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This is the third in a series of informally distributed reports on an
ongoing program,
It's not what the mathematician would accept if
confronted with; but what the mathematician has
accepted and been confronted with,
The universal calculus U 1is presented in detail in Part A, with both
a proof theory and a model theory. The completeness theorem tells us that
the approach to consistency in terms of proofs (no proof of a contradiction)
and the more mathematical approach in terms of models (having a model) are
equivalént. Also, in Part A we give examplesvof how to translate sections
of mathematical text into U . We can relate this in a precise way to the
translation of bodies of mathematics as follows.
By a (fully rigorous) body of mathematics, we mean a series of mathe-
matical statements, every one of which is labeled as an assumption or a
theorem, such that the theorems follow purely deductively.from the preceding

assumptions and theorems. Thus we are taking a body of mathematics so as

not to include proofs or lemmas, and where definitions are not distinguished
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from assumptions.
Given a body 8 of mathematics, we can, uniquely up to a change of
letters, associate a sequence Iﬁl of sentences in U . We can obtain
Iﬂl most simply by setting A to bé the conjunction (AI&AZ& &An)
of all assumptions in B , letting & ='(<pl&(p2\& &(pn) be a represen-
tation of A in U, and setting ,ﬁ' to be the sequence (¢ﬁ,¢b,...,¢h) .
We have thus associated a combinatorial structure |B| to every body

of mathematics, which we call the raw formal system for @ .

Part B formulates some basic postulational axioms (and a few basic
theorems) that are found in various bodies of analysis on Euclidean space,
Actually, we confine ourselves to Advanced Calculus for this and several
reports, before entering the Lebesgue theory on Euclidean space. In Part C
we calculate the intrinsic étrength of systems based oh these axioms. It
is here that we must be careful to avoid adding things into the mathematics
that are not already there. Thus these parts relate to the providing of
lower bounds on the intrinsic strengths of bodies of mathematics.

Parts D, E relate to the providing of upper bounds on thé intrinsic
strengths of bodies of mathematics. Again, we concentrate on axioms bf a

postulational nature, rather than theorems.

PLAN OF THE WORK

Report III. Basic results concerning postulational axioms in Advanced

Calculus,
Report IV. Theorems of Advanced Calculus (uniform continuity theorem,

Heine-Borel theorem, Bolzano-Weierstrass theorem, local maxima theorem,
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mean value theorem, Riemann integrability theorem, equivalence of notions
of closedness and compactness, equivalence of notions of continuity,
Taylor's theorem, intermediate value theorem, inverse function theorem,
convergence tests for series, Fourier convergence theorems, etc.) Their
intrinsic strength. The proper formal systems in which they are naturally

proved.

ReEo?t V. Theorems of Lebesgue theory. Their intrinsic stfength. The
proper formal systems in which they are naturally proved,

By way of background, ATR (< \) stands for the subsystem of second
order arithmetic with full induction, and arithmetic comprehension, and
the existence of an H-set based on any specified initial segment of )\ s
relative to any set. (The latter is therefore a scheme.) ATR stands for
"arithmetic transfinite recursion". FO is the Feferman-Schutte ordinal
for predicativity. ID (< @) 1is the theory of 6 ,@p , etc., presented
as a first order theory of inductive definitions iterated arbitrarily
finitely often. For discussions of these and other systems, and their
strengths, see my article in the 1974 ICM proceedings, and the abstracts
"Subsystems of second order arithmetic with restricted induction I, 11",
to appear in the JSL. |

The following pairs of theories can be used to calculate the intrinsic
strength of certain bodies of mathematics.
l.of Part C and 5 of Part_E.

4 of Part C and 12 of Part E.

4 of Part C and 13 of Part E.

5 of Part C and 19 of Part E.

6 of Patt C and 22 of Part E.
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( 6 of Part C and 23 of Part E.

7 of Part C and 26 of Part E.

We have concentrated on providing equiconsistency or "strength" results,

rather than the additional information that provable equivalences and con-

servative extension results provide. These will be taken up in a later

report.
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PART A

THE CAICULUS U

U will possess infinitely many constant symbols Co s infinitely
many m-ary relation symbols Rz ; infinitely many m-ary partial function
symbols Fﬂ for 1 <m , and the special unary relation symbol D, for
"being defined". 1In addition U will have infiniﬁely many pafameters
a infinitely many variables X, s the connectives ~, &,V 6+, «

n’ P)

and the quantifiers v,dqd .

The terms of U are defined by the following clauses. Each constant
is a term. Each parameter is a term. If F is an n-ary partial function
symbol and tyse-.,t, are terms, then F(tl,...,tn) is a term., If
$,€y,+..,t are terms then s(tl,...,tn) is a term,

The atomic formulae of U are written R(tl""’tn) and D(t) ,
where t,ty5-..,t, are terms, and R 1is an n-ary relatiqn symbol, |

‘Before defining the formulae of U , it is necessary for us to make
a technical definition. If ¢ 1is a string of symbols, a 1is any symbol,
and @ 1is any string of symbols, we let ¢g be the string of symbols
resulting from ¢ by replacing each occurrence of a in ¢ by a.

‘The formulae of U are given by the following clauses. Every atomic
formula of U is a formula., If ¢, are formulae, so are (~¢),
@V, @&, @+, @ . If ¢ isa formula, a is
a parameter, x 1is a variable, x does not occur in ¢ , then
(Vx)((p:) , (Eflc)((P:) are formulae.

A U-structure (D,dm,r;,f;,gp) = M consists of a nonempty set D ,

elements dm €D ; everywhere defined n-ary relations r: on D, n-ary

)
g
|
|
|
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partial functions f; on D, and p-ary partiallfunctions gp on D ., Here
nx>1, p>2,

We define Val(M,s,0) , where s 1is a term and @ € Dw, by 1)
val(M,a ,0) = a(m) ii) val,c ,0) = 4 iii) Val(M,F:(sl,...,sn),oz)
~ f;:(Val(M,sl,a),...,Val(M,sn,a)) iv) val (M,t(sl,...,sp_l),a) ~ g, (Val (4, t,a),
ValGM,sl,a),...,Valon,sp_l,a)) .

We define M|= ¢la] by induction on ¢© as follows. M |= R;(sl,...,sn) [a]
iff each Val(M,si,a) is defined, and r;:(Val(M,sl,a),...,Val(M,sn,oz)) .
Mk D(s)[a] iff val (M,s,0) is defined. M |k ~¢[a] iff not M E ola] .

ME (0& ¥)[a] iff ME ¢la] and MEYlal . ME (oV Y)[a] iff ME olo]
or ME yla] . M (o §)[a] iff (if Mk @la] then M F y[a]) .

MEk (0 P[a] iff M olo] iff ME Ye) . ME (Vx ) (<p:“) [a] iff for
all d€p, ME@e]] . Mk (2 ) (<p:“) [6] 1iff for some 4 € D,

ME olo]] "

We say M F ¢© just in case M F ola] , for all ¢« .

The relation " T proves ¢© " is given by the following clauses. T
proves every element of T . If T proves every element of the set X of
formulae, and X tautologically implies the formula ©, then T proves
¢®. T proves every formula of the form (D(t) & (Vx) (@) - <p: . T proves
every formula of the form (<p}é &D(t)) @ (Ix)(@) . If T proves (¢ - Y)
then T proves (¢ - (Vx) (l/):)) » provided the parameter a does not occur
in ¢, and the latter is a formula. If T proves (0 -+ ) then T proves
((Fx) ((p:) -+ ) , provided the parameter 2 does not occur in Y , and the
latter is a formula. T proves D(a) , for any parameter a . T proves
(D(F(tl,...,tn)) - D(tj)) » provided the latter is a formula, 1< j<n.

T proves (D(s(tl,...,tn)) - D(tj)) , provided S’tl"”’tn are terms,
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l£i<n., T proves R(tl,...,tn) - D(tj) , where R 1is an n-ary relation
symbol, 1< j<n. T proves (D(s(tl,...,tn)) -+ D(s)) .

" T constructively proves ¢ " is given by precisely the same clauses,
except that in clause 2, "tautologically implies" is replaced by "intuition-
istically tautologically implies”.

COMPLETENESS THEOREM. T proves ¢ just in case M |== ¢© whenever M |= T.

We now describe how to represent mathematical assertions (including
mathematical definitions) in U . The representations are unique up to

changes in letters. We describe the representations by examples. -

l. " f is an harmonic function."” The representations are formulae
R(a) .
2. " £ is an harmonic function and £(0) 1is positive." The repre-

sentations are (R(a) & S(a(c))) , where R, S are distinct.

3. "f is defined‘at a ." The representations are D(b(a)) , where
a,b are &istinct.

4. " x,y are equal." The representations are R(a,b) , where a,b
are distinct.

5. " f is a function from reals to reals." The representations are
(Vx) (R(x) -+ R(a(x))) & (Vx)(D(a(x)) - R(x)) .

6. "x<y iff 0<y-x." The representations are (R(a,b) =
R(c,F(b,a))) , where a,b are distinct.

7. "the set of zeros of f is compact." The representations are
R(F(a)) . |

8. "if £ is continuous then f'(x) exists." The representations

are R(a) - D(F(a) (b)) .

9. "the members of the domain of f are precisely the places at which
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f is definéd." The representations are .(Vx) (R(x,F(a)) «» D(a(x))) .

Optional additions may be made to U . For instance, we may allow
introduction of special parameters ap and variables Xp , Which range
over those a such that R(a) , and those x such that R(x) s whe;re R
is a unary relation symbol. Another optional addition is the use of

n n
variable binding operators, such as I f£(k) 5 II£(k) . The former can
k=0 k=0

be dispensed with in the standard way. The latter can be replaced by
(Z£)(m) , (IIf)(n) . From the point of view of determining intrinsic
logical strength, these additions are unnecessary. Nevertheless, it is

most convenient to use the first addition in Appendices B- E, and both

additions will be used in future reports,




PART B

- LOWER BOUND AXIOMS

We begin with a basic theory of real sequences (and combinatorial

functions). We use variables nj over natural numbers (N) , a, over

3

integers (Z) , xj over reals (R) , fj over sequences of integers

N+ 2) , g; over unary functions of integers (Z +Z) , h, over

3

sequences of functions on the integers (hj :NXZ-+Z) , and F, over

3

sequences of reals .(Fj :Nb-b R) . The f£,g,h, and F are understood
to be total. We have the constants 0,1, the operation symbols +, -,
*,1/,] |, and the relation symbols =,< .‘

The terms, N-terms, and Z-terms are given as follows. Every N-term

is a Z-term, and every Z-term is a term. 0,1,n, are N-terms. Each a

3 3

is a Z-term, and each x, 1is a term, If s , t are N-terms, so are s+t

2

3

set . If s is a Z-term, then |s| is an N-term. If s is an N-term,
t a Z-term, then fj (s, g (t) , and hj (s,t) are Z-terms. If s is
an N-term, then .Fj (s) is a term. If s, t are Z-terms, so are s+t,
-s , set and |s| . If s,t are terms, so are s+t , -5, set,
1/s , and |s.| . v

The formulae are given by i) s=t , s<t , D(s) are formulae
for terms s, t ii) ~A, AVB, A&B, A-+B, A+ B are formulae
if A,B are iii) (Va)(A) , (H3x)(A) are formulae if A is, and o
is any variable.

Here are the logical axioms and rules.

AXIOMS

1. all propositional tautologies. 2. ((Va)(A) & D()) - A?: .

Bl
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3. (V6) (A) -’~Ag o4 Wa () » @@ . 5. Ag + (36) (A) .
6. D(@) . 7. D(s) »+ D(t) ; for subterms t of s . 8. (s < t.V vs=t) -

(D(s) & D(t)) .
RULES

9. from AA-+ B derive B. 10. from A -+ B derive A - B @®) .
11. from B -+ A derive (IB)(B) - A .

In the above, o 1is a variable nj R aj ; Or x t is a term of the

3
same sort as & ; G,H are function variables of the same sort; and 8
is any variable not free in ‘A . We require that no free occurrence of

o in A lie within the scope of a quantifier (Vy) or (Hy) , where y
is a variable in t , and that no free occurrence of G in A lie within
the scope of a quantifier (VG) or (3G) .

It will be convenient to use m,n,p,q for natural numbers; a s b,
c,d,e for integers; and u,v,w,x,y,z for reals; £f,g,h, F for
total £:N+Z, g:Z-+Z, h:NxXxZ-+2Z, F:N2R; and G,R for
partial G:R-+R , H:NXR “R

We have the axioms NAOF (normed Archimedean ordered field).

l. x=x, x=y*y=x, (X=y&y=2)+x=1z,

yow & -x = -y & |x| =

2, x=y& =w&x#0) > (X+z=y+w & xez
lyl s (x<zoy<w) & (x#0+1/x=1/y))

3. x+y=y+x, x+(y+z) = (x+y)+z, O+x=x, x+(x) =0,

xey=yex, x°(y*z) = (x*y)*z, lex=x, x#0-+xe1l/x 1,

"

<0-b|x|=-x.

x* (y+z) = xey)+(x°z) , 0<x |x| = x s
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4., ~(x <x) , (x<y&y<z)-+x<z , x<yVy<xVx=y, X<y
x+z <y+z , (x<y&0<z)-+xoz<yoz , (Vn)‘(n#o‘*lgn) .
50 0<x&0<y) (In)(x<ney)) .

We will use the additional axioms of identity n=m 2 f(n) = f(m) ,
a=>b- g(a) =g‘(b) y (n=m&a=>b) <+ h(n,a) = h(m,b) s n=m-F() =
F(m) . ,

We will use the following ontological axioms. (Ba)(a = n) ,

(@n)(n=awa>0), (d)(a = £(n)) » (Ha)(a =g(b)), (da)(a = h(n,b)) ,

D(£(x)) + (En)(n = x) , D(g(x)) -+ (Ja) (a =x) , D(h(x,y)) » (In)(Fa)(n = x &

a=y), D(F(x)) - () = x) .
We next consider axioms of explicit definition. The simplest way to
Present these is by the definitional schemes (Vn) (D(s)) - (I£f) (¥n) () = s) ,
(Va) (D(s)) + (Hg)(Va)(g(a) = s) , (Vn)(Va)(D(s)) - (h) (¥n) (Va) (h(n,a) = s) ,

(Vn) (D(t)) =+ (IF) (Vn) (F(n) = t) , where s is any Z-term, and t is any
term. We wish to avoid schemes like the plague, for they are a logician"s
fiction. One alternative and equivalént way is to consider only those terms
such that every proper subterm is of the form fl(m) ,‘ 8 (®) , h,l(m,b) s
F(m) , Ifl(m)l s 'gl(b)| , m,b,x, |b| . This ensures finite axiomatiz-
ability. The finite number of instances, alternatively, can be explicitly.
written down.

Next comes the axioms of variable summation and prodﬁct. F) (HFI)
(!EF2 :N - R) (Fl(O) = F(0) & (Vn) (Fl(n+1) = Fl(n) +F(n+1)) & FZ(O) = F(0) &
(Vn) (F2(n+1) = Fz(n) . F(n+1))). , (Vh) (th) (th) (hl(O,a) = h(0,a) & (Vn)
(h1 (n+1l,a) = h1 (n,a) +h(n+1,a)) & hZ(O,a) =h(0,a) & (¥n) (hz(n+1,a) = hz(n,a) .
h(n+1,a))) . |

Finally, we. také elementary induction. (VF)((F(0) =0 & (Vn) (F(n) =

024 F(m+1) =0)) » (Vn)(F(n) = 0)) , (VE)(F(n) = 0 + (Am)(F(m) = 0 &




C () (F(x) = 0+ m < 1)) .
We call the above system EHO .
We now introduce variables Gj :R R, and Hj :NXR R, for the
system Z)I'I1 - It is understood that the G,H are partial function symbols.
We modify the clauses for term fofmation by adding the clause: if g
is an N-term, t is a term, then Gj(t) s Hj(s,t) are terms.
The axioms and rules of inference are carried over straight forwardly,
We add x =y G(x) ~G(y) , (n=max = y) »+ H(n,x) ~ H(m,y) to
the axioms of identity,
We add D(H(x,y)) -+ (dn)(n = Xx) to the ontological axioms.

The axioms of explicit definition are expanded by referring to the new

class of Z-terms s , and terms t , and also by adding the clauses
(2G) (Vx) (G (x) ~t) , (EH)(Vn)(¥x) (H(n,x) ~t) , t any term. The same

subterm criterion is applicable. We also add the special axiom (3G) (Vx)
(@& =y>O<xay=0)).

The axioms of variable summation and product are extended by the
following. (VH) (!HHl)(Vn) (Vx)((D(H1 (n,x)) * (Vm < n) (D(HMmM,x)))) &

Hl(O,x) ~ H(0,x) & Hl(n+1,x) ~ Hl(n,x) +H(n+1,x)) , (VH)(EHZ)(Vn) (Vx)

((D(Hl(n,x)) *’A(Vm < n)(D(H(m,x)))) & H2(0,x)y ~ H(,x) & H2(n+1,x) ~
Hz(n,x) *H(n+1,x)) .
Elementary induction remains unchanged. - )
The resulting system is called Zl‘ll
To summarize, EIII has nine sorts of objects: N, Z, R ;, N=»Z |

12

NxZ+Z, N+R, R-+R, and NXR R . The 4th, 5th, 6th

2

and 7th are to be total. The last two, partial. Nx Z +Z is to be thought

of as sequences of total unary maps on Z, NXR R is to be thought of

Z \
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C as sequence.s of partial unary maps on R . The tl'ieory El'lo has only the
first seven sorts.

We now introduce some additional axioms.
Definition 1. A séquence of real numbers is an f:N - R , and is written
{xn} . We say {xn} s Cauchy just in case (Ve > 0)(&k)(¥p,q > k)
(|xp-xq| <€) . We write {xn} *y for (Ve > 0)(Ek)(Vn > k)(lxn-y| <€),
We say {xn} converges if {xn} +y for some y . We say {xn} is
explicitly Cauchy just in case for some f we have (Yn > 0)(Vp,q > £(n))
(lxp-qu < 1/n) .
Definition 2. A sequence of real functions is an H , and is writ;ten {Hn} .
We say {Hn} is explicitly Cauchy just in case D(Hn(x)) * D(Hy(x)) , and
for some F we have (Vn > 0)(Vp,q > g(n)) (¥x) (D(H, (x)) - 'Hp(x) -Hq(x)l
<1/n) . We write {Hn} 4+ G to mean (Vx) (Yy)(G(x) =y = ({Hn(x)} »y)),
where if {Hn(x)} does not define a sequence, it is not considered to
converge.

I. Explicit Cauchy completeness. EVefy‘explicitly Ca_uchy:sequence of

reals converges.

II. Cauchy completeness. Every Cauchy sequence converges,

III. Monotone completeness. If (Vn) (xn <y, (Vn<m)(xngxm) , then

{xn} converges.

Iv. Explicit Cauchy limit., If {Hn} is explicitly Cauchy, (Vx)

(D(Hy(x))) , then (HG)({H } ~6) .

V. Step function. (Hf :R - R)(¥x) ((x SO0+ £E() =0) & (x>0 £f(x) =1)) .

VI. Pointwise explicit limit. If for all x , {Hn(x)} is explicitly

Cauchy, then (EG) ({Hn} +G) .

VII. Bolzano-Weierstrass. (Vx) (D(G(x)) - 0 <x < 1) 2 ((Ey) (Ve > 0) (Ex)
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(fi (DEE) & |y-6x)| < €) V (IF) (En) (x) (DG (x)) - (&m < n) (F(m) = x))) .

VIII. Inverse. Assume G(x) = G(y) *x =y . Then (EGI)(VX)(VY)(GI(X) =

y©G(y) =x) .
IX. Least upper bound. If (D(G(x)) & (y) (D(G(y)) »y < 2)) then

@) () (D(EG) >y < W) & (Fu < W) (@) OEG) & u<y) .
X. Complementation. (VG)(EGI)(VX)(B(G(X)) - ~D(G1(x))) .
XI. Range. (VG)(HGI)(VR)(D(Gl(x)) * (HEy)(x=6@) .




Cl

C PART C

LOWER BOUND RESULTS

Equiconsistent with Peano arithmetic.

1. EHO + Cauchy completeness.
2. EHO + Monotone completeness.
3. Zﬂl + Explicit Cauchy limit + Step function.

i

Equiconsistent with ATR(< ww) .

4, EIIL_ + Pointwise explicit limit + Bolzano-Weierstrass.

Equiconsistent with ATR (< 1"0) .
5. ZHI + Pointwise explicit limit + Inverse + Complementation. ;

Equiconsistent with ID(< w) .

6. EH‘]_ + Pointwise explicit limit + Least upper bound.

Equiconsistent with 2nd order arithmetic.

7. Eﬂl + Pointwise explicit limit + Least upper bound + Complementation +

Range.
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PART D

UPPER BOUND AXIOMS

We have variables Xy ranging over real numbers, and n-ary function
variables fz ranging over partial n-ary functions from reals to reals,

In addition, we have the relation symbols = , <, N, the constants
0, 1, and the partial function symbols + »*, =, 1, ]| . wealso
have the‘special symbol D , for "being defined".

The terms are given as follows. Every variable Xy is a term. The

~ constants 0 , 1 are terms. If s,t are terms, so are s+t , set ,

-s , 1/s , and |s| . 1If 815+++,8, are terms, then fa(sl,...,sn) is
a term.

The formulae are given by i) 8) = 8,, si <s,, N(s) , and D(s)
are formulae. ii) ~A, AV B, A& B, A- B‘, A «+ B are formulae
if A, B are formulae. iii) (o) (A) , (EDD(A) are formulae if A is,
and o is any variable,

The purely logical axioms and rules of inference common to all systems

considered here are as follows.
AXIOMS

1. all propositional tautologies. 2. ((Vy)(A) & D(t)) - A{ . 3. (VE) () -

Aé . 4 A& D) » @A) . 5. Aé > (FE)A) . 6. D(y) .

7. D(s) » D(t) , for subterms t of s . 8. (s<tVs=r¢)»

(D(s) & D(t)) .

RULES

9. from AA-+ B derive B . 10. from A - B derive A - (Vo) (B) .
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11. from B -+ A derive (Ho)(B) - A .

In the above, y is a real variable (i.e., an X, ), f£,8 are function
variables of the same number of arguments, « 1is any variable, AZ is the
result of replacing each free occurrence of y in A by ¢, A; is the
result of replacing each free occurrence of f in A by g . We require
that no free occurrence of y in A  be within the scope of a quantifier
(Vx) or (Ex) , where x is a variable in ¢t , and that no free occurrence
of £ in A be within the scope of a quantifier (Vg) :or (3g) . We
also require that ¢ is not free in A . z

We now present the theories. The predicate symbol N is to denote

"being a natural number"; it will be convenient to use a sb,e,d,e,i,j,

k,m,n,p,q,r,s,t for natural numbers. We will use u,v,w,x,y,

z,€,0 for real numbers, and f,g,h,F,G,H for partial functions,
where we leave off superscripts as long as no ambiguity arises. We use
s#t for D(s) & D(t) & ~s =t . We use s ~t for (D(s)VD(t))—’s==t,.

We first consider NAOF (normed Archimedean ordered field).

1. x=x, X=y*?y=x, (x=y&y=32z)+4x=2z,

2. (x=y&z=w > (x+z=y+tvaxez=yows-x=-y& x| =|y| &
(x<zey<w & (0 1/x=1/y) & NG =N, Gy =y, & ...

& X = yk) - f(xl,...,xk) ~ f(yl,...,yk) .

]
]

3. x+y=y+x, x+(y+z) x+y) +z , O+x =x, x+(-x) =0,

x¢y=yex, xo(yez)=(x*y)¢z, lex=x, x#0+xe(l/x) =1,
x°(y+z)=(x°y)+(x-z), 0_<_x-blx|=x, x<0-b|x|=-x.
4, ~(x <x), (x<y&y<z)-'x‘<z, x<yVy<xVx=y, x<y-

x+z <y+z , (x<y&0<z)'-'xoz<y°z, N(@©) , N(x) » N(x+1) ,

(x)(N(x) » (x # 0«1 <x)) .
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5. 0<x&0<y)» (H2)(N(E) &x<ze y) .

We will use s>t , s<t, and s >t as abbreviations.

We next consider the axioms XII .

1. (Ef)(Vkl,...,xk)(f(xl,...,xk) =y), (Ef)(Vxl,...,xk)(f(xl,...,xk) =
x) 5 @B (Tx) (W) (£(x,y) = x+y) , () (Vx) (Vy) (E(x,y) = xoy) ,
ED (Fx) (£(x) = -x) , (FE) (Vx)(£(x) ~ 1/x) , (IE) (Vx) (Vy) (£(x) =
y*(O0O<x&y=0)).

2, (Eh)(Vkl,...,xk)(h(xl,...,xk) ~ f(gl(xl,...,xk),...,gp(xl,...,xk))) .

30 (@) Ty, e,y ) @Oy, e, xy 1,0) m £Gxp, .., ,0) & (V) C{CIPRNE S
n+l) ~ g(xl,...,xk;l,n)-Ff(xl,...,xk_l,n))) & (Vy)(D(g(xl,...,xk_l,y))
" NG & (T2 < P OER,,...,x_1,2)))

4. (Eg)(Vkl,...,xk_l)(g(xl,...,xk_l,O) :;f(xl,...,xk_l,O) & (Vn)(g(xI,...,xk_l,
n+1) = glry,een,%y 1,0 @ £00,000,x _1,0))) & (Vy) (D(g(xy, w0 %y _155))
"Ny & (V2 <y) OEE,...x_1,2))))) .

PR (primitive recursioh) will consist of 1, 2 above plus (Hh)
(Vkl,...,xk_l)(thl,...,xk_l,O) ~ f(xl""’xk-l) & (Vh)(h(xl,...,xk_l,n-+1)
~ g(xl,...,xk_l,n,h(xl,...,xk_l,n))) & (Vy)(D(h(xl,...,xk_l,y)) * (N@&y) &
(Vz < 9) (D(ECxy, -+, 1,900)))

In the above if - k=0 thenwvf(xl,...,xk_l) is replaced by 'z' .,

Finally, we consider the in&uction axioms

@ & FOME » )+ TN + @)

If we require ¢ to be quantifier free, then we call this "quantifier free

induction”. If we require all bound variables in ¢ to be relativized to

the natural numbers, we‘call this "arithmetic induction". If we require
all bound variables in ¢ to be real variables, we call this "real

quantifier induction". If we put no restriction on ¢ , we call this

P e I )




"function quantifier induction".
Two other forms of induction will be considered, the first of which
we call "elementary induction”.
((Vx) (N(x) - D(£(x))) & £(0) = 0 & (Vx) (N(x) -+ (£(x) = 0 - f(x+1) = 0)))
* ()W E) » £(x) =0) , ((x)(N(x) + D(E(x))) & (N(Y) & £(y) = 0)) -
() (N(x) & £(x) = 0 & (F)(N(Y) & £(3) = 0) »x < y)) .
The second is called "domain induction".
(D(£(0)) & (Vx) ((N(x) & D(£(x)) - D(E(x+1)))) . (Vx) (N(x) - D(£(x))) ,
(D(£()) & NG)) + (Iy) (N(y) & D(E(Y) & (V2) ((D(£(z)) & N(z)) = y <z) .
In Appendix C, all systems will include NAOF + ZII + elementary induction.
We now consider several additional axioms.
Domain exist;eln'qe a;‘cioms.'
'C“ AXIOM I. - Complementation. (B8) (x5 -y x Y DB (xy, 00y )) = ~D(ECx,, ...,
CoED) . |
AXIOM II.  Countable union. @) (V. oy x ) (D(E Gy, x ) * (F)

O£k, x,...,x )))) .

AXIOM III. Countable intersection. (Hg) (Vxl, .o ,xn) (D(g (xl, .o ,xn)) -
(Vk)(D(f(k,xl,.,.,xn)))) . '

AXIOM 1V. g-algebra. I & II & III.

AXIOM V. Range. (Hg) (Vxl, ee5% ) (D(g (xl, - ,xn) - (Eyl, ces ,ym)
(fl(yl’ .o .,ym) =x; & ... & fn(yl,. . .,ym) = xn)') .

AXIOM VI. Uniformization. (dg) (Vxp5eeesx ) (Tyy, . ) (OB (xy,. %,

yl,...,ym)) - (!Hzl,.f.,zm)(D(f(xl,...,xn,zl,...,zm)))) &

(D(g(xl,...,xn,yl,...,ym)) - D(f(xl,...,xn,yl,...,ym))) &

(Vzl,...,zm)(D(f(xl,...,xn,zl,...,zm)) -+ (y1 =z & ... & Yy = zm))) .




D5

<‘ Function existence axioms.
~WWW

AXIOM VII. Inverse. ILet fl""5f
_—— n

be n-ary. Suppose (fl(xl""’xn)
fl(yl""’yn) & ... & fn(xl"'°’xn) = fn(yl""?yn)) -»

(xl =y & voo & X, =Yy ) . Then there are n-ary 81s-++,8

n n

such that gj(fl(xl"'"xn)""’fn(xl""’xn)) =%y, and
fj(gi(xl,...,xn),...,gn(xl,...,xn)) = Xy
AXIOM VIII. left inverse. ILet f

1""’fn be m-ary. Then there are n-ary
8ys+++,&, such that 81(f1(x14'"’xm)”°‘?fn(xl""’xm)) =
X & ... & gm(fl(xl""’xm)’""fn(xl""’xh)) =X .

AXIOM IX. Total left inverse. Let f £ Dbe m-ary, (Vxl,...,xm)

1200
(D(fj(xl""’xm))) . Then there are n-ary ByseeesBy such

that gi(fl(xl""’xm)""’fn(xl""’xm)) =X, .
<f AXIOM X. Infinite join. (Vp,q,xl,...,xn)((D(f(p,xl,...,xn)) &
D(f(Q:x]_"")xn))) - f(p,x]_;"',xn) = f(q,xl,'_")xn)) i

(Hg)(Vxl,.--,xn,y)(g(xl,.--,xn) =y~ (ﬂp)(f(p,xl,-.-,xn)=y)) .

AXIOM XI. Integral inverse. Let fl""’fn be m-ary, (Vkl,...,xm)
(D(fj(xl,...,xﬁ)) - (N(lel) & oo & N(|xm|))) s (Txp,eee,x )
(D(fj(xl""’xm)) -+ N(|fj(x1,...,xm)|)) . vThen there are n-ary
81s+-+,8, such that gi(fl(xl"'"xm)""’fn(xl"“{xm)) =X, .

Sompleteness Axioms.

Definition 1. A sequence (of real numbers) is a unary function f defined

on exactly the natural numbers, and is written {xn} . A sequence {xn}' is

Cauchy just in case (Ve > 0)(Hk)(Vp,q > k)('xp-—xq' <€). We write‘ {xn} +y

for (Ve > 0) (3k)(Vn > k)(lxn-y’ < €) . We say {xn} converges if {xn} Sy

for some vy .
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- IOM XII. .
(; AXIOM XII Double monotone completeness. If X, S X4 o Y41 SV, >
X, <Y, , then there is a z such that X S22y, -

AXIOM XIII. Cauchy completemess. Every Cauchy sequence converges.

AXIOM XIV.  Double cut completemess. If D(£(x)) & (Vy)(Vz)((D(£(y)) &
z <y) + D(EG))) & Dg(w)) & (Vy) (V2) ((D(g(y)) & y < z) -+
D(g(2))) & (Vy) (~(D(£(¥)) & D(g(y)))) , then (Fu) (Vy) (Vz)
(OEG) +y guw) & () +ug) .

AXIOM XV.  Left cut completemess. If (D(£(x)) & (Vy)(D(E(y)) = y < z)) ,
and  (Vy) (V2) ((D(£(y)) & z < y) -+ D(£(z))) , then (Tw)((Vy)
OEG) 2y < w) & (u<w)(@)DEG)) & u<y)) .

AXIOM XVI.  Least upper bound. If (D(f(x)) & Ty)DEG)) 2y < 2))

then (&) (Vy)(D(£(y)) » y < w) & (Vu < w) (Ey)(DEGF)) &u<y)) .

Function comgleteness axioms,

Definition 2. Any k+1l-ary partial function f may be regarded as a

sequence {fn} of k-ary partial functions, where fanl,...,xk) ~

f(n,xl,...,xk) . We write {fn} + g to mean (Vkl,...,xk,y)(g(xl,...,xk) =

y » ({fn(xl,...,xk)} = y)) . Here it is understood that if {fn(xl,...,xk)}
~ does not define a (total) sequence, then it does not converge.

AXIOM XVII. Partial limit. (ED({E} » 6 .

Definitioq 3. Let pr(xl,...,xr,yl,.;.,yr) = lxl-y1|-+|x2-y2|-+...-+|xn-yn| .
We say -{fn} has common domain just in case (Vxl,...,xk)(D(fo(xl,...,xk)) -
_D(fn(xl,...,xk))) .

Definition 4. Let {fn} have common domain, where f is r+1l-ary. Let
Fl""’Fr’G have domain exactly N . We say 'Fl,...,Fr,G is a sequential

open covering for {fn} just in case (Vkl,...,xr)(D(fo(xl,...,xr)) -

( ' (En)Qor(xl,...,xr,Fl(n),...,Fr(n)) < G(n))) . We say that {fn} is explicitly

e
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Cauchy just in case there is a sequéntial open covering Fl""’Fr’G of

{fn} s and a g:NxX NN such that (Vm)(Vn > 0)(¥p,q > g(m,n))

(Vxl,...,xr)((D(fO(xl,...,xr)) & pr(xl,..,,gr,Flﬁn),...,Erﬁn)) < G(m)) »

pr(xl,...,xr‘)- fq(xl,...,xr)| <1/n) .

AXIOM XVIII. Explicitly uniform limit. If {£,} 1is explicitly Cauchy,
then (Hg)({f_} -g) .

Choice axiogs.

AXIOM XIX. Countable choice. (Vk)(N(x) - (Eyl,...,yk)(D(f(x,yl,...,yk))))
* (Fy,e.,8) (TX) (NGX) =+ D(£(x, 8 (x),...,8 (x)))) .

AXIOM XX. Dependent choice. (Vkl,...,xn)(Hyl,...,yn)(D(f(xl,...,xn,

yl,...,yn))) - (Vxl,...,xn)(ﬂgl,...,gn)(gl(O) =% & ... &
gn(O) =x & (Vk)(D(f(gl(k),...,gn(k),gl(k-Fl),...,gn(k-+l))))) .
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PART E

UPPER BOUND RESULTS

Provably consistent in Peano arithmetic.

1. NAOF + PR + Elementary induction + O-algebra + Range + Uniformization +
Integral inverse + Double monotone completeness + Explicitly uniform
limit,

2, NAOF + PR + Quantifier free induction + Countable union + Range +
Uniformization + Integral inverse + Double monotone completeness -+
Explicitly uniform limit.

Equiconsistent with Peano arithmetic.

3. NAOF + LT + Elementary induction + Countable unicgh + Countable inter-
section + Left inverse + Cauchy completeness + Double cut completeness +
Partial limit + Countable choice,

4, NAOF + Efl + Elementary induction + o-algebra + Range + Uniformization +
Total left inverse + Cauchy completeness + Partial limit.

5. © NAOF + ZIl + Arithmetic induction + o-algebra + Infinite join + Cauchy
completeness + Left cut completeness + Partial limit + Countable choice.

6. NAOF + PR + Elementery induction + Countable union + Codntable inter~
section + Range + Uniformization + Integral inverse + Cauchy completeness +
Double cut completeness + Explicitly uniform limit + Countable choice.

7. NAOF + PR + Elementary induction + O-algebra + Range + Uniformization +
Integral inverse + Cauchy completeness + Explicitly uniform limit.

8. NAOF + PR + Arithmetic induction + o-algebra + Integral inverse +
Cauchy completeness + Left cut completeness + Explicitly uniform limit +

Countable choice,

9. NAOF + PR + Real quantifier induction + O-algebra + Range + Uniformi-
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zation + Integral inverse + Double monotone completeness + Explicitly
uniform limit,

10. NAOF + PR + Function quantifier induction + Countable union + Range +
Uniformization + Integral inverse + Double monotone completeness +
Explicitly uniform limit.

Equiconsistent with ATR (< ww) .

11. NAOF + PR + Elementary induction + o-algebra + Range + Uniformization +
Total left inverse + Cauchy completeness + Partial limit.

12. NAOF + PR + Domain induction + Countable union + Countable intersection +
Left inverse + Cauchy completeness + Double cut completeness + Partial
limit + Dependent choice,

13. NAOF + PR + Arithmetic induction + o-algebra:+ Infinite join + Cauchy
completeness + Left cut completeness + Partial limit + Dependent
choice.

14, NAOF + PR + Real quantifier induction + O-algebra + Range + Total left
inverse + Cauchy completeness + Partial limit.

15. NAOF + PR + Function quantifier induction ; O-algebra + Infinite join +
Cauchy completeness + Left cut completeness + Partial limit.

Equicongistent with ATR (< eo) .

16. NAOF + PR + Real quantifier induction + o-algebra + Range + Uniformization +
Total left inverse + Cauchy completeness + Partial limit,

17. NAOF + PR + Function quantifier induction + Countable union + Countable
intersection + Left inverse + Cauchy completeness + Double cut complete~
ness + Partial limit + Dependent choice.

18. NAOF + PR + Function quantifier induction + o-algebra + Infinite join +

Cauchy completeness + Left cut completeness + Partial limit + Dependent

choice,

e il
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Equiconsistent with ATR (< I‘o) .

19. NAOF + PR + Arithmetic induction + ¢g-algebra + Ihverse + Cauchy complete-
ness + Left cut completeness + Partial limit + Countable choice.

Equiconsistent with ATR.

20. NAOF + PR + Function quantifier induction + O-algebra + Inverse +
Cauchy completeness + Left cut completeness + Partial limit +
Countable choice.

Intermediate between ATR and LQ . |

21. NAOF + PR + Function quantifier induction + g-algebra + Invérse +
Cauchy completeness + Left cut completeness + Partial limit +
Dependent choice, |

Equiconsistent with ID (< w) .

22. NAOF + PR + Arithmetic induction + Countable union + Countable inter-
section + Range + Inverse + Cauchy completeness + Least upper bound +
Partial limit + Dependent choice.

23. NAOF + PR + Arithmetic induction + O-algebra + Inversé + Cauchy com-
pleteness + Least upper bound + Partial limit + Dependént choice,.

Equiconsistent with ﬂi -CA.

24, NAOF + PR + Function quantifier induction + Countable union + Countable
intersection + Range + Inverse + Cauchy completeness + lLeast upper
bound + Partial limit + Dependent choice.

25. NAOF + PR + Function quantifier induction + Range + Inverse + Cauchy

completeness + Least upper bound + Partial limit + Dependent choice.

Equiconsistent with second order arithmetic.

26. NAOF + PR + Arithmetic induction + o-algebra + Left inverse + Cauchy

completeness + Least upper bound + Partial limit + Dependent choice.
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Just beyond second order arithmetic.

27.

NAOF + PR + Function quantifier induction + o-algebra + Left inverse +

Cauchy completeness + Least upper bound + Partial limit + Dependent

choice,
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