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Abstract. Does a given finite system of equations x = yz+1 
have a solution in integers? We show that this problem is 
algorithmically unsolvable. We also show unsolvability 
using x = -yz-1, and solvability using x = yz-1, and using 
x = -yz+1.    
 
1. Introduction. 
2. Θ(x=yz+1), Θ(x=-yz-1). 
3. Θ(x=yz-1), Θ(x=-yz+1). 
 
1. INTRODUCTION  
 
This paper is a contribution to the search for yet more 
elementary examples of algorithmic unsolvability. We have 
previously developed quite a number of fundamental examples 
in elementary Euclidean geometry [Fr10], and also more 
recently involving inner products [Fr17]. Also see [Ma93], 
[Poxx], [Po14].  
 
Many examples of (algorithmic) unsolvability are proved by 
reduction from the known unsolvable Hilbert's 10th Problem, 
[Da73]. We proceed in this way here as well as in [Fr10]. A 
considerable portion of [Poxx], [Po14] also proceeds in 
this way. Also see [Ma93], sections 9,10. 
 
One problem is reducible to another if and only if there is 
an algorithm that converts any instance of the first 
problem to an equivalent instance of the second problem. So 
if the second problem is solvable then the first problem is 
solvable. If the first problem is unsolvable then the 
second problem is unsolvable.  
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The original unsolvable problem is the Halting Problem. 
Given a Turing Machine initialized with a blank tape, does 
it eventually halt? 
 
HILBERT'S TENTH PROBLEM/Z. H10(Z). Does a given polynomial 
with integer coefficients vanish over Z? 
 
H10(Z) is unsolvable, and in fact mutually reducible with 
the halting problem. See [Da73], [Ma93].  
 
DEFINITION 1.1. An algebra, in the present sense, is a 
system (D,...) where the finitely many components are 
functions of several arguments from D into D (no constants 
and no relations). Let M be an algebra. Θ(M) is the 
following decision problem. Let V be a finite set of 
equations of the form F(x1,...,xk) = y, where F is a 
component of M. Is V solvable over D?  
 
Note that we put no restrictions on the variables 
x1,...,xk,y, and the variables used in the different 
equations may share variables in unrestricted intricate 
ways.  
 
The four problems stated in the Abstract are just Θ(M) for 
the following four algebras M: (Z,x=yz+1), (Z,x=-yz-1), 
(Z,x=yz-1), (Z,x=-yz+1).  
 
For our unsolvability results of section 2 it is 
convenient, but by no means necessary, to bring in the 
notion of "very definable relation".  
 
DEFINITION 1.2. A relation R ⊆ Zk is very definable over the 
algebra M if and only if we can define 
(∀x1,...,xk)(R(x1,...,xk) ↔ (∃y1,...,yn)(ϕ)), where ϕ is a 
conjunction of equations F(x1,...,xk) = y, where x1,...,xk,y 
are variables among the distinct variables 
x1,...,xk,y1,...,yn. We will often view a function as a 
relation (the graph).  
 
THEOREM 1.1. Let M = (Z,...) be an algebra. The 
nonemptiness problem for very definable relations over M is 
reducible to Θ(M). So if the nonemptinss problem for very 
definable relations over M is unsolvable, then Θ(M) is 
unsolvable.  
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Proof: Nonemptiness of the k-ary relation R defined by 
(∀x1,...,xk)(R(x1,...,xk) ↔ (∃y1,...,yn)(ϕ)) is equivalent to 
the existence of a solution to ϕ. QED  
 
In applying Theorem 1.1 to obtain unsolvability, it is 
convenient to know that the very definable relations over M 
have good closure properties.  
 
THEOREM 1.2. Let K be the least class of formulas in the 
language of the algebra M such that  
i. All atomic formulas of M are in K, equality allowed.  
ii. Conjunctions of formulas in K are formulas in K. 
iii. If ϕ is a formula in K then any (∃y1,...,yn)(ϕ) is a 
formula in K.  
Every formula in K defines a relation over M that is very 
definable over M. 
Let M,M',M'' be algebras with the same domain. Suppose the 
components of M are very definable over M', and the 
components of M' are very definable over M''. Then every 
relation very definable over M is very definable over M''.   
 
Proof: By standard quantifier manipulations. We use 
additional quantifiers to break down compound equations s = 
t into the form F(x1,...,xk) = y. QED 
 
THEOREM 1.3. H10(Z) reduces to Θ(x=yz,x=y+z,≡1). Here ≡1 is 
the unary constantly 1 function.   
 
Proof: This is well known. The standard argument is 
sketched, e.g., in [Fr17], Lemma 2.7. θ(x=yz,x=y+z,≡1) is 
r.e. by search. QED 
 
THEOREM 1.4. The relations x = yz, x = y+z, ≡1, used in 
Theorem 1.3, are very definable over (Z,x=yz,x=y+1).  
 
Proof: See [Fr17], Lemma 3.4. QED  
 
THEOREM 1.5. If the relations x = yz and x = y+1 are very 
definable over an algebra M with domain Z, then the Halting 
Problem is reducible to Θ(M).  
 
Proof: By chaining together Theorem 1.1 - 1.4, and reducing 
the Halting Problem to H10(Z) by the MRDP theorem ([Da73], 
[Ma93]). QED 
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Of the four problems, Θ(x=yz+1), Θ(x=-yz-1), Θ(x=yz-1), 
Θ(x=-yz+1), we show that the first two are unsolvable in 
section 2, and the latter two are solvable in section 3.   
 

2. Θ(x=yz+1),Θ(x=-yz-1) 
 
LEMMA 2.1. The relations x = yz and x = y+1 are very 
definable over (Z,x=yz+1).  
 
Proof: Consider the following four equations in integer 
variables x,y,z,w,u,v.  
 
1. x = xy+1. 
2. x = yy+1.  
3. z = xw+1. 
4. z = uv+1. 
 
From 1, we have x(1-y) = 1, and so (x = 1 ∧ y = 0) ∨ (x = -
1 ∧ y = 2). From 2, x = 1 ∧ y = 0. From 3, z = w+1. From 4, 
xw+1 = uv+1, and so w = uv. We claim  
 
z = w+1 ↔ (∃x,y)(1-3 hold). Suppose z = w+1. Set x = 1, y = 
0. Conversely, let 1-3 hold for x,y,z,w. By the above, z = 
w+1.  
w = uv ↔ (∃x,y,z)(1-4 hold). Suppose w = uv. Set x = 1, y = 
0, z = w+1. Conversely, let 1-4 hold for x,y,z,w,u,v. By 
the above, w = uv. QED 
 
LEMMA 2.2. A set of equations x=yz+1 has a solution in Z if 
and only if the corresponding set of equations x =-yz-1 has 
a solution in Z. In fact, the solutions to any set of 
equations x=yz+1 and to the corresponding set of equations 
x=-yz-1 are negatives of each other.  
 
Proof: This follows immediately from the following 
observation. x = yz+1 if and only if -x = -(-y)(-z)-1. QED 
 
THEOREM 2.3. Θ(x=yz+1), Θ(x=-yz-1) are unsolvable, and in 
fact complete r.e.  
 
Proof: By Theorem 1.5 and Lemmas 2.1, 2.2. These problems 
are r.e. by search. QED 
 

3. Θ(x=yz-1),Θ(x=-yz+1)  
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LEMMA 3.1. Let α(x) = 0 if x is even; -1 if x is odd. 
Suppose x = yz-1. Then α(x) = α(y)α(z)-1. 
Let β(x) = 0 if x is even; 1 if x is odd. Suppose x = -yz+1. 
Then β(x) = -β(y)β(z)+1. 
 
Proof: For the first claim, we argue by cases.  
 
case 1. yz is even. Then (y is even ∨ z = even) ∧ x is odd. 
Hence α(x) = -1 and α(y)α(z)-1 = 0-1 = -1.  
 
case 2. yz is odd. Then y,z are odd, and x is even. Hence 
α(x) = 0 and α(y)α(z)-1 = (-1)(-1)-1 = 0. 
 
For the second claim, we also argue by cases.  
 
case 1. yz is even. Then (y is even ∨ z = even) ∧ x is odd. 
Hence α(x) = 1 and -α(y)α(z)+1 = 1.  
 
case 2. yz is odd. Then y,z are odd, and x is even. Hence 
α(x) = 0 and -α(y)α(z)+1 = -(1)(1)+1 = 0. 
 
QED 
 
THEOREM 3.2. A finite set of equations x = yz-1 has a 
solution in Z if and only if it has a solution in {-1,0}. A 
finite set of equations x = -yz+1 has a solution in Z if 
and only if has a solution in {0,1}. Θ(x=yz-1) and Θ(x=-
yz+1) are solvable.  
 
Proof: Immediate from Lemma 3.1. QED 
 
Alternatively, we can use Lemma 2.2 for equations x=yz-1, 
x=-yz+1, and just analyze one of the two equations.  
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