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Abstract. In this entirely self contained paper, we focus 
on some practical nondeterministic constructions designed 
to actually confirm (or refute) the consistency of ZFC and 
fragments of SRP, or even HUGE. The carrying out of these 
constructions forever, which is equivalent to the carrying 
out of these constructions for any given finite number of 
steps, is equivalent to the consistency of SRP (or HUGE), 
thus providing algorithmically sensible explicitly Π0

1 
sentences independent of ZFC (and even SRP and HUGE). Here 
we do not fine tune the algorithms for mathematical 
simplicity, but rather for the facilitation of computer 
implementations which search for intense interaction with 
the essence of large cardinal combinatorics. This 
environment supports a virtually unlimited range of 
challenges, in which available computer resources and their 
optimal use seek their own level. Endless competitive 
challenges can be arranged representing a virtually 
unlimited range of difficulty.  
 
1. Introduction. 
2. Order Invariant Graphs.  
3. Nondeterministic Construction. 
4. Computer Implementations. 
5. Formal Systems Used.  
6. Confirmation of Consistency. 
 
1. INTRODUCTION 
 
We recently announced the first tangible incompleteness 
from the usual ZFC axioms for mathematics, with these three 
statements: 
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MAXIMAL EMULATION STABILITY. MES. Every finite subset of 
Q[0,k]k has a stable maximal emulator. 
 
MAXIMAL IMITATION STABILITY. MIS. Every finite subset of 
Q[0,k]k has a stable maximal imitator.  
 
MAXIMAL CLIQUE STABILITY. MCS. Every order invariant graph 
on Q[0,k]k has a stable maximal clique.  
 
See [Fr18b]. These statements are explicitly Σ11 and 
implicitly Π0

1 via Gödel's Completeness Theorem. As a 
spinoff of this development, we sought explicitly Π0

1 forms 
which were also of such an elementary transparent 
character. We have been somewhat, though not yet 
unequivocally successful, in several directions. One 
direction involves emulation towers as presented in 
[Fr18b], section 6. However, we have also been pursuing 
several other directions, including a nondeterministic 
algorithms aimed at the construction of maximal cliques in 
order invariant graphs on Q2k. Here Q2 is the set of dyadic 
rational numbers. The dyadic rationals are used to 
facilitate the computer implementations, suggesting the 
possible use of SAT technology.   
 
The carrying out of these nondeterministic algorithms 
constructs maximal cliques on induced subgraphs with 
certain auxiliary properties, and require more than ZFC to 
prove. It also requires more than ZFC to prove that these 
nondeterministic algorithms can be carried out for any 
given finite number of steps. This results in explicitly Π0

1 
sentences that are independent of ZFC and beyond.    
 
This is not the place for a systematic treatment of 
nondeterministic clique construction algorithms with strong 
metamathematical properties. We are preparing a separate 
manuscript with that purpose - see [Fr18c]. This current 
paper is self contained, and focuses on the 
nondeterministic algorithms designed for computer 
implementation that confirms (or refutes) the consistency 
of ZFC and beyond. Some simpler algorithms for different 
purposes appear in [Fr18c].  
 
2. ORDER INVARIANT GRAPHS 
 
DEFINITION 2.1. Q2,Z,N is the set of all dyadic rationals, 
integers, nonnegative integers, respectively. We use 
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k,n,m,r,s,t,i,j, with or without subscripts, for positive 
integers, unless otherwise indicated. We use p,q, with or 
without subscripts, for dyadic rationals, unless otherwise 
indicated.  
 
DEFINITION 2.2. A graph is a pair G = (V,E), where V is the 
set of vertices and E ⊆ V × V = V2 is the set of edges. It 
is required that E is irreflexive and symmetric. We say 
that G is a graph on V. v,w are adjacent if and only if v E 
w. w is a neighbor of v if and only if v,w are adjacent. A 
clique is an S ⊆ V such that any two distinct elements of S 
are adjacent. We also consider a list to be a clique if and 
only if its set of terms is a clique.   
 
DEFINITION 2.3. Let x,y ∈ Q2k. x,y are order equivalent if 
and only if for all 1 ≤ i,j ≤ k, xi < xj ↔ yi < yj. The 
upper lift of x ∈ Q2k, ul(x), is the result of adding 1 to 
all nonnegative coordinates of x that are greater than all 
non integer coordinates of x. The upper shift of x ∈ Q2k, 
ush(x), is the result of adding 1 to all nonnegative 
coordinates of x. x ≤lex y if and only if x is 
lexicographically at most y.  
 
DEFINITION 2.4. S ⊆ Q2k is order invariant if and only if 
for all order equivalent x,y ∈ S, x ∈ S ↔ y ∈ S. An order 
invariant graph on Q2k is a graph on Q2k whose edge set is an 
order invariant subset of Q22k.  
 
3. NONDETERMINISTIC CONSTRUCTION 
   
Here we present constructions α(k,G), where G is an order 
invariant graph on Q2k and v ∈ Q2k. This construction can 
always be carried out, but proving this requires roughly 
SRP.  
 
DEFINITION 3.1. Let v1,...,vt ∈ Q2k. w ∈ Q2k is generated by 
v1,...,vt if and only if every coordinate wi is  
i. 0; or 
ii. a coordinate of some vj; or 
iii. is sum of 1 and some nonnegative coordinate of some vj.  
 
The construction proceeds in stages i = 1,2,3,... . Upon 
entering stage i, we have a nonempty finite clique 
v1,...,vj, j ≥ i. At every stage, we will append one or more 
vertices, and never backtrack.  
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Upon entry to stage 1, which is initialization, we set v1 = 
(-1,...,-k). 
  
Upon entry to stage i ≥ 2, we have clique v1,...,vj, j ≥ i. 
We find the least 1 ≤ j' ≤ j such that some vertex generated 
by v1,...,vj' is adjacent to each of v1,...,vj, and choose 
one such vertex, y. (Under the unusual circumstance that j' 
does not exist, we update with v1,...,vj,vj, and exit stage 
i.) Then we choose a non neighbor z ≤lex y of y, and update 
with v1,...,vj,z,ul(z),ush(z), after verifying that this is 
a clique. We then exit stage i.   
   
THEOREM 3.1. The following are equivalent over WKL0. 
i. Every α(k,G) can be carried out forever. 
ii. Every α(k,G) can be carried out for any given finite 
number of steps.  
iii. Con(SRP). 
EFA proves ii ↔ iii. 
 
We now present construction β(k,G), where G is an order 
invariant graph on Q2k and v ∈ Q2k. This construction can 
always be carried out, but proving this requires roughly 
HUGE. 
 
Upon entry to stage 1, which is initialization, we set v1 = 
(-1,...,-k). 
  
Upon entry to stage i ≥ 2, we have clique v1,...,vj, j ≥ i. 
We find the least 1 ≤ j' ≤ j such that some vertex y with y1 
≤ y2, generated by v1,...,vj', is adjacent to each of 
v1,...,vj, and choose one such vertex, y. (Under the unusual 
circumstance that j' does not exist, we update with 
v1,...,vj,vj, and exit stage i.) Then we choose a non 
neighbor z ≤lex y of y, and update with 
v1,...,vj,z,ul(z),ush(z),(n+2-n,y1,...,y1,ush(y1)), where n is 
the least positive integer ≥ max(ush(y1)). We then verify 
that every one of these j+4 terms u, with u1 ≤ u2 is 
adjacent to every term u' <lex u, and every term (m+2-
m,y1,...,y1,p), m ≥ p,1, has p = ush(y1). We then exit stage 
i.   
 
THEOREM 3.2. The following are equivalent over WKL0. 
i. Every β(k,G) can be carried out forever. 
ii. Every β(k,G) can be carried out for any given finite 
number of steps.  
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iii. Con(HUGE). 
EFA proves ii ↔ iii. 
 
The ii in both Theorems are obviously explicitly Π0

2. 
However, using the well known decision procedure for the 
first order theory of (Q,<,+1) (or even (Q,Z,<,+)), we see 
that these ii is explicitly Π0

1. We can also simply require 
the balancing discussed in section 4 in the construction, 
and this is obviously explicitly Π0

1 without even invoking 
the decision procedure.   
 
4. COMPUTER IMPLEMENTATIONS 
 
The order invariant graph G can simply be given by a finite 
list from Q2k of edges up to order equivalence. It is 
natural to use a listing of elements of {1,...,2k}2k, no two 
of which are order equivalent. We can also provide G by an 
algorithm, which would include simply listing the non 
edges. Experimentation with the number of edges in G (up to 
order equivalence) is recommended.  
 
We first need to refine the Update procedure in α(k,G) in 
order to exert appropriate control over z (after y has been 
chosen). We add the following additional requirement on z. 
This will not affect Theorem 3.1. We can also use it for 
β(k,G) and not affect Theorem 3.2.  
 

*) -k ≤ min(z) ≤ max(z) ≤ max(y)+1 
 
This appropriately controls the integer part of z. We also 
need to appropriately control the fractional parts of the 
coordinates of z. This is merely a routine bookkeeping 
issue. Since +1 on nonnegative dyadic rationals plays a 
role in the notions of internal and upper shift, as well as 
the nonnegative integers in the upper lift, the fractional 
parts are what is critical.  
 
List the fractional parts of v1,...,vj, along with 0,1, as 0 
= w1 < ... < wp = 1, p ≥ 2. We require that z be first 
provisionally adjusted so that the fractional parts of its 
coordinates of z lying strictly between two adjacent w's 
are equally spaced, and then perform round offs so that z 
remains a dyadic rational. It is imperative that this 
adjustments of the fractional parts of the coordinates of z 
be order preserving. In any case, this or some closely 
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related balancing process would normally be done in any 
normal computer implementation.  
 
It is clear that α(k,G) as written in section 3 will 
rapidly get into unacceptable demands on computer 
resources. However, we can very conveniently adjust the 
demands that α(k,G) makes.  
 
1. We can set k to be very small. We recommend initially 
that we use only k = 2, with order invariant graphs G on 
Q22, edges lying in Q24.   
2. Depending on the stage i, in the search for j', we can 
relax the requirement that j' be least. We do advise that 
in the search for j' there be some bias towards smallish 
j'.  
3. Depending on the stage i, we can, at our own choosing, 
use only ul(z), or only ush(z), or neither.  
4. We can set the goal to complete few or very few stages 
in the construction.  
 
Under the various choices of G and 1-4, we obtain a well 
defined search space according to the nondeterministic 
choices. It is conceivable that one of these search spaces 
could be exhaustively searched, with no nondeterministic 
path found. This would establish the inconsistency of SRP. 
In fact, the trace of computation should be convertible to 
an actual inconsistency of SRP. 
 
Similar considerations apply to β(k,G), but we should first 
wait for implementations of α(k,G) to be well underway 
before addressing this. 
 
5. CONFIRMING CONSISTENCY 
 
Why do we believe that any specific α(k,G) can be carried 
out indefinitely, or even for any very small number of 
steps?  
 
Except for really trivial cases, the only reason we have 
for believing this is the general theorem that it can 
always be carried out. And this general theorem is proved 
only with large cardinal hypotheses. That proof provides no 
information concerning how to actually carry out α(k,G) for 
even very small numbers of steps.  
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Furthermore, every time a computer is able to exhaust the 
full search space for a version of α(k,G), the very 
consistency of the relevant large cardinals is at stake. If 
the computer finds no path after exhaustive search, then 
this finding can be converted to an actual inconsistency 
(from the documentation of the negative computer search).  
 
In this sense, when the computer is able to carry out 
various versions of the α(k,G), we are obtaining a kind of 
confirmation of the consistency of ZFC and even fragments 
of SRP.  
 
The argument is strong but not air tight. For instance, we 
might figure out how to prove that under quite general, but 
not fully general, conditions, α(k,G) can be carried out, 
staying within a weak fragment of ZFC where the k,G that 
this finding applies to are not rare, and indeed include 
the kinds of k,G that one would naturally be investigating 
in the spirit of this discussion. I think this is very 
unlikely. But yes, this could deflate the claim that we are 
confirming consistency. But we could easily recover the 
initial enthusiasm by simply generating loads of k,G to 
which these finding does not apply, and successfully 
treating them.  
 
6. FORMAL SYSTEMS USED 
 
EFA Exponential function arithmetic. Based on 0, successor, 
addition, multiplication, exponentiation and bounded 
induction. Same as IΣ0(exp), [HP93], p. 37, 405.  
 
RCA0 Recursive comprehension axiom naught. Our base theory 
for Reverse Mathematics. [Si99,09].  

WKL0 Weak Konig's Lemma naught. Our second level theory for 
Reverse Mathematics. [Si99,09].  

ZF(C) Zermelo Frankel set theory (with the axiom of 
choice). ZFC is the official theoretical gold standard for 
mathematical proofs. [Ka94].  

SRP ZFC + (∃λ)(λ has the k-SRP), as a scheme in k. [Fr01].  

SRP+ ZFC + (∀k)(∃λ)(λ has the k-SRP). [Fr01].  

HUGE  ZFC + {(∃λ)(λ is k-huge): k ≥ 1}.  

HUGE+ ZFC + (∀k)(∃λ)(λ is k-huge).  
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λ is k-huge if and only if there exists an elementary 
embedding j:V(α) → V(β) with critical point λ such that α = 
jk(λ). (This hierarchy differs in inessential ways from the 
more standard hierarchies in terms of global elementary 
embeddings).  
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