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This is the fourth in a series of reports.,

In report III, the loéical strength of numerous combinations of basic
principles were calculated. This was done without regafd to the detailed
development of actual real variables, and so many systems which have no
direct connection with this development were considered.

Since then, we have discovered what we think is the right 'base theory"
for real variables (in the sense of analysis on Euclidean space). A descrip-
tion of the program as it relates to real variables, including desiderata
for a base theory, is given in the ensuing paragraphs.

As outlined in report III, one can associate sentences in a formal
calculus U (which is an extension of the first order predicate calculus)
to assertions made in real analysis. This association preserves the logical
structure of the deductive relations among the assertions. Then one can
speak of the logical strength of assertions or bodies of assertions in
real analysis as the logical strength of the formal systems resulting from
their translations into U .

Theoretically, this is the program: to calculate the logical strength

of statements, or groups of statements, of real analysis. However, taking
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statements out of context, in their raw form, and calculating their logical
strength, would lead to a subjeét which is unmanageably complex and
technical. |

A smooth and workable theory is obtained by considering statements of
real analysis in the context of a base theory. One then considers theorems
only in the context of this base theory. Thus, in effect, we calculate the
logical strength only of groups of statements which include the base theory.

Features of the base theory (RVl) for real analysis that we have
chosen include the following.

i) All of the axioms of RV1 have clear mathematical meaning. This
is in contrast to traditional systems logicians normally study, which are
based on-axioms of a‘metamathematical character.

ii) The system RV1 is equiconsistent with Peano arithmetic (PA)
aﬁd for theorems A , the logical strength of RV1 + A 1is independent of

minor changes in the precise way A is formulated.

iii)  All of the axioms of RV1 represent fundamental principles

basic to the practice of real analysis. 1If a weaker theory than RVl' is

chosen as the base theory, then the subject becomes unmaneagably complex;
e.g., ii) above fails.

iv) A very substantial body of real analysis can be proved in RV1 --
usually, by proofs which are the same as those customarily given. When

the same proof cammot be used, some other proof can be found in RV, which

1
is mathematically natural,

v) 1In general, the logical strength of RVi together with a finite

set of statements is the same as the maximum of the strengths of RV, with

1

the statements taken individually. Such is the case in each of the examples
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C below.

We have also discovered that the strength of RV1 appended with the
basic theorems of Lebesgue theory on Euclidean space is that of Peano
arithmetic, However, many difficult questions seem to arise -- in parti-

cular in connection with the strength of the existence of nonmeasurable
' These matters

sets and the Hahn-Banach theorem for certain Banach spaces.

will be taken up in the next report.
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(base theory; equiconsistent with PA)

RV, has variables °‘k ranging over nonempty finite sequences of

1
real numbers (]R*) , variables Ak ranging over subsets of R* , and n-ary
partial function variables f;: ranging over n-ary partial functions on R* .
In addition, we have the relation symbols =,<,€,N , the constant symbols
0,1 , and the partial function symbols +,+,-,1/,||,4th . We also have
the special symbol D , for "being defined".

The terms are given as follows. Every variable oy is a term. The

constants 0,1 are terms. If s,t are terms, so are s + t, s°'t, -s,

1/s, |s| , and sth(s) . 1If 815e++,8 ~are terms, then flr:(sl,...,sn)

is a term., If s,t are terms, so is s(t) .

( The formulae are given by i) 81 = 8y, 8; <8,, 8 € A, N(s) , and 3

D(s) are formulae. ii) ~@, @V Y, © & P, @ Y, © «p are formulae if
@, are formulae. iii) (VA) @, @) (@ are formulae if ¢© 1is, and )\
is any variable. ‘
The purely logical axioms and rules of inference are as follows.
1. all propositional tautologies. 2. ((.Voz) @ & D(t)) - Ag .
3. (VE) @) ->(p§ b (W@ 4 . S @ & D) + @)@ -
6. ¢§ + @D@ . 7. ¢+ @@ . 8. D). 9. D(s) »D() , for
subterms t of s . 10. (s<t V s=t V s €A V N(s)) » (D(s) & D(t)) .
11. from @,p+¢ derive § . 12. from @ =y derive = () Q) .
13. from Y +¢ derive (EN Q) » ¢ .

The above comes with the usual restrictions. )\ 1is any variable.

We now present the proper axioms for the system RVl « It will be




( convenient to use s~ t to abbreviate (D(s) VvD(t)) » s =1t , and let
p,4,r,n,m, etc. range over those o with N(a), and let x,y,z range
over ¢ with Ath(a)=1. N meéns "o 1is a natural number."
Equality axioms. =a,'a=,3-’ (w«cpg),‘ a=8- (S:Sg),
a=B+ (W @y =B . | |
Miscellaneous. N(o) - 4th(a) = 1, N(4th(a)), Lth(a) # 0, D(a(B)) «

(N(B) &8 # 0 &B = 4th(@), D(a+ ) « (th(a) = 4(B) = 1) « D@ f),
D(-0) « 4th(a) =1, D(1/0) » (U4th(®) =1 & a# 0), a< B+ (4th(a) = 4th(g) = 1),

D (a(B)) + 4th(a(B)) = 1 .

Explicit definition. (if) (Va,) .;.(Va#) (£@qpyeeer0l ) = 8),

@) (Vo) -ee (Vo) (VB) (£ pyeee, @) = B o (V) (B x g(0)50ee, & ,m))),
(FA) (V%) (x € A » D(£(x))), (TE) (Vo) (( €A = £(0) = 0) & (o € A -+ ~D(£(0)))),

(’ (Hf)(Vozl) ...(Van) ((D(g(al,...,ozn)) - f(avl,...,an) = g(al,...,an)) &
(~D(g(a1,...,an) -+ f(al,...,an) =0)) .
Normed Archimedean ordered field. x+y =y +x, x + (y +2) = (x + §) +z,
O+x=x, x+ (-x) =0, x*y = yx, x(y°2) = (x*Y)+ 2, lex = x,
Xx#04x(l/x) =1, x:(y +2) = (xoy) + (xez), 0sx |x| =x, |
x<0 |x| = -x, ~x<x), (x<y&y<"z';-»x<z, x<yVy<zxVxe=y,
x<y4x+z<y+z, x<y&0<z) 4xz<7yez, NO), Nix) » N + 1), ’
(x)(NEx) » x#0e1<x)), 0<x&0<7y)+ (An)x<n-y) .
Z0. @E) (Yay)... (Va, ) (8@ 00,0, 1,00 £layseee,0t) 1,0 &
(Vn) (g(0ty .-, oy _qo0+ 1) ~ glay,eee, 010+ .f(al""’ak-l’n + 1)) &
(VB D (glay,eee,y 158)) » (B & (Yo < B) D(E(Ly, 000,y _;,m))))).
Also, with the first + replaced by * . | |
Sequential induction. (V¥n) (D(£(n)) & £(0) = 0 & (¥n) (F(m) = 0 + £(n + 1) =0))

C + (Vo) (FE(m) = 0) .
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(”‘ We call a sequence {xn} of reals Cauchy just in case (¥n > 0) (Hm)
(Vp,q > m)(‘xp - xq] < 1/n) . We say {xn} 4y Jjust in case (Vn > 0)
(Em) (Yp > m) (|xp -yl <1/n) . we say {xn} converges 1f (dy) ({xn} >y .

Cauchy completeness. Every Cauchy sequence converges.,

Pointwise limit. (dg) (Val) ...(Vak) (fx) (g(al,...,ak) =X o

({f(n,al,...,ak)} +x)) .

We now develop analysis on Euclidean space in RV1 R following Rudin,

Principles of Mathematical Analysis.
I.- The Real and Complex Number Systems.

THEOREM 1.1, Let A < R, bounded above, and x <y €A -+x €A ., Then

A has a least upper bound. For each x > 0 there is a unique y = 0
such that yn =x , where n21, Define xn/m = (x'l/m)n s for x 20, |

( For x>0, a2 0, there is a unique y = x* such that xn/m <y <L xP/q,

if n/m< a<p/q . For x> 0, 20, let x %= 1/5% . 1f ACR 1is 1
countable, x €A + x> 0, ¢ € R, then the function f: A + R given by ;
fx) = =% exists., - |

Later on, when we consider power series, we will prove the existence
of x% asa function of two arguments.

We let L be the complex numbers,‘which is just IR.Z with (a,b)
written as a + bi , and with the definitions (a + bi) + (c + di) =
(@+c)+ (b+d)i, (@ + bi)(c +di) = (ac - bd) + (ad + be)i .

n
For x € R® we let |x| = (Exi)% .
' k=1

THEOREM 1.2, The complex numbers form a field. The real numbers form a

subfield of the complex numbers. For complex x,y , we have |x||y| = |xy|,




|x +y| = |x| +]y| . For complex 81500058 ,b15000,b , we have

S.T 2. 22 202 =
|Eajbj| < Elajl E[bjl '+ Here b=x-yi , where b=x+yi .
J= i=1 j=1 '
et x +y = (x1 +yl,...,xk +yk) , where x = (xl,...,xk),
k

y = (yl,...,yk) . Let qx= (axl,...,axk) . Let x°y = iflxiyi .

THEOREM 1.3. |x +y| < |x| + |y| , for x,y € ®R".

ITI. Elements of Set Theory.

We call a set A finite just in case A 1is the range of a one-one
function from some {j: j < n} , in which case we write |A] =n . We call
a set infinite if it is not finite. We call A denumerable just in case
A 1is the range of a one-one function from N . We call A countable
just in case A is either finite or denumerable. An uncountable set is a

set which is not countable.

THEOREM 2.1. If A is finite then there is a unique n such that |A| =n,

If A 1is denumerable, A is infinite. Every subset of a finite set is
finite. Every subset of a countable set is countable. The unbounded
subsets of N are precisely the infinite subsets of N’. The range of
every function with countable domain exists, and is countable. The range
of every function with finite domain is finite. The inverse of every one-
one function with countable domain exists. The set of all finite sequences

of AC R is countable if A is countable. R is uncountable,

A nhbd of x is a set of the form {y: |x - y| < €} , where €¢> 0,
AcRrR® is open if every point in A has a nhbd included in A . A 1is
closed if its complement is open. A crR” is called sequentially open if

A is the union of a sequence of wnhbds. A is called sequentially closed

T
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if its complement is sequentially open. A limit point of A cR” is a
point x every nhbd of which contains a point from A other than x .
A 1is called bounded if it is contained in some nhbd. A 1is called
perfect if it is closed and every point in A is a limit point ofl A,
AcBCR® is called densé in B just_in cage every point of B is a
limit point of A orin A. AcC R" is cglled separable just in case

it has a countable dense subset. A — R is called compact if it is closed

and bounded, A < R® is called a compactum 1f it is compact and separable,

THEOREM 2.2, Every sequentially open set is open. The union of a sequence
of open sets is open, AcC RY is closed if and only if A includes all
its limit points. The union of a finite sequence of closed sets is closed.
Every bounded sequentially cldsed, or sequentially open subset of R has

a least upper bound; in the former case, included in the set.

THEOREM 2.3. Every Sequence of open éets covering a compactum, has an
initial segment covering it also., If A is compact then every denﬁmerable
subset of A has a limit point in A . Every nonempty perfect set is
uncountable. The separable closed sets are just the sequentially closed
sets. The compacta are just the bounded sequentially closed sets. All

open sets are separable,

III. Numerical Sequences and Series.

A sequence {xn} in IRk is said to converge just in case (Iy) (Ve > 0)

(Em) (Vk > m) (|y - xk\ < €), and we write {xn} -+ y,, or ;ém X =Y. We

say {xn} is Cauchy just in case (Ve > 0) (dm) (¥p,q > m)(|xp - xq‘ <e€ .




THEOREM 3.1. Every cdn\iergent sequence is bounded, and has exactly one

| limit. The limit points of a set A c R" are exactly those points which
are limits of a sequence of distinct elements from A « Every bounded
sequence in R" contains a convergent subsequence. Every Cauchy sequence
in R" converges, and vice versa. A monotone sequence in R converges

if and only if it is bounded.’

THEOREM 3.2, Let {sn} be bounded above. Then there is a least upper
bound for {sn} » written sup{sn} « There is also a sequence {a} ,
where a = sup{'sm_‘_n} « In addition, ‘{am} is monotonic and bounded. We
write lim sup{sn} for. lim{am} . Similarly, if {sn} is bounded below,

for inf and 1lim inf.

THEOREM 3.3. ILet {sn} be bounded above. Then 1lim sup{sn-} = a 1ig the
unique real such that there is a subsequence of {sn} converging to a ,
and for all x> a , {sn} is eventually smaller than x . In additionm,
no number smaller than a is the limit of a convergent subsequence of

{sn} « Similarly for {sn] bounded below, and lim inf .

THEOREM 3.4. If p>0, limn P =0. If p>0, 1im p™ = 1. and

limn]'/n=1. If p> 0 then 1imna/(1+p)n=0. If |x|<1,

lim x" =0 .

-]
We use Y a_ for complex a_ .
n=l B - n

THEOREM 3.5. X a  converges if and only if for every ¢ > 0O there is an
m
N such that | Eakl <€ for m2nz2N. If I a ~ converges then

lim {an} =0 . A series of nonnegative terms converges if and only if the




( partial sums are bounded.

THEOREM 3.6, If |an| < ¢ eventually, and L c_  converges, then I a
converges. If a =2 d 20 eventually, and T d, diverges, then Z a_

© .

diverges. If 0 <x <1, then Tx"=1/1 -x . If x 21, the series
n=0

diverges.

[--}
THEOREM 3.7. Suppose a, 2 a, 2 43 2 euu 2 0 . Then Ean converges if
o - n=1
and only if X 2ka x converges, The series T n P converges if p > 1
k=0 2
and diverges if p <1 .

It is easy to see that T 1/n! converges by the comparison test.

Let 'e be its wvalue.,
THEOREM 3.8. lim(l + 1/n) =e . e is irrational.

( THEOREM 3.9. Given Zan » but o= lim supla‘tnlllrl . Then if a< 1, Ean

converges. If o> 1, Za diverges. Put B = lim sup |an+1/a . If

ol
B<1,Z o, converges. If |an+1/an| 2 1 eventually, T a diverges.

THEOREM 3.10, For any sequence {cn] of positive numbers, lim inf (e, +1/cn)
. 1/n 1/n
< lim 1nf(cn) , lim sup (cn) < 1lim sup(cn+1/cn) .

THEOREM 3.11. Given the power series T cnzn , put o= lim suplcn|1/n,
R=1/ax . (If oa=0, R=+x; if o=+o, R=0) , Then Z)cnzn con-

verges if |z| <R , and diverges if |z| >R .

THEOREM 3.12, Suppose the partial sums of % an form a bounded sequence,
b0 =z bl 2 .es, and 1lim bn =0, Then X anbn converges. Suppose

|c1‘ > |c2| 2 |c3| > eees 1 20,0, <0, limc =0 . Then Le,

|
?
|
|
|
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converges. Suppose X cnzrl has radius of convergence 1, and
9 2 ¢y 2 c, 2 eeey lim cn =0, Then ¥ cnzn converges at every point
on the circle |z| =1 , except possibly z =1 ,

The series L a  converges absolutely if the series E‘an‘ converges.

THEOREM 3.13. If I a converges vab'solutely, z a ~converges. If Ean= A,
Z}bn= B , then E(an+bn) = A+ B and Ecan= cA .,
n

Given Za , I b, ,put ¢ = kfo ab , »and call T ¢, the product
of the two given series.
THEOREM 3.14. If T a  converges absolutely, Z bn converges, then the
product series converges to T anE bn . If T a is not absolutely con-
vergent, and o< 8 (in the extended reals), where each a real, Ehen

there exists a rearrangement I at'l with partial sums sr'z , such that

liminfsr'l=a,1imsupst'l=ﬁ.

THEOREM 3.15. Z a, convergesvabsolutely if and only if all rearrangements
converge to the same sum. If all rearrangements of I a  converge, they

converge to the same sum.

IV. Continuity.
We write f: A+ B if ACR®, BcR™, (Vx € A) (f(x) € B), and

(Vx) (D(£(x)) #x €A) . We say f is continuous at x € A just in case
(Fe> 0@ >0)(vy €M) (ly - x| <6+ |£@) - f®| <€ . If £ is

continuous at every point of A , then f is said to be continuous (on A).

THEOREM 4.1. Let f: A+ B, g: B+C, x €A, If f is continuous at x




2

~

and g is continuous at f£(x) , then feg 1is continuous at x . The
range of a continuous function on a union of a sequence of compacta exists.
The range of a continuous function on a compactum is a compaci:um. Every
continuous function on a compactum into R assumes a maximum value. Every
continuous one-one function on a separable domain has an inverse; if the
domain is a compactum, then thé inverse is continuous.

Let f: A+ B . Then f is said to be uniformly continuous just in

case (Ve > 0) (S > 0) (Vx,y € A) (|x - y| <6+ |£Gx) - £(y) | < €) .

THEOREM 4.2. A continuous function on a compactum is uniformly continuous.
Continuous functions on R map intervals onto intervals. Let fl,'...,fk
be real functions on A — R”. Then f£(x) = (fl (x),...,-fk(x)) is continuous

if and only if each fl""’fk is continuous.

THEOREM 4.3, The set of discontinuities of a momotonic function is
countable, and may be any prescribed countable set. Let A CR" be
separable and let B C A be a countable dense subset of A « Then any
uniformly coﬁtinuous £: B -D;Rn extends uniquely to a uniformly continuous

g: A+R" .,

V. Differentiation,
Let £: [a,b] »R . For any x € [a,b] form the quotient
ft) - £(x) ) '
p(t) = » @< t<b, t#x), and define £'(x) = lim ¢(t) ,

t - x t+x
provided this limit exists.

THEOREM 5.1. Let f: [a,b] R be continuous. Then the function g given

by g() = £'(x) if f'(x) exists; undefined o.w. exists. Suppose

T T T e N S R TR T N A S e =T



10

£'(x), g'(x) exist. Then f is continuous at x . Also Ff+)'x =
£'x) +g'(x), (£8)"(x) = £'(x)g(x) + £(x)g'(x), (f/g)'(x) =
EXE'x) - g'(x) £(x)
2
g (x)

» where in the latter, g(x) # 0 .

THEOREM 5.2, Let f£f: [a,b] = [ec,d] be continuous, f£'(x) exists, and
g: [c,d] * R, g'(f(x)) exists. If h(t) = g(f(t)) for astsb, then
W@ =g (EE))E ) .

THEOREM 5.3. Let f£: [a,b] » R. If f has a local maximum at x € (a,b)
and f'(x) exists, then f'(x) =0 . If £ and g are continuous real
functions on [a,b] which are differentiable in (a,b) , then there is a

point x € (a,b) at which (f(b) - £(a))g"(x) = (g(b) - g(a))f'(x) . |

THEOREM 5.4. Suppose f is a real differentiable function on [a,b] and
suppose f'(a) <A < £'(b) . Then there is a point x € (a,b) such that

') =\ .

THEOREM 5.5. Suppose f: [a,b] +R, {gk} is a sequence of functions

gy’ [a,b] *R , and assume n > 0, -1 is continuous, and gk+1(x) = gl:(x) R
for all x € [a,b], k €n - 1, gn(x) = gl'l_l(x)‘ for all x € (a,b) . Let

o,B be distinct points of [a,b] . Then there is a vpoint x € (0,8 such

n-1 g (a) g _ (x)
that £8) = T ——@ - " + 2 - o .

n!

Let f: [a,b] —DRk . We let £'(x) be such that 1lim i—‘%{%&-f'(x)
t*x

THEOREM 5.6. Let £: [a,b] -ka . Then f£f'(x) = (xl,...,x.k) if and only

if f]'_(x) =%, fé(x) = xz,...,fli(x) =x .

. k
THEOREM 5.7. Suppose f is a continuous mapping of [a,b] into R and

\;o.

:;%
i
%
@i
|
|
;i
|
*
;3
|

i
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(;? f is differentiable in (a,b) . Then there is an x € (a,b) such that
|£®) - £@)] = b - a)|f' )] .

THEOREM 5.8. Suppose f is differentiable on an interval, £'(x) > 0

Then f 1is strictly increasing, and has a differentiable inverse function

g . Moreover, g'(f(x)) = 1/£'(x) .

VI. The Riemann Integral.
Fix f: [a,b] *R . A partition P is a finite sequence

Xg S %X S ... % X .15 x = b . A P-sum is any number of the form

a =
n-1 .
k;Bof(yk) (xk+1 - xk) , where X Sy S Xl * We write mesh(P) <6 if all

b b
X4l ~ % <0 . We write _ff = Iaf = J‘af(x)dx = o just in case for all
€ >0 there isa 06> 0 such that for all P-sums B with mesh(P) < § ,
we have |B - a| <€ . 1If [f=a for some o, we say f is Riemann

integrable over [a,b] , and we write f € R([a,b]) .

THEOREM 6.1. If f 1is continuous on [a,b] , or if f is monotonic on
[a,b] , then f €R([a,b]) . If £,,f, € R([a,b]) , then jfl + £, =

b c c
jfl + jfz, fef = ¢ff, jaf + jbf = Iaf - If £, < £, then jfl < jfz .
If |f| =M then ”f‘ <M(b-a). If m<f<M, ¢ is continuous on

[m,M], and h(x) = ¢(f(x)) on [a,b] , theﬁ ¢of € R([a,b]) .

THEOREM 6.2. If f,g € R([a,b]) then fg,|£| € R([a,b]), and |f£] = [l£] .
x .

If f € R([a,b]), then the function F(x) = ‘r f(t)dt exists, and F is
a

continuous on [a,b] . Furthermore, if f is continuous at xq € [a,b] ,

then F is differentiable at Xy > and F'(xo) = f(xo) .

THEOREM 6.3. If f € R([a,b]) and ‘if there is a differentiable function

il it R
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. b
C:‘ F on [a,b] such that F' = f, then I f(x)dx = F(b) - F(a) .
a
Let fl""’fk be real functions on [a,b] , and let f = (fl""’fk) .

Define £ € A([a,b]) just in case each £y €R([a,b]), and [f = ([£,...,[5) .

THEOREM 6.4. If £,F: [a,b] +R", 1f £ € R([a,b]), and 1f F' = £, then

b

J£)at = ¥®) - F@) . If £€R([a,b]) , then |[£] = [|£] .

a

Let f: [a,b] -blgk - For any partition P of [a,b], let V(£,P)
n-1 :

be kgzlf(xk+1 - f(xk)| - We say f is of bounded variation if the V(£,P)

have a least upper bound.

THEOREM 6.5. The continuous functions of bounded variation into R are
precisely the differences between monotonically increasing functions. If

fl"“’fk are of bounded variation into R , then (fl,...,fk) is of

bounded variation. The continuous functions of bounded ﬁariétion are

<;3 Precisely those whose coordinate functions are differences of continuous

monotone increasing functions.

THEOREM 6;6. If f is continuous and real, then there is an x € (a,b)
such that jbf = £(x)(b - a) .

A contiiuous mapping <y of an interval [a,b] dinto ]ﬂk is calléd a
curve in ZRk « We call vy rectifiable 1f 5 is of bounded variation, and

we define the length of v to be the least upper bound to all V(y,P) .

THEOREM 6.7. 1If y' 1is continuous on [a,b] , then vy is rectifiable

b
and has length f [y (e)|at .
a

VII. Sequences and Series of Functions;

We will confine attention to functions from ZRk into T .
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( i A sequence of functions is given by a binary function £ on R* 5
where fn is given by fn(x) ~ f(n,x) . In this section, by a sequence
{fn} of functioné » We mean a sequence of functions fn: Rk -T.
We say that a sequence of functions {fn} converges uniformly on E

to a function f if for all € > 0 there is an N such that n> N

implies |fn(x) - f(x)| <€, forall x€E . Similarly for an(x) .

THEOREM f.l. {fn} converges uniformly on E if and only if (¥Ye¢ > 0)
(@N) (Vm,n > W) (fx € E) (|£,(x) - £ )| < e . 1If £, | =M, a1l

n,x € E, then Efn converges uniformly on E if 3 Mn converges. If
fn 2 f uniformly on E , and each fn is continuous on E , then f 1is
continuous on E . If fn = fn+1 on a compactum E , fn +f on E, and

fn’f are continuous on E , then fn + £ uniformly on E . j

( THEOREM 7.2. Suppose fn are Riemann integrable on [a,b], and fn -+ f

uniformly on [a,b] . Then f is Riemann integrable on [a,b], and

% fn(x),

b b
J‘ f= limj‘ f . If each f 1is Riemann integrable, and f£(x) =
a n n b n=1

n+e a . b
the series converging uniformly on [a,b], then f f = EI fn .
a n a

THEOREM 7.3. Suppose {fn} is a sequence of functions, differentiable

on [a,b] and such that {fn(xo)} converges for some point X, on [a,b] .
1f {ft'l} converges uniformly on [a,b] , then {fn} converges uniformly
on [a,b] to a function f , and £'(x) = lim f'(x) . There exists a

, e
continuous f: R +R which is nowhere differentiable.

{fn} is said to be equicontinuous on E C:Rk if (Ve > 0) (@6 > 0)

(7x,y €B)(M) |x - y| <84 |f ) - £ | <0 .

AP e
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THEOREM 7.4, Let K be a compactum. If {fn} is a uniformly convergent
sequence of continuous functions on k , then {fn} is equicontinuous. If
{fn} is pointwise bounded and equicontinuous on K , then {fn} contains
a uniformly convei'gent subsequence, and {fn} is uniformly bounded in K.

A family of functions is a binary function £ on R* s together with.
an index set A ; interpreted as {fx:‘ x € A} , where fx(y) ~ f(x,y) .

A family of complex functions defined on a set E 1is called an
algebra if it isv closed under sums, products, and complex scalar multiples.
A real algebra is a family of real functions defined on a set E , closed

under sums, products, and real scalar multiples.

THEOREM 7.5. Let E be a compactum in Rk , and let (G be any real
algebra of continuous functions on E such that 1) for all x € E there
is an n with _fn(x) #0 ii) for all x#y in E there is an n
with fn(x) # fn(y) . Then for all continuous f: E*R and € > 0 ,

there is an n such that (¥x € E) (|£(x) - fn(x)| <e€ .

THEOREM 7.6. Let E be a compactum in ]Rk , and let G be any complex
algebra of continuous functions on E such that 1) for all x € E there
is an n with fn(x) #0 ii) for all x#y in E there is an n with

£(x) # £ (y) iil) 1if £+gl €G then £ - gi €G . Then the conclusion

of theorem 7.5 holds.

VIII. Further Topics in the Theory of Series.

We begin with the section on the exponential and logarithmic functions.

n

. o
We use x,y for reals, z,w for complex numbers. Define E(z) = z -i-.' .
n=0 ~°

g b
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(?i THEOREM 8.1. E(x) = e . & is coﬁtinuous and differentiable for all x .
(€)' =", & is strictly incréasing, f>0. &V exey, & + +o
as x < +o, 40 as x4 -0, lim xe ¥ = 0, for every n .
X + )
THEOREM 8.2, Let L:R 4R be the inverse of E:R +R . Then
L'(y) =1l/y , for y> 0. Also L(y) = IZ %F s, y>0. ﬁ(xy) = L(x) + L(y),
7 = L) , for x>0. @)'= yxy-l . Also, lim x Jlog x = 0 , for

X
y>0.

Define C(x) = L(E(x) + E(-ix)), S@) = sS(E(x) - E(-1x) .

THEOREM 8.3. C(x), S(x) are real. E(ix) = C(®) + 18(x) . |E(ix)| = 1 .
CO) =1,8(00)=0. Cc'(x) =-5(x),8'(x) = C(x) . There is a smallest
positive number x such that C(x) =0 .

We write 1 for 2x .

THEOREM 8.4. C(w/2) =0, s@/2) =1, E@i/2) = i, E(ri) = -1, E(2ri) = 1,

E(z + 2qi) = E(2) ;

THEOREM 8.5. The function E 1is periodic with period 2gi . The functions
C,S5 are periodic, with period 2 . If 0< t <2y , then E(it) # 1 .

If ]zl = 1, there is a unique t € [ 0,2¢) with E(it) = z s Let

v(t) = E(@{t) , 0<st <2y . Then Y 1is a simple closed curve whose range

is the unit circle in the plane.j Its length is 2 ,

THEOREM 8.6. Suppose ays-++,a ~are complex numbers, n = 1, a # 0,

n
P(z) = }ODanzk « Then P(z) = 0 for some complex number z .
A trigonometric polynomial is a finite sum of the term f(x)
N’ ' ‘
f(x) = ag +-ngi(ancosnx4-bnsinnx), X real, ao,...,aN,bl,...,bN are |
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. N
( ‘ complex, This can also be written in the forms 3 cneinx .
~N
-4
A trigonometric series is a series of the form Zo)ocneinx » X real,
where the Nth partial sum is as above. If f € R([-m,m]) , the numbers

c = -2-11—'_ Jﬁ f(x)e-imxdx are called the Fourier coefficients of f , and

§ c einx is called the Fourier series of f . (We can prove the exis-
tence of {cn} as a sequence).

Let {¢} , n> 0, be a sequence of complex functions on [a,b] ,
such that Ibqsn(x)a:(;)_dx =0, n#¥m. Then {0, } 1is called orthogonal
on [a,b] . aIf in addition, J‘ |¢ (x)| dx = 1 for all n, {¢ } is said
to be orthonormal. » | _

If {¢n}‘ is orthonormal on [a,b] gnd if e, = ‘r:f(t)%-(t_)-dt s We
call c, the nth Fourier coefficient of f relative to {¢n} . We write

-] ' .
fx) ~ 2 cn¢n(x) and call this the Fourier series of f (relative to
1

{8, 1)

N

THEOREM 8.7. Let {¢ } be orthonormal on [a,b] . Let s (x) E c & ), [
m=1 .’
t (x) = mgl‘qu)m(x) . Then J‘ |£ - s | dx s‘f |£ - ¢ | dx , and equality

holds if and only if -j/m = cm . Also n}jl‘cn| < ‘fa‘f(x)|2dx .

L o3 ikx __1 &
Let Dn(x) --f:‘le , Kn(x) = 1 (Z)JDm(x)

sin(m + Hx = 1
THEOREM 8.8. For n = 0 we have D (x) = Szgn?xIZ) X R K (x) = )

l-cos(n + 1)x ___ = . o,
1 - cosx ' o Jﬂ D, (x)dx Jﬂ k (x)dx = 1 . Also K (x)

K (x) s - +1)(1_c086), <o<6s| |51r)

THEOREM 8.9. Let f be Riemann integrable over [-m,m] . Then

T R IR R e
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s()=s(f‘x)=§ceimx='l-"f(-t)D(tdt If 0‘<6<
n'¥ n? a 2n f_" x n yde . T , then

- T
lim ([ + [ )£ - £)D_(t)dt = 0 .
n
nHd® - ) _

THEOREM 8.10. If f 1is continuous and if {o,} 1is the sequence of arith-
metic means of the partial sums of the Fourier series for f , then

lim o-n(x) = f(x) , uniformly for all x in [-g,y] . If two continuous
n-» w . ]

functions have the same Fourier series, then they are equal in [-g,r] .
THEOREM 8.11. Suppose f and g are continuous and have period 2r,

T
with Fourier coefficients c¢_, ¥ . Then limj‘ ‘f -8 |2dx =0,
n n n-re =T n

Ry =k g Tle|?=L [ |£e|%
ey = oy J“_ﬂ ©g@), T ley|” = 5 j’_ﬂl (o) |ex

THEOREM 8.12. Suppose |f(y) - f(x)| < M|y - x| » for some fixed M,x,
and all ‘y - x‘ < 0 . Then the Fourier series of f converges to £(x) .
Suppose f is of bounded variation on [-m,r] . If for some x ,

s = -;'—[f(x+) + £(x~)] , then the Fourier series of f converges to s at x.

IX. Functions of Several Variables.

All sequences of elements of Rk used here are to be finite and have

distinct terms, unless otherwise mentioned.

THEOREM 9.1. Let Xy geeasX be a sequence -in Rk . Then the set

k .
span(x;,...,x ) = {y €R: @cyseesse, €ER)(exy + eow +cx = y)} exists,
and is sequentially closed.

A vector space is just a subset of some R.k of the form Span(xl,.-..,xn) .

' k . . =
We say KyseeesX ER™ is :f.ndependen.t if 1%y + e + c X, 0 implies

c1=...=cn=0.
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( THEOREM 9'.2. If two independent sequenées' in 'Rk have the same span,
they have the same length. Every sequence in ]Rk has an ihdependent sub~
sequence with the same span. Any independent sequence from a vector space
can be extended to an independent sequence whose span is the whole space.

A basis for a vector space is an independent spanning sequence. Its
length is called the dimension of the vectér space.
Let f: V -DRk s where V is a vector space. Then f is said to be

linear if f(x +y) = f(x) + f(y), f(’cx) = cf(x)

THEOREM 9.3. The range of a linear function f: V -bRk is a vector space
of dimension at most that of V . Also, f is one-bne if and only if the
range has the same dimension as V .

We write A € L(X,Y) to indicate that A 1is a linear map from the

< vector space X into the vector space Y ; and LX) for L(X,X) .

THEOREM 9.4. If f£: V-4 W is one-one and linear, so is f-]': WV . If

Ac L(]Rn,Rm) , then the norm. HAH exists, given as the least upper bound

of all numbers |Ax| , where x ranges over all vectors in R® with

i e R e T e e

|x| s 1. Also, A is uniformly continuous. If A,B € L(Rn,l{m) » then

fla + 8l < Jlall +12ll, lleall = lelllall . Atso [Bea]l = [|5]liall

THEOREM 9.5. If A € L(R™, A is one-one, ||oA™Y| = 1/, B € L(RY , and §%
||B - AH <@, then B is one-one. If A € L(R™) is one-one, then there
is an €> 0 such that for all B € L(R™, if ||A - B < ¢, then B 1is

one-one.

i
Let ECR" be open, £: E#R" , x €E . If there exists A € LR, E;

such that 1lim -L& th) - £() - Ah‘ = 0 , then we say f 1is differentiable
h=0 ‘

b

A i e
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at x , and we write f'(x) =A . If f is differentiable at every x € E s

f is differentiable in E .

THEOREM 9.6. The above definition agrees with the previous definition

for n=1. f is continuous at every point at which f is differentiable.
£f' is unique. Let ECR" is open, f: E +R" s £ 1is differentiable at

X € E, g maps an open set containing £(E) into ]R.k ,and g 1is
differentiable at f(xo) + Then the mapping F = gof 1is differentiable

at x, , and F'(x,) = g'(f(xo))f'(xo) .

THEOREM 9.7. Let f: E -b]Rm, E C:Rn, E open, £ continuous. Then the
function g(x,y) exists, where gx,y) ~ £'(x)(y) .

Suppose f maps an open set E cr® into R.m and has components
£15000, o If {el,...,en} is the standard basis of R" , we define

fi(x +~"t*ei) - fj (x)
t

Djfi (x) = lim provided the limit exists.

t-+0

THEOREM 9.8. Let f: E -ORm, E CRn, E open, f continuous. Then for

each 1<i<m 1< jsn, the partial function Djfi on E exists,

given by (Djfi) (x) :Djfi(x) . If f£f'(x) exists, then f£f'(x) (ei) G) =
Djfi(x) .

We say that f € Cl(E) if toevery x € E and € > 0 there is a

6> 0 such that |(f'(y) - £'&®))|< € if y €E and ly - x| <6.

THEOREM 9.8. Suppose f maps open ECR® into K" . Then f € C'(B)

if and only if the partial derivatives Djfi are continuous on E .

THEOREM 9.9, Suppose f is a C1 mapping of an open set E cr" into

]R.n, f'(a) is one-one for some a € E ,and b= f(@) . Then (a) there

|
|
|
i
|
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exist open sets U and V in R" such that a €U, bevV, £ is one-
oneon U, f(U =V . (b) Let g be the inverse of f restricted to

U. Then g € Cl(V) » and g'(y) 1is the inverse of f'(g(y)) .

THEOREM 9.10. Suppose f is a Cl-mapping of an open set E CIRn+m into

R". Suppose (a,b) €E , f(a,b) =0, A = £'(a,b), and (Vh) (A(h,0) =
0 +h =0) . Then there is a neighborhood W of b, Wwcr® 5 and a unique

function g € ¢'(W) , with values in R" , such that g(b) = a and

f(g@¥),y) =0, for y €W .

The rank of a linear map is the dimension of its range.

THEOREM 9.11. Suppose p,q,r -are nonnegative integers, X and Y are
vector spaces, dim X =r +p, dimY=1r +q, and A is a linear transfor-

mation of X into Y , of rank r . Then there are vector spaces Xl,X2

in X,Yl,Y2 in Y , of rank r , such that

(a) every x € X has a unique representation of the form x = x, + x

1 2’

with X, € X5 X, € X, 3

(b) every y € Y has a unique representation of the form y=y + Y5
with ¥y € Y5 9, €Y,

(c) sz = 0 for every X, € X, ;

(d) the restriction of A to X1 is a one-one mapping of X1 onto

-t
we

(e) dim X1 = dim Y1 =r .

THEOREM 9.12. Suppose X =:Rr+p, Y =1Rr+q, F is a C-mapping of an open

set ECX into Y , and F'(x) has rank r for every x € E . Fix

a €E , put A =TF'(a) , choose X,,%y,Y;,Y, as in Theorem 9.11, and define
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F1oFp by F() = P (x) + Fy(x), all x € E, where F,(x) € Y, F,(x) €Y, .
Then there is an open set U in X such that a € U, UCE, and (a) F1 (i)
is an open set in Y1 s (b) to each ¥y € F1 (U) there exists precisely
one y, € Y2 such that ¥, + 9, € F(U) .

If f maps an open set E cr® into R" » and for some j s

e;*f(x) = e,;'x for all i# j, x €E , then we say f is primitive.

THEOREM 9.13. Suppose f is a Cl-mapping of an open set E CR" into

]Rn, 0 €E, £(0) = 0, £'(0) is one-one. Then there is a neighborhood of
. n R . _

0 in R in which a representation f(x) = gn(Bngn-l(“’gl(le))) is

valid. Here each 8 is a primitive Cl-mapping in some neighborhood of

o, gk(O) = 0 , and each Bk is a linear map on R® which either is the

identity or merely interchanges some pair of coordinates.

n
Let A be a finite set, £f: AR . We define I f to be I f(g(k)) s
, A k=0

where g is chosen to be a one-one function from {i: i < n} oﬁtb A

It can be showﬁ that this sum is independent of the choice of g . In
addition, we can prove that the set of all functions on a finite set is
finite. With these preliminaries, we may define the determinant of a linear
operator A on Rn . Fix A GL(]Rn) . Let a(i,j) be A(ej) (i) , for
0O<i, j€sn-1. If jl,...,;]n is an ordered n-tuple of integérs,

define s(jl,...,jn) = g sgn(jp - jq) » where sgnx =1 if x> 0,

sgn x = -1 if x<O0, Is,gan = 0 . Define det(d) =

z s(jl,...,jn)a(l,jl)a(Z,jz)...a(n,jn) , where the sum is over all ordered

n-tuples (jl""’jn) , where jj<n.

THEOREM 9.14. det(BcA) = det(B)det(A) . A 1is one-one if and only if
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det(A) # 0 . Det is continuous, in the sense that (VA € L(]Rn)) (Ve > 0)

@6 > 0) (78 € L(R™) (A - B]| < 6 = |deta) - det(B)| <€) .

We omit the treatment of integration on p, 204-208 of Rudin, and
instead use the treatment in Section 24 of Bartle, The Elements of Real
Analysis.

Let DcRP bea compactum, f: D +RY be bounded. Let I be a
closed rectangle in RP enclosing D . Define partitions and mesh analo-
gbusly as in the l-dimensional case. A Riemann sum S(P;f) is a sum of
the form }t'l.}f(xk)A(Jk) , where X is any point in the subinterval J.

k 2

k=1

and A(Jk) is the volume of Jk . An element L of RY is defined to

be the Riemann integral j‘ f 1if, for all €> 0 there is a 6> 0 such
D ,

that |S(P;f) - L| <€ for all P with mesh(P) <6 . If f(xk) is not

defined, it is taken to be O .

THEOREM 9.15. The function f is integrable on D if and only if (¥e > 0)
@6 > 0) (|S(P3E) - S(By36)| <€ if mesh (P, ), mesh(B,) < §) .
THEOREM 9.16. If [ £, [ g exists, then [ (af + bg) = al £+ bfg. If
D D D D D
£f=20, J‘f exists, then J‘fZO.
D D

A set A CRP has zero content if for all ¢ > 0 there is a finite

sequence of closed rectangles covering A of total volume < ¢ .

THEOREM 9.17. Suppose that f 1is defined on an interval J of RP .
If £ is continuous except on a subset E of J which has zero content,
then f 1s integrable over J .

If DcRP » @ boundary point of D 1is a point every neighborhood of

B O L e R BRI T A e

R A
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which contains points both of D and its complement. The boundary of D

is the set of all boundary points (if it exists).

THEOREM 9.18. The boundary B of any compactum D (in fact sequentially
closed or open set) exists. Let D cRP’ be a compactum, and let f be
continuous on D . If the boundary of D has zero content, then f is
integrable over D .

We say the compactum D has content iff the boundary of D has

content zero., We define A(D) = J' 1.
D

THEOREM 9.19. Let D be a compactum in RP  which has content and let

Dl,D2 be compacta with D = Dl U D2,f-~D1 n D2 of zero content. If g is

g +I g.
1 %
THEOREM 9.20. Let D be a compactum in rP which has content. Let £

integrable over D .then g 1is integrable over D;,D, , and j‘g = j’
D D

be integrable over D such that |f(x)_| <M for x in D . Then
U‘ f| < MA(D) . In particular, if f is real-valued and m < f(x) <M
D
for x in D, then mA(D) < J‘ f<MA(D) . If D is a compactum that is
D .

pathwise connected in RP with content, and if f is continuous on D

with values in R , then there is a point p in D such that

[ £=£p@A®D) .
D
THEOREM 9.21., Let £ be integrable over the rectangle D C]Rp".q with

values in R , and suppose that, for each value x in the rectangle

1
Then F 1is integrable on E, , and j‘ f= J' F .
D E,
2

E, cRP , the integral F(x) = J‘E f(x,y)dy exists, where D = Ele2 .
2

THEOREM 9.22. If @ € L(R’) and if K 1is a cube in RP , then the set

©(K) has content and A(p(K)) = |J(p|A(K) . If @€ Cl on an open set G

bi
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in RP? to RrP s and if D 1is a compactum lying in G which has content

zero, then ¢©(D) has content zefo.

. THEOREM 9.23. Let © € Cl on an open set G C rP to rP s, whose Jacobian
J(p does not vanish on G . If D is a compactum lying in G with content,
then (D) is a compactum with content.

THEOREM 9.24. Suppose © € C1 on an open set G and that JQD does not

vanish on G . If D 4is a compactum lying in G » € >0 , there exists

6 > 0 such that if K is a cube with ceﬁter x in D and side lengt

- - P < AloX P '
less than & , then |J‘p(x)|(1 of < —{fésll < |J(p(x)|(1 + e .

THEOREM 9.25. Suppose that Q€ C1 on an open subset G of RrP with
values in RP and that the Jacobian J¢p does not vanish on G . If D
is a compactum lying in G which has content and if f ig continuous on

©(D) to R , then (D) has content and J' f ==J' (£ |3l .
. ©(D) Y

X. Miscellaneous.
THEOREM 10.1. Let {fn} be a sequence of continuous functioms on [a,b] ’

and suppose fn(x) <B. If fn »+ f and f is continuous, then
b

b
Je=1im [ £ .
0 a
THEOREM 10.2. The intersection of every sequence of dense sequentially
open subsets of RP  is dense in RP .

We call a set E CR explicitly of measure zero if there is a
double sequence Aij of open intervals such that each U Aij covers E ,

]

and for each i , the sum of the lengths of the Ay is < 2™,

THEOREM 10.3, Let f be a monotone function on [a,b] . Then {x: f is

not differentiable at x} is explicitly of measure zero.

el
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Theorems of Strength PA

The theorems below are provable in R.V1 + sequential choice, which
reads (Vn) (o) (f(n,0) = 0) - (Eg) (¥n) (£(n,g(n)) = 0) , and is equi-

consistent with ©PA .

THEOREM 1. Every limit point x of A is the limit of a sequence of

elements from A other than x .

THEOREM 2. If a set contains arbitrarilyllarge finite subsets, then it

contains a denumerable subsét.

THEOREM 3. Every nhbd of a limit point of A contains a denumerable sub-

set from A .

THEOREM 4. Every sequence of open sets covering a compact set has an

initial segment covering it also.,
THEOREM 5. A continuous function on a compact set is uniformly continuous.

THEOREM 6. If £, 2 fn+1 on a compact set E , £ -+ f on E, and fn’f

are continuous on E , then fn <+ f£f uniformly on E .

THEOREM 7. Let K be a compact set., If {fn} is a uniformly convergent

sequence of continuous functions on K , then {fn} is equicontinuous.

THEOREM 8. If f: Ik +R, f is continuous a.e., then f is Riemamn

integrable.

THEOREM 9. If A CB, A compact, B open, then there is a finite sequence

of open rectangles from B which cover A .

it sl L

B e
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(i In Theorem 8, cont. a. e. means that for each € > 0 there is a

sequence of open rectangles, the sum of whose volumes is < ¢ » such that

the function is continuous off of these rectangles.

»
ti
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( ‘ Theorems of Strength ATR(< wa

The theorems below are equiconsistent with ATR K afo) when added to
RV, , and are provable in RV, + dependent choice, which is

(Vo) (EB) (£(auB) = 0) + (Vo) (Ag) (g(0) = & & (V) (f(gm),g(n + 1)) =0)) ,

and is also equiconsistent with ATR (K ufu) .

THEOREM 1. A set is infinite if and only if it contains a denumerable

subset.

THEOREM 2. A set is infinite if and only if it centains arbitrarily large

finite subsets.

THEOREM 3. If A CﬁRn_ is closed under. addition and scalar multiplication,

then A 1is a vector space.

THEOREM 4. The finite union of finite sets is finite.

R I P
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Theorems of Stremgth ATR(< Ib), ATR

The following theorems are equiconsistent with ATR(< Ib) and

when added to RV1 .
THEOREM 1. Every one-one function has an inverse.
THEOREM 2. Every graph determines a function,

THEOREM 3. Countable union of countable sets is countable.

THEOREM 4. The countable intersection of dense open subsets of R

dense,

B ks SRe R Ll

ATR
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( Theorems of Strength ID(< w)

The theorems below are eqﬁiconsistent with ID(K «) when added to

R'Vl .
THEOREM 1. Every nonempty bounded set of reals has a least upper bound.
THEOREM 2. Every open set is sequentially open.,

THEOREM 3. Every bounded closed set of reals has a least upper bound,

THEOREM 4. Every indexed family of open sets covering the unit interval

contains a finite subcover.

THEOREM 5. The set of interior points of every set exists.

TR




