Integrated Pest Management (IPM) for Master Gardener Volunteer Training

Celeste Welty Extension Entomologist February 2018

THE OHIO STATE UNIVERSITY

Topics

- IPM definition
- Components of IPM
- Overview of tactics
- Examples

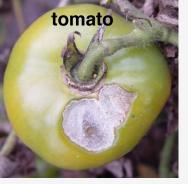
'Pest'

Insects

- Disease-causing microbes
- Weeds
- Vertebrates

Insect roles

- The bad
- PestsThe good



- -Natural enemies
- -Pollinators -
- -Decomposers
- The neutral

Types of pests: based on damage

- Direct damage —
- Indirect damage –

- Disease transmission (vector)
- Contamination

Types of pests: based on frequency of occurrence

- Key pest
- Occasional, sporadic pest
- Rare pest
- Potential pest

Strategies of Pest Management

- Acceptance (do nothing)
- Eradication

-eliminate pest populations

Suppression

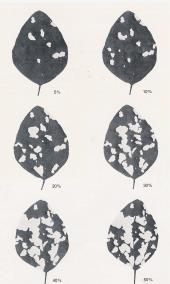
-reduce pest to tolerable levels

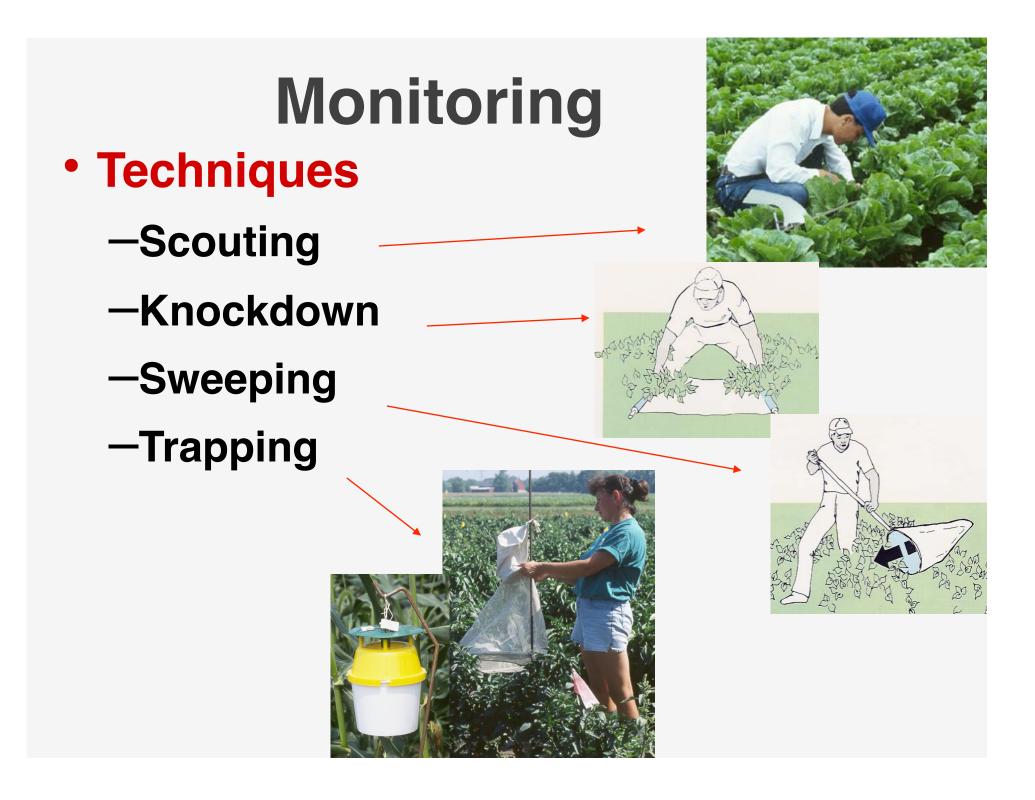
Approaches to pest management by suppression: Organic vs other

- More concern with restoring checks & balances
- Willingness to use tactics:
 - -More knowledge intensive
 - -More <u>labor</u> intensive
 - -More expensive
- Use chemicals or not???

Integrated Pest Management (IPM)

- a <u>comprehensive</u> approach to dealing with pests
 - strives to reduce pest status to tolerable levels
 - using multiple tactics
 - effective
 - economically sound
 - ecologically compatible

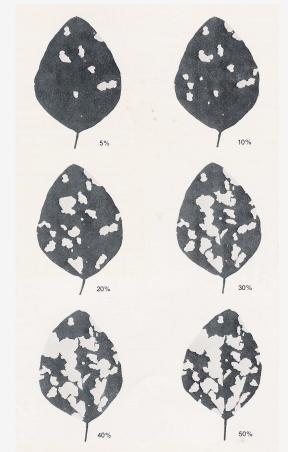

IPM


- Pros?
 - -Potential for increased profit
 - -Less hazardous
- Cons?
 - -Information dependent
 - -Can be labor intensive
 - -Can be more expensive

Components of IPM

- Monitoring
- Action thresholds
- Multiple tactics

Monitoring by scouting


• Evaluate pest:

-presence/absence

-abundance

-life stage(s)

- Evaluate damage
- How often?

-Can be at regular intervals

-Can be at one critical time

Monitoring by traps

- Traps
 - for <u>adults</u> of species that damage as <u>larvae</u>

• E.g.: Moth / caterpillar

Pheromone Traps

- Sticky
 - -1 Open wing trap
 - -2 Closed wing trap
 - -3 Delta trap
 - -4 Scale trap
- Bucket
 - —5 Unitrap trap—6 Multi-Pher trap
- Net/cone
 - -7 Heliothis trap *
 - -8 stink bug trap

Action Threshold

 Pest density or amount of damage at which action should be taken to prevent an increasing pest population from causing <u>economic</u> damage

Decisions on insecticide use in vegetable gardens

Treatment	Action
Low maintenance	Only if plant death imminent
Biorational	If above action threshold
	& some preventive
High input	Any sign of pest
	& some preventive

Preventive sprays: alternative to threshold for some pests

Crop	Target	Timing
tomato	early blight & anthracnose	early July to mid-Sep
zucchini	powdery mildew	late July to mid-Sep
zucchini	squash vine borer	early July to early August

Action thresholds: beans

Pest	Threshold
Bean leaf beetle	>1 beetle/seedling or >20% defoliation pre-pod or
	>10% defoliation after pods
Potato leafhopper	1 nymph per 10 leaflets

Action thresholds: zucchini

Pest	Threshold	Insecticide	
		Natural	Synthetic
Squash vine borer	Preventive sprays as soon as moths active (1/wk for 4 wks)	pyrethrins + PBO	esfenvale- rate (Bug- B-Gon)
Cucumber beetles	>0.5 beetle/leaf (seedling) >2 beetle/leaf (older)	pyrethrins + PBO	carbaryl (Sevin)
Squash bug	>1 egg mass/plant	pyrethrins + PBO	esfenvale- rate (Bug- B-Gon)

Action thresholds: collards

Pest	Threshold	Inse	ecticide
		Natural	Synthetic
Flea beetles	>5 beetle holes per leaf & >5 beetles per plant	pyreth- rins + PBO	carbaryl (Sevin)
Caterpillars: • Imported cabbageworm	>1 larva/plant	B.t. (DiPel)	esfenvale- rate (Bug- B-Gon)
Diamondback moth	>2 larvae/plant		
Cabbage looper	>0.5 larva/plant		
Aphids	>1 colony/leaf	soap	endosulfan (Thiodan)

Action thresholds: tomato

Pest	Threshold	Insecticide	
		Natural	Synthetic
aphids	>1 colony/leaflet & no natural enemies	soap	endosulfan (Thiodan)
whiteflies	>1 nymph/leaflet or >4 adults/leaflet	soap	esfenvalerate (Bug-B-Gon)
horn- worms	>10% defoliation	B.t. (Dipel)	esfenvalerate (Bug-B-Gon)
Fruit- worm	Any larvae in fruit	B.t. (Dipel)	esfenvalerate (Bug-B-Gon)
stink bug	Damage on >10% or fruit	pyrethrins + PBO	esfenvalerate (Bug-B-Gon)

Components of IPM

Multiple tactics

 Preventive options

–Remedial options

IPM uses a <u>combination</u> of tactics

- Cultural
- Mechanical
- Biological
- Microbial
- Chemical
- Behavioral
- Host Plant Resistance
- Genetic
- Regulatory

Do chemicals fit in IPM or not?

IPM Continuum

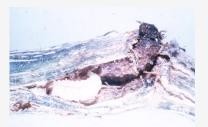
No Chemicals Intensive Chemicals

Cultural Control: Minimize infestations by choosing appropriate crop management practices

- Categories:
 - -Crop selection
 - -Where crop is planted
 - -When crop operations occur
 - -How field is prepared & planted
 - -How crop is maintained

Delayed planting

Cucumber beetle



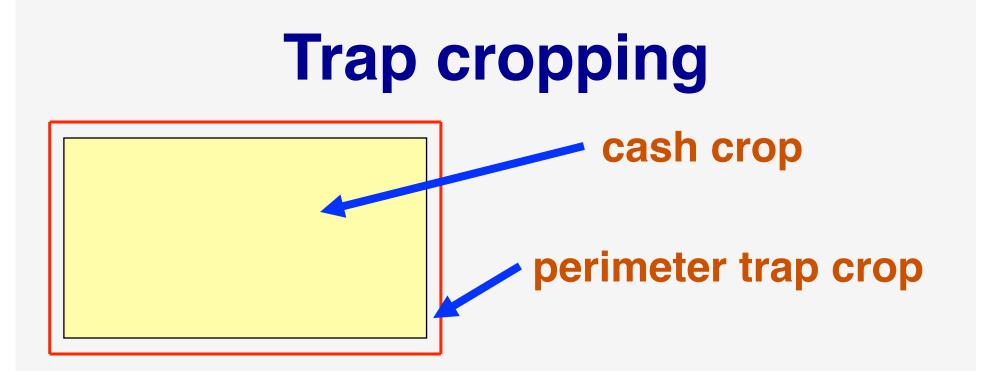
-Problem if plant in late May

-Less problem if plant in mid-June

Squash vine borer

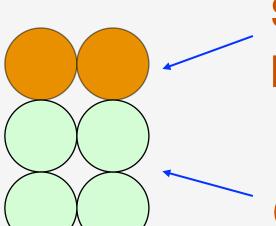
-Same

Bean leaf beetle


-Peak populations in May, July

-Fewer in June

Trap cropping


- Lure pest away from main crop to a more attractive crop
- Then kill the pest in trap crop
 - -Mechanical
 - -Chemical

Planting time options

 Same time
 Same time
 weeks early for trap crop

Trap cropping adapted to garden scale

Squash, trap crop, planted 2 weeks early

Cantaloupe, Main crop

Trap cropping examples

Main crop	Trap crop	Target pest
cabbage	collards	diamondback moth
cabbage	kale	harlequin bug
cucumber	hubbard squash	cucumber beetles
peppers	sweet corn (late)	Europ. corn borer
potato	eggplant	Colo. potato beetle

Cultural control: trade-offs

- E.g. Straw Mulch
- Benefits
 - -Moisture retention
 - -Weed suppression

- -Reduces soil splash
- -Reduces fungal spore dispersal
- Makes some pest problems worse

-E.g. cucumber beetles, slugs

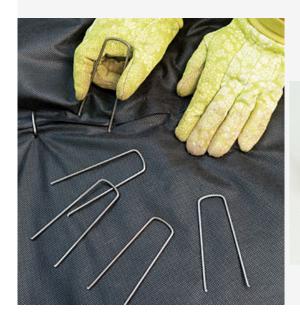
Mechanical Control: exclusion or removal practices that are done solely to control pests, not as part of routine cultural practices

Exclusion by barriers

- Row covers ** _____
- Netting, screening
- Paper bags ____
- Localized shields
- Copper barriers
- Trenches (deep furrows)
- Plant collars —
- Fences

Row covers to exclude pests

- Install on day of planting
- Remove
 - When first flowers appear (cucurbits)
 - At final harvest (broccoli, beans)

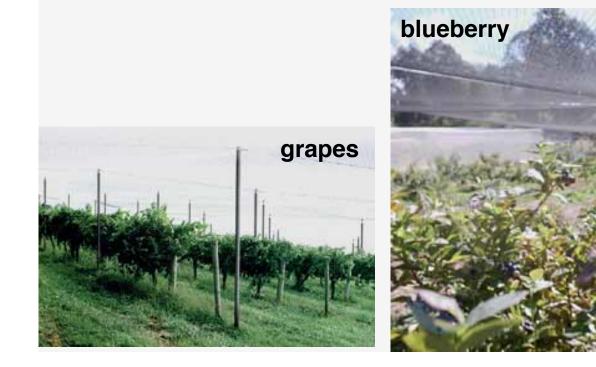

Row covers to exclude pests

- Lightweight —'Insect Barrier', 'Agri-bon 15'
 - -90% light transmission (vs 70-85% for <u>heavier</u> covers for frost protection)
 - -Sources:
 - Johnny's Selected Seed: \$24. (10' x 50')
 - Gardens Alive: \$10. (8' x 20')

Row covers to exclude pests

- Use with or w/o hoops
- Must be anchored tightly

Cages to exclude garden pests


- Bell cloche
 - -\$30/3
- Pest Control Pop-up
 - \$25 for 4' x 4' x 1'
 - -\$45 for 4' x 4' x 4'

(Gardeners Supply Company)

Exclusion by netting

- Periodical cicada
- Birds

Exclusion by fruit bagging

Paper bags:

- Apples
- Grapes

Exclusion of weeds: Weed block fabric

- 'Heavy-weight woven ground cover, from A.M. Leonard, \$96.49 per roll (6 ft x 300 ft)
- Held down by anchor pins (garden staples), \$0.05 each


Exclusion of weeds: Newspaper mulch

- Cover by straw
- Also retains soil moisture

Mechanical Control by <u>Removal</u>

- Shelter traps —
- Attraction traps
- By beating/shaking *
- Removal by vacuum
- By aspirator
- Removal by hand

Removal by shelter traps

 Board trap (shingle trap) for squash bug

Gypsy moth

Tree bands for caterpillars

Squash bug

Codling moth

Removal by attraction traps

- Dish of beer for slugs
 - Catches many slugs
 - Often not significant decrease in population

Removal by tapping or shaking

- Into bucket or tray
- By broom or snow shovel
- Daily
- Example: Colorado potato beetle (adults, larvae)

Removal by aspirator

- Aspirator = Mouth-operated suction device
- \$8 14 from:
 - -BioQuip
 - **–Forestry Suppliers**
 - -Gempler's
- Good for flea beetles, bean leaf beetle, cucumber beetle

Removal by aspirator: Eggplant flea beetle

Removal by hand

- Labor intensive
- Target pests:
 - Conspicuous pests
 - Pests not too active
 - In relatively restricted area
- Examples
 - Spinach leafminer (infested leaves)
 - Hornworms
 - Asparagus beetle (eggs)
 - Japanese beetle

Sanitation

Collect and destroy/compost:

-Culled fruit

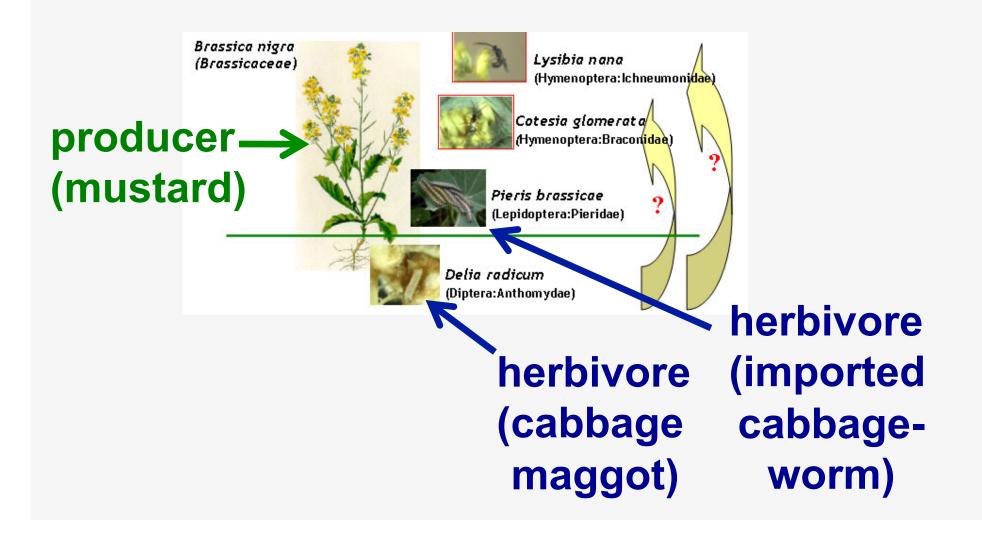
- -Crop residue (after harvest)
- Plant clean nursery stock

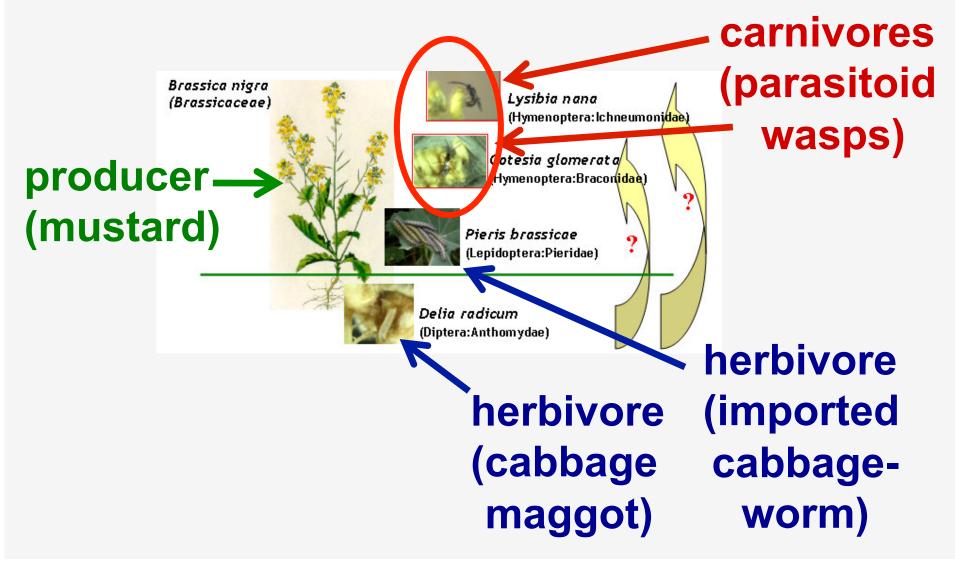
Biological Control

- Control of pest by other organisms that act as natural enemies
- Common natural enemies

-Predators

-Parasitoids





Garden ecology: is food chain balanced or unbalanced?

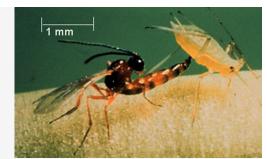
Garden ecology: is food chain balanced or unbalanced?

Biological Control: Predators

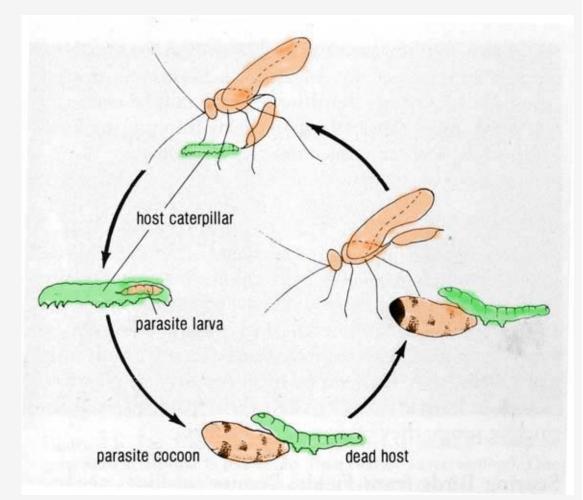
- Develop at expense of more than one prey item
- Predator often <u>larger</u>
 than prey
- Prey usually killed & consumed <u>quickly</u>

Predators

- Green lacewings
- Lady beetles
- Insideous flower bug
- Damsel bugs
- Hover flies



Biological Control: Parasitoids


- Develop at expense of a single host
- Lay egg in or on host insect
- Host is usually killed <u>slowly</u>

Life Cycle of Parasitoid

Hyposoter wasp attacking caterpillar

Parasitoids

- Some wasps
 - -Braconid wasps
 - On hornworm: Cotesia congregata
 - On imported cabbageworm: Cotesia glomeratus
 - On aphids: Diaeretiella rapae
 - –Ichneumonid wasps
 - On diamondback: Diadegma insulare
- Tachinid flies
 - -On squash bug: Trichopoda pennipes
 - -On cucumber beetle: Celatoria setosa

& Vertebrate predators eat insects!

- Bats
- Toads
- Birds
- Geese
- Hogs

Biological control by conservation of local natural enemies

• Tactics:

- -Avoid broad-spectrum insecticides
- -Refuge planting for natural enemies
- -Collect-&-transfer generalists

Insectary planting as refuge for natural enemies

cilantro

- Adult parasitoids need <u>nectar</u>
- Adult predators need pollen
- Plant flowering border to enhance biocontrol

Biological control by augmentation of local natural enemies

• Tactics:

Buy from insectary
Collect and transfer

Augmentation: Collect & transfer

- What to do?
 - -Hunt for generalist predators
 - -Collect them
 - -Transfer them to crop
- Who, where, when?

- -Ladybug larvae on Spirea in May
- –Lacewings & aphid midges on apple leaves in early June
- -Damsel bugs on alfalfa, April-June

Chemical control

- Does chemical = nasty?
- Insecticides = chemicals that kill insects
- 'Chemical control' can include chemicals that affect insects in ways other than killing them
- A widely used tactic

Pesticide Trends

• Current type of products

-More 'Reduced-risk' products

-More 'Biological' products

-More options for organic gardens

Characteristics

-More expensive

- -More narrow-spectrum
- -Not as persistent
- -Smaller dose per area

Advantages of Chemical Control (conventional)

- Dependable
- Easy to obtain & apply
- Kill pest quickly
- Cheap (?)

Disadvantages of Chemical Control

- Toxic to non-target organisms
 - -Natural enemies
 - -Pollinating bees
 - -Humans
 - -Wildlife & pets
- Environmental contamination
- Resistance can develop

Chemical control: categories

- By origin
 - -Natural
 - -Synthetic
- By mode of action
 - -Nerve poisons
 - -Suffocation agents
 - -Respiration disruptors
 - -Insect growth regulators

Insecticide choices

B.t.

Bug-B-Gon (bifenthrin+zetacypermethrin)

Fungicide choices

copper soap

sulfur

Serenade (Bacillus subtilis)

Fung-onil (chlorothalonil)

OMRI: The Organic Materials Review Institute

- Certified organic growers
- List of products
- Crops & processing

Example of label with OMRI logo

Insect control products on OMRI List

- Behavioral control
 - pheromone mating disruption
- Microbial control
 - viruses
 - bacteria: B.t. (DiPel)
- Smothering agents
 - soaps
 - -oils
- Nerve poisons
 - spinosad (Entrust)
 - pyrethrins (PyGanic)
- Repellents
 - kaolin (Surround)
 - neem
 - garlic

Smothering or suffocation agents

- oils:
 - -from petroleum
 - -from plants
- insecticidal soaps:
 - –potassium salts of fatty acids

Minerals & elementals

- kaolin
- iron
 phosphate
- sulfur
- lime-sulfur

'Surround At Home'

- A.I. = kaolin (clay)
- 'Particle film technology'
- Broad spectrum crop protectant
- Photosynthesis not affected

Abrasion agents: Diatomaceous earth

Insecticides from plants (botanicals)

- pyrethrum (chrysanthemum)
- azadirachtin (neem tree) –
- sabadilla

Not on OMRI list:

nicotine (tobacco)

Repellents from plants:

capsaicin & garlic

Insecticides derived from microorganisms: **Spinosad**

- Dow: Entrust
- Bonide: Capt. Jack's Deadbug Brew
- Fertilome: Borer, Bagworm, Leafminer & Tent Caterpillar spray
- GreenLight: Lawn & Garden Spray Spinosad Concentrate
- Monterey: Garden Insect Spray
- Gardens Alive: Bulls-Eye
 Bioinsecticide

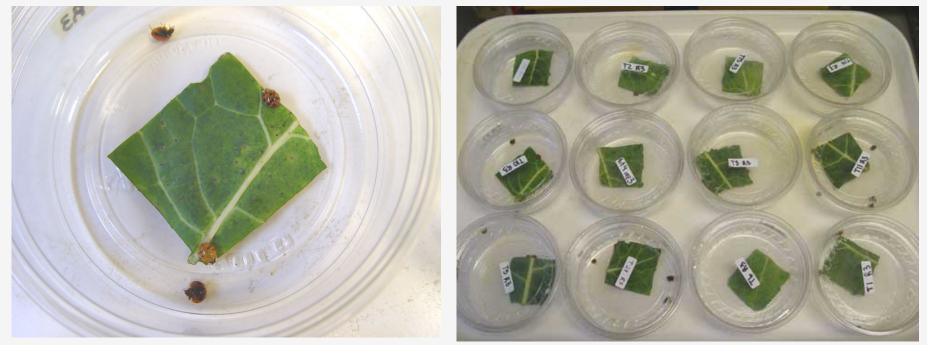
Insecticides derived from microorganisms: spinosad in 'Entrust'

- Excellent for caterpillar control
- Use 3 6 fl oz/acre
- \$489/quart!

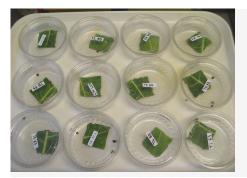
Nerve poisons

Carbamates carbaryl (Sevin)

Organo-phosphates (malathion)

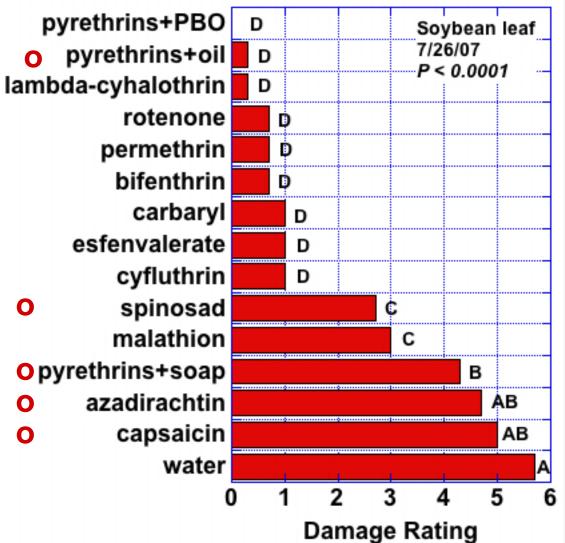


Pyrethroids: 5 for food crops



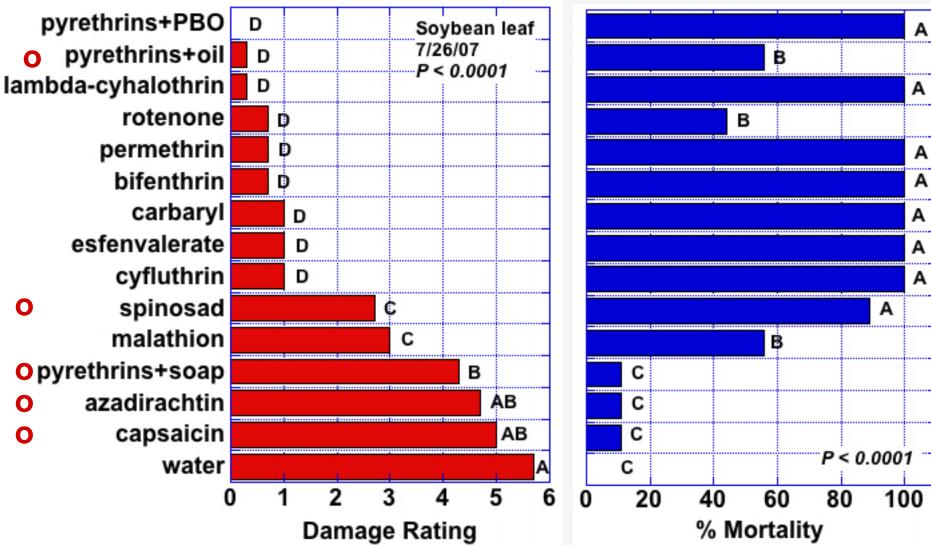
esfenvalerate bifenthrin permethrin lambdacyfluthrin cyhalothrin

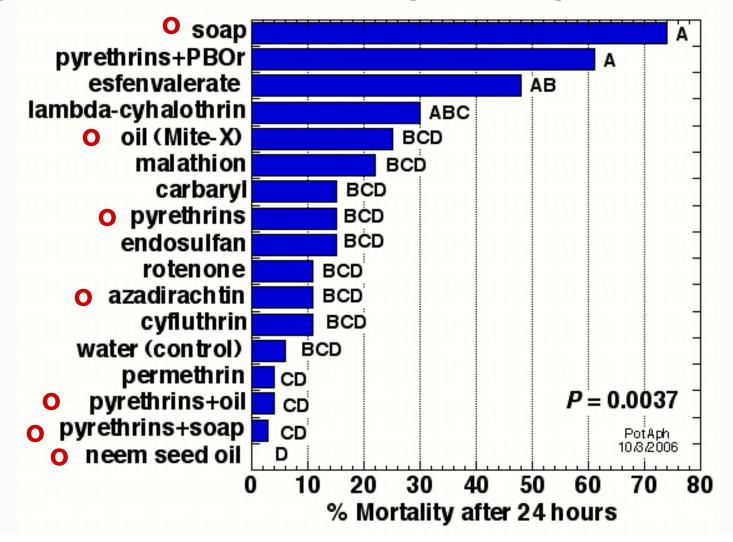
Lab bioassays to evaluate insecticide efficacy

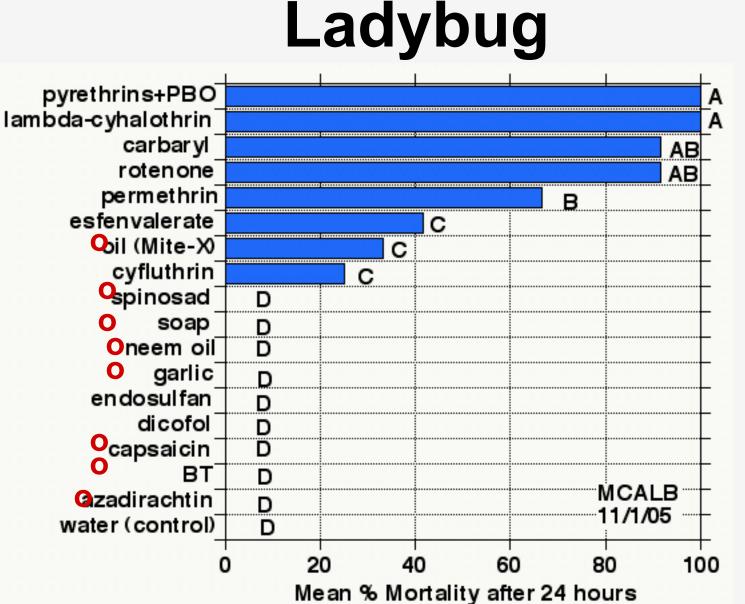


- Defoliation
- Mortality

Bean leaf beetle




Bean leaf beetle



Potato Aphid

tested on tomato leaves, 10/3/2006 3 replicates/treatment, 10 aphids/replicate

What about harm to natural enemies?

Trends in efficacy

spectrum	Exc./Good	Good/Fair	Fair/Poor
broad	pyrethrins + PBO carbaryl esfenvalerate lambda-cyhalothrin cyfluthrin bifenthrin	permethrin malathion pyrethrins +oil	neem seed oil azadirachtin capsaicin garlic pyrethrins +soap
less broad	<mark>spinosad</mark> endosulfan rotenone		
narrow	dicofol soap oil	B.T.	

in red if on OMRI list

Conclusions: insecticide choices

User's general preference	Best bets
Natural products only (OMRI)*	1) spinosad
	2) soap
Natural products only (non-	1) pyrethrins+PBO
OMRI)	2) rotenone
Conventional products only	carbaryl (Sevin) or permethrin (Eight)
Anything goes	pyrethrins+PBO

* Note lack of effective beetle control product

Systemic pesticides

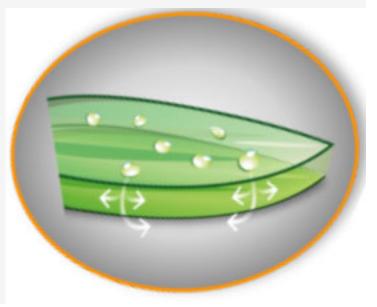
- Chemical that moves from the point of application to another part of target
- Two types
 - -True
 - -Translaminar

Types of Systemics

-Apply to root, moves to leaves

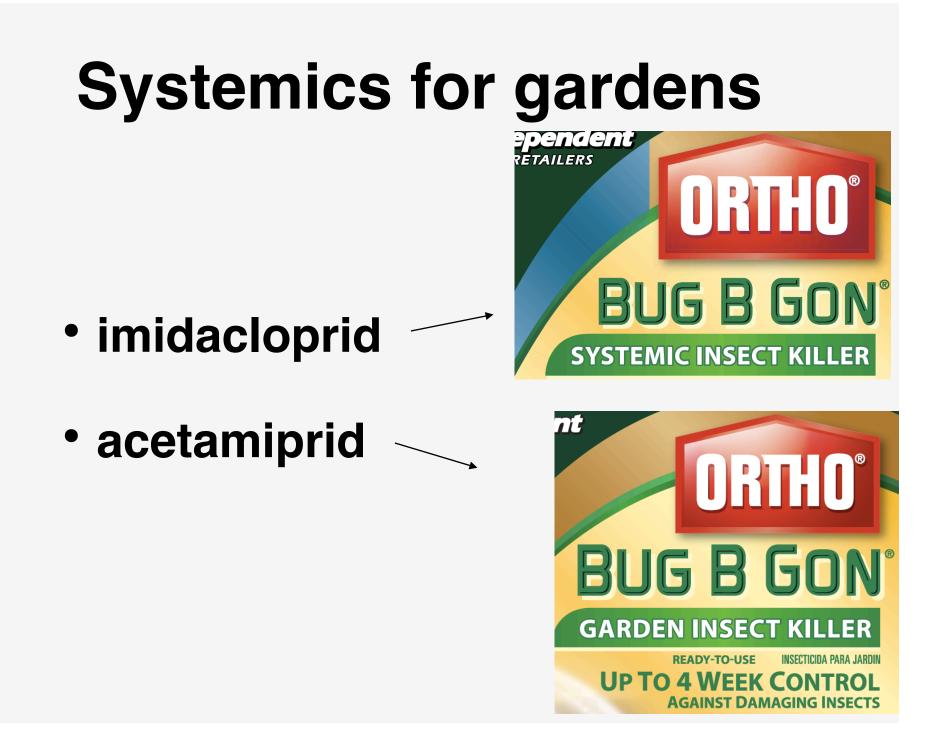
-Apply to leaf, moves to root

Types of Systemics


True systemic:

-Apply to root, moves to leaves

-Apply to leaf, moves to root


• Translaminar:

- -Or 'limited systemic'
- -Apply to top of leaf
- -Moves inside leaf or to underside of leaf

Types of Systemics

- Some products can be both types
- E.g. imidacloprid insecticide:
 - -<u>True</u> systemic when applied to <u>roots</u>, active for several weeks
 - -<u>Translaminar</u> when applied to <u>foliage</u>, active for only 1-2 weeks

How to use insecticides in presence of natural enemies?

Choose product:

• Selective (by mode of action)

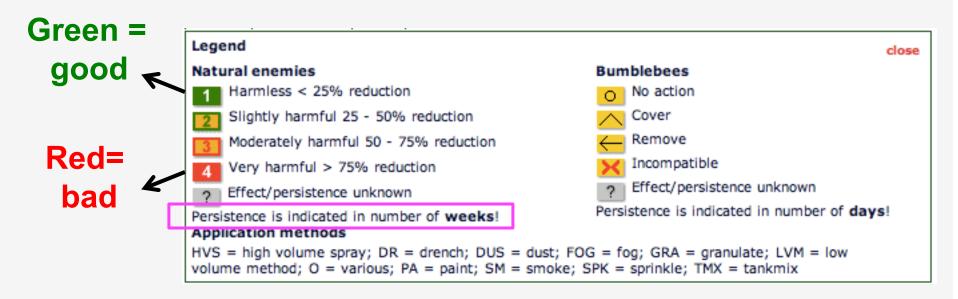
-Kills pest but *not* the natural enemies

or

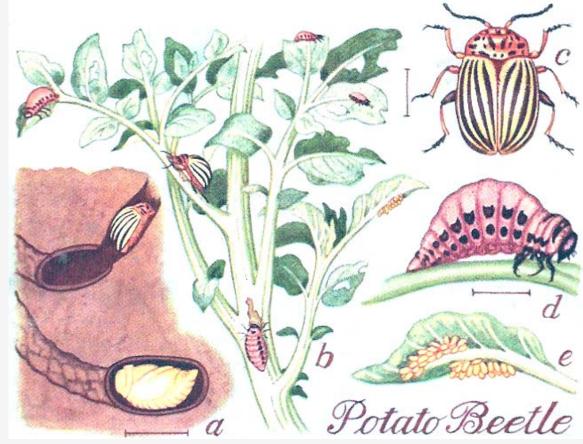
 Very short residual activity —Most botanicals

Biobest:

Webpage & <u>mobile app</u> on 'side effects' for 21 natural enemies & 263 chemicals


Toxicity or	n natural enemies	
Class	Toxicity	Mortality
0	Non-toxic	< 25%
2	Slightly toxic	25-50%
3	Mod. toxic	50-75%
4	Toxic	>75%

Metho	d of application 👻
d	Dusting
di	Dipping
f	Fumigating
i	Irrigating
s	Spraying
st	Space treatement


Biobest: 4 predators & 5 OMRI products

		azadirachtin	mineral oil	potassium salts of fatty acids	rape seed oil / vegetable oil	spinosad	
		S	S	S	S	s	i
Phytoseiulus persimilis	nymph/adult	2	3	4	3	2	0
	persist	?	?	3 d	?	1 w	-
Orius spp.	nymph	2	3	?	2	4	2
	adult	0	3	?	2	3	0
	persist	?	3 d	?	?	1 w	?
Aphidoletes aphidimyza	larva	0	1	2	?	0	0
	adult	0	1	4	0	0	0
	persist	-	-	3 d	?	-	-
Chrysopa carnea	larva	0	1	2	0	0	0
	adult	0	1	3	0	0	0
	persist	-	-	?	-	-	-

Koppert Biological Systems, Webpage on 'side effects' for 47 natural enemies & 137 chemicals

Pest management: the search for a weak link in pest's life cycle

So how can pests be managed organically?

- Maximize non-chemical tactics: -Knowledge & labor intensive
- Can include chemical control
 - -Only if biorational products chosen
 - -Usually as last resort
 - -Efficacy mostly fair to poor
 - -Do not assume that "natural" = good

For beginners: Which veg crops have fewest pests?

- Lettuce
- Peas
- Parsley
- Basil

Info on vegetable & fruit pest management

u.osu.edu/pestmanagement/

Questions?

e-mail: welty.1@osu.edu phone: 614-292-2803