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Logic is everywhere!



Logic as the science of 
reasoning

We do have a relatively deep 
scientific understanding of at 

least some key aspects of 
mathematical reasoning



THE FIVE LOGICAL CONNECTIVES

these support general reasoning 
traced back to the great ancient philosopher Aristotle

not
and
or

if then
if and only if

¬
∧
∨
⟶
⟷



∴ r

p ⟶ r

• Fred lives in Chicago, or    
Fred lives in New York

• If Fred lives in Chicago then 
Fred lives in a big city.

• If Fred lives in New York then 
Fred lives in a big city.

• Therefore,                         
Fred lives in a big city.

p ∨ q

q ⟶ r



Valid inference
In this very limited context, we can mathematically 

define what we mean by a valid inference, and we can 
determine whether such an inference is valid by the 

method of 

Truth tables



The two quantifiers
In addition to the sentential connectives, we must work 

with the two quantifiers

for all
there exists

∀
∃

Aristotelean Logic makes very limited use of ∀.  It took 
another 2200 years to incorporate the five logical 

connectives and both quantifiers ∀,∃.



Predicate Calculus

There is a grammar for this, resulting in a formal 
language called Predicate Calculus. Rather than 
present this grammar, I will just present a group of 
familiar examples. 

— Gottlob Frege
1879



Examples
1. Everybody loves 

everybody.

2. Somebody loves 
somebody.

3. Everybody loves 
somebody.

4. Somebody loves 
everybody.

5. Everybody is loved 
by everybody.

6. Somebody is loved 
by somebody.

7. Everybody is loved 
by somebody.

8. Somebody is loved 
by everybody.



Examples
1. Everybody loves everybody.

2. Somebody loves somebody.

3. Everybody loves somebody.

4. Somebody loves everybody.

5. Everybody is loved by everybody.

6. Somebody is loved by somebody.

7. Everybody is loved by somebody.

8. Somebody is loved by everybody.

1. (∀x) (∀y) (L(x,y)).

2. (∃x) (∃y) (L(x,y)).

3. (∀x) (∃y) (L(x,y)).

4. (∃x) (∀y) (L(x,y)).

5. (∀x) (∀y) (L(y,x)).

6. (∃x) (∃y) (L(y,x)).

7. (∀x) (∃y) (L(y,x)).

8. (∃x) (∀y) (L(y,x)).

Logically 
equivalent



Examples
1. Everybody loves everybody.

2. Somebody loves somebody.

3. Everybody loves somebody.

4. Somebody loves everybody.

7. Everybody is loved by somebody.

8. Somebody is loved by everybody.

1. (∀x) (∀y) (L(x,y)).

2. (∃x) (∃y) (L(x,y)).

3. (∀x) (∃y) (L(x,y)).

4. (∃x) (∀y) (L(x,y)).

∃x

∃x

7. (∀x) (∃y) (L(y,x)).

8. (∃x) (∀y) (L(y,x)).

1, 2, 3, 4, 7, 8 are all logically inequivalent



Logically equivalent

Under any intepretation of the concepts 
involved, the statements are both true or 

both false.

The modern treatment of logical 
equivalence is credited to Alfred Tarski, 

1933, 1936. 



Logical implications
1. (∀x) (∀y) (L(x,y)).

2. (∃x) (∃y) (L(x,y)).

3. (∀x) (∃y) (L(x,y)).

4. (∃x) (∀y) (L(x,y)).

5. (∀x) (∀y) (L(y,x)).

6. (∃x) (∃y) (L(y,x)).

7. (∀x) (∃y) (L(y,x)).

8. (∃x) (∀y) (L(y,x)).

4

2, 6

37

84

1, 5



An inference in predicate calculus 
is considered valid if:

under any interpretation, if all 
of the premises are true, then 
the conclusion is true.



Completeness Theorem
— Kurt Gödel, 1930

Every valid inference in predicate 
calculus can be backed up by a 
proof using only a fixed finite set of 
basic axioms and rules of inference.



No Algorithm
— Alonzo Church, 1936

There is no general method for 
determining whether an inference 
in the predicate calculus is valid.



Z
Integers

• Add (+)

• Subtract (-)

• Compare (<, ≤, >, ≥, =, ≠)

…, -2, -1, 0, 1, 2, …



Z
Examples

(∀ integers x)(∃ integer y)(x < y+y).

(∀ integers x)(∃ integer y)(x = y+y).

(∀ integers x,y)(x < y → (∃ integer z)(x < z ∧ z < y)).

The first is true, whereas the 
second and third are false.



Z
Linear arithmetic over 

integers algorithm

There is a general method for 
determining whether a sentence in 
the predicate calculus based on the 
integers, +,-,<,≤,>,≥,=,≠, is true.

— M. Presburger, 1929



Q
Fractions

• Add (+)

• Subtract (-)

• Compare (<, ≤, >, ≥, =, ≠)

3/4, -10/3, 0/1, …



Q
Examples

(∀ rationals x)(∃ rational y)(x < y+y).

(∀ rationals x)(∃ rational y)(x = y+y).

(∀ rationals x,y)(x < y → (∃ rational z)(x < z ∧ z < y)).

This time, all three sentences 
are true.



QLinear arithmetic over 
rationals algorithm

(modified Presburger)

There is a general method for 
determining whether a sentence in 
the predicate calculus based on the 
rationals, +,-,<,≤,>,≥,=,≠, is true.



R
Real numbers

• Add (+)

• Subtract (-)

• Compare (<, ≤, >, ≥, =, ≠)

√2, π, …



RLinear arithmetic over reals

 The true sentences of linear 
arithmetic over the reals are the 
same as the true sentences of 
linear arithmetic over the rationals.



Z Q R
Linear arithmetic over 
integers, rationals, reals 

together
There is a general method for 
determining whether a sentence in 
the predicate calculus based on 
integers, rationals, reals, 
+,-,<,≤,>,≥,=,≠, is true.



Algorithm with +, -, •, <, ≤, >, ≥, =, ≠ over 
Integers? No!! Kurt Gödel 1931.

Algorithm with +, -, •, <, ≤, >, ≥, =, ≠ over 
Rationals? No!! Julia Robinson 1949.

Algorithm with +, -, •, <, ≤, >, ≥, =, ≠ over 
Reals? Yes!! Alfred Tarski 1931, 1948.

So what happens if we 
also use multiplication? 



What are the standards 
for a mathematical proof?

1. Axioms and rules of inference for 
Predicate Calculus.

2. Axioms for constructing 
mathematical objects.

Unification needed. Set theory!



Set theory
Unifies various constructions of mathematical objects.
Two sets are considered equal if and only if they have 

the same elements.

Founded by Georg Cantor 1874.
Gottlob Frege formulated associated axioms 

1893/1903.
Bertrand Russell found a contradiction in Frege’s 

axioms (Russell’s Paradox) 1901. 
Russell fixed this with his theory of types, 1908, 1910. 

Type theory supplanted by formalized set theory:



Zermelo Set Theory (1908)
Extensionality: If two sets have the same elements, then they are equal.

Pairing: Given two sets x,y, there is a set z whose elements are exactly x,y.

Union: Given a set x, there is a set y whose elements are exactly the elements of 
the elements of x. 

Power Set: Given a set x, there is a set y whose elements are exactly the 
subsets of x. 

Separation: Given a set x and a description of a property of sets, there is a set y 
whose elements are exactly those elements of x which obey that property. 

Infinity: There is an infinite set. Many alternative technical formulations can be 
used here. 

Choice: Given a set x whose elements are each nonempty and have no elements 
in common with each other, there is a set y which has exactly one element in 
common with these elements of x.



Zermelo set theory axioms easily suffice to 
develop the main basic infrastructure of 
mathematics: natural numbers, integers, 
rationals, reals, complexes, addition, 
subtraction, multiplication, division, order, 
ordered pairs, functions, metric spaces, 
topological spaces, measure spaces, 
continuity, differentiability, analyticity, 
etcetera.

Mathematicians sit on top of this, taking it 
for granted.



ZFC

ZFC = Zermelo Set Theory, plus two more axioms:

Foundation: Given a nonempty set x, there is an 
element y of x which has no elements in common 
with x.

Replacement: Given a set x, and a description of 
a unique assignment of a set to all elements of x, 
there is a set whose elements are exactly these 
assignments. 

Zermelo Fraenkel Set Theory, 
with the Axiom of Choice



Why believe?
Not yet entirely clear.

?



Our axioms of set theory arise from 
transferring the “simple” principles that 
“obviously hold in the finite sets” to infinite set 
theory, and adding the axiom of Infinity.

Observation

From Finite to Infinite

All except INFINITY are easily seen to hold in 
the world of finite sets - by merely using 
induction.



First Incompleteness 
Theorem

— Kurt Gödel 1931, B. Rosser 1936
ZFC is not sufficiently strong to prove or 
refute all statements in integer arithmetic 
(+,•) – unless(!) the axioms of ZFC are 
contradictory.

ZFC enough to prove or refute all statements in 
mathematics?



Second Incompleteness 
Theorem

— Kurt Gödel, 1931

ZFC is not sufficiently strong to prove that 
the axioms of ZFC are not contradictory – 
unless(!) the axioms of ZFC are 
contradictory.

ZFC axioms contradictory? No! – we think!!



Large programs are expensive 
and buggy. Many reasons.

Need a major overhaul in the 
programming environments.

Logic will play a central role.



SOME SOFTWARE 
DISASTERS

THERAC-25

A radiation therapy machine, involved in six accidents 
1985-87 . Patients given 100 times intended dose. Factors 

include bad software design and development.

ARIANE 5

A launcher for rockets. Blew up June, 1996, from a failure 
of the Inertial Reference Systems, Traced to a piece of 

software.

INTEL PENTIUM BUG

 Intel’s Pentium computer chip was recalled in 1994 at a 
cost of 500M USD. The floating point arithmetic software 

was flawed.



Formal specifications

Need formal specifications. 

Written in applied Predicate Calculus. 

Needed to support 

• Reusability of software

• Verification of software



Software verification

• A mathematical proof that the software 
obeys the formal specification.

• Far beyond the usual software testing in 
common practice in industry.

• We want a programming environment 
where a team of software developers 
writes code AND verifies the code.



Software verification

• Programming languages need an overhaul

• Heavy duty tools need development

• Tools include algorithms from logic, refined 
by computer scientists, as discussed 
previously.



Work highly exploratory

Not clear how to design a working system 
for cost effectively creating verified code for 

real world programming situations

?



Potential applications of 
logic in education.

Develop systems that automatically generate multistep 
homework and exam problems satisfying Instructor 

controlled parameters.

Automatically graded. Student enters multi step solution in 
special format, obtains feedback after each step.

Full history of student responses on all problems stored 
and used to adjust future problems.

Data used to fine tune Instructor’s Lectures.



Ideas have been around

Challenge
Make automatically generated multi step 
problems truly reflect course goals, and 
the interaction engage the students 
appropriately.



Need sophisticated problem templates, 
reflecting many degrees of difficulty.

Need formal structure to support real time 
computer grading.

Need formally structured modes through which 
students enter multistep solutions, and receive 

feedback in real time.

Logic needed everywhere!



Discrete Math for Computer 
Science Majors

Generally speaking, computer science majors are 
required to take a course in basic discrete 
mathematics and basic proof structure.

Not enough interaction time under normal teaching 
methods for students to absorb these difficult and 
subtle skills.



SYRUS Project
—run by me and Bruce Weide of CSE.

Template 1:
(∀ integers n, m, r)(x α y ∧ z β w → u γ v).
True or false? If true, prove. If false, give counterexample.

Template 2:
(∀ integers n, m)(∃ integer r)(x α y ∧ z β w).
True or false? If true, prove. If false, give counterexample.

Here x, y, z, w, u, v are among letters n, m, r, and α, β, γ 
are among symbols <, >, ≤, ≥, =, ≠.



True/False is checked in real time. Proofs 
are entered interactively, with many 

steps, and real time feedback.

Use of Logic for teaching Logic? No 
surprise.

Ideas strongly applicable to elementary 
mathematics courses, including K–12.



Future targets

∈-δ proofs in calculus. 
Courses in the mathematical sciences.

Courses in engineering.
And beyond...



THEOLOGY:
POSITIVE PROPERTIES

There have been attempts to prove the existence 
of God, using the concept of positive properties. 

Most notably by Leibniz (co invemtor with 
Newton of the Calculus) and Gödel (the great 

logician we have encountered before). 

These attempts go under the name of “the 
ontological argument” and are very controversial.

We use the concept of positive properties for 
quite a different purpose.



THEOLOGY:
POSITIVE PROPERTIES

Instead, we use the concept of positive 
properties to prove that the usual ZFC 

axioms for mathematics (discussed 
earlier) are free of contradiction. I.e., that 

ZFC is consistent.

In other words, a concept from classical 
Theology is used to prove that 

mathematics is free from contradiction.



POSITIVE PROPERTIES
In this theological framework, we consider properties or 
attributes of things. Here are three interesting examples:

“Possessing an intellect”
“Knowing at least as much as any other thing”

“Knowing more than any other thing”

Certainly these properties are positive in the sense that 
it is “better” to have them (if possible) than not to have 

them. 

But there is the question of whether these properties 
are possible to have. 

The first one obviously is. The seond and third are 
problematic. 



POSITIVE PROPERTIES
SOME GENERALPRINCIPLES

For any given poperty, it is either positive to possess it 
or it is positive to not possess it. 

If it is positive to possess P and positive to possess Q, 
then it is positive to possess (P and Q).

A perfect being possesses all of the positive 
properties.

There is a perfect being. 

There is exactly one perfect being.



POSITIVE PROPERTIES
Returning to the three examples:

“Possessing an intellect”
“Knowing at least as much as any other thing”

“Knowing more than any other thing”

To apply the general principles, we need to know that it is possible for 
a being to have these properties. The first one is not problematic. 

We can argue for the second: For any given x, it is positive to know at 
least as much as x. Therefore a perfect being knows as much as any 

other thing. So the second example is possible.

More argument is needed for the third example.

THIS IS JUST AN INDICATION OF HOW ONE CAN AT LEAST 
ATTEMPT TO INTELLIBLY NAVIGATE SUCH MURKY WATERS.



POSITIVE PROPERTIES 
THE SUPERNATURAL

THE NATURAL

The perfect being is clearly part of the supernatural 
world, and not part of the natural world.

In the natural world,  beings may have a lot of positive 
properties, but not all of them.

We expect that for every natural being, there is 
another natural being which possesses all of the 

positive properties of the first, and more.



POSITIVE PROPERTIES
THE NATURAL (NOT THE SUPERNATURAL)

We start with the universe of natural objects. 
We use the standard concept of “properties of objects” in 

mathematics. 
We use the theologically based oncept of “positive properties of 

objects”.
We assume the general principles we have discussed, which 

correspond to the standard mathematical idea of a “nonprincipal 
ultrafilter”.

We do not have a natural object that possesses all positive 
properties. That is only true of a (the) perfect being, which is only 

exists in the supernatural.

An ANGEL is an object which possesses all DEFINABLE positive 
properties. 



POSITIVE PROPERTIES 
ANGELS

An ANGEL is an object which possesses all 
DEFINABLE positive properties. 

POWERFUL AXIOM: THERE EXISTS AN 
ANGEL!

We have been able to prove, using an Angel, 
that mathematics is free of contradiction 

(I.e., ZFC is consistent).



I hope you’ve found these 
Interdisciplinary Adventures 

of some interest.

Thank you very much.


