I. Main claims

1. ‘Checked tones’ as monomoraic syllables
 - Traditionally transcribed as closed syllables with /ʔ/ codas (Qian 1992, Wang 2011)
 - Contemporary status of /ʔ/ has not been studied phonetically
 - Based on my fieldwork acoustic data, they are plain short vowels in monomoraic (open) syllables
 - First-time phonetic evidence of contrastive vowel length (monomoraic vs. bimoraic)

2. ‘Exceptional’ light-initial sandhi patterns
 - The second syllable can influence tone sandhi only when the initial syllable is light (traditionally checked) — I refer to this as ‘light-initial sandhi’
 - Counter to previous descriptions, where only the initial syllable determines the sandhi pitch pattern (Left dominance) (Duanmu 1999, Shi & Jiang 2013)
 - I propose a more refined foot-based analysis for this novel light-initial pattern

II. Background

1. Lexical tones in Suzhou
 - A Northern Wu dialect with seven lexical tones

 ![Tone Patterns](image)

 | Bimoraic, \(\tau_{Bm} \) | Monomoraic, \(\tau_{M} \) |
 |---------------------------------|
 | [H] [LH] [HL] [HHL] [HLL] | [H] [L] |

2. Left dominance: the traditional tone-sandhi analysis
 - Assumed for many Wu dialects (Chan & Ren 1989 for Wu; Duanmu 1999 for Shanghai, Chan 1995 for Danyang, Shi & Jiang 2013 for Suzhou)
 - Initial syllable determines the surface pitch; everything else is irrelevant
 - Captured by left-aligned, non-iterative syllabic trochees
 - A strong syllable (\(o^{r} \)) retains its tonal material; a weak footed syllable (\(o^{r} \)) can receive tone through re-association, but cannot retain its own tone; third & fourth syllables are unfooted and are subject to phonetic implementation (Shi & Jiang 2013)

 \[/LH/ + T + T + T : \]

 \[/LH/ + T + T + T : \]

3. Complications in Suzhou
 - Tone redistribution does not always happen:
 \[/MHL/ + T + T + T = [MHL] \]
 - Complex contours (HLH, LHL) as initial syllables do not observe everything
 \[/MHL/ + T + T + T = [MHL] \]

 * Conclusion: When the initial syllable is monomoraic/light, the second syllable tone plays a role

III. Findings of the current study

1. No phonetic evidence for \(/T/ \)
 - No coda stop closure for the ‘checked tones’ (a and b)
 - Intervocalic consonant durations are the same for ‘checked’ / ‘unchecked’ tones (a vs. c)
 - ‘Unchecked’ vowels (>250ms in running speech) are more than twice as long as ‘checked’ ones (>100ms)

 ![Waveform](image)

 * Conclusion: ‘checked tones’ are light monomoraic open syllables (e.g. [ʔa.ːs])

2. Second syllable plays a role in light-initial sandhi forms
 - What we would expect if the traditional analysis were true: \(\Lambda \Lambda \Lambda + T = [\Lambda \Lambda \Lambda L] \) always; \(\Lambda \Lambda \Lambda + T = [\Lambda \Lambda \Lambda L] \) always
 - Pattern A: \([\Lambda \Lambda \Lambda L]\)

 ![Waveform](image)

 Pattern B: \([\Lambda \Lambda \Lambda L]\)

 Pattern C: \([\Lambda \Lambda \Lambda L]\)

 - Conclusion: ‘checked tones’ are light monomoraic open syllables (e.g. [ʔa.ːs])

3. Alternating foot structures
 - A unified syllabic trochee (\(o^{r} \) or \(o^{r} \)) does not account for light-initial sandhi
 \(/LH/ + T + T = [\Lambda \Lambda \Lambda L] \)
 \(/LH/ + T + T = [\Lambda \Lambda \Lambda L] \) (but not \([\Lambda \Lambda \Lambda L] \))
 - Second \(o \), as the non-initial ‘dependent’, demonstrates contradicting behaviors
 Initial \(o \) is heavy: second \(o \) cannot influence sandhi but hosts a bimoraic [H]
 Initial \(o \) is light: second \(o \) can influence sandhi but cannot host a bimoraic [H]
 - If we list all possible light-initial sandhi pitch patterns:
 \- \([\Lambda \Lambda \Lambda L]\)
 \- \([\Lambda \Lambda \Lambda L]\)
 \- \([\Lambda \Lambda \Lambda L]\)
 \- \([\Lambda \Lambda \Lambda L]\)

 The third mora in a light-initial sandhi never carries [H]. This looks a lot like unfooted third/fourth syllables in a syllabic trochee. What kind of footing has a third unfooted mora?
 * Conclusion: light-initial sandhi has a different foot structure: left-aligned moraic trochees. (Kager 1993)

IV. Analysis of the light-initial sandhi

1. Tones
 - (T): underlyingly floating; [T]: short duration
 - Evidence for representations come from heavy-initial sandhi (not discussed here)

 | Bimoraic, \(\tau_{Bm} \) | Monomoraic, \(\tau_{M} \) |
 |--------------------------|
 | [L] [LH] [HL] [HHL] [HLL] | [L] [H] |

2. Crucial observations
 - A unified syllabic trochee (\(o^{r} \) or \(o^{r} \)) does not account for light-initial sandhi
 \(/LH/ + T + T = [\Lambda \Lambda \Lambda L] \)
 \(/LH/ + T + T = [\Lambda \Lambda \Lambda L] \) (but not \([\Lambda \Lambda \Lambda L] \))
 - Second \(o \), as the non-initial ‘dependent’, demonstrates contradicting behaviors
 Initial \(o \) is heavy: second \(o \) cannot influence sandhi but hosts a bimoraic [H]
 Initial \(o \) is light: second \(o \) can influence sandhi but cannot host a bimoraic [H]
 - If we list all possible light-initial sandhi pitch patterns:
 \- \([\Lambda \Lambda \Lambda L]\)
 \- \([\Lambda \Lambda \Lambda L]\)
 \- \([\Lambda \Lambda \Lambda L]\)
 \- \([\Lambda \Lambda \Lambda L]\)

 The third mora in a light-initial sandhi never carries [H]. This looks a lot like unfooted third/fourth syllables in a syllabic trochee. What kind of footing has a third unfooted mora?
 * Conclusion: light-initial sandhi has a different foot structure: left-aligned moraic trochees. (Kager 1993)

3. Alternating foot structures
 - Moraic trochees in light-heavy disyllables violate syllable integrity, but ensures that the head (monomoraic) is not lighter in quantity than the dependent (Head-Dependent Asymmetries) (Kager & Martínez-Paricio 2018, Dresher & van der Hulst 1998)

 ![Waveform](image)

 Monosyllable for a light-heavy disyllable
 Syllabic trochee for a light-light disyllable (no difference if it’s moraic)

 Footing in Suzhou serves two purposes
 (a). It constrains syllable quantity relationship between head and dependent
 Heavy-heavy: syllabic
 Heavy-light: syllabic
 Light-heavy: moraic
 (b). It licenses tone-TBU association
 \(o^{r} \) in a syllabic foot (\(\mu^{r} / \mu^{r} \)) in a moraic foot (\(\mu^{r} / \mu^{r} \))

3. Demonstrations of tone sandhi
 - Light-heavy: moraic
 - Heavy-heavy: syllabic
 - Light-heavy: syllabic
 - Heavy-heavy: moraic

 ![Waveform](image)

 Heavy-heavy disyllables; Syllabic Trochee
 Light-heavy disyllables; Moraic Trochee

 Third syllable toneless vs. third mora toneless; perfect parallel

 ![Waveform](image)

 Third syllable toneless vs. third mora toneless; perfect parallel

 ![Waveform](image)

 Third syllable toneless vs. third mora toneless; perfect parallel