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Abstract. We show the algorithmic unsolvability of a number 
of decision procedures in ordinary two dimensional 
Euclidean geometry, involving lines and integer points. We 
also consider formulations involving integral domains of 
characteristic 0, and ordered rings. The main tool is the 
solution to Hilbert's Tenth Problem. The limited number of 
facts used from recursion theory are isolated at the 
beginning. 
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0. Preliminaries. 
 
We show the algorithmic unsolvability of a number of 
decision procedures in ordinary two dimensional Euclidean 
geometry. The main tool is the solution to Hilbert's Tenth 
Problem. 
 
More generally, we demonstrate algorithmic reductions 
between various decision problems in two dimensional 
Euclidean geometry over integral domains of characteristic 
zero, and ordered rings, with (variants of) Hilbert's 10th 
Problem for such rings.  
 
All of our algorithmic reductions are uniform in the rings 
from the category of rings. Thus we view the reductions as 
algebraic or geometric, rather than combinatorial.  
 
The basic construction that drives the result is a 
reduction of ring addition and ring multiplication in any 
integral domain of characteristic zero, to collinear 
relations, through Lemmas 1.3 and 1.5. For addition, the 
realizations of the collinear relations are unique as 
stated in Lemma 1.3. However, for multiplication, the 
realizations are not unique (see Lemma 1.5).  



 
We begin with a brief account of the relevant background 
from recursion theory. It is convenient to work within a 
fixed "universal" space that is rich enough to naturally 
support the kind of finitary objects that our algorithms 
operate on. 
 
Accordingly, we use the least set T that contains the 
integers and the 52 lower case and upper case alphabetic 
characters, and where every finite sequence from T 
(possibly empty) is an element of T.  
 
We use the basic notion of partial recursive f:T → T from 
recursion theory. Informally, this is a partial function 
from T into T such that the following holds. There exists 
an algorithm such that at each input x ∈ T, if f(x) = y 
then the algorithm yields the output y; if f(x) is 
undefined, then the algorithm yields no output.  
 
A recursive f:T → T is a partial recursive f:T → T whose 
domain is T. A recursive subset of T is a subset of T whose 
characteristic function is recursive. An r.e. (recursively 
enumerable) subset of T is the domain of a partial 
recursive f:T → T.  
 
Let A,B ⊆ T. We say that A is reducible to B if and only if 
there is a recursive f:T → T such that for all x ∈ T, x ∈ 
A ↔ f(x) ∈ B. This is written A ≤ B. We write A ≥ B if and 
only if B ≤ A.  
 
It is obvious that ≤ is a reflexive and transitive relation. 
 
We say that A ⊆ T is complete r.e. if and only if A is r.e. 
and for all r.e. B ⊆ T, B ≤ A.  
 
Let A,B ⊆ T. We write A ≡ B if and only if there exists a 
recursive bijection f:A → B such that for all x ∈ T, x ∈ A 
↔ f(x) ∈ B. This is the strongest notion of equivalence 
that is normally studied in recursion theory.  
 
We have the following well known fundamental result. 
 
THEROEM 0.1. There exist complete r.e. sets A ⊆ T. If A,B ⊆ 
T are complete r.e. then A,B are not recursive, and A ≡ B. 
If A ⊆ T is complete r.e., B ⊆ T is r.e., and A ≤ B, then B 
is complete r.e.  
 
Proof: See [Roxx] and [Soxx]. QED   



 
In this setup, a problem is merely a subset of T. A problem 
is solvable if and only if it is a recursive subset of T.  
 
We now state Hilbert's 10th Problem for any ring J. There 
are many results and open questions regarding H10(J) for 
various rings J. See [Po03] for a survey.  
 
H10(J). Does a given finite list of polynomials with 
integer coefficients have a common zero in J? 
 
An ordered ring is a commutative ring J with unit, and a 
reflexive linear ordering ≤, such that for all a,b,c ∈ J,  
  

a ≤ b → a+c ≤ b+c, and 
0 ≤ a,b → 0 ≤ ab. 

 
H10(J) is more commonly stated for a single polynomial. 
This is "equivalent" to H10(J) for ordered rings in the 
following strong sense.  
 
THEOREM 0.2. If J is an ordered ring then H10(J) is 
reducible to H10(J) for single polynomials. The reduction 
is uniform in ordered rings J.  
 
Proof: Let P1,...,Pn be polynomials with integer 
coefficients. We can assume that they are all in variables 
v1,...,vk. Let J be an ordered ring. Then  
 
(∃v1,...,vk ∈ J)(P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0) 
↔  
(∃v1,...,vk ∈ J)(P1(v1,...,vk)2 + ... + Pn(v1,...,vk)2 = 0). 
 
QED 
 
Theorem 0.2 holds for a wider class of rings. See section 
6.  
 
The following modified form of H10 plays an important role. 
 
H10(J\{0}). Does a given finite list of polynomials with 
integer coefficients have a common zero in J\{0}? 
 
An integral domain is a commutative ring J with unit, where 
for all a,b ∈ J, 
 

ab = 0 → a = 0 ∨ b = 0. 
 



A ring of characteristic zero is a ring where 0 is not the 
sum of one or more 1's.  
 
Every ordered ring is an integral domain of characteristic 
zero. 
 
If J is an ordered ring, then we write J+ for the set of all 
positive elements of J. Here is another special case of 
Hilbert's Tenth Problem that plays an important role.  
 
H10(J+). Does a given finite list of polynomials with 
integer coefficients have a common zero in J+? 
 
What can we say about the relationship between H10(J), 
H10(J\{0}), H10(J+)? 
 
THEOREM 0.3. For all rings J, H10(J) ≤ H(J\{0}). For all 
fields J, H10(J\{0}) ≤ H10(J). For all ordered fields J, 
where every positive element has a square root, H10(J) ≤≥ 
H10(J+). For some subfield J of the reals, H10(J+) ≤ H10(J) 
fails.  
 
Proof: Let J be a ring. Let P be a polynomial with integer 
coefficients. P has a zero in J if and only if P has a zero 
in J\{0} + J\{0}. If J is a field, we can write  
 
(∃v1,...,vn ≠ 0)(P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0) 
↔  
(∃v1,...,v2k)(P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0 ∧ 
v1•vk+1 = 1 ∧ ... vk•v2k = 1), 
 
If J is an ordered field where every positive element has a 
square root, we can write 
 
(∃v1,...,vk > 0)(P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0) 
↔  
(∃v1,...,v2k)(P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0 ∧ 
v1•vk+1 = 1 ∧ ... vk•v2k = 1 ∧ vk+12 = ±v1 ∧ ... v2k2 = ±vk) ↔ 
(∃v1,...,v2k)(a conjunction of disjunctions of polynomial 
equations) ↔ 
(∃v1,...,v2k)(a conjunction of polynomial equations)  
 
using products of polynomials.  
 
Let x be any transcendental real number. Consider the 
subfield Q<x> of ℜ generated by Q and x. Clearly Q<x> is, 
field theoretically, the field Q with a single 
transcendental element adjoined. Hence H10(Q<x>) is r.e. 



However, H10(Q<x>+) will have Turing degree at least that of 
x (as a left Dedekind cut). So H10(Q<x>+) ≤ H10(Q<x>) fails 
for x of Turing degree > 0'. QED 
 
In this paper we will only consider integral domains of 
characteristic zero.  
 
The following is well known.  
 
THEOREM 0.4. H10(Z), H10(Z+) are complete r.e. H10(Q) ≤≥ 
H10(Q+).  
 
Proof: From the solution to Hilbert's Tenth Problem over Z, 
H10(Z), H10(Z+) are complete r.e. See ??? By Theorem 0.2, 
H10(Q) ≤ H10(Q+). Now let P1,...,Pn be a finite list of 
polynomials with integer coefficients. Then. using 
Lagrange's four squares theorem,  
 
(∃v1,...,vk ∈ Q+)(P1(v1,...,vk) = 0) ∧ ... ∧ Pn(v1,...,vk) = 
0) ↔ 
(∃v1,...,vk ∈ Q)(P(v1,...,vk) ∧ v1,...,vk are each sums of 
four squares ∧ v1,...,vk each have multiplicative inverses) 
 
which can be put in the form of an existentialized 
conjunction of equations, with quantifiers ranging over Q, 
and then an existentialized equation, with quantifiers 
ranging over Q. QED 
 
It is not known if H10(Q) is recursive. 
 
We establish reductions between H10(J), H10(J\{0}), H10(J+), 
and various decision problems of a geometric nature in J2, 
where J is an integral domain of characteristic zero, and 
in some contexts, where J is an ordered ring.  
 
Fix an integral domain J of characteristic zero. The lines 
in J2 are the subsets of J2 of the form  
 

{(x,y) ∈ J2: ax + by = c},  
a,b,c ∈ J, a ≠ 0 ∨ b ≠ 0 

 
which have at least one element. 
 
Integral domains of characteristic zero are adequate for 
treating lines in two dimensional space, as indicated by 
Theorem 0.5. 
 



THEOREM 0.5. Every line in J2 has infinitely many elements. 
Let (d,e),(f,g) ∈ J2 be distinct. There is a unique line 
containing (d,e),(f,g). If d = f, it is defined by the 
equation x = d. If e = g, it is defined by the equation y - 
e. Otherwise, it is defined by the equation (g-e)(x-d) = 
(f-d)(y-e). The intersection of any two distinct lines has 
cardinality at most 1. 
 
Proof: Let ax + by = c be given, a ≠ 0 ∨ b ≠ 0. If a = 0 
then ax + by = c has the solutions (n,y), where (x,y) is a 
solution.  
 
Now suppose a ≠ 0 and ax + by = c. Then a(x+nb) + b(y-na) = 
c, where n ∈ Z. This provides infinitely many solutions. 
 
Let d,e,f,g ∈ J, (d,e) ≠ (f,g). Set a = e-g, b = f-d, c = 
d(e-g) + e(f-d) = f(e-g) + g(f-d). Then ax + by = c defines 
a line containing (d,e),(f,g).  
 
Now let (d,e) ≠ (f,g) ∈ J2. Suppose d = f. Then e ≠ g. The 
line defined by x = d contains (d,e),(f,g). Suppose ax + by 
= c defines a line L containing (d,e),(f,g). Then ad + be = 
ad + bg, and so be = bg, b(e-g) = 0, and hence b = 0, a ≠ 
0. Hence L is defined by ax = c. Hence c = ad, and L is 
defined by ax = ad. This is the same as the line defined by 
x = d.  
 
The same argument shows that if e = g then the line 
containing (d,e),(f,g) must be defined by y = e.  
 
Now we assume d ≠ f ∧ e ≠ g. Let ax + by = c, a'x + b'y = 
c' define lines that both contain (d,e),(f,g). Clearly 
a,b,a',b' ≠ 0. We have 
 
ad + be = af + bg = c 
a'd + b'e = a'f + b'g = c' 
a(d-f) = b(g-e) 
a'(d-f) = b'(g-e) 
ab'(d-f)(g-e) = a'b(d-f)(g-e) 
ab' = a'b 
a'ad + a'be = a'c 
aa'd + ab'e = ac' 
a'c = ac' 
 
We are ready to show that the lines are equal. Let ax + by 
= c. Then a'c = aa'x + ba'y = aa'x + ab'y = ac'. Hence a'x 
+ b'y = c'. Let a'x + b'y = c'. Then ac' = aa'x + ab'y = 
aa'x + a'by = a'c. Hence ax + by = c.  



 
Obviously, (g-e)(x-d) = (f-d)(y-e) defines a line - and 
hence the line - containing (d,e),(f,g).  
 
Suppose L1,L2 are two distinct lines each containing x ≠ y 
from J2. This violates the uniqueness of the line containing 
any two distinct points. QED  
 
In the definitions below, we use xi, i ≥ 1, for variables 
representing unknown elements of J2.  
 
In the case of line, parallel, and equidistance, the 
definitions below make clear sense for integral domains of 
characteristic zero. For betweenness, we assume J is an 
ordered ring. We use the canonical embedding of Z into any 
ring of characteristic zero. 
 
A line condition is an assertion  
 

α,β,γ lie on a common line in J2 
written [α,β,γ]  

 
where each of α,β,γ is a variable xi, i ≥ 1, or a specific 
element of Z2. E,g,[[x5,(0,-5),x4]. Note that [y,y,z] holds 
for all y ∈ J2 by Theorem 0.4.  
 
A parallel condition is an assertion  
 

the line αβ is parallel to the line γδ 
written αβ||γδ 

 
where each of α,β,γ,δ is a variable xi, i ≥ 1, or a specific 
element of Z2. E.g., x5,(0,-5)||(3,4)(3,4). In order for 
this to hold, we require α ≠ β, γ ≠ δ, and the line 
containing α,β  is disjoint from the line containing γ,δ. 
 
Equidistance is defined in an ordered ring as follows. Let 
(a,b),(c,d),(e,f),(g,h) ∈ J2. We say that (a,b)(c,d) and 
(e,f)(g,h) are equidistant if and only if  
 

(a-c)2 + (b-d)2 = (e-g)2 + (f-h)2. 
 
An equidistance condition is an assertion  
 

α,β and γ,δ are equidistant, and α ≠ β, γ ≠ δ  
written αβ E γδ 

 



where each of α,β,γ,δ is a variable xi, i ≥ 1, or a specific 
element of Z2. E.g., x5(0,-5) E (3,4)(3,4).  
 
Betweenness is defined in an ordered ring as follows. Let 
(d,e),(f,g),(h,i) ∈ J2. We say that (f,g) is between (d,e) 
and (b,i) if and only if  
 

(d,e),(f,g),(h,i) are distinct 
(d,e),(f,g),(h,i) lie on a common line 

d < f < h ∨ h < f < d ∨ 
e < g < i ∨ i < g < e. 

 
A betweenness condition, or b-condition, is an assertion  
 

β lies strictly between α and γ 
written <α,β,γ> 

 
where each of α,β,γ is a variable xi, i ≥ 1, or a specific 
element of Z2. E.g., <x5,(0,-5),x4>.  
 
Note that we have presented four kinds of conditions. A 
condition over V ⊆ Z2 is a condition whose constants pairs 
all lie in V.  
 
We consider finite sets of conditions, W. A realization of 
W in J is a sequence x1,...,xn ∈ J2 such that all conditions 
in W hold. This requires that all variables used in W be 
among x1,...,xn.  
 
Below, LDP, PDP, EDP, BDP are read "line decision problem", 
"parallel decision problem, "equidistance decision 
problem", "betweenness decision problem", respectively.  
 
For LDP, PDP, EDP we assume that J is an integral domain of 
characteristic zero. For BDP, we assume that J is an 
ordered ring.  
 
LDP(J,V), PDP(J,V), EDP(J,V), BDP(J,V),. Does a given 
finite set of line, betweenness, parallel, equidistance 
conditions, respectively, over V, have a realization in J? 
 
LDP(J;n), PDP(J;n), EDP(J;n), BDP(J;n). Does a given list 
of at most n line, betweenness, parallel, equidistance 
conditions, respectively, have a realization in J? 
 
It is clear that each of these problems can be naturally 
viewed as single subsets of our "universal" space T. 
 



In connection with our results on LDP(J;n), BDP(J;n), 
PDP(J;n), EDP(J;n), we use J (and J\{0}, J+) Diophantine 
sets. These can have any dimension and take the respective 
form  
 

{x ∈ Zk: (∃y ∈ Jr)(P1(x,y) = 0 ∧ ... ∧ Pn(x,y) = 0)} 
{x ∈ Zk: (∃y ∈ (J\{0})r)(P1(x,y) = 0 ∧ ... ∧ Pn(x,y) = 0) 
{x ∈ Zk: (∃y ∈ J+r)(P1(x,y) = 0 ∧ ... ∧ Pn(x,y) = 0)}. 

 
In the crucial case where J is the ring of integers, Z, we 
prove the unsolvability of LDP(Z,Z2), PDP(Z,Z2), EDP(Z,Z2), 
BDP(Z,Z2), as well as LDP(Z;n), PDP(Z;n), EDP(Z;n), BDP(Z;n) 
for sufficiently large n. In fact, we show that these 
problems are complete r.e.  
 
1. Realizing Colinearity. 
 

LDP TABLE 
 

Unsolvability for LDP with Z 
 
LDP(Z,Z2), LDP(Z,{0,1,2} × {0,1}) are complete r.e. For 
sufficiently large n, LDP(Z;n) is complete r.e.  
 

Reductions for LDP with Integral Domain J  
of Characteristic Zero 

 
LDP(J,Z) ≤≥ LDP(J,{0,1,2} × {0,1}) ≤≥ H10(J). 
Every J Diophantine set is ≤ some LDP(J;n). 
Every LDP(J;n) is ≤≥ some J Diophantine set. 
Reductions and n are constructed uniformly in J. 
 
In this section, we will establish all claims in the LDP 
Table.  
 
We will use C (or Ci) for finite sets of line conditions. 
Here "C" indicates "collinearity".  
 
We say that C uses x1,...,xn if and only if all variables 
present in C are among x1,...,xn. 
 
Throughout this section, fix J to be an integral domain of 
characteristic zero.  
 
LEMMA 1.1. There exists C over {0,1,2} × {0,1} using 
x1,...,x19 whose unique realization x1,...,x19 is an 
enumeration of {0,...,4}2\({0,1,2} × {0,1)).  
 



Proof: Consider the diagram 
 
x15    x16    x17   x18   x19 
x10    x11    x12   x13   x14 
x5     x6    x7    x8    x9 
(1,0) (1,1) (1,2) x3    x4 
(0,0) (1,0) (2,0) x1    x2 
 
Take C to consist of all line conditions satisfied by this 
diagram if this diagram is interpreted as a layout of 
{0,...,4}2 in the obvious way. Obviously, we have a 
realization x1,...,x19 of C where x1,...,x19 is the 
enumeration of {0,...,4}2\({0,1,2} × {0,1)) given by the 
diagram.  
 
Now suppose that we have a realization x1,...,x19 of C.  
 
Note that x5,x7 each lie on two determined lines, and so 
must have their correct values.  
 
Then x6 is on two determined lines, and so must have its 
correct value. Hence x8,x1 are each on two determined lines, 
and so they have their correct values. Hence x3 is on two 
determined lines, and so it is also has its correct value.  
 
Hence x9,x2 are on two determined lines, and so they have 
their correct values. Hence x4 is on two determined lines, 
and so it has its correct value. 
 
Thus we have taken care of the bottom three rows. Now note 
that each entry in the next higher row is on two determined 
lines, and so they have their correct values. Then the 
entries in the top row are also each on two determined 
lines, and so they must have their correct values. QED 
 
LEMMA 1.2. LDP(J,{0,...,4}2) ≤ LDP(J,{0,1,2} × {0,1}).  
 
Proof: Immediate from Lemma 1.1. The reduction is uniform 
in J. QED  
 
In light of Lemma 1.2, we will focus on finite sets of line 
conditions over {0,...,4}2.  
 
LEMMA 1.3. There exists C1 over {0,...,4}2 using x1,...,x7, 
whose realizations x1,...,x7 are exactly the x1,...,x7 such 
that for some z,w ∈ J,  
x1 = (z,1). 
x2 = (w,1). 



x3 = (2z,0).  
x4 = (2z,2).  
x5 = (2w,0). 
x6 = (2w,2). 
x7 = (z+w,1).  
 
Proof: Let C1 consist of the line conditions  
 
1. [(0,1),(1,1),x1] 
[(0,1),(1,1),x2] 
 
2. [(0,2),x1,x3] 
[(0,0),(1,0),x3] 
 
3. [(0,0),x1,x4] 
[(0,2),(1,2),x4] 
 
4. [(0,2),x2,x5] 
 [(0,0),(1,0),x5] 
 
5. [(0,0),x2,x6] 
[(0,2],(1,2),x6] 
 
6. [x3,x6,x7] 
[x5,x4,x7] 
[(0,1),(1,1),x7] 
 
Suppose x1,...,x7 obey the equations for some z,w ∈ J. Then 
x1,...,x7 is a realization of C1 by inspection. 
 
Conversely, Let x1,...,x7 be a realization of C1.  
 
Group 1 guarantees that x1,x2 lie on the line y = 1. So 
write x1 = (z,1), x2 = (w,1).  
 
Group 2 guarantees that x3 lies on the x axis and the line 
containing (0,2) and (z,1). Hence x3 = (2z,0).  
 
Group 3 guarantees that x4 lies on the line y = 2, and the 
line containing (0,0) and (z,1). Hence x4 = (2z,2). 
 
Group 4 guarantees that x5 lies on the x axis and the line 
containing (0,2) and (w,1). Hence x5 = (2w,0). 
 
Group 5 guarantees that x6 lies on the line y = 2 and the 
line containing (0,0) and (w,1). Hence x6 = (2w,2). 
 



Group 6 guarantees that x7 lies on the line containing 
(2z,0),(2w,2), the line containing (2w,0),(2z,2), and the 
line y = 1. If z ≠ w then x7 = (z+w,1). If z = w then x7 
lies on the line x = 2z and the line y = 1. Hence x7 = 
(2z,1) = (z+w,1). QED 
 
LEMMA 1.4. There exists C2 over {0,...,4}2 using x1,...,x22, 
such that  
i. If x1,...,x22 is a realization of C2, then the second 
coordinates of x1,x2,x22 are 1. 
ii. The realizations x1,...,x22 where the first coordinate 
of x2 is nonzero are exactly the x1,...,x22 such that for 
some z,w ∈ J with w ≠ 0,  
x1 = (z,1). 
x2 = (w,1). 
x3 = (2z,0).  
x4 = (2z,2).  
x5 = (2w,0). 
x6 = (2w,2). 
x7 = (2w,4). 
x8 = (w,2). 
x9 = (w,w). 
x10 = (2w,w) 
x11 = (2w,2w). 
x12 = (zw,w). 
x13 = (4w,4).  
x14 = (2,8). 
x15 = (4,8). 
x16 = (4w,8). 
x17 = (4w,2w). 
x18 = (2z,1). 
x19 = (2zw,w). 
x20 = (2zw,2w). 
x21 = (2zw,2). 
x22 = (zw,1). 
 
Proof: Let C2 consist of the 21 pairs of line conditions  
 
1. [(0,1),(1,1),x1] 
[(0,1),(1,1),x2] 
 
2. [(0,2),x1,x3] 
[(0,0),(1,0),x4] 
 
3. [(0,0),x1,x4] 
[(0,2),(1,2),x4] 
 
4. [(0,2),x2,x5] 



[(0,0),(1,0),x5] 
 
5. [(0,0),x2,x6] 
[(0,2),(1,2),x6] 
 
6. [x5,x6,x7] 
[(0,4),(1,4),x7] 
 
7. [(0,0),x7,x8] 
[(0,2),(1,2),x8] 
 
8. [(0,0),(1,1),x9] 
[x2,x8,x9] 
 
9. [x5,x6,x10] 
[(0,0),(2,1),x10] 
 
10. [(0,0),(1,1),x11] 
[x5,x6,x11] 
 
11. [x9,x10,x12] 
[(0,0),x1,x12] 
 
12. [(0,0),x2,x13] 
[(0,4),(1,4),x13] 
 
13. [(0,0),(1,4),x14] 
[(2,0),(2,1),x14] 
 
14. [(0,0),(2,4),x15] 
[(4,0),(4,1),x15] 
 
15. [(0,0),x8,x16] 
[x14,x15,x16] 
 
16. [(0,0),(2,1),x17] 
[x13,x16,x17] 
 
17. [x3,x4,x18] 
[(0,1),(1,1),x18] 
 
18. [(0,0),x18,x19] 
[x9,x10,x19] 
 
19. [(0,0),x1,x20] 
[x11,x17,x20] 
 
20. [x19,x20,x21] 



[(0,2),(1,2),x21] 
 
21. [(0,0),x21,x22)] 
[(0,1),(1,1),x22] 
 
Note that i) is immediate by groups 1, 21 of the line 
conditions above.  
 
Let x1,...,x22 and z,w ∈ J, w ≠ 0, where the 22 equations 
hold. Then by inspection, x1,...,x22 is a realization of C2.  
 
Now let x1,...,x22 be a realization of C2, where the first 
coordinate of x2 is nonzero. Set z to be the first 
coordinate of x1 and w the first coordinate of x2. Then w ≠ 
0. 
 
Group 1 of the line conditions guarantee that x1 and x2 lie 
on the line y = 1. Hence x1 = (z,1), x2 = (w,1).  
 
Group 2 guarantees that x3 lies on the line containing (0,2) 
and (z,1), and on the x axis. Hence x3 = (2z,0).   
 
Group 3 guarantees that x4 lies on the line containing (0,0) 
and (z,1), and the line y = 2. Hence x4 = (2z,2). 
 
Group 4 guarantees that x5 lies on the line containing (0,2) 
and (w,1), and the x axis. Hence x5 = (2w,0).   
 
Group 5 guarantees that x6 lies on the line containing (0,0) 
and (w,1), and the line y = 2. Hence x6 = (2w,2).  
 
Group 6 guarantees that x7 lies on the line x = 2w and the 
line y = 4. Hence x7 = (2w,4).  
 
Group 7 pair guarantees that x8 lies on the line containing 
(0,0) and (2w,4), and the line y = 2. Hence x8 = (w,2).  
 
Group 8 guarantees that x9 lies on the line containing (0,0) 
and (1,1), and the line x = w. Hence x9 = (w,w). 
 
Group 9 guarantees that x10 lies on the line x = 2w and the 
line containing (0,0) and (2,1). Hence x10 = (2w,w). 
 
Group 10 guarantees that x11 lies on the line containing 
(0,0) and (1,1), and the line x = 2w. Hence x11 = (2w,2w).  
 



Group 11 guarantees that x12 lies on a line containing (w,w) 
and (2w,w). and the line containing (0,0) and (z,1). Since 
w ≠ 0, x12 lies on the line y = w. Hence x12 = (zw,w). 
 
Group 12 guarantees that x13 lies on the line containing 
(0,0) and (w,1), and the line y = 4. Hence x13 = (4w,4).   
 
Group 13 guarantees that x14 lies on the line containing 
(0,0) and (1,4), and the line x = 2. Hence x14 = (2,8).  
 
Group 14 guarantees that x15 lies on the line containing 
(0,0) and (2,4), and the line x = 4. Hence x15 = (4,8). 
 
Group 15 guarantees that x16 lies on the line containing 
(0,0) and (w,2), and the line x = 4w. Hence x16 = (4w,8).  
 
Group 16 guarantees that x17 lies on the line containing 
(0,0) and (2,1), and the line x = 4w. Hence x17 = (4w,2w).  
 
Group 17 guarantees that x18 lies on the line x = 2z and the 
line y = 1. Hence x18 = (2z,1).  
 
Group 18 guarantees that x19 lies on the line containing 
(0,0) and (2z,1), and a line containing (w,w) and (2w,w). 
Since w ≠ 0, x19 lies on the line y = w. Hence x19 = (2zw,w).  
 
Group 19 guarantees that x20 lies on the line containing 
(0,0) and (z,1), and a line containing (2w,2w) and (4w,2w). 
Since w ≠ 0, x20 lies on the line y = 2w. Hence x20 = 
(2zw,2w).   
 
Group 20 guarantees that x21 lies on a line containing 
(2zw,w) and (2zw,2w), and the line y = 2. Since w ≠ 0, x20 
lies on the line x = 2zw. Hence x21 = (2zw,2).  
 
Group 21 guarantees that x22 lies on the line containing 
(0,0) and (2zw,2), and the line y = 1. Hence x22 = (zw,1).  
 
QED  
 
LEMMA 1.5. There exists C3 over {0,...,4}2 using x1,...,x22, 
such that  
i. For all z,w ∈ J, the x1,...,x46 given by the equations 
below is a realization of C3. 
ii. If x1,...,x46 is a realization of B3, then there exists 
z,w ∈ J such that x1 = (z,1), x2 = (w,1), and x22 = (zw,1).  
x1 = (z,1).    x23 = (z,1) 
x2 = (w,1).  x24 = (w+1,1) 



x3 = (2z,0).   x25 = (2z,0). 
x4 = (2z,2).  x26 = (2z,2)  
x5 = (2w,0).  x27 = (2(w+1)),0) 
x6 = (2w,2).  x28 = (2(w+1),2) 
x7 = (2w,4).  x29 = (2(w+1),4) 
x8 = (w,2).  x30 = (w+1,2) 
x9 = (w,w).  x31 = (w+1,w+1) 
x10 = (2w,w)  x32 = (2(w+1),w+1) 
x11 = (2w,2w).  x33 = (2(w+1),2(w+1)) 
x12 = (zw,w).  x34 = (z(w+1),w+1) 
x13 = (4w,4).   x35 = (4(w+1),4) 
x14 = (2,8).  x36 = (2,8) 
x15 = (4,8).  x37 = (4,8) 
x16 = (4w,8).  x38 = (4(w+1),8) 
x17 = (4w,2w).  x39 = (4(w+1),2(w+1)) 
x18 = (2z,1).  x40 = (2z,1) 
x19 = (2zw,w).  x41 = (2z(w+1),w+1) 
x20 = (2zw,2w). x42 = (2z(w+1),2(w+1)) 
x21 = (2zw,2).  x43 = (2z(w+1),2) 
x22 = (zw,1).  x44 = (z(w+1),1) 
x45 = (2zw,0). 
x46 = (2zw,2). 
 
Proof: Note that x1,...,x22 is the same as in Lemma 1.4, and 
x23,...,x44 is the same as x1,...,x22, except w is replaced by 
w+1. Let C3 consist of the line conditions in C2, the line 
conditions in C2 with all subscripts incremented by 22, and 
the following additional line conditions. 
 
1. [x1,x23,(0,0)] 
[x1,x23,(1,0)] 
[x1,x23,(0,1)] 
 
2. [(2,0),x6,x24] 
[(2,2),x5,x24] 
 
3. [(0,2),x22,x45] 
{(0,0),(1,0),x45] 
 
4. [(0,0),x22,x46] 
[(0,2),(1,2),x46] 
 
5. [x25,x46,x44] 
[x26,x45,x44] 
 
Suppose that x1,...,x46 obeys the above equations for some 
z,w ∈ J. Then x1,...,x46 is a realization of C3 by 
inspection. 



 
Now let x1,...,x46 be a realization of C3. By Lemma 1.4, 
x1,x2,x23,x24,x44 lie on the line y = 1. Write x1 = (z,1), x2 = 
(w,1). Write x22 = (α,1). We will show that α = zw. 
 
Group 1 guarantees that (0,0),(1,0),(0,1) each lie on some 
line containing x1,x23. If x1 ≠ x23 then (0,0),(1,0),(0,1) 
each lie on the line containing x1,x23, which is impossible. 
Hence x1 = x23 = (z,1). 
 
Group 2 guarantees that x24 lies on the line containing 
(2,0) and (2w,2), the line containing (2,2) and (2w,0). 
Furthermore, x24 lies on the line y = 1. If 2 ≠ 2w then x24 = 
(w+1,1). If 2 = 2w then x24 lies on the line x = 2. Hence x24 
= (2,1), and so x24 = (w+1,1). 
 
Group 3 guarantees that x45 lies on the line containing 
(0,2) and (α,1), and the x axis. Hence x45 = (2α,0). 
 
Group 4 guarantees that x46 lies on the line containing 
(0,0) and (α,1), and the line y = 2. Hence x46 = (2α,2). 
 
Group 5 guarantees that x44 lies on the line containing 
(2z,0) and (2α,2), and the line containing (2z,2) and 
(2α,0). Furthermore, x44 lies on the line y = 1. If 2z ≠ 2α 
then x44 = (z+α,1). If 2z = 2α then x44 lies on the line x = 
2z, and x44 = (2z,1) = (z+α,1).  
 
case 1. w ≠ 0. By Lemma 1.4, x22 = (zw,1). 
 
case 2. w = 0. Since x23 = (z,1), x24 = (w+1,1), we see that 
by Lemma 1.4, x44 = (zw+z,1) = (z+α,1). Hence α = zw, and so 
x22 = (zw,1).  
 
QED  
 
Note that Lemma 1.3 provides an interpretation of addition 
for z,w ∈ J, using x1,x2,x7, and Lemma 1.5 gives us an 
interpretation of multiplication for z,w ∈ J, using 
x1,x2,x22, all in terms of realizations.  
 
Specifically, in all realizations of C1, x7 = x1 + x2 in 
first coordinates. In all realizations of C3, x22 = x1 • x2 in 
first coordinates. Also, in all realizations of C1, x1,x2,x7 
lie on the line y = 1, and in all realizations of C3, 
x1,x2,x22 lie on the line y = 1.  
 



Fix a polynomial P(v1,...,vk) with integer coefficients. We 
are going to construct a set P# of equations associated 
with the equation P(v1,...,vk) = 0. 
 
First write P in the form  
 

Q1 + ... + Qm - (R1 + ... + Rt) 
 
where the Q's and R's are monomials with coefficient 1.  
 
Use the variables vk+1,...,vk+m+t for Q1,...,Qm,R1,...,Rt, 
respectively. We want to use the equations  
 

vk+1 = Q1 
... 

vk+m = Qm 
vk+m+1 = R1 

... 
vk+m+t = Rt 

 
which need to be broken down in the obvious way by 
introducing yet more variables, with multiplicative 
equations of the form a = b • c, for variables a,b,c.  
 
Finally, we want to use the equation  
 

vk+1 + ... + vk+m = vk+m+1 + ... + vk+m+t 
 
which also needs to be broken down in the obvious way by 
introducing even more variables, with additive equations of 
the form a = b + c, for variables a,b,c.  
 
This results in the list P# of equations of the forms  
 

vi = vj + vk 
vi = vj • vk 

vi = vj 
vi = 1 

 
The use of vi = vj and vi = 1 will safely take care of 
various degenerate cases. We arrange for the variables in 
P# to be exactly v1,...,vk', 1 ≤ k < k'.  
 
We generalize this construction as follows. Let 
P1(v1,...,vk),...,Pn(v1,...,vk) be polynomials with integer 
coefficients. For each Pi(v1,...,vk), we create Pi#. We make 
sure that the variables introduced for the various Pi# have 
no overlap. We take (P1,...,Pn)# to be the concatenated list 



(P1#,...,Pn#). We arrange for the variables used in 
(P1,...,Pn)# to be exactly v1,...,vk', 1 ≤ k < k'. Of course, 
k' depends on n,k,P1,...,Pn. 
 
LEMMA 1.6. Let P1(v1,...,vk),...,Pn(v1,...,vk) be polynomials 
with integer coefficients.  
i. If P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vn) = 0, then there 
is a unique solution of (P1,...,Pn)# extending v1,...,vk.  
ii. In any solution of (P1,...,Pk)#, we have P1(v1,...,vk) = 
0 ∧ ... ∧ Pn(v1,...,vk) = 0.   
 
Proof: Standard. QED 
 
LEMMA 1.7. Let P1(v1,...,vk),...,Pn(v1,...,vk) be polynomials 
with integer coefficients. There exists a finite set C of 
line conditions over {0,...,4}2 using some x1,...,xm, m ≥ k, 
such that the following holds.  
i. If P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0, then there 
is a realization x1,...,xm of C such that the first 
coordinates of x1,...,xk are v1,...,vk.  
ii. In every realization x1,...,xm of C, the first 
coordinates of x1,...,xk are a common zero of P1,...,Pn, and 
the second coordinates are 1.  
Furthermore, there is an algorithm for constructing C from 
P1,...,Pn which does not depend on J. 
 
Proof: Let P1(v1,...,vk),...,Pn(v1,...,vk) be as given. We 
now work with (P1,...,Pn)#, which uses x1,...,xk'.  
 
For each 1 ≤ i ≤ k', we use [(0,1),(1,1),xi], to guarantee 
that each xi, 1 ≤ i ≤ k', has second coordinate 1 in all 
realizations. 
 
For each equation vi = vj in (P1,...,Pn)#, add 
[(0,1),(1,1),xi], [(0,1),(1,1),xj], [(0,0),xi,xj]. In any 
realization, the second coordinates of xi,xj are 1, and 
hence also xi = xj.  
 
For each equation vi = 1 in (P1,...,Pn)#, add 
[(1,0),(1,1),xi]. In any realization, the first coordinate 
of xi is 1.  
 
Process the equations vi = vj + vk, in (P1,...,Pn)#, one by 
one, as follows. Construct an associated copy of C1, 
obtained by changing x1 to xj, x2 to xk, and x7 to xi. Change 
the remaining variables in C1 to distinct x's which have not 
been used thus far. By Lemma 1.3, this will guarantee that 
in all realizations, xi = xj + xk in first coordinates.    



 
Now process the equations vi = vj • vk, in (P1,...,Pn)#, one 
by one, as follows. Construct an associated copy of C3, 
obtained by changing x1 to xj and x2 to xk, and x22 to vi. 
Change the remaining variables in C3 to distinct x's which 
have not been used thus far. By Lemma 1.5, this will 
guarantee that in all realizations, xi = xj • xk in first 
coordinates.  
 
Let P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0. Let 
v1,...,vk' be the unique solution to (P1,...,Pn)#. The 
construction of C involves the constructions in Lemmas 1.3, 
1.5, and by looking at the equations in Lemmas 1.3, 1.5, we 
obtain a realization x1,..,xm of C for i) of Lemma 1.7. 
  
In any realization x1,...,xm of C, the first coordinates of 
x1,...,xn' are a solution to (P1,...,Pn)#, and hence the 
first coordinates of x1,...,xk are a common zero of 
P1,...,Pn. QED  
 
LEMMA 1.8. H10(J) ≤ LDP(J,{0,...,4}2). Every J Diophantine 
set is ≤ some LDP(J;n). 
 
Proof: Let P1(v1,...,vk),...,Pn(v1,...,vk) be polynomials 
with integer coefficients. Let B be algorithmically given 
by Lemma 1.7, using x1,...,xm.  
 
Let P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0, v1,...,vk ∈ 
J. By Lemma 1.7 i), there is a realization x1,...,xm of C in 
J.  
 
Let x1,...,xm be a realization of C in J. By Lemma 1.7 ii), 
the first coordinates of x1,...,xk ∈ J are a common zero of 
P1,...,Pn. This establishes the first claim. 
 
Now let S be the J Diophantine set  
 

{y ∈ Zk: (∃z ∈ Jr)(P1(y,z) = 0 ∧ ... ∧ Pn(y,z) = 0)} 
 
Let C be the finite set of line conditions over {0,...,4}2 
using x1,...,xm, m ≥ k+r, given by Lemma 1.7 from 
P1(v1,...,vk+r),...,Pn(v1,...,vk+r). Let t be the number of 
line conditions in C. We claim S ≤ LDP(J;t). To see this, 
let x ∈ Zk be given.  
 
We claim y ∈ S if and only if C<y> has a realization 
xk+1,...,xm in J, where C<y> is the result of replacing the 



variables x1,...,xk in C by (y1,1),...,(yk,1), where y = 
(y1,...,yk).  
 
To see this, suppose y ∈ S. Let P1(y,z) = 0 ∧ ... ∧ Pn(y,z) 
= 0. By Lemma 1.7 i), there is a realization x1,...,xm of C 
in J such that the first coordinates of x1,...,xk+r are 
y1,...,yk,z1,...,zr. By Lemma 1.7 ii), the second coordinates 
of x1,...,xk+r are 1. Clearly xk+1,...,xm is a realization of 
C<y>.   
 
Now suppose xk+1,...,xm is a realization of C<y>, y ∈ Zk. 
Then x1,...,xm is a realization of C, where x1,...,xk = 
(y1,1),...,(yk,1). Hence by Lemma 1.7 ii), y is a common 
zero of P1,...,Pn. Hence y ∈ S. QED 
 
LEMMA 1.9. For all x,y,z,u,v,w ∈ J, (x,y),(z,w),(u,v) lie 
on a common line if and only if  
 

(w-y)(u-x)-(v-y)(z-x) = 0 ∧ (w-y)(u-z)-(v-w)(z-x) = 0  
∧ (v-y)(u-z)-(v-w)(u-x) = 0. 

 
Proof: We first prove the equivalence under the assumption 
that (x,y) = (z,w). In this case, (x,y),(z,w),(u,v) lie on 
a line, and the three equations obviously hold. By 
symmetry, we can use (x,y) = (u,v), or we can use (z,w) = 
(u,v). 
 
We now assume that (x,y),(z,w),(u,v) are distinct pairs. 
Let us prove the equivalence under the assumption x = z. 
Then y = ≠ w. Suppose (x,y),(x,w),(u,v) lie on a common 
line. The common line must be the vertical through (x,y). 
Hence u = x, and the three equations hold. Conversely, 
suppose the three equations hold. We have  
 

(w-y)(u-x) = 0 ∧ (w-y)(u-z) = 0. 
u = x ∧ u = z. 

 
Hence (x,y)(z,w),(u,v) lie on a common line.  
 
By symmetry, we obtain the equivalence under any of the 
assumptions  
 

x = z, x = u, z = u, y = w, y = v, w = v. 
 
So now we assume that none of the above six equations hold. 
Suppose (x,y),(z,w),(u,v) lie on a common line. We can 
apply Theorem 0.4 to (x,y),(z,w). We have (w-y)(u-x) = (z-
x)(v-y). We can also apply Theorem 0.4 to (x,y),(u,v), and 



also to (z,w),(u,v). These yield the three equations in the 
statement of the Lemma.  
 
Now suppose the three equations hold. By Theorem 0.4, the 
first equation tells us that (u,v) lies on the unique line 
containing (x,y),(z,w). Hence (x,y),(z,w),(u,v) lie on a 
common line. QED 
 
LEMMA 1.10. LDP(J,Z2) ≤ H10(J).  
 
Proof: By Lemma 1.9, realizability in J is equivalent to 
the existence of solutions in J of a finite set of 
polynomial equations with integer coefficients. This 
reduces to H10(J). QED 
 
LEMMA 1.11. Each LDP(J;n) is ≤≥ some J Diophantine set. 
 
Proof: Below, we will argue a bit informally, using 
"corresponds to" to indicate ≤≥.  
 
Fix n ≥ 0. LDP(J;n) is the family of lists C of at most n 
line conditions in variables x1,x2,... and constants from 
Z2, that have a realization in J. It is clear by changing 
variables that this is corresponds to the family of lists C 
of at most n line conditions in variables x1,...,x3n and 
constants from Z2, that have a realization in J.  
 
We can view each C as a list C' of at most n line 
conditions in x1,...,x3n and some extra variables x3n+p, 0 ≤ 
p ≤ 3n, with no constants from Z2, paired with an assignment 
of elements of Z2 to the extra variables x3n+1,...,x3n+p.  
 
These C' naturally split into finitely many pieces 
according to its line conditions, suppressing the 
assignment. Each piece corresponds to a J Diophantine set 
whose dimension is twice the number of extra variables.  
 
Thus we arrive at a finite list of J Diophantine sets 
S1,...,Sp, of various dimensions. We can assume that the 
dimensions have been raised to a common dimension d, so 
that S1,...,Sp ⊆ Zd.  
 
Now let S = {(i,x): 1 ≤ i ≤ p ∧ x ∈ Si}. Now use the fact 
that a finite disjunction of finite conjunctions of 
polynomial equations can be written as a finite conjunction 
of finite disjunctions of polynomial equations, and 
therefore as a finite conjunction of polynomial equations, 
to conclude that S is J Diophantine, and LDP(J;n) ≤≥ S. QED 



 
LEMMA 1.12. LDP(Z,Z2), LDP(Z,{0,1,2} × {0,1}) are complete 
r.e. For sufficiently large n, LDP(Z;n) is complete r.e. 
 
Proof: By Lemma 1.10, LDP(Z,Z2) ≤ H10(Z), and so LDP(Z,Z2) 
is r.e. By Lemmas 1.2, 1.8, H10(Z) ≤ LDP(Z,{0,1,2} × {0,1}). 
Since H10(Z) is complete r.e., this establishes the first 
claim.  
 
By Lemma 1.11, each LDP(Z;n) ≤≥ some Z Diophantine set. 
Hence each LDP(Z;n) is r.e. By Lemma 1.8, every Z 
Diophantine set is ≤ some LDP(Z;n). Since there is a Z 
Diophantine set that is complete r.e., we see that some 
LDP(Z;n) is complete r.e. Hence for sufficiently large n, 
LDP(Z;n) is complete r.e. QED 
 
This establishes the entire LDP Table. 
 
2. Realizing Parallels. 
 

PDP TABLE 
 

Unsolvability for PDP with Z 
 
PDP(Z,{(0,0),(1,0),(0,1)}), PDP(Z,Z2) are complete r.e. For 
sufficiently large n, PDP(Z;n) is complete r.e.  
 

Reductions for PDP with Ordered Ring J 
 
PDP(J,Z2) ≤ PDP(J,{0,1,2} × {0,1}) ≤≥ H10(J\{0}). 
Every J\{0} Diophantine set is ≤ some PDP(J;n). 
Every PDP(J;n) is ≤≥ some J\{0} Diophantine set. 
Reductions and n are constructed uniformly in J. 
 
In this section, we will establish all claims in the PDP 
Table. 
 
We will use P (or Pi) for finite sets of parallel 
conditions.  
 
Throughout this section, fix J to be an integral domain of 
characteristic zero.  
 
LEMMA 2.1. Let x,y,z ∈ J2. The following are equivalent.  
i. [x,y,z]. 
ii. (∃u,v,w ∈ J)(xu||vw ∧ yu||vw ∧ zu||vw). 
 



Proof: Suppose [x,y,z]. By Theorem 0.5, lines are infinite. 
Hence let u,u' ∈ J2 be distinct points on a line containing 
x,y,z, where x,y,z ∉ {u,u'} + {(0,0),(1,0),(0,1)}. If u,u' 
have the same first coordinate, set v = u + (1,0), w = u' + 
(1,0). Otherwise, set v = u + (0,1), w = u' + (0,1). QED 
 
Now let u,v,w witness ii). We use Theorem 0.5. Then x,y,z ≠ 
u, v ≠ w. The line containing v,w is disjoint from the 
lines containing x,u, containing y,u, containing z,u. Hence 
these latter three lines must be the same line. Therefore 
x,y,z all lie on a common line. QED 
 
LEMMA 2.2. H10(J\{0}) ≤ PDP(J,{0,1,2} × {0,1}). Every J\{0} 
Diophantine set is ≤ some PDP(J;n). 
 
Proof: Let α be the algorithm given by Lemma 1.7, with 
constants converted to lie in {0,1,2} × {0,1}, by Lemma 1.1. 
Let P1(v1,...,vk),...,Pn(v1,...,vk) be polynomials with 
integer coefficients. Then α(P1,...,Pn) is a finite set of 
line conditions over {0,1,2} × {0,1} using some x1,...,xm, m 
≥ k, such that the following holds. 
 
i. In every realization x1,...,xm of α(P1,...,Pn), the second 
coordinates of x1,...,xn are 1. 
ii. If P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0, then 
there is a realization x1,...,xm of α(P1,...,Pn) such that 
the first coordinates of x1,...,xk are v1,...,vk.  
iii. In every realization x1,...,xk of α(P1,...,Pn), the 
first coordinates of x1,...,xk are a common zero of 
P1,...,Pn.  
 
Let β(P) consist of α(P) and the parallel conditions 
 
(0,1)xi||zizi', 1 ≤ i ≤ n 
ux||vw, uy||vw, uz||vw 
 
where [x,y,z] is a line condition in α(P1,...,Pn), u,v,w are 
new distinct variables associated with the line condition 
[x,y,z], and z1,...,zk,z1',...,zk' are new distinct 
variables. Thus we have introduced k+2m new variables, 
where there are m line conditions in α(P1,...,Pn). Clearly 
the following holds.  
 
iii. Every realization of β(P1,...,Pn) is a realization of 
α(P1,...,Pn). 
iv. For every P1(v1,...,vk) = 0 ∧ ... ∧ Pn(v1,...,vk) = 0, 
v1,...,vk ∈ J\{0}, there exists a realization of β(P1,...,Pn) 



where x1 = (v1,1),...,xk = (vk,1), whose coordinates lie in 
J\{0}.  
 
It is now clear that P1,...,Pn has a common zero in J\{0} if 
and only if β(P1,...,Pn) has a realization in J. 
 
Now let S be a J\{0} Diophantine set, and write  
 
S = {y ∈ Zn: (∃z ∈ (J\{0})m)(P(y,z) = 0)}.  
 
Now argue as in the proof of Lemma 1.8. QED 
 
LEMMA 2.3. For all x,y,z,u,v,w,a,b ∈ J, 
(x,y)(z,u)||(v,w)(a,b) if and only if (y-u)(v-a) = (w-b)(x-
z) ∧ x ≠ y ∧ z ≠ u ∧ v ≠ w ∧ a ≠ b ∧ (x = z ↔ v = a).  
 
Proof: Suppose (x,y)(z,u)||(v,w)(a,b). Then x ≠ y ∧ z ≠ u ∧ 
v ≠ w ∧ a = b. If x = z then v = a. If v = a then x = z. 
Conversely, suppose (y-u)(v-a) = (w-b)(x-z) ∧ x ≠ y ∧ z ≠ u 
∧ v ≠ w ∧ a ≠ b ∧ (x = z ↔ v = a). First suppose x-z and v-
a are nonzero. Then the slopes are defined and equal, and 
so (x,y)(z,u)||(v,w)(a,b). Now suppose x = z. Then v = a, 
and so (x,y)(z,u)||(v,w)(a,b). Finally, suppose v = a. Then 
x = z, and hence (x,y)(z,u)||(v,w)(a,b). REWORK TO REPLACE 
SLOPES BY CROSS PRODUCTS, MAKING SURE WE STAY IN INTEGRAL 
DOMAINS OF CHARACTERISTIC ZERO. QED 
 
LEMMA 2.4. PDP(J,Z2) ≤ H10(J\{0}).  
 
Proof: It suffices to write the existentialization of a 
conjunction of formulas  
 
(y-u)(v-a) = (w-b)(x-z) ∧ x ≠ y ∧ z ≠ u ∧ v ≠ w ∧ a ≠ b ∧ 
(x = z ↔ v = a) 
 
as an existentialized equation, where the quantifiers range 
over J\{0}. First rewrite this conjunction as a disjunction 
of formulas of the form 
 
P1(v1,...,vk) = 0 ∧ ... ∧ Pr(v1,...,vk) = 0 ∧ y1 ≠ z1 ∧ ... ∧ 
yp ≠ zp 
 
where the P's are polynomials with integer coefficients, 
and the y's,z's are variables among v1,...,vk.   
 
This is equivalent to a disjunction of formulas of the form  
 



(∃b1,...,bp ∈ J\{0})(P1(v1,...,vk) = 0 ∧ ... ∧ Pr(v1,...,vk) = 
0 ∧ z1-y1-b1 = 0 ∧ ... ∧ zp-yp-bp = 0) 
 
which can be rewritten as a single formula of the above 
form. 
 
There are still some outermost existential quantifiers 
ranging over J. Thus we have a sentence of the form  
 
(∃v1,...,vn ∈ J)(∃b1,...,bp ∈ J+)(Q1(v1,...,vk,w1,...,wm) = 0 ∧ 
... ∧ Qs(v1,...,vk,w1,...,vm) = 0) 
 
which can be put into the form  
 
(∃v1,...,v2n,b1,...,bp ∈ J\{0})(Q1(v1+v2,...,v2k-1+v2k,b1,...,bp) 
= 0 ∧ ... ∧ Qn(v1+v2,...,v2k-1+v2k,b1,...,bp) = 0).  QED 
 
LEMMA 2.5. Every PDP(J;n) is ≤≥ some J\{0} Diophantine set. 
 
Proof: See the proof of Lemma 1.11. QED 
 
LEMMA 2.6. There is a finite set of parallel conditions 
over {(0,0),(1.0),(0,1)} using x1,...,x6, whose unique 
realization x1,...,x6 in Z is an enumeration of 
{0,1,2}2\{(0,0),(1,0),(0,1)}. 
 
Proof: We use the diagram  
 
x2     x5     x6 
(0,1)  x1     x4 
(0,0)  (1,0)  x3 
 
Let P be the set of parallel conditions that hold in the 
obvious interpretation of this diagram.  
 
Suppose we have a realization of P in Z. Since 
(0,0)(0,1)||(1,0)x1, (0,1)x1||(0,0)(1,0), we see that x1 = 
(1,1). Now (0,1)x1||(1,0)x3, (0,1)x1||(0,0)x3. Hence x3 lies 
on the x axis. Similarly, x2 lies on the y axis.  
 
Now x2x1||x5x6, x2x3||x5x6, x1x3||x5x6. Hence x2,x1,x3 are 
collinear. Hence x2 = (0,2), x3 = (2,0). Since x1x4||(1,0)x3, 
(1,0)x1||x3x4, we have x4 = (2,0). Similarly, x5 = (1,2), x6 
= (2,2). QED 
 
LEMMA 2.7. PDP(Z,Z2), PDP(Z,{(0,0),(1,0),(0,1)) are complete 
r.e. For sufficiently large n, PDP(Z;n) is complete r.e. 
 



Proof: See the proof of Lemma 1.12. Use Lemma 2.6 to reduce 
the constants. QED  
 
This establishes the entire PDP Table. 
 
3. Realizing Equidistance. 
 

EDP TABLE 
 

Unsolvability for EDP with Z 
 
EDP(Z,Z2), EDP(Z,{(0,0),(1,0)}) are complete r.e. For 
sufficiently large n, EDP(Z;n) is complete r.e. 
 

Reductions for EDP with Ordered Ring J 
 
EDP(J,Z2) ≤ EDP(J,{(0,0),(1,0)}) ≤≥ H10(J\{0}). 
Every J\{0} Diophantine set is ≤ some EDP(J;n). 
Every EDP(J;n) is ≤≥ some J\{0} Diophantine set. 
Reductions and n are constructed uniformly in J.  
 
In this section, we will establish all claims in the EDP 
Table. 
 
We will use E (or Ei) for finite sets of equidistance 
conditions.  
 
Throughout this section, fix J to be an ordered ring.  
 
LEMMA 3.1. There exists a set E0 of equidistance conditions 
over {(0,0),(1,0)} using x1,...,x8 with exactly two 
realizations x1,...,x8. One is x1 = (0,1), x2 = (1,1), x3 = 
(2,1), x4 = (2,0). The other is x1 = (0,-1), x2 = (1,-1), x3 
= (2,-1), x4 = (2,0). 
 
Proof: We first use  
 
(0,0)x1 E x1x2 E x2,(1,0) E (1,0)(0,0). 
 
This establishes the two possibilities for x1,x2. Next we 
use  
 
(1,0)x2 E x2x3 E x3x4 E x4(1,0). 
 
This establishes the two possibilities for x1,x2,x3,x4. QED 
 
LEMMA 3.2. EDP(J,{0,1,2} × {0,1}) ≤ EDP(J,{(0,0),(1,0)}).  
 



Proof: Let E be a set of equidistance conditions over 
{0,1,2} × {0,1} using x1,...,xn. Let E' be the result of 
adding 4 to all subscripts of variables in E, and replacing 
constants (0,1),(1,1),(2,1),(2,0) by x1,x2,x3,x4, 
respectively. We claim that E has a realization x1,...,xn in 
J if and only if E' ∪ DE has a realization x1,...,xn+4 in J.  
 
Let x1,...,xn be a realization of E in J. Then 
(0,1),(1,1),(2,1),(2,0),x5,...,xn+4 is a realization of E' ∪ 
E0 in J.  
 
Let x1,...,xn+4 be a realization of E' ∪ E0 in J. If x1,...,x4 
are (0,1),(1,1),(2,1),(2,0), respectively, then x5,...,xn+4 
is a realization of E in J. If x1,...,x4 are (0,-1),(1,-
1),(2,-1),(2,0), respectively, then x5,...,xn+4 becomes a 
realization of E in J after minus signs are put in front of 
the second coordinates. QED 
 
LEMMA 3.3. Let x,y,z ∈ J2. The following are equivalent. 
i. [x,y,z]. 
ii. (∃u,v ∈ J)(xu E xv ∧ yu E yv ∧ zu E zv ∧ uv E uv). 
 
Proof: Suppose [x,y,z].  
 
case 1. x = y = z. Set u = x+(1,0), v = x+(-1,0).  
 
case 2. Otherwise. By symmetry, we can assume x ≠ y. If x,y 
have the same first coordinate, then set u = x+(1,0), v = 
x+(-1,0). If x,y have the same second coordinate, then set 
u = x+(0,1), v = x+(0,-1). Now assume otherwise. Let x = 
(a,b), y = (c,d). The line L perpendicular to the line 
containing x,y, and passing through x takes the form (b-
d)(y*-b) = (a-c)(x*-a), x*,y* ∈ ℜ. x* = b-d+a, y* = a+b-c, 
and x* = d-b+a, y* = b+c-a. Set u = (b-d+a,a+b-c), v = (d-
b+a,b+c-a).  
 
Now let u,v witness ii). Then u ≠ v. The locus of points 
equidistant to u and v is a line. REWORK TO CONFORM TO 
ORDERED RINGS. QED  
 
LEMMA 3.4. H10(J\{0}) ≤ EDP(J,{(0,0),(1,0)}). Every J\{0} 
Diophantine set is ≤ some EDP(J;n). 
 
Proof: See the proof of Lemma 3.2. QED 
 
LEMMA 3.5. EDP(J,Z2) ≤ H10(J\{0}). Every EDP(J;n) is ≤≥ some 
J\{0} Diophantine set.  
 



Proof: See the proof of Lemma 3.4. QED 
 
ADD SOME ELABORATION OF PROOFS FOR LEMMAS 3.4, 3.5. 
 
This establishes the entire EDP Table. 
 
4. Realizing Betweenness. 
 

BDP TABLE 
 

Unsolvability for BDP with Z 
 
BDP(Z,Z2), BDP(Z,{(0,0),(1,0),(0,1)}) are complete r.e. For 
sufficiently large n, BDP(Z;n) is complete r.e.  
 

Reductions for BDP with Ordered Ring J 
 
BDP(J,Z2) ≤≥ BDP(J,{0,1,2} × {0,1}) ≤≥ H10(J+). 
Every J+ Diophantine set is ≤ some BDP(J;n). 
Every BDP(J;n) is ≤≥ some J+ Diophantine set.  
Reductions and n are constructed uniformly in J. 
 
In this section, we will establish all claims in the BDP 
Table. 
 
We will use B (or Bi) for finite sets of b-conditions.  
 
Throughout this section, fix J to be an ordered ring. 
 
LEMMA 4.1. Let x,y,z ∈ J2. The following are equivalent.  
i. [x,y,z]. 
ii. (∃u,v ∈ J)(<x,u,v> ∧ <y,u,v> ∧ <z,u,v> ∧ the 
coordinates of u,v lie in the ring generated by the 
coordinates of x,y,z). 
 
Proof: Suppose [x,y,z].  
 
case 1. x = y = z. Write x = (a,b). Set u = (a,b+1), v = 
(a,b+2).  
 
case 2. Otherwise. By symmetry, we can assume x ≠ y. Write 
x = (a,b), y = (c,d). If a = c then set u = (a,max(b,d)+1), 
v = (a,max(b,d)+2). If b = d then set u = (max(a,c)+1,b), v 
= (max(a,c)+2,d). Suppose otherwise. The line containing 
x,y takes the form  
 

(y*-b)(a-c) = (x*-a)(b-d) 
 



where x*,y* ∈ ℜ. Let n < m be sufficiently large integers. 
Then set u = (a+n(a-c),b+n(b-d)), v = (a+m(a-c),b+m(b-d)).  
 
Now let u,v witness ii). Then u ≠ v and x,y,z all lie on 
the line containing u,v. Hence [x,y,z]. QED  
 
LEMMA 4.2. H10(J+) ≤ BDP(J,{0,1,2} × {0,1}). Every J+ 
Diophantine set is ≤ some BDP(J;n). 
 
Proof: Let α be the algorithm given by Lemma 1.7, with 
constants converted to lie in {0,1,2} × {0,1}. Let 
P(v1,...,vn) be a polynomial with integer coefficients. Then 
α(P) is a finite set of line conditions over {0,1,2} × {1,1} 
using some x1,...,xm, m ≥ n, such that the following holds. 
 
i. If P(v1,...,vn) = 0, then there is a realization x1,...,xm 
of α(P) such that the first coordinates of x1,...,xn are 
v1,...,vn, and all coordinates of the x1,...,xm lie in the 
ring generated by v1,...,vn.  
ii. In every realization x1,...,xm of α(P), the first 
coordinates of x1,...,xn are a zero of P, and the second 
coordinates are 1.  
 
Let β(P) be the set of all b-conditions   
 
<(-1,1),(0,1),xi>, 1 ≤ i ≤ n 
<x,u,v>, <y,u,v>, <z,u,v> 
 
where [x,y,z] is a line condition in α(P), and u,v are new 
distinct variables associated with the line condition 
[x,y,z].  
 
Unfortunately, we cannot use (-1,1) here since (-1,1) ∉ 
{0,1,2} × {0,1}. Consider the diagram 
 
w4  (0,1)  (1,1)  (2,1) 
    (0,0)  (1,0)  (2,0) 
     w1     w3     w2 
 
and use all b-conditions true in the diagram. Then in all 
realizations, w1 = (0,-1), w2 = (2,-1), w3 = (1,-1), w4 = (-
1,0). This means that we have access to (-1,1) by 
introducing the new variables w1,w2,w3,w4. Clearly the 
following holds.  
 
iii. Every realization of β(P) is a realization of α(P), 
where the first coordinates of x1,...,xn are positive.  



iv. For every P(v1,...,vn) = 0, v1,...,vn ∈ J+, there exists 
a realization of β(P) where x1 = (v1,1),...,xn = (vn,1), 
whose coordinates lie in J+.  
 
It is now clear that P has a zero in J+ if and only if β(P) 
has a realization in J.  
 
Now let S be a J+ Diophantine set, and write  
 
S = {y ∈ Zn: (∃z ∈ J+m)(P(y,z) = 0)}.  
 
TO BE COMPLETED. QED 
 
LEMMA 4.3. For all x,y,z,u,v,w ∈ J, <(x,y),(z,w),(u,v)> if 
and only if P(x,y,z,u,v,w) = 0 ∧ (x < z < u ∨ z > z > u ∨ y 
< w < v ∨ y > w > v), where P is from Lemma 1.9. 
 
Proof: Immediate. QED 
 
LEMMA 4.4. BDP(J,Z2) ≤ H10(J+). Every BDP(J;n) is ≤≥ some J+ 
Diophantine set. 
 
Proof: It suffices to write the existentialization of a 
conjunction of formulas   
 
P(x,y,z,u,v,w) = 0 ∧ (x < z < u ∨ x > z > u ∨ y < w < v ∨ y 
> w > v) 
 
as an existentialized equation, where the quantifiers range 
over J+. First rewrite this conjunction as a disjunction of 
formulas of the form  
 
P1(v1,...,vn) = 0 ∧ ... ∧ Pr(v1,...,vn) = 0 ∧ y1 < z1 ∧ ... ∧ 
yp < zp) 
 
where the P's are polynomials with integer coefficients, 
and the y's,z's are variables among v1,...,vn.   
 
This is equivalent to a disjunction of formulas of the form  
 
(∃b1,...,bp ∈ J+)(P1(v1,...,vn) = 0 ∧ ... ∧ Pr(v1,...,vn) = 0 
∧ z1-y1-b1 = 0 ∧ ... ∧ zp-yp-bp = 0) 
 
which can be rewritten as  
 
(∃b1,...,bp ∈ J+)(Q(v1,...,vn,b1,...,bp) = 0). 
 



There are still some outermost existential quantifiers 
ranging over J. Thus we have a sentence of the form  
 
(∃v1,...,vn ∈ J)(∃b1,...,bp ∈ J+)(Q(v1,...,vn,w1,...,wm) = 0) 
 
which can be put into the form  
 
(∃v1,...,v2n,b1,...,bp ∈ J+)(Q(v1+v2,...,v2n-1+v2n,b1,...,bs) = 
0).   
 
For the second claim, use the above construction, and argue 
as in the proof of Lemma 1.12. QED 
 
We will use the notation (+,+),(+,-),(-,+),(-,-) for the 
four open quadrants in J2. We will use obvious variants of 
this notation for other convenient subsets of J2. E.g., (-
,0) = {x ∈ J2: x < 0 ∧ y = 0}. 
 
LEMMA 4.5. There exists a set C0 of b-conditions over 
{(0,0),(1,0),(0,1)} using x1,...,x8 with a realization in Z, 
where every realization in Z has x1 = (1,1), x6 = (2,0), x8 
= (2,1). 
 
Proof: Consider the diagram 
 
                 1)               x2 
                            (0,1) x1     x8 
                       x3   (0,0) (1,0)  x6 
                            x4    x5 
                            x7 

 
where adjacent entries are adjacent in Z2. E.g., x2 = (1,2), 
x7 = (0,-2). The order of the variables x2,...,x7 is of no 
importance.  
 
Let C0 be the set of all b-conditions satisfied by diagram 
1).  
 
It is obvious by the definition of C0 that C0 has a 
realization in Z2. Now let a realization of C0 in Z2 be 
given. We use diagram 1), without prejudging x1,...,x8, 
except for the b-conditions in C0.  
 
It is clear that we have  
 
x4 ∈ (0,-), by <(0,1),(0,0),x4> 
x7 ∈ (0,-) by <(0,0),x4,x7> 
x3 ∈ (-,0) by <x3,(0,0),(1,0)> 



x6 ∈ (+,0) by <(0,0),(1,0),x6> 
x2 ∈ (+,+) by <x3,(0,1),x2> 
x1 ∈ (+,+) by <(1,0),x1,x2> 
x5 ∈ (+,-) by <x5,(1,0),x1> and <x7,x5,x6> 
 
We now use that the realization is in Z several times. We 
have x5 ∈ (≥1,-). By <x5,(1,0),x1>, x1 ∈ (+,+), the first 
coordinate of x1 must lie in (0,1]. Hence the first 
coordinates of x1,x5 are 1 (using Z2). Hence the first 
coordinate of x2 is also 1. I.e., x1,x2,x5 lie on the line x 
= 1. 
 
From the fact that x3 lies on the negative x axis, 
<x3,(0,1),x2>, and x2 lies on the line x = 1, we see that x3 
= (-1,0) and x2 = (2,0), using Z2. By <(1,0),x1,x2>, we have 
x1 = (1,1), again using Z2.  
 
Since x6 is on the axis and the line through (2,0),(1,1), 
clearly x6 = (2,0).  Since x8 lies on the line y = 1 to the 
right of (1,1), its first coordinate is ≥ 2. If the first 
coordinate of x8 is greater than 2 then this is incompatible 
with <x4,(1,0),x8>. Hence x8 = (2,1). QED 
 
LEMMA 4.6. BDP(Z,Z2) ≤ BDP(Z,{(0,0),(1,0),(0,1)}).  
 
Proof: From Lemma 4.4. QED 
 
This establishes the entire BDP Table. 
 
5. Further Results.  
 
TO BE COMPLETED. 
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