,c)} has D(S,h,c). f is one-
one in the sense that for all y,z Œ dom(f), if <(x)(y,z)
then f(y) ≠ f(z). For all y,z Œ dom(f), f(y) = f(z) ´
≡(y,z). The range of f is a virtual transitive set. For all
y,z Œ dom(f), if f(y) Õ f(z) then Sy Õ Sz and £(x)(y,z). All
proper inclusions among elements of the range of f have
left side ∅ or {∅}.

Proof: Let S be an x-system. Suppose f ≠ g, and let y be
<(x) minimal such that f(x) ≠ g(x). But f(y) = {f(z):
<(x)(z,y)} = {g(z): <(x)(z,y)} = g(y).
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For the second claim, the restriction h is a subset of f,
and so exists. D(S,h,c) is immediate by inspection.

For the third claim, let y,z Œ dom(f) be such that
<(x)(y,z), f(y) = f(z), where y is chosen to be <(x)
minimal. By the strict sup condition, let S(z,w), £(y,w).
Then f(w) Œ f(z), and so f(w) Œ f(y). Let S(y,u), f(w) =
f(u). Then <(x)(u,y), £(y,w), and so the minimality of y is
violated.

The fourth claim follows immediately from the third claim.

The fifth claim is immediate from clause iv).

For the six claim, assume {f(u): S(y,u)} Õ {f(u): S(z,u)}.
Since f is appropriately one-one, we have {u: S(y,u)} Õ {u:
S(z,u)}. By the strict sup condition, £(x)(y,z).

For the seventh claim, suppose f(y) Õ≠ f(z). By the sixth
claim, <(x)(y,z) and Sy Õ≠ Sz. By clause v) in the
definition of x-system, we have y = ∅ or y = {∅}. Hence
f(y) = ∅ or f(y) = {∅}. QED

Let S be an x-system. We use S* for the virtual set of all
sets that occur in the range of some f with ($a)(D(S,f,a)).

LEMMA 5.14. Let S be an x-system. Then S* is transitive and
all proper inclusions among elements of S* have left side ∅
or {∅}. x » S* exists.

Proof: The transitivity of S* follows from the transitivity
of the range of each relevant f. Let u,v Œ S*, where u,v
are in the ranges of f,g, and D(S,f,a), D(S,g,b). By the
comparability of a,b under £(x) and lemma 5.13, we have f Õ
g or g Õ f. Hence any proper inclusion among elements of S*
is a proper inclusion among some relevant h. So by the last
claim of Lemma 5.13, the proper inclusion must have left
side ∅ or {∅}.

For the second claim, note that every expansion in x » S*
meets x » {∅} » {{∅}}. The latter forms a set by Lemma
5.1. Hence x » S* exists. QED

According to Lemma 5.3, (x » S*)•(x » S*) exists, and in
fact we can simulate all Cartesian powers of x » S*, and
hence also simulate full second logic over (x » S*,Œ).
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LEMMA 5.15. Suppose S is an x-system, b Œ x, and for all a
with <(x)(a,b), there exists f such that D(S,f,a). Then
there exists g such that D(S,g,b).

Proof: Let S,x,b be as given. By Lemma 5.13, for each a
with <(x)(a,b), there is a unique fa such that D(S,fa,a),
and furthermore, these fa agree on their common domains.
Clearly b is either the minimum of <(x), a successor in
<(x), or a limit in <(x). If b is the minimum of <(x) then
b = ∅ by Lemma 5.10, in which case set g = {<∅,∅>}.

Assume b is the successor of c in <(x). We need to extend
the function gc to be defined on {d: ≡(x)(d,b)} by g(d) =
{f(z): S(b,z)}. Note that this extension is a binary
relation on the transitive virtual set x » S* » {{f(z):
S(b,z)}}. By Lemma 5.14, x » S* exists, the triple union is
transitive, and all expansions in the triple union meet x »
S* » {∅,{∅}}. Hence the triple union exists. Since the
desired extension of the function gc to gb is a virtual
binary relation on the triple union, it exists.

Assume b is a limit in <(x). Let f be the virtual set which
is the union of all fa, <(x)(a,b). This is obviously a
binary relation on x » S*, and therefore it exists. By
Lemmas 5.13 and 5.14, this union is itself a function g
with domain {a: <(x)(a,b)}, given by g(a) = {g(z): S(b,z)}.
We need to extend this function g to be defined on {d:
≡(x)(d,b} by g(d) = {f(z): S(b,z)}. We argue exactly as in
the previous paragraph. QED

LEMMA 5.16. Suppose S is an x-system. For all b Œ x, there
exists f such that D(S,f,b). There exists g such that
D(S,g).

Proof: Let b Œ x be <(x) minimal such that there is no f
with D(S,f,b). Then the hypotheses of Lemma 5.15 hold, and
we obtain a contradiction. For the second claim, the case x
= ∅ is trivial. If there is a <(x) greatest element b of x
then any f with D(S,f,b) has D(S,f). Finally suppose x is
nonempty and there is no <(x) greatest element of x. By
Lemma 5.14, x » S* exists. Thus the desired function is a
binary relation on x » S*. Therefore we can take g to be
the union of the f such that for some b, D(S,f,b). As in
the proof of Lemma 5.15, D(S,g). QED
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Let S be an x-system. We define S# to be the unique (set)
function such that D(S,S#), according to Lemma 5.16. Note
that S#:x Æ S*, S# is onto, and x » S* is a transitive set.
In addition, for all b Œ x, S#(b) = {S#(z): S(b,z)}, and by
Lemma 5.13, S#(b) = S#(c) ´ ≡(x)(b,c). We refer to this
equivalence as the one-one property of S#.

LEMMA 5.17. Let S be an x-system. W(S*). For all a,b Œ x,
£(x)(a,b) if and only if £(S*)(S#(a),S#(b)). ≡(S*) is the
identity relation on S*. <(S*) is a strict well ordering.

Proof: By Lemma 5.14, S* is transitive. To prove well
foundedness, let y be a nonempty subset of S*. Let z = {w Œ
x: S#(w) Œ y}. Let w be a <(x) minimal element of z. We
claim that S#(w) is an epsilon minimal element of y. To see
this, let u Œ S#(w) « y. Let u = S#(w’) Œ y, S(w,w’). Then
w’ Œ z, <(x)(w’,w), contradicting the <(x) minimality of w.
Hence W(S*).

The second claim now makes sense since W(S*). Recall the
definition of £(S*) as the unique relation satisfying
clauses i) - iii) given just before Lemma 5.4. To establish
the second claim, we have only to show that the binary
relation R on S* given by R(S#(a),S#(b)) ´ £(x)(a,b) obeys
conditions i) - iii) with x = y = S*. The only clause of
substance is iii).

Let z,w Œ S*. We must verify that R(z,w) ´ ("a Œ z)($b Œ
w)(R(a,b)). In other words, let a,b Œ x. We must verify
that R(S#(a),S#(b)) ´ ("u Œ S#(a))($v Œ S#(b))(R(u,v)).

The left side is equivalent to £(x)(a,b). The right side is
equivalent to ("c|S(a,c))($d|S(b,d))(£(x)(c,d)). Suppose
<(x)(a,b). This is true because S(a,c) Æ <(x)(c,a) and the
strict sup condition for x-systems. Suppose ≡(x)(a,b). This
is true by setting d = c. For the inverse, suppose
<(x)(b,a). Choose c such that S(a,c), £(x)(b,c). Any d with
S(b,d) will have <(x)(d,b), and therefore not £(x)(c,d).

From the third claim, using Lemma 5.13, we have
≡(S*)(S#(a),S#(b)) if and only if ≡(x)(a,b) if and only if
S#(a) = S#(b). By W(S*) and Lemma 5.12, <(S*) is well
founded and connected, and so by the third claim, <(S*) is
a strict well ordering. QED
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The S* are our best approximations to genuine ordinals in
Newcomp + Ext. <(S*) is a strict well ordering. Of course,
S* is not normally epsilon connected.

LEMMA 5.18. Let S,S’ be two x-systems. For all y,z Œ x,
S#(y) = S’#(z) Æ ≡(x)(y,z). S = S’ ´ S* = S’*.

Proof: Let S,S’ be as given. For the first claim, let y,z
be a counterexample, with y chosen to be <(x) minimal. We
first assume that >(x)(y,z). Now S#(y) = S’#(z). By the
strict sup condition on x-systems, let S(y,w), ≥(x)(w,z).
Then S#(w) Œ S#(y), and so S#(w) Œ S’#(z). Let S#(w) =
S’#(u), S’(z,u). Clearly ÿ≡(w,u). This contradicts the
minimality of z.

Now assume <(x)(y,z). By the strict sup condition on x-
systems, let S’(z,b), ≥(x)(b,y). Then S’#(b) Œ S’#(z) =
S#(y). Let S’#(b) = S#(c), S(y,c). Clearly ÿ≡(b,c), and so
we have a violation of the minimality of z. This
establishes the first claim.

For the second claim, the forward direction is obvious. Now
let S* = S’*. Let y,z be such that S(y,z) ´ ÿS(y,z), where
y is <(x) minimal. By symmetry, we can assume S(y,z),
ÿS(y,z).

An obvious transfinite induction (or minimal element)
argument, shows that S# and S’# agree below y in the sense
of <(x).

We now show that S#(y) ≠ S’#(y). Suppose {S#(z): S(y,z)} =
{S’#(z): S’(y,z)}. Then S#(z) Œ {S’#(z): S’(y,z)}. Let
S#(z) = S’#(w), S’(y,w). Note that ÿ≡(w,z). By the previous
paragraph, S’#(w) = S#(w) = S#(z). This contradicts the
one-one property of S#.

By the one-one property of S#, S’#, we see that S#(y) is
not equaled to any S’#(z), ≡(x)(y,z). By the first claim,
S#(y) is not equaled to any S’#(z), ÿ≡(x)(y,z). Hence S#(y)
is an element of S* that is not an element of S’*. QED

Let S be an x-system and S’ be a y-system. We say that S,S’
are equivalent if and only if S* = S’*.

We say that R is an isomorphism relation from £(x) onto £(y)
if and only if the following holds. We do not require that
R exists; i.e., R may only be a virtual relation. Since we
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have ordered pairs, R can always be viewed as a virtual
set.

i) the domain of R is x and the range of R is y;
ii) if R(a,b) and R(c,d) then £(x)(a,c) ´ £(y)(b,d).

We say that £(x) and £(y) are isomorphic if and only if
there is an isomorphism relation from £(x) onto £(y).

LEMMA 5.19. Let x,y be given. Suppose some x-system is
equivalent to some y-system. Then £(x) and £(y) are
isomorphic. If £(x) and £(y) are isomorphic, then every x-
system is equivalent to some y-system and vice versa.

Proof: Before we begin, we make some comments about the
formalization of Lemma 5.19. The problem arises because the
definition of isomorphic £(x) involves virtual relations.
For the second claim, this just means that we are making
infinitely many assertions. For the first claim, we mean
that the virtual isomorphism can be given uniformly in x,y,
and the x-system and the y-system; i.e., by a single
specific virtual relation with parameters, as will be clear
in the construction below.

Let S be an x-system, S’ be a y-system, S* = S’*. We define
the virtual relation R from x to y as follows. Let a Œ x
and b Œ y. Take R(a,b) ´ S#(a) = S’#(b). We claim that R is
an isomorphism relation from £(x) onto £(y).

To see that the domain of R is x, let a Œ x. Then S#(a) Œ
S* = S’*. Let b Œ y, S’#(b) = S#(a). Then R(a,b).
Analogously, the range of R is y.

Now let R(a,b), R(c,d). By Lemma 5.17, £(x)(a,c) ´
£(S*)(S#(a),S#(c)), and £(y)(b,d) ´ £(S’*)(S’#(b),S’#(d)).
Hence £(y)(b,d) ´ £(S*)(S#(a),S#(c)). So £(x)(a,c) ´
£(y)(b,d).

Now let R be a virtual isomorphism relation from £(x) onto
£(y). We now show that every x-system is equivalent to some
y-system. Let S be an x-system. Define S’ to be the binary
relation on y given by S’(z,w) if and only if there exists
a,b Œ x such that R(a,z), R(b,w), and S(a,b). Note that S’
exists since it is a virtual subset of the set y•y.

We have to verify that S* = S’*. I.e., that S# and S’# have
the same ranges. It suffices to show that R(a,b) Æ S#(a) =
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S’#(b). Let a,b Œ x be a counterexample with a chosen to be
<(x) minimal. We can find such a,b by using separation on
x, despite the fact that R is only virtual. Observe that
S#(a) = {S#(c): S(a,c)}, S’#(b) = {S’#(d): S’(b,d)}. We
have R(a,b), S#(a) ≠ S’#(b).

We first show that S#(a) Õ S’#(b). We will then show that
S’#(b) Õ S#(a), and so S#(a) = S’#(b). This contradicts the
choice of a,b.

Let S(a,c). We show that S#(c) Œ {S’#(d): S’(b,d)} =
S’#(b). Since R(a,b), we let d Œ y be such that S’(b,d) and
R(c,d). By the minimality of a, we have S#(c) = S’#(d).
Hence S#(c) Œ {S’#(d): S’(b,d)} = S’#(b). This establishes
S#(a) Õ S’#(b).

To establish S’#(b) Õ S#(a), let S’(b,d). We show that
S’#(d) Œ {S#(c): S(a,c)}. Since R(a,b), we let c Œ x be
such that S(a,c) and R(c,d). By the minimality of a, we
have S’#(d) = S#(c). Hence S’#(d) Œ {S#(c): S(a,c)} =
S#(a). This establishes S’#(b) Õ S#(a). QED

We refer to the conclusion of the second claim of Lemma
5.19 as “x,y have equivalent systems”.

Let W(x). The initial segments of x are the subsets of x
closed under £(x). The proper initial segments are written
x<a, a Œ x. The initial segments of an x-system S also has
the obvious meaning, and the proper initial segments are
written S<a, a Œ x. We also use the notation x£a, S£a, with
the obvious meaning. And we also use the notation S#£a, S#<a,
again with the obvious meaning.

LEMMA 5.20. Suppose that there exists an x-system. It is
not the case that x and one of its proper initial segments
have equivalent systems.

Proof: Suppose x and x<a have equivalent systems. By Lemma
5.19, £(x) and £(x<a) are isomorphic. This violates the well
foundedness of x, using separation on x, even if the
isomorphism is virtual. QED

LEMMA 5.21. Let x,y have systems, and assume that for every
proper initial segment of x there is a proper initial
segment of y with equivalent systems, and vice versa. Then
x,y have equivalent systems.
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Proof: Let x,y be as given. Suppose x<a and y<b have
equivalent systems. Since x,y have systems, so do x<a and
y<b. By Lemma 5.20, y<b is the unique initial segment of y
such that x<a and y<b have equivalent systems.

Define the virtual relation R(a,b) if and only if x<a and y<b
have equivalent systems. We claim that R is a virtual
isomorphism from £(x) onto £(y). By hypothesis, the domain
of R is x and the range of R is y. Suppose R(a,b) and
R(c,d). Then x<a and y<b have equivalent systems. Also x<c
and y<d have equivalent systems. By Lemma 5.19, we obtain a
virtual isomorphism from x<a onto y<b, and a virtual
isomorphism from x<c onto y<d. Suppose £(x)(a,c), and
<(x)(d,b). Then we get a virtual isomorphism from x<a onto
an initial segment of y<d, and hence onto a proper initial
segment of y<b. But this gives a virtual isomorphism from y<b
onto a proper initial segment of y<b, which is a virtual
subset of the set y•y. Hence using separation, we have an
actual isomorphism from y<b onto a proper initial segment of
y<b, which contradicts the well foundedness of <(y). The
other direction is symmetric.

We have thus verified that R is a virtual isomorphism from
£(x) onto £(y). By Lemma 5.19, x,y have equivalent systems.
QED

LEMMA 5.22. Let x,y have systems. Either x and some proper
initial segment of y have equivalent systems, or y and some
proper initial segment of x have equivalent systems, or x,y
have equivalent systems. The cases are mutually exclusive,
and the choice of proper initial segments is unique.

Proof: Let x,y have systems. Let B = {a Œ x: ($b Œ y)(x<a
and y<b have equivalent systems)}. We claim that (£(x)(c,a)
Ÿ a Œ B) Æ c Œ B. To see this, assume x<a and y<b have
equivalent systems. By Lemma 5.19, we obtain a virtual
isomorphism from x<a onto y<b. This induces a virtual
isomorphism from x<c onto some y<d. By Lemma 5.19, we see
that x<c and y<d have equivalent systems.

Note that for a Œ B, the associated b Œ y is unique up to
≡(y). We let C be the set of all these associated b Œ y
that are used in B, closing up under ≡(y). As in the
previous paragraph, C is also closed downward under £(y).
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We the well foundedness of <(x), either B = x or B is a
proper initial segment of x. Also either C = y or C is a
proper initial segment of y.

No matter which of these four cases holds, we can apply
Lemma 5.21. We obtain that B,C have equivalent systems.
This establishes the first claim, provided we can rule out
the fourth case where B is a proper initial segment of x
and C is a proper initial segment of y. Let B = x<a, and C =
y<b. Then a Œ B, and so <(x)(a,a), which is impossible.

For the second claim, if more than one case holds, or if
the choice of proper initial segments is not unique, then
we obtain that x and a proper initial segment of x have
equivalent systems, or y and a proper initial segment of y
have equivalent systems. This violates Lemma 5.20. QED

Suppose x,y have systems. By Lemma 5.22, either x and some
unique proper initial segment of y have equivalent systems,
or y and some unique proper initial segment of x have
equivalent systems, or x,y have equivalent systems, and
these three cases are mutually exclusive. By Lemma 5.21, we
obtain a (rather simple) virtual isomorphism relation
corresponding to these three cases. The relevant virtual
isomorphism relations are defined uniformly in x,y. We call
it the virtual comparison relation for x,y.

In light of the previous paragraph, we make the following
definition, assuming x,y have systems. COMP(x,y)(a,b) if
and only if the virtual comparison relation for x,y holds
at a,b.

We now construct an x such that £(x) has “order type w”.
The idea is to construct {∅,{∅},{{∅}},...}.

We say that x is simple if and only if

i) W(x);
ii) every nonempty element of x is the singleton of an
element of x.

We say that x is very simple if and only if x is simple and
x has an epsilon maximal element.

LEMMA 5.23. Let x be simple and y be an epsilon maximal
element of x. x is the least transitive set containing y as
an element. The singleton of any element other than y is an
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element. No simple set has more than one epsilon maximal
element.

Proof: Let x,y be as given. Let z be a transitive set with
y Œ z. We claim that x Õ z. First observe that x « z is
nonempty, transitive and well founded, and so ∅ Œ x « z.
Now let b be an epsilon minimal element of x not in z. Then
b ≠ ∅. Write b = {c}, c Œ x. Since z is transitive, c Œ z.
This contradicts the minimality of b.

For the second claim, let z be the set of all elements of x
whose singleton lies in x, together with the element y. To
see that z is transitive, let a Œ b Œ z. Then b is a
nonempty element of x, and so b = {a}. Therefore a Œ z. By
the first claim, x Õ z.

The third claim follows immediately from the second. QED

LEMMA 5.24. The very simple sets are comparable under
inclusion.

Proof: Let x,y be very simple. Assume x is not a subset of
y. Let b be an epsilon least element of x that is not in y.
If b = ∅ then y is empty, in which case y Õ x. So we assume
b ≠ ∅. Let b = {c}, c Œ x. Then c Œ y. By Lemma 5.23, if c
is not the epsilon maximal element of y, then b = {c} Œ y.
Therefore c is the epsilon maximal element of y. By Lemma
5.23, y is the least transitive set containing c as an
element. But x is a transitive set containing c as an
element. Hence y Õ x. QED

LEMMA 5.25. In a very simple set, every proper inclusion
between elements of x has left side ∅. If x is a very
simple set with epsilon maximal element y, then x » {{y}}
is very simple.

Proof: Let a,b Œ x, a Õ≠ b. Then b ≠ ∅, and so write b =
{c}, c Œ x. Then a = ∅.

Let x be very simple with epsilon maximal element y.
Clearly x » {{y}} is transitive and well founded. Let b Œ x
» {{y}}, b ≠ ∅. If b Œ x then b = {c} for some c Œ x »
{{y}}. If b = {y} then just note that y Œ x » {{y}}.

It remains to show that {y} is an epsilon maximal element
of x » {{y}}. Now {y} Œ {y} is impossible since then {y} =
y, and so y Œ y, violating the well foundedness of x. It
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remains to show that no element of x includes {y} as an
element. Let {y} Œ b Œ x. Then {y} Œ x, violating that y is
the epsilon maximal element of x. QED

LEMMA 5.26. There is a unique simple set with no epsilon
maximal element. It is the union of all very simple sets.
Every proper inclusion among elements of this set has left
side ∅.

Proof: Let A be the virtual union of all very simple sets.
Let a Õ≠ b, a,b Œ A. Let a Œ x, b Œ y, where x,y are very
simple. By Lemma 5.24, we can assume a,b Œ x. By Lemma
5.24, a = ∅. Therefore all expansions in A meet {∅}. Hence
A exists.

To see that A is simple, we first check that W(A). Clearly
A is transitive since it is the union of transitive sets.
To see that A is well founded, let z be a nonempty subset
of A. Let x be very simple, where x,z have an element in
common. Let b be an epsilon minimal element of x « z. We
claim that b is an epsilon minimal element of z. This
follows from the transitivity of x.

To finish the argument that A is simple, let b be a
nonempty element of A. Then b Œ x for some very simple x.
Hence b = {c} for some c Œ x. Hence b = {c} for some c Œ A.

We now show that A has no epsilon maximal element. Let b Œ
x, where x is very simple, with epsilon maximal element y.
By Lemma 5.23, b = y or {b} Œ x. If {b} Œ x then {b} Œ A
and b is not an epsilon maximal element of A. Now assume b
= y. By Lemma 5.25, x » {{y}} is very simple. Hence again
{b} Œ A, and so b is not an epsilon maximal element of A.

We now prove that A is the unique simple set with no
epsilon maximal element. It suffices to prove that for any
two simple sets y,z with no epsilon maximal elements, we
have y Õ z. Suppose this is false, and let b be an epsilon
minimal element of y that is not in z. Then b ≠ ∅, since z
is nonempty and transitive. Let b = {c}, c Œ y. Then c Œ z.
Since c is not epsilon maximal in z, let c Œ d Œ z. Then d
= {e} for some e Œ z. Hence c = e and d = {c} = b Œ z.

By the first paragraph, every proper inclusion among
elements of A has left side ∅. QED
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LEMMA 5.27. The unique simple set with no epsilon maximal
element is the least set containing ∅ as an element, and
closed under the singleton operation.

Proof: This unique set is A = the union of all very simple
sets, according to Lemma 5.26. Obviously ∅ Œ A, because {∅}
is very simple. Also by Lemmas 5.23 and 5.25, A is closed
under the singleton operation.

Now let y be any transitive set containing ∅ as an element,
and closed under the singleton operation. Suppose A is not
a subset of y. Let x be an epsilon minimal element of A
that is not in y. Clearly x ≠ ∅ since ∅ Œ y. Since A is
simple, let x = {b}, b Œ A. Then b Œ y, and so x = {b} Œ y.
QED

We use the notation w^ for the set in Lemma 5.27, which is
the union A of all very simple sets.

Note that w^ with ∅ as 0 and the singleton operation as
successor forms a successor structure with second order
induction in the following standard sense. The successor of
any element is not 0. Any two elements with the same
successor are equal. Every set that includes 0 as an
element, and is closed under successor, contains the whole
structure as a subset.

This means that we have full second order arithmetic at our
disposal for use in the rest of the section.

LEMMA 5.28. W(w^). £(w^) is a well ordering with no
greatest element and no limit point.

Proof: W(w^) since w^ is simple. Hence £(w^) is well
founded.

To obtain that £(w^) is a well ordering, it suffices to
show that ≡(w^)(x,y) Æ x = y. Let x,y be a counterexample,
where x is epsilon minimal. If x = ∅ then from £(w^)(y,∅)
we obtain y = ∅. So x ≠ ∅. Let x = {b}. We argue similarly
that y ≠ ∅, and so let y = {c}. Since x ≠ y, we have b ≠ c.
Since ≡(w^)(x,y), we have £(w^)(x,y), £(w^)(x,y). By the
definition of £(w^), we have £(w^)(b,c), £(w^)(c,b), and so
≡(w^)(b,c). This contradicts the minimality of x.
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That £(w^) has no greatest element follows from the fact
that w^ has no epsilon maximal element, the first claim,
and Lemma 5.10. QED

w^ certainly gives us full second order arithmetic, but how
are we going to use it to interact with the binary
relations on any x with W(x)? This is answered by the
following.

LEMMA 5.29. If W(x) then x » w^ exists. In fact, W(x » w^).

Proof: By Lemma 5.26, every proper inclusion between
elements of w^ has left side ∅. Therefore all expansions in
x » w^ meet x » {∅}. Hence x » w^ exists. The second claim
follows easily. QED

This means that what is essentially the Cartesian powers of
x » w^, and therefore separation on them, are available.

LEMMA 5.30. Suppose there is an x-system. Then there is an
x » {x}-system.

Proof: Let S be an x-system. Obviously W(x » {x}) since
transitivity and well foundedness are preserved. In Lemma
2.3 of [Fr02], a construction is given that in our contexts
amounts to modifying S to another x-system with the
property that every cross section contains an element at
the bottom level (i.e., 0), or an element at an odd level
(i.e., odd as in odd ordinal level). These levels refer to
levels in £(x). Bringing this construction into this context
requires ordinal arithmetic, which is fully available here.
An x » {x}-system is formed by augmenting the x-system with
a top level cross section which is the set of all elements
of x that lie at a nonzero even level in £(x). QED

Note that £(w^) has no greatest element. We want to extend
Lemma 5.36 by constructing x » {x,{x},{{x}},...}, with this
same property.

LEMMA 5.31. Assume that there is an x-system. There exists
a set z such that x Œ z and z is closed under singletons.
There is a least such z. There is an x » z-system. £(x » z)
has no greatest element. £(x) is a proper initial segment of
£(x » z).

Proof: We use w^ for the construction. By induction, for
each n Œ w^, there is a unique function fn with domain {i:
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£(w^)(i,n)} such that f(∅) = x and each f({i}) = {f(i)}.
Using W(x), each fn is one-one. The union of the ranges of
the fn is a virtual set B containing x as an element and
closed under singletons. Note that every expansion within
the virtual set x » B meets x » {x}. Hence x » B exists.
Hence B exists. Clearly B is contained in any set z such
that x Œ z and z is closed under singletons. Therefore B
serves as the z.

We now verify W(x » z). By induction, every element of B =
z is either x or the singleton of an element of z. Hence x
» z is transitive. For well foundedness, if the nonempty
subset of x » z meets x then take an epsilon minimal
element in x. Show that this is epsilon minimal by
induction in the construction of z. Otherwise, use
induction in the construction of z.

To see that there is an x » z-system, start with the x »
{x}-system provided by Lemma 5.30. Extend it to the rest of
x » z by taking the cross section at each b Œ z\{x} to
consist of just the unique element of b. Obviously £(x » z)
has no greatest element since x » z has no epsilon maximal
element. Also, £(x) is the proper initial segment of £(x »
z) determined by the point x. QED

We now wish to build the constructible hierarchy on every x
with W(x). We run into trouble if we wish to compare the
constructible hierarchy on x with the constructible
hierarchy on y, where W(x), W(y). There is where we will
need that x,y have systems; i.e., there is an x-system and
there is a y-system.

Rather than reinvent the wheel, we will use a fairly strong
version of a standard sentence s in L(Œ) used in standard
treatments of the constructible hierarchy in set theory
with the property that the well founded models of s are
exactly the structures which, when factored by the
equivalence relation of extensional equality, are
isomorphic to some (L(l),Œ), where l is a limit ordinal.
This is normally done in L(Œ,=) in connection with the
verification of the generalized continuum hypothesis in L,
but here we stay within L(Œ).

We wish to be more explicit about s for two reasons. One is
for the sake of expositional completeness, and the other is
because we are going to use s formally, especially in Lemma
5.38.
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We take s to be the conjunction of the following sentences
in L(Œ). We do not make much effort to be economical.

i) extensionality, pairing, union, every set has a
transitive closure, every nonempty set has an epsilon least
element, every set has a cumulative rank function, every
set whose cumulative rank function is onto a finite ordinal
has a power set, there is no greatest ordinal;
ii) if there is a limit ordinal then the satisfaction
relation of every set under epsilon exists;
iii) if there is a limit ordinal then for all ordinals a,
there is a function on a which follows the usual definition
by transfinite recursion of the constructible hierarchy;
iv) if there is a limit ordinal then every set lies
somewhere in the constructible hierarchy defined in iii);
v) D0 separation.

Here an ordinal is an epsilon connected transitive set. A
finite ordinal is an ordinal which is not a limit ordinal
and no element is a limit ordinal. A cumulative rank
function on x is an ordinal valued function f with domain x
such that each f(y) is the strict sup of the f(z), z Œ y.
It is well known how to finitely axiomatize D0 separation in
the presence of extensionality, pairing, and union. In ii),
the satisfaction relation is defined using finite sequences
from the set for the assignments, where a finite sequence
is taken to be a function from an element of the least
limit ordinal into the set.

LEMMA 5.32. Let W(x), x ≠ ∅, and £(x) have no greatest
element. There exists A Õ x•x and binary relation R Õ A•A
such that (A,R) satisfies s, R is well founded, and the
relative level in the internal constructible hierarchy of
an ordered pair in A is given by its first coordinate’s
position in £(x), and every element of x is the first
coordinate of an element of A. I.e., for all (a,b),(c,d) Œ
A, (A,R) satisfies “(a,b) occurs at an earlier stage in the
constructible hierarchy (the L(a)’s) than (c,d)” if and
only if <(x)(a,c). Furthermore, equivalence (having the
same elements) in the sense of (A,R) is the same as the
equivalence relation E on A given by (a,b) E (c,d) ´
(≡(x)(a,c) Ÿ ≡(b,d)).

Proof: By Lemma 5.29, x » w^ exists. So we can simulate any
of its Cartesian powers and use separation on them. We can
treat £(x) as a well ordering, provided that for each b Œ
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x, we carry along all c with ≡(x)(b,c). We can build a coded
version of the constructible hierarchy up through £(x) (in
fact well beyond that point) as a binary relation on an
appropriate subset of x•x. There is no difficulty
assembling this construction so as to be a binary relation
on an appropriate subset of x•x where the first coordinate
is used for the level of the constructible hierarchy. We
use the w^ in x » w^ in order to code formulas and set up
the needed satisfaction relations for the successor steps
in the constructible hierarchy. One delicate point is that
we need to use a function from the finite sequences from
any given infinite initial segment of £(x), mod ≡(x), into
that same initial segment, mod ≡(x). Since we don’t properly
have the set of all such finite sequences in this
environment, we use a suitable mapping from any given
infinite initial segment of £(x), cross w^, into that same
initial segment, which serves as an appropriate finite
sequence mechanism. Because we have what amounts to full
second order logic on (x » w^,Œ) at our disposal, we can
explicitly provide such a finite sequence mechanism with
the help of some relevant ordinal arithmetic. QED

The construction of (A,R) in Lemma 5.32 is done uniformly
in x. So for x ≠ ∅, W(x), £(x) with no greatest element, we
write L[x] for the (A,R), A Õ x•x, R Õ A•A, given by the
proof of Lemma 5.32. We write dom(L[x]) for the A. The idea
of the notation is that this is the code for the initial
segment of the constructible hierarchy along £(x).

We use the obvious notions of initial segment and proper
initial segment of L[x], where we only cut off at limit
stages. We also use the obvious notions of isomorphism
relations between initial segments of L[x] and initial
segments of L[y].

It is convenient to define W’(x) if and only if x ≠ ∅, £(x)
has no greatest element, and there is an x-system. Note
that W’(w^). In particular, R Õ w^•w^ given by R(n,m) ´ n
= {m} is an w^-system.

Recall the definition of the virtual relation COMP(x,y)
after the proof of Lemma 5.21.

LEMMA 5.33. Let W’(x), W’(y). There is a virtual
isomorphism relation from L[x] onto a proper initial
segment of L[y], or a virtual isomorphism relation from
L[y] onto a proper initial segment of L[x], or a virtual
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isomorphism relation from L[x] onto L[y]. The choice of
cases and proper initial segments, as well as the
comparison of levels, is by COMP(x,y). Furthermore, at most
one of the three possibilities can apply, the proper
initial segment is unique, and the isomorphism is unique.

Proof: We suppose that COMP(x,y) is an isomorphism relation
from £(x) onto £(y). The other cases are handled
analogously.

COMP(x,y) obviously provides the right way of matching
levels, but does not give us the desired virtual
isomorphism relation. For this, we have to use the systems.
Let S be an x-system, S’ a y-system, where S,S’ are
equivalent. I.e., S* = S’*. Since L[x] respects the
equivalence relation ≡(x), we can forward image L[x] via S#
to get A* Õ S*•S* and L*[x] Õ A*•A*. Similarly, we forward
image L[y] via S’# to get B* Õ S*•S* and L*[y] Õ B*•B*.
Both of these forward images also satisfy s, are well
founded, and the level in the internal constructible
hierarchy of an ordered pair is given by its first
coordinate’s position in £(S*). It is not clear that L*[x] =
L*[y]. However, S* » w^, its Cartesian powers, and full
separation are available, and so we can prove that L*[x]
and L*[y] are isomorphic, by an actual, not merely virtual,
isomorphism. This yields the desired virtual isomorphism
relation from L[x] onto L[y] by composition. The comparison
of levels by COMP(x,y) is preserved.

The final claim is by obvious transfinite induction (or
minimal element) arguments. Firstly, observe that any
virtual isomorphism must preserve levels in the
constructible hierarchy, since the levels are well founded
(here we use only separation on x and y separately). The
uniqueness of the isomorphism constitutes infinitely many
statements. These are again proved by obvious transfinite
induction (or minimal element) arguments. We do these
arguments separately on x and on y, and do not need x » y.
QED

For x,y with W’(x), W’(y), we let LCOMP(x,y) be the unique
virtual comparison isomorphism relation between L[x] and
L[y] given by the proof of Lemma 5.33. Note that LCOMP(x,y)
is given uniformly in x,y.

We are now prepared to construct the full constructible
universe. The points will be pairs (x,b), where W’(x) and b
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Œ dom(L[x]). The epsilon relation between points (x,b) and
(y,c) holds if and only if LCOMP(x,y)(b) is satisfied in
L[y] to be an element of c. We caution the reader that
LCOMP(x,y) is not a function, but rather an isomorphism
relation. However, it is functional when we factor out by
the equivalence relations ≡(x) and ≡(y).

We use L for the virtual set of these points, and ŒL for
this virtual epsilon relation on L. Thus our notation for
the full constructible universe in this context is (L,ŒL).
Both coordinates are virtual.

LEMMA 5.34. (L,ŒL) is well founded in the sense that every
nonempty subset of L has an ŒL minimal element.

Proof: Let z Õ L be nonempty. Let (y,c) Œ z,L. By W’(y),
let (x,b) be chosen such that LCOMP(x,y)(b) exists and is
of minimum level in the constructible hierarchy of L[y].

We claim that (x,b) is an ŒL minimal element of z. To see
this, let (w,d) ŒL (x,b), (w,d) Œ z,L. Then LCOMP(w,x)(d)
is satisfied in L[x] to be an element of b, and therefore
is of lower level than b in the constructible hierarchy of
L[x]. Therefore LCOMP(w,y)(d) is of lower level than c in
the constructible hierarchy of L[y]. This contradicts the
minimality of (x,b). QED

Let s’ be the following variant of s: any set is an element
of a well founded transitive set satisfying s.

LEMMA 5.35. s’ logically implies s.

Proof: Assume s’. Then any list of sets of standard integer
length all lie in some well founded transitive set
satisfying s.

To derive extensionality, let x,y have the same elements,
and let z be given. Let x,y,z Œ w, where w is a transitive
set satisfying s. Then x,y have the same elements in the
sense of s, and hence x Œ z ´ y Œ z.

To derive foundation, let x be a nonempty set, and x Œ y, y
a transitive set satisfying s. Then x has an epsilon
minimal element in the sense of y. So x has an epsilon
minimal element.

We leave pairing and union to the reader.
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Let x be given, and let x Œ y, where y is a well founded
transitive set satisfying s. Then according to y, x has a
cumulative rank function. Hence it is easily seen that this
cumulative rank function in the sense of y is a cumulative
rank function.

To establish D0 separation, put all the parameters in some
well founded transitive set, and apply D0-separation inside
there.

Let x be a well founded transitive set satisfying s. Then
the cumulative rank function for x exists. It is easy to
see that its range is a limit ordinal. From this we obtain
the ordinal w as the least limit ordinal. We can apply
induction to w, as long as the predicate forms a subset of
w. In particular, we have D0 induction.

We claim that every x is an element of some transitive set
y satisfying s where w Œ y. To see this, let x Œ y Œ z,
where y,z are transitive sets satisfying s. Then the
cumulative rank function for y exists in z, and hence w Œ
z.

To derive that x has a transitive closure, let x Œ y, where
y is a transitive set satisfying s. Then x has a transitive
closure u, in the sense of y. Clearly x Õ u and u is
transitive. Now the characterization of the transitive
closure as the set of terms in backwards epsilon chains is
provable from s. Hence this characterization holds in y. To
verify that u is the actual transitive closure, we use D0

induction.

Suppose that the cumulative rank function of x is onto a
finite ordinal. We claim that all subsets of x lie in y. To
see this, let z Õ x. We show that the intersection of z
with the first i elements of x lies in y by D0 induction on
i, using the cumulative rank function of x.

We now show that the satisfaction relation for any (x,Œ)
exists. Write x Œ y Œ z, where y,z are transitive sets
satisfying s. Then z satisfies that there is a limit
ordinal. So z satisfies that (x,Œ) has a satisfaction
relation, and therefore (x,Œ) has a satisfaction relation.

Let a be an ordinal, a Œ x, x a transitive set satisfying
s. The constructible hierarchy as a function defined by



43

transfinite recursion on a exists in the sense of x.
Therefore the constructible hierarchy as a function defined
by transfinite recursion on a exists.

Let y be a transitive set satisfying s, with w Œ y. The
internal constructible hierarchy in y exhausts y. As in the
previous paragraph, the internal constructible hierarchy in
y is an initial segment of the external constructible
hierarchy. Since every x lies in some transitive set
satisfying s which also has the element w, it follows that
every set appears in the constructible hierarchy. QED

LEMMA 5.36. (L,ŒL) is a well founded model of s’ and hence
of s.

Proof: By Lemmas 5.34 and 5.35, we have only to verify that
s’ holds in (L,ŒL). Let W’(x). By Lemma 5.31, let W’(y),
where £(x) is a proper initial segment of £(y). Look at the
constructible hierarchy internal to L[y]. Internally, one
of the points will be an L(a) where, externally, the a is
the length of £(x). Let b be such a point. Then in (L,ŒL),
(y,b) will be satisfied to be a well founded transitive set
satisfying s. Also, every (x,a) Œ L will have (x,a) ŒL

(y,b). QED

Recall the scheme SVWISUB, which we have only discussed in
the context of ZFC. We wish to discuss it in the context of
s. It is formulated identically.

Let # be the following scheme, which is a weakening of
SVWISUB.

#. If y defines a system Aa Õ a, for all ordinals a, where
the strict sup of each Aa is a, then there exist 2 £ a < b
such that Aa Õ Ab.

LEMMA 5.37. SVWISUB is provable in s + #.

Proof: By a straightforward adaptation of Theorem 2.3 of
[Fr02]. This requires only the development of some simple
ordinal arithmetic in s. QED

LEMMA 5.38. ZFC + V = L + SVWISUB is provable in s + # +
ÿSUB.

Proof: By Lemma 5.37, we already have SVWISUB. Also V = L
follows immediately from s. We have only to obtain ZFC.
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Note that Lemma 2.3 can be proved just from s, and so there
is no weakly inclusion subtle ordinal over 2.

By an obvious use of SVWISUB, we obtain the existence of a
limit ordinal. Let w be the least limit ordinal. Then it is
easily verified that w obeys the axiom of infinity.

Next we verify replacement on w. This is a strong analog of
“On is uncountable” for eventual use in the adaptation of
the proof of Theorem 1.6 of [Fr02].

Suppose a0 < a1 < ... is unbounded, and definable. Pick a
counterexample to the weak inclusion subtlety over 2 of a0.
Next pick a counterexample to the weak inclusion subtlety
over 2 of a1, and place the part of the assignment to
ordinals ≥ a0 on top. Continue in this way.

There is no problem making the construction in Lemma 2.3 of
[Fr02] in this context for l = ai and d = 2, uniformly in i.
In fact, we can adjust the “2x+1” so that in the sets
assigned to the limit ordinals for l = ai, the least integer
present is always 2i+1. This guarantees that we have given
a counterexample to SVWISUB. Hence we have replacement on
w.

Now we verify the analog of “l is a cardinal”. Specifically,
that there is no definable map from On one-one into an
ordinal. This is a straightforward adaptation of Lemmas 1.4
and 1.5 of [Fr02].

We now wish to prove the analog of “l is subtle” by adapting
the proof of Lemma 1.6 of [Fr02]. We first need the analog
of Theorem 1.2 of [Fr02], which is “On is inclusion subtle
implies On is subtle”. This is no problem. Here these
notions are, as always, formulated on On through definable
assignments. We already have “On is an uncountable
cardinal” by the previous paragraph and w replacement. The
adaptation of the proof of Lemma 1.6 of [Fr02] is clear and
shows that “On is subtle”.

It is now easy to verify replacement. Suppose replacement
fails on a. Then we obtain a definable mapping partially
from a into ordinals which is unbounded. We can adjust this
map so that the range, C, is closed and unbounded. We can
then give an easy counterexample to the subtlety of On by
assigning singletons to sufficiently large elements of C.
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We now verify separation. Separation can be proved from s
together with replacement. It suffices to fix an ordinal a
and find a limit ordinal l > a such that L(l) is an
elementary substructure of L with respect to n quantifier
prenex formulas, for any standard integer n. It is clear
what we mean by the first k stages L(a),L(a1),L(a2),..., of
the obvious Skolem hull construction starting with L(a+1),
where a = a0 < a1 ..., and each ai+1 is picked minimally
greater than ai, and k ≥ 0. Note that we apparently cannot
prove that this exists for all k ≥ 0. However, if it exists
for k then it exists for k+1, and the construction for k+1
extends the construction for k.

By replacement, we obtain b such that the above finite
sequences that exist all end with an ordinal < b. Now we can
use foundation to conclude that there are such sequences of
every finite length, which can be put together into an
infinite sequence with limit l £ b. Then L(l) is the desired
partial elementary substructure of L. This suffices to
establish separation since the standard integer n is
arbitrary.

Finally, we verify power set. Fix L(a), a ≥ w, and suppose
that new subsets of L(a) appear arbitrarily high up in the
constructible hierarchy. Since there is a bijection from
L(a) onto a, we see that new subsets of a appear
arbitrarily high up in the constructible hierarchy. Let B
be the unbounded class of all ordinals b > a such that
L(b+1)\L(b) has an element from L(a). By w replacement, B
has a closed unbounded class C of limits, none of which lie
in B.

We define Al Õ l, l Œ C, as the first subset of a, in the
constructible hierarchy, lying in L(b+1)\L(b), where b is
the least element of B greater than l. Since the Al are all
different subsets of a, we have a counterexample to the
subtlety of On. QED

LEMMA 5.39. ZFC + V = L + SVWISUB is interpretable in s +
#.

Proof: This follows easily from Lemma 5.38. QED

We now wish to verify that # holds in (L,ŒL). By Lemma 5.36,
s holds in (L,ŒL). This will provide an interpretation of s
+ # in Newcomp + Ext.



46

In ordinary set theoretic terms, the hypothesis for # is

H1) an assignment Aa Õ a, for all ordinals a, where the
strict sup of every Aa is a.

The conclusion is

C1) the existence of 2 £ a < b such that Aa Õ Ab.

Suppose the hypothesis H1) holds in (L,ŒL). This gives us a
virtual assignment Aa Õ a, for all “ordinals” a, where we
have to be careful about what notion of ordinal is being
used here. These will be the “ordinals” as given by pairs
(x,d), where W’(x) and d Œ x. These are “measured”
according to the position of d in £(x). I.e., we are
factoring by the equivalence relation ≡(x). Of course, the
same “ordinal” is also “measured” by pairs (y,e), W’(y),
provided the position of e in £(y) is the same as the
position of d in £(x). These positions are compared by
COMP(x,y).

A “set of ordinals” is therefore given by pairs (x,u),
where W’(x) and u Õ x. Here we require that u is closed
under the equivalence relation ≡(x). There is the obvious
relationship between another such pair (y,v), representing
the same “set of ordinals”.

Thus H1) is represented by

H2) a virtual function F that maps the pairs (x,d), W’(x),
d Œ x, to sets F(x,d) Õ x<d, where F(x,d) is closed under
≡(x) and the strict sup of F(x,d) is d in the sense of £(x).
The function F will produce the same “set of ordinals” at
other (x’,d’) that represent the same “ordinal”.

Assume that C1) fails in (L,ŒL). I.e.,

H3) all “inclusions” among the Aa have a = “0” or “1”, all
in the sense of (L,ŒL).

We need to appropriately interpret this statement using
Lemma 5.10. The interpretation is that

H4) if F(x,d) Õ F(x,e) then d = ∅ or d = {∅}.
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To complete the contradiction, we now use this data to
build a giant transitive set, with a system, that goes
through the roof of L.

This situation is a more exotic form of the construction
used in Lemma 5.16 that starts with an x-system S and
defines S# and S*. Also see the paragraph after Lemma 5.16.

It is convenient to rearrange F so as to assign an x-system
to each x with W’(x). Thus we have the following, which
heavily uses separation.

H5) Let G be the virtual function such that for each x with
W’(x), G(x) is the x-system R Õ x•x, where R(a,b) ´ b Œ
F(x,a). We have the following crucial coherence property.
Let y be such that W’(y). Then either the x-system G(x) is
isomorphic to a proper initial segment of the y-system
G(y), or the y-system G(y) is isomorphic to a proper
initial segment of the x-system G(x), or the x-system G(x)
is isomorphic to the y-system G(y), where, in any case, the
virtual isomorphism relation is COMP(x,y).

We emphasize that, even though F,G are virtual, when
localized to x with W’(x), they become actual in view of
separation (i.e., every virtual subset of a set is a set).

We now use the construction arising out of Lemma 5.16. We
consider the various G(x)# and their ranges G(x)*. Again,
these cohere using the COMP(x,y). In particular, the G(x)*
cohere in the following strong sense. For any two
G(x)*,G(y)*, one is an actual initial segment of the other.
This is formulated using £(G(x)*), £(G(y)*). So when we take
’s, the relevant isomorphism relations are identity
functions. In light of H4) or Lemma 5.14, we see that any
proper inclusion among these G(x)* has left side ∅ or {∅}.

To verify that # holds in (L,ŒL), it suffices to derive a
contradiction from the hypothesis H5).

LEMMA 5.40. Assume the hypothesis H5). Let E be the virtual
union of the G(x)*. Then E is a transitive virtual set. Any
proper inclusion among elements of E has left side ∅ or
{∅}. E is well founded. E is nonempty. W’(E). For all x
with W’(x), COMP(x,E) maps all of x.

Proof: The transitivity of E is immediate since it is the
union of transitive sets. Any proper inclusion among
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elements of E is a proper inclusion among elements of some
G(x)* by coherence. Hence by Lemma 5.14, it must have left
side ∅ or {∅}. Hence all expansions in E meet {∅,{∅}}.
Therefore E is a set. Now E is well founded because it is
the union of well founded transitive sets. E is nonempty
because W’(w^) and G(w^)* is nonempty. £(E) is a direct
limit of the £(G(x)*), each one of which has no maximum
element. Hence £(E) has no maximum element. W’(E) has now
been established. For the final claim, if W’(x) then G(x)*
is an initial segment of E. Hence COMP(x,E). QED

LEMMA 5.41. The last two claims of Lemma 5.40, W’(E), and
for all x with W’(x), COMP(x,E) maps all of x, are jointly
impossible.

Proof: By Lemma 5.31, we can find x with W’(x), where
COMP(x,E) maps a proper initial segment of x onto E. This
violates trichotomy. QED

LEMMA 5.42. H5) is false. # holds in (L,ŒL).

Proof: The first claim is by Lemma 5.41. The second claim
is by the first claim and the paragraph just before Lemma
5.40. QED

THEOREM 5.43. ZFC + V = L + SVWISUB is interpretable in
Newcomp + Ext. ZFC + V = L + SSUB is interpretable in
Newcomp.

Proof: By Lemma 5.39, ZFC + V = L + SVWISUB is
interpretable in s + #. By Lemmas 5.36 and 5.42, s + #
holds in (L,ŒL), and this has been shown in Newcomp + Ext.
Hence s + # is interpretable in Newcomp + Ext. This
establishes the first claim. For the second claim without V
= L, use the first claim together with Theorem 4.11 and
Corollary 2.7. By standard relativization to L, we can add
V = L. QED

THEOREM 5.44. Newcomp, Newcomp + Ext, ZFC + SSUB are
mutually interpretable.

Proof: ZFC + SSUB is interpretable in Newcomp by Theorem
5.43. Newcomp + Ext is interpretable in Newcomp by Theorem
4.11. Newcomp is interpretable in ZFC + SSUB by Theorem
3.1. QED
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