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Abstract. We begin with a discussion of various forms of G1 put 
into the following general form: If a first theory satisfies one 
or more adequacy conditions then it has one or more wildness 
properties. We give a list of familiar adequacy conditions and 
wildness properties. We propose an investigation into the myriad 
forms of G1 in this framework. Some such forms of G1 will be 
well known, some well known to be false, and some yet to be 
investigated. We expect many will suggest further 
investigations. We then discuss various new "no interpretation" 
forms of G2. These are fundamental model theoretic formulations 
of G2 in the following sense. The proofs of them from G2 are 
entirely straightforward applications of G2 and Gödel 
Completeness. The derivation of G2 from them is also 
straightforward and does not rely on any of the ingredients in 
the known proofs of G2. We also give corresponding fundamental 
model theoretic characterizations of the consistency statement 
Con(T) for finitely axiomatized T. We then discuss G2/1-con 
which is G2 with the strengthened hypothesis of 1-consistency 
and the weakened conclusion of the unprovability of 1-
consistency. We give the long since known, if not well known, 
proof of G2/1-Con which is much simpler than the proof of G2. It 
is best proved by what we call "transparent diagonalization" 
which is the kind of informative diagonalization used by Cantor 
in his proof that there are uncountably many infinite sequences 
of 0’s and 1’s. A by product of this proof is the association of 
a crucially important set of objects to T that gets properly 
expanded by T + 1-Con(T) - namely the provably recursive 
functions. Since so much of the philosophical and foundational 
import of G2 is already present with G2/1-Con, we propose that 
G2/1-con be revisited with the same deep intensity as has G2. We 
call for a proof of G2 by transparent diagonalization. We then 
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present two proofs of G2. The first proof is a proof using what 
we call explicit transparent diagonalization. We don’t view the 
explicitness there as rising to the level of transparency so we 
regard that finding a proof of G2 using transparent 
diagonalization (as we have for G2/1-con) as open. The second 
proof puts all of the diagonalization related ideas into a basic 
familiar situation in recursion theory that is a particularly 
transparent diagonalization of its own. This is the construction 
of what we call a remarkable set and an EFA effectively 
remarkable set. Then we take any EFA effectively remarkable set 
and apply its remarkability to a naturally closely associated 
set and derive G2 now without any semblance of diagonalization. 
We have retained [Fr21] in the list of references, because there 
are ideas we don’t discuss here that may have some future 
importance.  
 
1. G1. Gödel's first incompleteness theorem. 
2. G2. Gödel's second incompleteness theorem.  
   2.1. No Interpretation Versions.  
   2.2. Equivalences with Classical G2. 
   2.3. Characterization of Con Statements. 
3. Proof of G2/1-Con by transparent diagonalization.  
4. Proof of G2 by explicit transparent diagonalization.  
5. Proof of G2 by remarkable sets.  
 
1. G1. GÖDEL'S FIRST INCOMPLETENESS THEOREM  
 
By a theory we will usually mean a theory T in the usual PC(=), 
(predicate calculus with equality), which comes with a 
designated language (of constant, relation, and function 
symbols). Sometimes it is important to use many sorted logic.  
 
The most common way to formulate G1 is to assert that any theory 
T with an "adequacy condition" has a "wildness property". There 
are several important kinds of adequacy conditions and wildness 
properties. 
 
Common adequacy conditions on a theory T (with multiple 
choices): 
a. T is consistent. 
b. T is (finitely axiomatized, axiomatized by finitely many 
axiom schemes, recursively axiomatized).  
c. T interprets a given theory K, (finitely axiomatized, 
axiomatized by finitely many axiom schemes, recursively 
axiomatized). 
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d. T is consistent with an interpretation of a given theory K, 
in the same language as T, (finitely axiomatized, axiomatized by 
finitely many axiom schemes, recursively axiomatized). 
e. The language of T is or extends a given language, and T 
proves a certain theory K (finitely axiomatized, axiomatized by 
finitely many axiom schemes, recursively axiomatized).   
 
Common wildness properties of a theory T (with multiple 
choices): 
A. T is incomplete in the sense that there is a sentence in the 
language of T that is neither provable nor refutable in T. 
B. T is essentially incomplete in the sense that no consistent 
extension of T by finitely many sentences is complete.  
C. The set of theorems of (T, any finite extension of T, any 
recursive extension of T) is (complete r.e., not recursive, not 
primitive recursive, not elementary recursive, not polytime 
computable).   
D. The set of theorems of T and the set of refutables of T are 
recursively inseparable.  
E. Assuming the language of T is or extends a given language, A-
D restricted to sentences in a given sublanguage.  
 
There are likely some other interesting adequacy conditions and 
wildness properties that should be considered in such a 
systematic investigation. 
 
TEMPLATE FOR G1. Let T obey a chosen one or more (parts) of a-e. 
Then T has a chosen one or more (parts) of properties A-E. 
 
SYSTEMATIC G1 INVESTIGATION. Determine relationships between 
various instances of the Template for G1, including their 
correctness for various K.  
 
The most elemental form of G1 involving only the most 
rudimentary of notions, is arguably the following. 
 
PURE G1 (finite). There is a consistent finitely axiomatized 
theory K such that any consistent finitely axiomatized theory T 
interpreting K is incomplete.  
 
Robinson's Q is most commonly used for pure G1, as well as its 
many natural "variants" in the sense of being mutually 
interpretable with Q. There is no known natural system K for 
this pure G1 that does not interpret Q.  
 
PURE G1 (schematic). There is a consistent theory K with 
finitely many axiom schemes, such that any consistent theory T 
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axiomatized with finitely many axiom schemes, interpreting K, is 
incomplete.  
 
Here there is a natural infinitely axiomatized system R, 
interpretable in Q, but where Q is not interpretable in R, that 
we can use. But we would like to say that R is "very recursive". 
However, as "schematic" as the system R looks, it is not 
officially given by finitely many axiom schemes. So we need to 
either expand the notion of axiom scheme to allow R, or we need 
to modify R to fit into the usual notion of schemes. This should 
be investigated. 
 
What is missing is insight into the special status of Q and R 
and perhaps variants of Q and R, for G1.  
 
Furthermore, as we vary the wildness properties we seek for T, 
how does that affect the choices of K that we can use in the 
adequacy conditions?  
 
There is also an attractive simplicity investigation here. There 
are some reasonably natural measures of the complexity of 
presentations of finitely axiomatized axiom systems in PC(=). 
E,g., one can count the number of occurrences of symbols other 
than parentheses and commas, each occurrence of a variable 
counted as 1. We can seek information on the smallest complexity 
of a K supporting Pure G1 or other instances of the G1 Template. 
The language of arithmetic would not be a good choice for this. 
The language of set theory would be much better, through the 
system AS of Adjunctive Set Theory, as well as theories of 
strings. AS,Q are mutually interpretable. 
 
CONJECTURE. Any finitely axiomatized system K usable for pure G1 
and variants of G1, of complexity at most that of AS, interprets 
AS.  
    
The most common languages used to formulate versions of G1 are 
arithmetic (with and without exponentiation, with and without 
primitive recursive function symbols, with and without <), set 
theory with membership, and string theory concatenation. There 
are some important special classes of formulas, most notably Õ0

1, 
å0

1, and å0
1 using polynomial equations. Here G1 meets Hilbert's 

Tenth Problem. See. e.g., [Je16]. 
 
2. G2. GÖDEL'S SECOND INCOMPLETENESS THEOREM 
 
This section originated with section 2 of [Fr21].  
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We use the systems PA (Peano arithmetic), PRA (primitive 
recursive arithmetic), SEFA (superexponential arithmetic), EFA 
(exponential function arithmetic), PFA (polynomial function 
arithmetic). The super exponential is the iterated exponential. 
SEFA, EFA, PFA are also known as Iå0(superexp), Iå0(exp), Iå0, 
respectively.  
 
2.1. NO INTERPRETATION VERSIONS 
 
We formulate a purely model theoretic form of G2 which we call 
No Interpretation G2/PA. Its more natural formulation uses many 
sorted logic.  
 
We begin with the listing of the five versions of G2 for five 
basic systems PA, Iån. PRA, SEFA, EFA. 
 

FIVE VERSIONS OF G2 
no interpretation G2 

  
Below for all many sorted T we require that one of the sorts of 
T is the arithmetic sort with the primitives 0,S,+,• included.  
 
NO INTERPRETATION G2/PA. NIG2(PA). No consistent many sorted 
theory T that proves PA is interpretable in any theorem of T in 
the language of PA. We cannot remove “in the language of PA”.  
 
NO INTERPRETATION G2/(Iån). NIG2(Iån). Let n ³ 1. No consistent 
many sorted theory T that proves Iån is interpretable in any å0

n+2 
theorem of T. We cannot replace å0

n+2 by Õ0
n+2.  

 
NO INTERPRETATION G2/PRA. NIG2(PRA). No consistent many sorted 
theory T that proves PRA is interpretable in any Õ0

1 theorem of T 
in L(PRA). We cannot replace Õ0

1 by Õ0
2. 

 
NO INTERPRETATION G2/SEFA. NIG2(SEFA). No consistent many sorted 
theory T that proves SEFA is interpretable in any Õ0

1 theorem of 
T in L(EFA). We cannot replace Õ0

1 by Õ0
2. We cannot replace 

L(EFA) by L(SEFA).  
 
NO INTERPRETATION G2/EFA. NIG2(EFA). No consistent many sorted T 
that proves EFA is interpretable in any Õ0

1 theorem of T in 
L(PFA). We cannot replace Õ0

1 by Õ0
2. We cannot replace L(PFA) by 

L(EFA).  
 

FIVE RESTRICTED NO INTERPRETATION THEOREMS 
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Read “RNI” as “restricted no interpretation”. The simplification 
amounts to just requiring that the theory T be in the same 
language as PA, Iån, PRA, SEFA, EFA, respectively.  
 
RNI(PA). No consistent theory T in L(PA) that proves PA is 
interpretable in any theorem of T.  
 
RNI(Iån). No consistent theory T in L(PA) that proves Iån is 
interpretable in any å0

n+2 theorem of T. We cannot replace å0
n+2 by 

Õ0
n+2.  

 
RNI(PRA). No consistent theory T in L(PRA) that proves PRA is 
interpretable in any Õ0

1 theorem of T. We cannot replace Õ0
1 by 

Õ0
2.  

 
RNI(SEFA). No consistent theory T in L(SEFA) that proves SEFA is 
interpretable in any Õ0

1 theorem of T in L(EFA). We cannot 
replace Õ0

1 by Õ0
2. We cannot replace L(EFA) by L(SEFA). 

 
RNI(EFA). No consistent theory T in L(EFA) that proves EFA is 
interpretable in any Õ0

1 theorem of T in L(PFA). We cannot 
replace Õ0

1 by Õ0
2. We cannot replace L(PFA) by L(EFA). 

 
EASY DERIVATIONS OF THE RNI FROM THE NIG2 

 
In each case, we have merely restricted the language of the 
theory T. We now directly prove the negative parts of the RNI’s 
except RNI(PA), and the negative part of NIG2(PA), and therefore 
the negative parts of the NIG2’s. 
 
negative NIG2(PA). Set T = ACA0. Then T proves PA, T proves T, 
and T is interpretable in T (ACA0 is finitely axiomatized). 
 
negative RNI(Iån). Set T = Iån and T proves the Õ0

n+2. sentence T.  
  
negative RNI(PRA). Let T be PRA + Õ0

2 sentence A = EFA + “the 
usual algorithms for the primitive recursively defined functions 
terminate at every argument”. Then T is a consistent theory in 
L(PRA) that proves PRA + A. Also T is interpretable in A by 
interpreting each primitive recursive function using its 
standard algorithm.  
 
negative RNI(SEFA). Let T = SEFA + A = “the usual algorithm for 
the super exponential terminates at every argument.” Then T is 
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consistent, is in L(SEFA), proves SEFA, and is interpretable in 
the Õ0

2 sentence A in L(EFA). For the second negative claim, set 
T = SEFA and note that SEFA itself is Õ0

2 in L(SEFA). 
 
negative RNI(EFA). Let T = EFA + A = “the usual algorithm for 
the exponential terminates at every argument.” Then T is 
consistent, is in L(PFA), proves EFA, and is interpretable in 
the Õ0

2 sentence A in L(PFA). For the second negative claim, set 
T = EFA and note that EFA itself is Õ0

2 in L(EFA). 
 

EASY DERIVATIONS OF THE NIG2 FROM THE RNI 
 
In each case, we apply RNI to the set of sentences in the 
language used that is provable in the given T. We have already 
proved the negative claims in the NIG2 by proving the negative 
claims in the corresponding RNI.  
 
RNI(PA) ® NIG2(PA). Let T be a many sorted theory that proves 
PA, T proves A in L(PA), and T is interpretable in A. Let T* be 
the set of theorems of T that are in L(PA). Then T* is a theory 
in L(PA) that proves PA and is interpretable in A, where A is a 
theorem of T*. Hence T* is inconsistent. Therefore T is 
inconsistent.  
 
RNI(Iån) ® NIG2(Iån). Let T be a many sorted theory that proves 
Iån, T proves å0

n+2 sentence A, and T is interpretable in A. Let 
T* be the set of theorems of T that are in L(PA). Then T* is in 
L(PA), T* proves å0

n+2 sentence A, and T* is interpretable in A. 
Hence T* is inconsistent. Therefore T is inconsistent.  
 
RNI(PRA) ® NIG2(PRA). Let T be a many sorted theory that proves 
PRA, T proves Õ0

1 sentence A, and T is interpretable in A. Let T* 
be the set of theorems of T that are in L(PRA). Then T* is in 
L(PRA), T* proves PRA proves Õ0

1 sentence A, and T is 
interpretable in A. Hence T* is inconsistent. Therefore T is 
inconsistent.  
 
RNI(SEFA) ® NIG2(SEFA). Let T be a many sorted theory that 
proves SEFA, T proves Õ0

1 sentence A in L(EFA), and T is 
interpretable in A. Let T* be the set of theorems of T that are 
in L(SEFA). Then T is in L(SEFA), proves SEFA, is interpretable 
in the Õ0

1 theorem A of T, A in L(EFA). Then T* is inconsistent. 
Therefore T is inconsistent.  
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RNI(EFA) ® NIG2(EFA). Let T be a many sorted theory that proves 
EFA, T proves Õ0

1 sentence A in L(PFA), and T is interpretable in 
A. Let T* be the set of theorems of T that are in L(EFA). Then T 
is in L(EFA), proves EFA, is interpretable in the Õ0

1 theorem A 
of T, A in L(PFA). Then T* is inconsistent. Therefore T is 
inconsistent.  
 

PROOFS OF THE RNI 
 
RNI(PA). Let T be in L(PA), T proves PA + A, T is interpretable 
in A. We show that T is inconsistent.  
    
It is known that A ® Con(A) is provable in PA using partial 
truth definitions and cut elimination. Since T proves PA + A, we 
have T proves Con(A). Let T’ Í T be finite, T’ proves Con(A) + 
EFA. Since T’ is interpretable in A, we have EFA + Con(A) 
implies Con(T’). Hence EFA + T’ proves Con(EFA + T’). By G2, EFA 
+ T’ is inconsistent. Hence T’,T are inconsistent. QED 
 
RNI(Iån). Let T be in L(PA), T proves Iån + A, A is å0

n+2, T is 
interpretable in A. We show that T is inconsistent.  
  
It is known that A ® Con(A) is provable in Iån using partial 
truth definitions and cut elimination, as proved in [Le83] (also 
see [Be97], [Be05]). Since T proves Iån + A, we have T proves 
Con(A). Let T’ Í T be finite, T’ proves Con(A) + EFA. Since T’ 
is interpretable in A, we have EFA + Con(A) implies Con(T’). 
Hence EFA + T’ proves Con(EFA + T’). By G2, EFA + T’ is 
inconsistent. Hence T’,T are inconsistent. QED 
 
RNI(PRA). Let T be in L(PRA), T proves PRA + A, A is Õ0

1, T is 
interpretable in A. We show that T is inconsistent.  
  
It is known that A ® Con(A) is provable in PRA for Õ0

1 A in 
L(PRA), since we have Herbrand's theorem available in PRA and 
induction applied to bounded formulas in the primitive recursive 
function symbols used in j. Use of Herbrand here involves 
iteration of the underlying functions, afforded by PRA. Since T 
proves PRA + A, we have T proves Con(A). Let T’ Í T be finite, 
T’ proves Con(A) + EFA. Since T’ is interpretable in A, we have 
EFA + Con(A) implies Con(T’). Hence EFA + T’ proves Con(EFA + 
T’). By G2, EFA + T’ is inconsistent. Hence T’,T are 
inconsistent. QED 
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RNI(SEFA). Let T be in L(SEFA), T proves SEFA + A, A in Õ0
1 in 

L(EFA), T is interpretable in A. We show that T is inconsistent.  
 
It is known that A ® Con(A) is provable in SEFA for Õ0

1 A in 
L(SEFA). To see this, assume j is refutable, and apply 
Herbrand's theorem, available in SEFA. This creates indefinite 
iterations of addition and multiplication and exponentiation, 
and the associated truth definitions are handled appropriately 
by SEFA. Since T proves SEFA + A, we have T proves Con(A). Let 
T’ Í T be finite, T’ proves Con(A) + EFA. Since T’ is 
interpretable in A, we have EFA + Con(A) implies Con(T’). Hence 
EFA + T’ proves Con(EFA + T’). By G2, EFA + T’ is inconsistent. 
Hence T’,T are inconsistent. QED 
 
RNI(EFA). Let T be in L(EFA), T proves EFA + A, A is Õ0

1 in 
L(PFA), T is interpretable in A. We show that T is inconsistent.  
 
It is known that j ® WCon(j) is provable in EFA, where WCon is 
the weakened form of Con also referred to as cut free 
consistency. Since we have Herbrand's theorem available in EFA 
for specific complexity, and we can use it here with indefinite 
iteration of addition and multiplication, we obtain j ® WCon(j) 
in EFA. 
 
Let T’ c T be finite, T’ proves WCon(A) + EFA. Since T’ is 
interpretable in A, we have EFA + WCon(A) implies WCon(T’). 
Hence EFA + T’ proves WCon(EFA + T’). By G2, EFA + T’ is 
inconsistent. Hence T’,T are inconsistent. NOTE: G2 is well 
known to hold for WCon. QED 
 
Note that we have used five special systems here. The question 
naturally arises as to what systems we can use. The five RNI’s 
and also the five NIG2’s can be investigated in this way, in a 
few directions, seeking exact characterizations. We will merely 
scratch the surface of this by restricting our attention to 
NIG2(PA) and RNI(PA).  
 
First we take up RNI(PA), and see what we can replace PA with. 
For any system S In the language of PA, we consider   

 
RNI(S). No consistent theory T in L(PA) that proves S is 
interpretable in any theorem of T. 
 
THEOREM 2.1.1. S being mutually interpretable with PA is not 
sufficient for RNI(S). Use S = {Con(Iån): n ³ 1} as a 
counterexample.  
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Proof: It is known that S,PA are mutually interpretable, as they 
are recursively axiomatized theories each interpreting every 
finite fragment of the other. Now let T = {Con(PA)}. Then T 
proves and is interpretable in Con(PA). QED 
 
DEFINITION 2.1.1. S has property 1) if and only if S is in 
L(PA), and there is an interpretation p1 from PA into S and an 
interpretation p2 from S into PA such that  
i. for all sentences B in L(S), p1p2(B) « B is provable in S.  
ii. for all sentences B in L(PA), p2p1(B) « B is provable in PA.    
  
LEMMA 2.1.2. If S in L(PA) has property 1) then  
i. p2(S) and PA are logically equivalent.  
ii. p1(PA) and S are logically equivalent.   
 
Proof: Let S be as given. Let PA prove B. Then p2p1(B) « B is 
provable in PA. Hence p2p1(B) proves B and p1(B) is provable in 
S. So p2(B) logically implies PA. Obviously PA logically implies 
p2(S) since p2 is an interpretation of S into PA. The second 
claim is by symmetry. QED     
 
THEOREM 2.1.3. Let S have property 1). Then RNI(PA). 
 
Proof Let S be as given. Let T be in L(PA), T proves S + A, T 
interpretable in A. By Lemma 2.2, p2(T) proves p2(S) proves PA. 
Also p2(T) proves p2(A). We claim that p2(T) is interpretable in 
p2(A). We fist interpret p2(T) into T by p1, and then T into A, 
and then A into p2(A) by p2. By NIG2(PA), we see that p2(T) is 
inconsistent. Hence p1p2(T) is inconsistent. Let T’ Í  T be 
finite, where p1p2(T’) is inconsistent. Then T proves p1p2(T’) « 
T’, and so T proves ¬ T’. Hence T is inconsistent. QED  
 
We conclude this section by routinely lifting RNI(S) to NIG2(S). 
 
NIG2(S). No consistent theory T in L(PA) that proves S is 
interpretable in any theorem of T. 
 
THEOREM 2.1.4. Let S be a many sorted theory. RNI(S) and NIG2(S) 
are equivalent.  
 
Proof: Looking at the proof of the equivalence of RNI(PA) and 
NIG2(PA), no properties of PA were used. QED 
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THEOREM 2.1.5. S being mutually interpretable with PA is not 
sufficient for NIG2(S). Use S = {Con(Iån): n >= 1} as a 
counterexample. S having property 1) is a sufficient condition 
for NIG2(S). 
 
Proof: From Theorems 2.1.3, 2.1.4. QED 
 
2.2. EQUIVALENCE WITH CLASSICAL G2 
 
To justify the name “No Interpretation G2” we now consider the 
relationship between NIG2/PA, NIG2(Iån), NIG2/PRA, NIG2(SEFA), 
NIG2(EFA), and certain forms of G2. These relationships need to 
be established without using any of the techniques involved in 
proving G2.  
 
Note that we have derived Theorems NIG2/PA, NIG2(Iån), NIG2/PRA, 
NIG2(SEFA), NIG2(EFA) with only the invoking of G2 applied to 
finitely axiomatized theories extending EFA as the nontrivial 
step.  
 
The derivation of G2 uses the formalized completeness theorem as 
the only nontrivial step as we document now.  
 
THEOREM 2.2.1. NIG2/PA, NIG2(Iån), NIG2/PRA, NIG2(SEFA), 
NIG2(EFA), each imply G2 for r.e. presented theories in any 
language, where the axioms extend PA, Iån, PRA, SEFA, EFA, 
respectively.  
 
Proof: Suppose NIG2/PA, NIG2(Iån), NIG2/PRA, NIG2(SEFA), 
NIG2(EFA), and let T be a consistent r.e. presented extension of 
PA, Iån, PRA, SEFA, EFA, respectively. For G2, let T prove 
Con(T), where Con(T) is formulated as a Õ0

1 sentence in L(PFA). 
Now in each of the five cases, T is interpretable in Con(T) with 
some infrastructure needed to properly use Con(T). EFA easily 
serves as this infrastructure. So using Theorems NIG2/PA, 
NIG2(Iån), NIG2/PRA, NIG2(SEFA), NIG2(EFA), we see that T is 
inconsistent, establishing G2, where the r.e. axioms extend PA, 
Iån, PRA, SEFA, EFA, respectively, in each case. QED  
 
2.3. CHARACTERIZATION OF Con STATEMENTS 
 
We now characterize the Con statement for finitely axiomatized 
theories (single sentences). We first characterize the Con 
statement up to PA provable equivalence.   
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THEOREM 2.3.1. For all sentences A, A,Con(A) obey the following 
property P(A,Con(A)): For all arithmetic B, PA + B interprets A 
if and only if PA + B proves Con(A). For all sentences A, Con(A) 
is the unique arithmetic sentence with P(A,Con(A)) up to PA 
provable equivalence.   
 
Proof: Let A be a sentence and B be an arithmetic sentence. If 
PA + B proves Con(A) then obviously PA + B interprets A via the 
formalized completeness theorem. Now suppose PA + B interprets 
A. Let Iån + B interpret A. Then EFA proves Con(Iån) + B) ® 
Con(A). Now PA + B proves Con(Iån] + B) by formalized cut 
elimination and truth definition. Hence PA + B proves Con(A).  
 
Now let C be an arithmetic sentence such that P(A,C). I.e., for 
all arithmetic sentences B, PA + B interprets A if and only if 
PA + B proves C. Then by P(A,Con(A)), we have that for all 
arithmetic sentences B,  
 
*) PA + B proves C if and only if PA + B proves Con(A).  
 
Setting B = C in *), we get PA proves C ® Con(A). By setting B = 
Con(A) in *), we get PA proves Con(A) ® C. Hence PA proves C « 
Con(A). QED 
 
Next we characterize the Con statement up to PRA provable 
equivalence. 
 
THEOREM 2.3.2. For all sentences A, A,Con(A) obey the following 
property P(A,Con(A)): For all Õ0

1 sentences B in L(PRA), PRA + B 
interprets A if and only if PRA + B proves Con(A). For all 
sentences A, Con(A) is the unique Õ0

1 sentence in L(PRA) with 
P(A,Con(A)) up to PRA provable equivalence.  
 
Proof: Let A be a sentence and B be Õ0

1 in L(PRA). If PRA + B 
proves Con(A) then obviously PRA + B interprets A via the 
formalized completeness theorem. Now suppose PRA + B interprets 
A. Let PRA' + B interpret A, where PRA' is a finite fragment of 
PRA. Then EFA proves Con(PRA' + B) ® Con(A). Now PRA + B proves 
Con(PRA' + B) by formalized cut elimination and truth 
definition, using that B is Õ0

1 in L(PRA). Hence PRA + B proves 
Con(A).  
 
Now let C be a Õ0

1 sentence in L(PRA) such that for all Õ0
1 B in 

L(PRA), PRA + B interprets A if and only if PRA + B proves C. 
Then for all Õ0

1 B in L(PRA), PRA + B proves C if and only if PRA 
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+ B proves Con(A). Setting B = C we get PRA proves C ® Con(A), 
and by setting B = Con(A), we get PRA proves Con(A) ® C. Hence 
PRA proves C « Con(A).  
 
Now let C be a Õ0

1 sentence in L(PRA) such that P(A,C). I.e., for 
all Õ0

1 sentences B, PRA + B interprets A if and only if PRA + B 
proves C. Then by P(A,Con(A)), we have that for all Õ0

1 sentences 
B,  
 
*) PA + B proves C if and only if PA + B proves Con(A).  
 
Setting B = C in *), we get PRA proves C ® Con(A). By setting B 
= Con(A) in *), we get PRA proves Con(A) ® C. Hence PRA proves C 
« Con(A). QED 
 
We leave it to the reader to obtain analogous statements for 
systems weaker than PRA. 
 
3. PROOF OF G2/1-Con BY TRANSPARENT DIAGONALIZATION 
 
The prime example of what we call Transparent Diagonalization is 
the usual proof by Cantor that the set of infinite sequences of 
0’s and 1’s cannot be countable. This diagonalization argument 
is more direct and straightforward than the diagonalization/self 
reference argument used in Gödel's original proofs of G1,G2. 
Those original proofs using the self reference lemma are still 
considered rather mysterious in light of, for example, Barkley 
Rosser's use of it in the Gödel/Rosser theorem. To this day we 
don't have a good understanding of what Rosser sentences are 
like under "natural" numberings. For a "usual" numbering, we 
don't know whether any two Rosser sentences are equivalent, and 
also how the Rosser sentences compare when we use different 
"natural" numberings. See [GS79], [Bu08] for some background 
information. 
 
A somewhat well known proof of a modified form of G2 can be 
proved using an utterly straightforward Transparent 
Diagonalization. 
 
DEFINITION 3.1. T is adequate if and only if T is a finitely 
axiomatized theory extending EFA in many sorted logic with 
finitely many sorts. 1-Con(T) asserts that “every true å0

1 
sentence provable in T is true”, formalized in the well known 
way using a natural enumeration of the å0

1 formulas.  
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1-Con(T) is also referred to as å1 soundness for T.  
 
G2/1-Con. No 1-consistent adequate theory proves its own 1-
consistency. I.e., if T is adequate and 1-consistent, then T 
does not prove 1-Con(T). 
 
The origins of G2/1-Con, or G2 for 1-consistency are rather 
unclear. Lev Beklemishev has a paper in the 1980's about this, 
but it probably was first proved much earlier, perhaps when the 
notion of provably recursive functions of a theory first came 
into common use. That is probably in the 1950s with G. Kreisel. 
Some of the early proof theorists of that period are good 
candidates for having known about the directly straightforward 
proof of G2/1-Con that we sketched above. E.g., perhaps G. 
Kreisel. 
 
We associate an important well known set of objects Q(T) to 
adequate T.  
 
DEFINITION 3.2. Let T be adequate. Q(T) is the set of all 
provably recursive functions of T. f is a provably recursive 
function of T if and only if there exists e such that f = je is 
total, and T proves "je is total".  
 
We prove the following strengthening of G2/1-Con by Transparent 
Diagonalization. 
 
G2/1-Con GROWTH. Let T be adequate and 1-consistent. Then Q(T) 
is a proper subset of Q(T + 1-Con(T)). There is an enumeration 
of Q(T) by a provably recursive function (of two variables) of T 
+ 1-Con(T).    
 
Proof: Let T be as given. Define f(n) by looking at all partial 
recursive functions for which its index and a proof in T that it 
is everywhere defined can be found £ n, and returning the least 
nonnegative integer that is greater than all of the values these 
functions have at n. Since T is 1-consistent, this describes a 
recursive function. It is clear that this recursive function 
eventually strictly dominates all provably recursive functions 
of T. Finally, note that this recursive function is a provably 
recursive function of the adequate T + 1-Con(T). QED  
 
Much of the philosophical force of G2 is already available with 
G2/1-Con. This indicates that it is very worthwhile to 
investigate G2/1-Con with the same intensity and detail as G2 
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has been investigated. We have chosen to simplify matters by 
requiring that T be finitely axiomatized. 
 
DEFINITION 3.3. T is adequate/re if and only if T is r.e. 
presented extending EFA in many sorted logic with an r.e. 
presented set of sorts. Q(T) is defined using the r.e. 
presentation.  
 
Note that G2/1-Con for r.e. presented T extending EFA in many 
sorted logic whose sorts are r.e. presented, G2(1-Con) trivially 
follows from our G2(1-Con). Moreover,  
 
G2/1-Con GROWTH/re. Let T be adequate/re and 1-consistent. Then 
Q(T) is a proper subset of Q(T + 1-Con(T)). There is an 
enumeration of Q(T) by a provably recursive function (of two 
variables) of T + 1-Con(T).    
 
Proof: Adapt the proof of G2/1-Con Growth to adequate/re T. QED 
 
Much of the foundational import of G2 is already present with 
G2/1-Con. This suggests that G2/1-Con might be profitably 
investigated with the same intensity as G2 has. We make some 
preliminary explorations.  
 
THEOREM 3.1. Let T be adequate/re. The following are equivalent. 
i. Q(T) is not the set of all recursive functions. 
ii. Q(T) has a recursive enumeration. 
iii. T is 1-consistent. 
 
Proof: iii ® ii ® i by G2/1-Con Growth/re. It now suffices to 
prove i ® iii. Suppose T is not 1-consistent. Let ($n)(R(n)) be 
provable in T and false, R D0. Let f:w ® w be a recursive 
function with index e. Change e to the natural index e’ for 
computing g(n) = f(n) if f(n) is computed in a number of steps m 
such that ¬($n£m)(R(n)); 0 otherwise. Then T proves je’ is total 
and the actual je’ = g is recursive, being the same as f (using 
that ($n)(R(n)) is false). So f is a provably recursive function 
of T. QED 
 
THEOREM 3.2. Let T be adequate/re and 1-consistent. Then T + not 
1-Con(T) is 1-consistent. 
 
Proof: Let T be as given. Let T + not 1-Con(T) prove ($n)(R(n)), 
R D0. Then T prove ($n)(R(n)) Ú 1-Con(T). Now 1-Con(T) is a Õ0

2 
sentence. Hence this disjunction is a Õ0

2 sentence. Therefore 
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since T is 1-consistent, this disjunction is true. Since 1-
Con(T) is false, ($n)(R(n)) is true. QED  
 
4. PROOF OF G2 BY EXPLICIT TRANSPARENT 
DIAGONALIATION 
 
We recognize that the explicit transparent diagonalization we 
use here falls short of the kind of transparent diagonalization 
we used in section 3. (We will offer a valiant attempt in 
Theorem 5.3 in section 5). 
 
For specificity we work with G2 for PA. The discussion 
immediately generalizes.   
 
We start with the well known  
 
THEOREM 4.1. There is a Õ0

1 sentence that not(A « A is provable 
in PA). This is provable in PA. 
 
Proof: By transparent diagonalization, the set of true Õ0

1 
sentences is not r.e. So the set of true Õ0

1 sentences cannot 
coincide with the set of provable Õ0

1 sentences. In particular, 
the set of true Õ0

1 sentences cannot coincide with the set of Õ0
1 

sentences provable in PA. QED  
 
A very common theme throughout mathematics (and science for that 
matter) is to get specific about after proving an existential 
statement. I.e., to seek a particular object that serves as a 
witness.  
 
This inexorably leads to the following. 
 
THEOREM 4.2. There is a Õ0

1 sentence A such that PA proves not(A 
« A is provable in PA).   
 
The usual way we obtain Theorem 4.2 is to turn to a called self 
reference lemma, which we consider more mysterious than 
transparent, at least in its present forms. Notice that no use 
of self reference is used in section 3. However, we think that 
there is something missing here that is more general and less 
technical. Of course, the existence of a constructive proof of 
an existential statement is sufficient, but that begs the 
question of when constructive proofs can be given. We won’t 
pursue this further here.  
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Now using Theorem 4.2, we get a rather vivid proof of G2 for PA. 
Fix A as given by Theorem 4.2.  
 
1. PA proves not(A iff A is provable in PA). 
2. PA proves ((A and A is not provable in PA) or (notA and A is 
provable in PA)).  
3. PA + Con(PA) refutes (notA and A is provable in PA). 
4. PA + Con(PA) proves (A and A is not provable in PA).  
5. Assume PA proves Con(PA). Then PA proves (A and A is not 
provable in PA) 
6. Assume PA proves Con(PA). Then PA proves A, PA proves A is 
provable in PA.  
7. Assume PA proves Con(PA). Then PA is inconsistent.  
8. PA does not prove Con(PA).  
 
5. PROOF OF G2 VIA REMARKABLE SETS 
 
We finally turn to a slightly novel proof of G2 that can be 
construed as being suggestively organized - rather than 
radically new. 
 
The idea is to use the notion of REMARKABLE SET to push all of 
the work that can be construed as diagonalization or mysterious 
into recursion theory. Actually it is rather invisible also as 
recursion theory, almost unnoticeable. So what diagonalization 
remains is particularly friendly.   
 
DEFINITION 5.1. A is remarkable if and only if A is an r.e. 
subset of w which agrees somewhere with every r.e. subset of w. 
I.e., for every r.e. set B, there exists e such that e Î A « e 
Î B.  
 
It is very easy to see that this notion looks to be intriguing, 
but is really rather pedestrian. For what does it mean to NOT be 
remarkable? Just that A is r.e. and disagrees everywhere with 
some r.e. set. But that just means that A is r.e. with an r.e. 
complement. I.e., we have shown the following. 
 
THEOREM 5.1. A is remarkable if and only if A is r.e. and not 
recursive.  
 
Now we introduce a natural strengthening of remarkable using the 
weak system EFA of exponential function arithmetic. Other weak 
systems can be used.  
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Coming back to the definition of remarkable, it is a very common 
move in mathematics to take a notion, which asserts existence, 
and simply ask that one be very explicit about an example. Thus 
we are led quickly to the following notion.  
 
DEIFNITION 5.2. A is EFA remarkable if and only if for all r.e. 
sets B, there exists e such that EFA proves that A,B agree at e.  
 
Here we just use EFA = exponential function arithmetic, as a 
convenient way of making things very explicit.  
 
THEOREM 5.3. There is an explicitly remarkable set A. 
 
Proof: This kind of thing is very much present in recursion 
theory where one has extra effectivity. We can use a familiar 
natural complete r.e. set A. We can effectively find a place of 
agreement for any r.e. set B from the r.e. index of B. NAMELY 
THE INDEX OF B! So this is NOT EVEN REALLY A DIAGONAL ARGUMENT. 
Set A = {e: e Î We}. Let B = Wr. Then r Î A « r Î B, which is 
obviously provable in EFA. QED 
 
So the only real hint of a diagonal argument so far is just the 
definition of A = {e: e Î We}, a very familiar construction in 
elementary recursion theory.  
 
We now prove G2 by starting with any EFA remarkable A, not just 
the special {e: e Î We}, forming an obviously interesting and 
natural set B related to A, apply EFA remarkability to A,B, and 
then argue without any trace of diagonalization or mystery.     
 
THEOREM 5.4. G2. 
 
Proof: Let T be adequate (Definition 3.1), and consistent. Also 
assume T proves Con(T). We obtain a contradiction.  
 
Let A be EFA remarkable. If we could apply EFA remarkable to A 
and {e: e Ï A} then we would have an obvious contradiction (as 
these two sets agree nowhere). But we can’t since {e: e Ï A} is 
not r.e. So instead we apply EFA remarkability to A and {e: T 
proves e* Ï A}, which is r.e.  
 
By the EFA remarkability of A, fix n such that  
 

1) n* Î A « ‘T proves n* Ï A’ 
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is provable in EFA. Arguing in T, if n* Î A then T proves n* Î 
A, and also T proves n* Ï A, using 1). Therefore T is 
inconsistent. Thus in T, we have proved n* Î A ® T is 
inconsistent, and so by hypothesis, T proves n* Ï A. Then by 1), 
T proves n* Î A. Hence T is inconsistent, which is again a 
contradiction. QED  
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