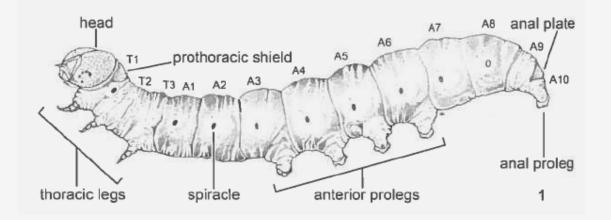
# Managing Worms on Vegetable Crops








#### Celeste Welty Extension Entomologist January 2016



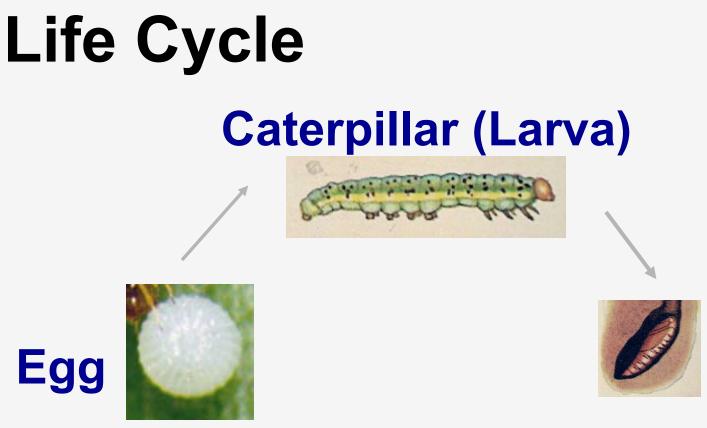
THE OHIO STATE UNIVERSITY

#### 'Worms' = caterpillars



- Identification
- Insecticides
- Non-chemical controls

#### 18 important caterpillar pests on veg crops


| Сгор                | Pest                                                                                                              |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Sweet corn          | Corn earworm +<br>European corn borer +<br>Fall armyworm +<br>Western bean cutworm<br>Armyworm<br>Black cutworm + |
| Pepper, tomato      | Tobacco hornworm<br>Variegated cutworm<br>Yellow-striped armyworm<br>Stalk borer +<br>Beet armyworm               |
| Cole crops & greens | Imported cabbageworm<br>Diamondback moth<br>Cabbage looper +<br>Cross-striped cabbageworm<br>Zebra caterpillar +  |
| Squash & pumpkins   | Squash vine borer                                                                                                 |
| Parsley             | Parsleyworm                                                                                                       |

#### 18 important caterpillar pests on veg crops

| Сгор                | Pest                                                                                                              |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Sweet corn          | Corn earworm +<br>European corn borer +<br>Fall armyworm +<br>Western bean cutworm<br>Armyworm<br>Black cutworm + |
| Pepper, tomato      | Tobacco hornwormVariegated cutwormYellow-striped armywormStalk borer +Beet armyworm                               |
| Cole crops & greens | Imported cabbageworm<br>Diamondback moth<br>Cabbage looper +<br>Cross-striped cabbageworm<br>Zebra caterpillar +  |
| Squash & pumpkins   | Squash vine borer                                                                                                 |
| Parsley             | Parsleyworm                                                                                                       |

# **Caterpillars: generalities?**

- External feeders: easier
- Internal feeders: harder
- Monitor
  - -Scouting
  - -Trapping
- Control
  - -Chemical: beware species not equal
  - -Microbial: B.t. spray
  - -Biocontrol: can be encouraged
  - -Mechanical: row covers





**Pupa** 

#### Moth (Adult)

#### **Do moths matter?**



- Can be easier to monitor than caterpillars
- Give advance warning of caterpillars

#### Worms in sweet corn

- Caterpillar i.d.
- Monitoring
- Insecticides
  - -Before silking
  - -During silking

-Conclusions from trials, 2007-2015

Alert: new species



#### **Caterpillars in Sweet Corn**



**Corn Earworm** 



**European Corn Borer** 



**Fall Armyworm** 

#### **Caterpillars in Sweet Corn**







- Key pests; can ruin the crop
- Pest management is complex
  - Several insect species
  - Sequential plantings
- The need to control them varies through the season
  - No control
  - -Low intensity control
  - -High intensity control

# Caterpillar i.d.

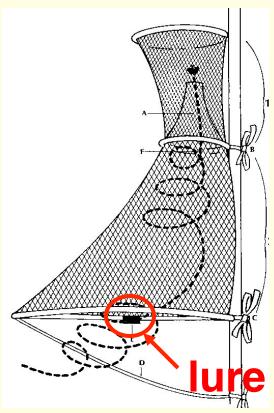
|               | Corn earworm                                  | European<br>corn borer     | Fall armyworm                           |
|---------------|-----------------------------------------------|----------------------------|-----------------------------------------|
| Body<br>color | Variable:<br>yellow, green,<br>brown, or pink | Cream to light<br>brown    | Light brown<br>top, dark brown<br>sides |
| Body<br>marks | Distinct stripes                              | Subtle stripes, round dots | Stripes                                 |
| Texture       | Dense<br>microspines                          | Smooth; few sparse hairs   | Smooth                                  |
|               |                                               |                            | Corres -                                |

# Caterpillar i.d.

|               | Corn earworm           | Eur. corn<br>borer | Fall armyworm                  |
|---------------|------------------------|--------------------|--------------------------------|
| Head<br>size  | Large                  | Small              | Large                          |
| Head<br>color | Light orange/<br>brown | Dark brown         | Dark sides,<br>light in middle |
|               |                        |                    |                                |

#### **Sweet Corn Development**

- Seedling
- Whorl stage
- Emerging tassel stage \*\*
- Fresh silk \*\*\*
- Dry silk


### 1. Corn Earworm



- Moths migratory from South
- Arrival time varies
- Eggs laid on silk
- Eggs hatch in 48 hrs

## Trap to Monitor Corn Earworm

- Pheromone lure
- Attracts male moths
- Highly effective







#### 2. European Corn Borer





Moths active:

-1<sup>st</sup> flight:

- Late May to late June
- Most eggs on whorls
- Move to tassel to ear
- Control <u>before</u> silking
- -2<sup>nd</sup> flight:
  - Late July to late August
  - Most eggs near ear
  - Control <u>during</u> silking
- Monitor moths with pheromone traps



European corn borer: generations per year

2 generations

-when summer has average temperatures (60% of years in Ohio)

3 generations

–when summer has high temperatures (40% of years)

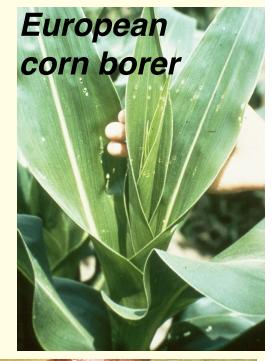
#### 3. Fall Armyworm



- Also migratory from South
- Arrival time varies
- Harder to kill

### Fall Armyworm During Silking




- Pheromone trap
  - -All-green unitrap
- Spray every 5-7 days during silking if more than 3 moths per week

in trap



# **Emerging-Tassel Stage**

- Scout (examine plants)
  - -50 plants in small plantings (<2A)</p>
  - -100 plants in large plantings (>2A)
  - –Record # with fresh feeding damage
- Action threshold
  - –Spray if fall armyworm and/or European corn borer on >10% of plants





#### During silking: control worms by insecticide

- For 3 week period before harvest
- Start spray schedule when fresh silk begins to show, IF moths active
- Use traps to monitor moths



#### **Difference in 'Worm' Invasion**

|              | Corn<br>earworm | European<br>corn borer |  |
|--------------|-----------------|------------------------|--|
| Egg location | silks           | ear leaf               |  |
| Egg hatch    | 2-3 days        | 3-5 days               |  |
| Moth source  | migratory       | local                  |  |

#### How often to spray during silking?

| Moths active?   |                    | Insecticide need  |
|-----------------|--------------------|-------------------|
| Corn<br>earworm | Eur. corn<br>borer | to control larvae |
| +               | + or -             | More intensive    |
| -               | +                  | Less intensive    |
| -               |                    | None              |

# Relative importance of pests during silking

| Rank | Pest            | Spray<br>Interval |
|------|-----------------|-------------------|
| 1    | Corn earworm    | <b>2-6 d</b>      |
| 2    | Eur. corn borer | 5-7 d             |
| 3    | Fall armyworm   | 5-7 d             |

# Most critical time for earworm invasion: silking

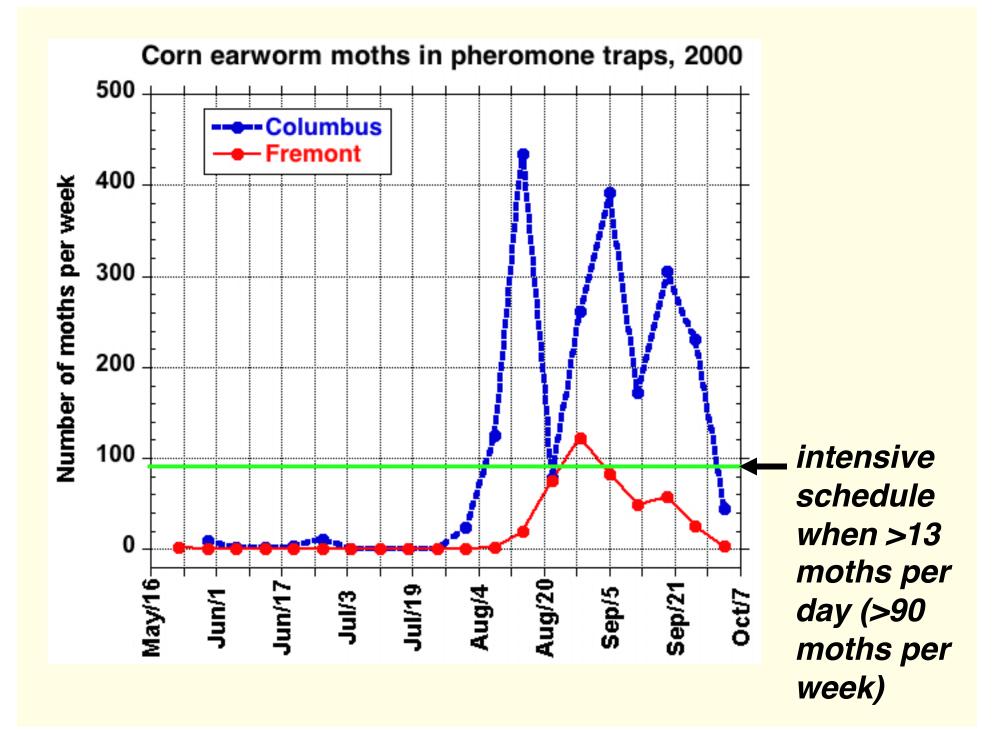


- For 3 week period before harvest
- Stages: fresh, wilting, dry & brown
- Pests attracted to fresh silk
- Silk grows rapidly (up to 1.5" per day)
- If sprayed, next day new silk unprotected

## Insecticide Issues During Silking in Main Season & Late Season Corn

\*\*\* Spray interval

**\*\*** Coverage of ear zone


\* Choice of insecticide

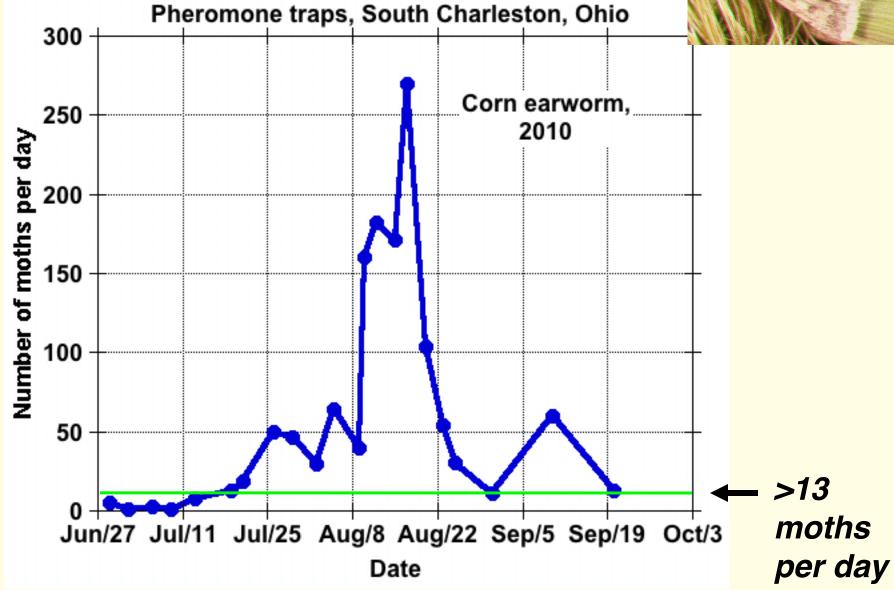
#### **Corn Earworm Insecticide Spray Schedule**

(based on Maryland & Massachusetts)

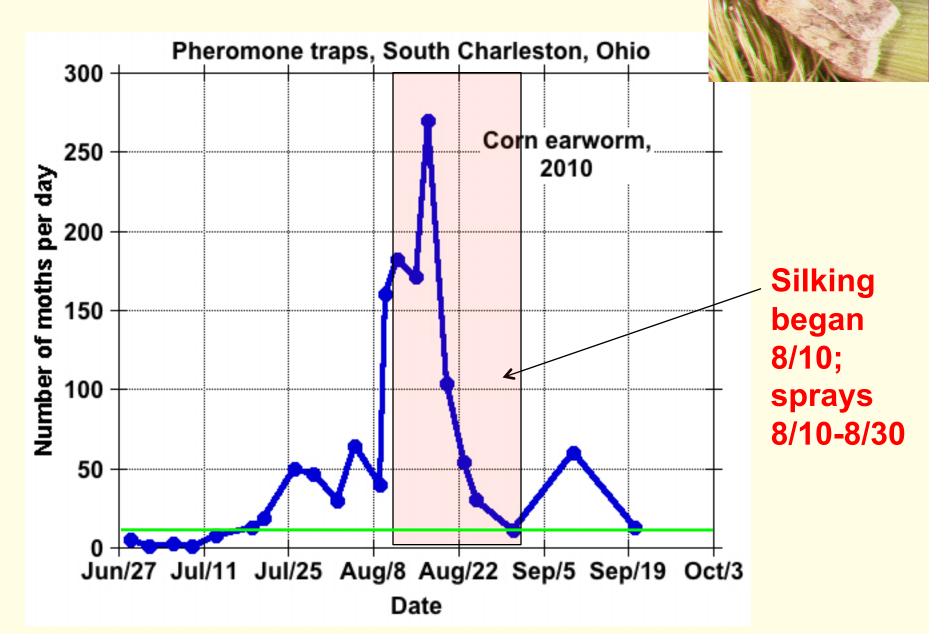
| Number moths                  | Spray interval               |                              |
|-------------------------------|------------------------------|------------------------------|
| per pheromone<br>trap per day | Maximum daily<br>temp. <80°F | Maximum daily<br>temp. >80°F |
| < 0.2                         | No spray                     | No spray                     |
| 0.2 - 0.5                     | Every 6 days                 | Every 5 days                 |
| 0.5 - 1                       | Every 5 days                 | Every 4 days                 |
| 1 - 13                        | Every 4 days                 | Every 3 days                 |
| > 13                          | Every 3 days                 | Every 2 days                 |

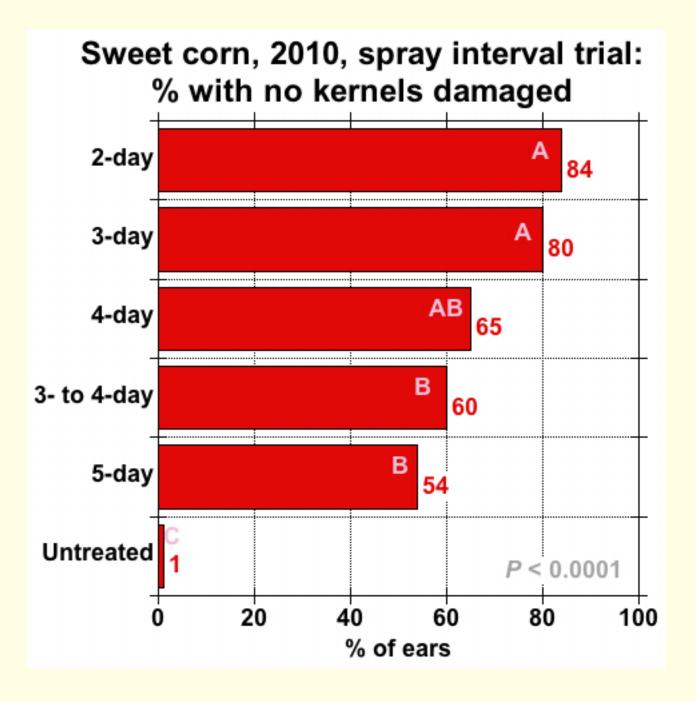
Note, in Georgia and Florida, sweet corn is sprayed every day!




# Field trial to compare spray schedule intensity, 2010

- One product: Warrior, at max rate
- Treatments (during silking):
  - -Spray every 2 days (11 times)
  - -Spray every 3 days (7 times)
  - -Spray every 4 days (6 times)
  - -Spray every 5 days (5 times)
  - -Start 3-day, then 4-day (6 times)


-No spray


#### Pest pressure at field trial site





#### Pest pressure at field trial site





European Corn Borer on Sweet Corn: spray during silking if moths active (> 1 moth per night = 7 moths per week in pheromone trap)

- 1<sup>st</sup> spray when 10-20% of plants silking
- Spray every 5 7 days
  - -5-day during peak egg hatch
  - -5-day when temperatures hot (>80 F)

#### Transgenic option: B.t. sweet corn

- Less developed than field corn
- Rejected by some consumers
- Lower residue of insecticides

#### **B.t. sweet corn**

- 'Attribute' from Rogers, since 2003:
  - BC 0805
  - BC 0822
  - GH 0851
  - WH 0809
  - GSS 0966
  - WSS 0987
  - BSS 0977
  - BSS 0982
- From Seminis (Monsanto), since 2012:
  - -'Obsession II' (bicolor shQ)
  - 'Passion II' (yellow sh2)
  - -'Temptation II' (bicolor se)

### **B.T. sweet corn**

- 'Attribute':
  - European corn borer:
    - Excellent control
  - Corn earworm:
    - Adequate protection if population low
    - Supplement with 2 sprays of insecticide if population high
- Seminis/Monsanto
  - Insect protection
    - Above ground (all worms, including earworm)
    - Below ground (rootworms)
  - Weed control
    - Round-up tolerant

#### Worm management with B.t. sweet corn

- If corn earworm pressure low

   –<u>No</u> insecticide sprays needed
   during silking
- If corn earworm pressure moderate or high

-Use 2 sprays

-First spray: 75% fresh silk

-Second spray: 4 days later

#### **Spraying for organic production**

- Use same spray schedule rule
- 'Entrust' allowed
  - -A.I.: spinosad
  - -On OMRI list
  - -Rate: 0.5 2 oz/acre
  - -Cost: \$571 \$649/lb





Organic alternative for worms in sweet corn: B.t. + Oil (Ruth Hazzard, Univ. Mass.)

• 'Zea-later II' applicator – Hand-held

-\$109 (Johnny's Selected Seeds)

- Mix:
  - -900 ml food-grade corn oil
  - Lecithin 5% (emulsifier)
  - -28.6 grams DiPel DF (a B.t.)
  - -100 ml water
- Treat:
  - -Once, 5 days after silking begins
  - Squirt 0.5 ml of oil mix into each ear tip





Corn earworm control, sweet corn field trials 2007-2015

Jim Jasinski & Celeste Welty

- Concern about pyrethroid resistance
- Start spray program at 1<sup>st</sup> silk
- 6 sprays at 3- to 4-day intervals





#### Conclusions from 9 years of Ohio field trial data

- Relief that pyrethoids still ok
  - -When CEW low
  - -Max rates needed
- Relief that new a.i.s now available
  - -diamides
  - -spinosyns
- Worry about whether efficacy of pyrethroids will suddenly drop

## New Pest Alert for Sweet Corn: Western Bean Cutworm





C Marlin E. Rice

| How to iden | 1G                         | y it?<br>CEW    |  |
|-------------|----------------------------|-----------------|--|
| WBCW        | Western<br>bean<br>cutworm | Corn<br>earworm |  |

### How to identify it?



| WB | CW                              | Western<br>bean<br>cutworm | Corn<br>earworm |
|----|---------------------------------|----------------------------|-----------------|
|    | Number of worms per ear         | Many                       | One             |
|    | Prothorax (segment behind head) | Broad dark stripes         | No<br>stripes   |
|    | Micro-spines on body            | None                       | Many            |
|    | Net-like marks on head          | Νο                         | Yes             |



#### How to monitor it?

Western Bean Cutworm Moth



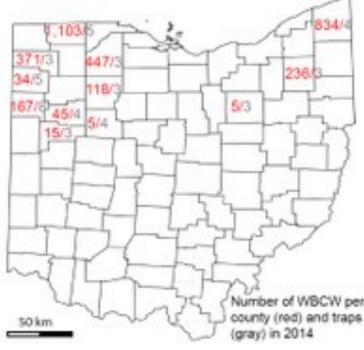


- Pheromone lure in trap
  - -Milk jug or unitrap
  - -One generation per year
  - -Adults active in July
  - -Trap June to August



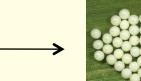
#### How to monitor it?

Western Bean Cutworm Moth




#### Where is it?




Confirmed catches

 NW Ohio since 2007
 Central Ohio since 2009
 But numbers very low compared to West



#### How to monitor?, part 2

- If any moths trapped, then <u>scout</u>:
  - -Late July & early August
  - -In plantings with tassels emerging
  - -Upper 4 leaves of 100 plants/planting
  - -Look for eggs



-Look for young larvae



#### How to decide on control?

- Thresholds (sweet corn):
  - -4% of plants infested (processing)
  - -Tentative: 1% of plants (fresh-market)

#### What are control options?

- Insecticide:
  - –When eggs are hatching —>



- -When ~90% of tassels have emerged
- -A pyrethroid or Sevin

#### What are control options?

- Insecticide:
  - –When eggs are hatching  $\longrightarrow$



- -When ~90% of tassels have emerged
- -A pyrethroid or Sevin
- Transgenic BT hybrid varieties:
  - -'Attribute' sweet corn and 'YieldGard' field corn are not effective
  - -'Herculex' field corn is effective

## **Worms in Peppers**







#### **European Corn Borer**

Key pest of bell peppers
 Bore into fruit
 Quality loss

-Yield loss



#### **European Corn Borer**

#### Also infests non-bell peppers



jalapeño

#### cayenne

#### cherry

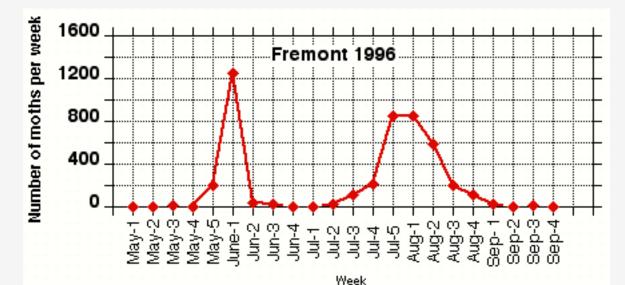
#### **Occasional pests in peppers**

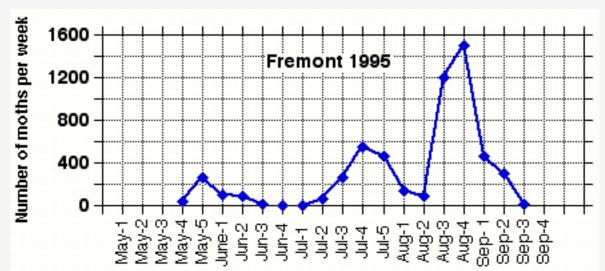


- Corn earworm \_\_\_\_
- Fall armyworm
- Beet armyworm
- Hornworms,





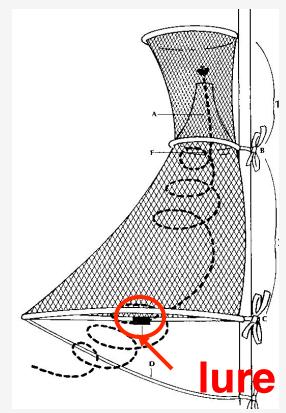

#### **Controlling borers in peppers**


- Target of insecticide:
   –young larvae
   –cap end of fruit
- Insecticide efficacy affected by: —timing
  - -coverage
  - -choice of material

# When does European corn borer damage peppers?

|          | Fruit    | Moths                            |
|----------|----------|----------------------------------|
| Month    | present? | present?                         |
| May      | no       | no                               |
| June     | no       | yes (1 <sup>st</sup> gen.)       |
| July     | yes      | no                               |
| August   | yes      | yes (2 <sup>nd</sup> gen.)       |
| Septembe | yes      | no/yes (if 3 <sup>rd</sup> gen.) |

#### ECB: 2 vs 3 generations






Week

#### Trap to Monitor European Corn Borer

- Pheromone lure
- Attracts male moths







## Challenge: good control

- 100% control of ECB is rare
- Due to canopy:
  - -Dense
  - -Hard to cover thoroughly



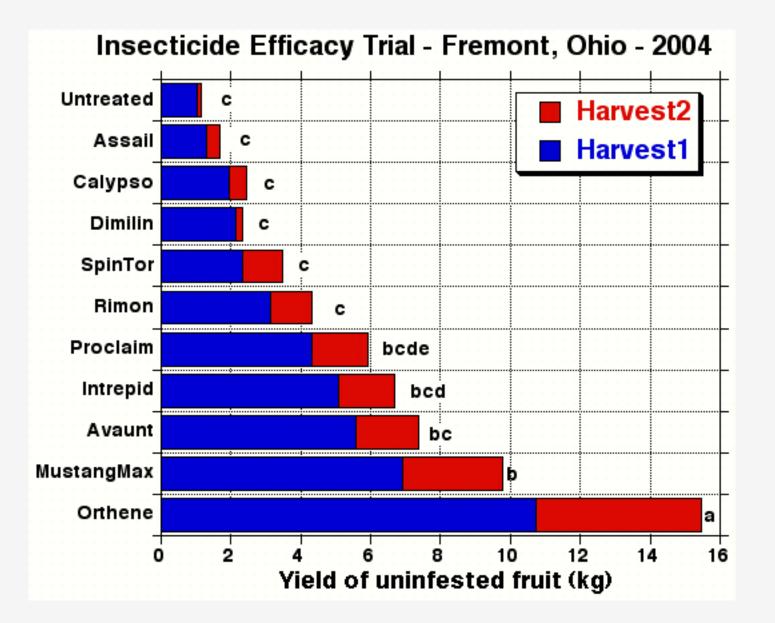
- Due to borer location:
  - Entry on stem often oriented downProtected inside fruit
- Processors demand <3% damage</li>

#### Insecticide <u>timing</u> for borer control in pepper

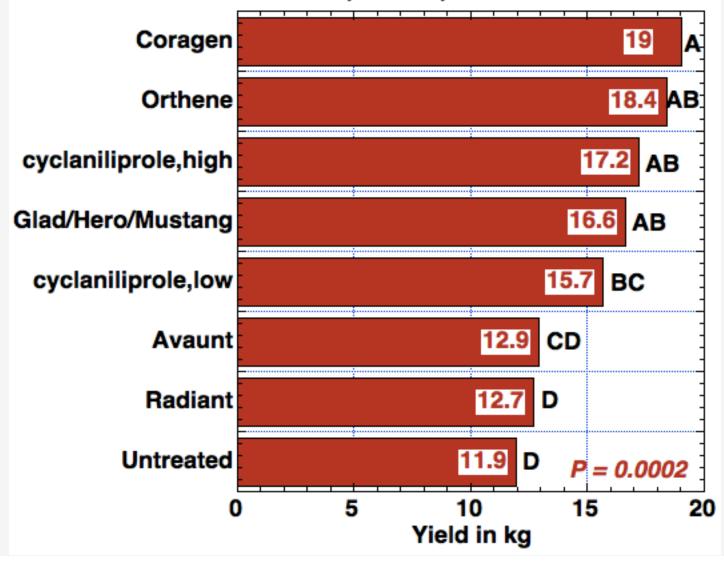
- First spray:
  - -within 1 week of surge in trap catch
  - -when >1 moth/night in trap
  - -usually late July
- Spray schedule:
  - -spray every 7 days (range 5 14 days)
    -during time moths active, 4 6 weeks
- Stop spraying:

–once trap catch falls (usually early Sept.)
–or until harvest if other pests active

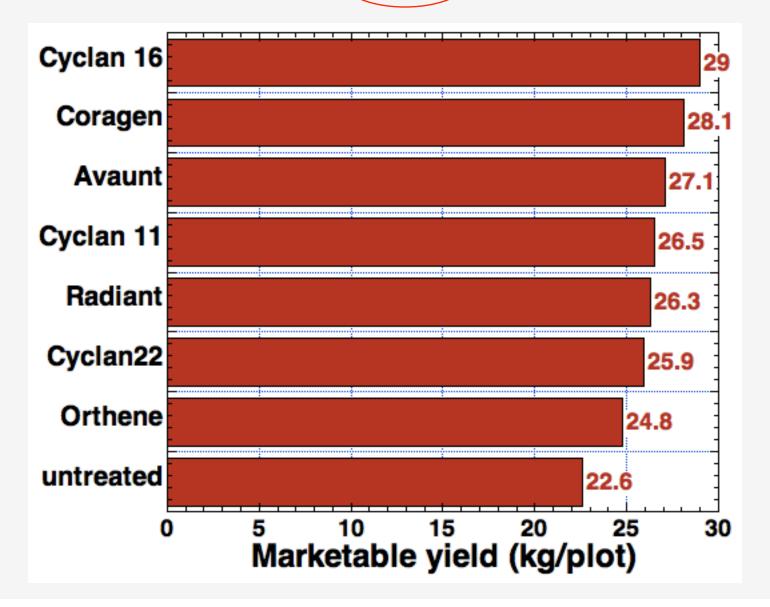
#### Insecticides for borer on peppers

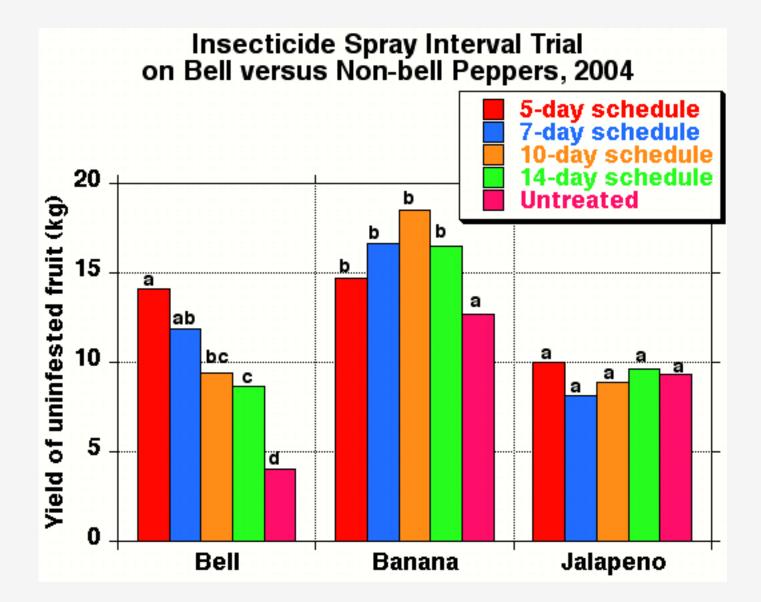

| Insecticide   | PHI | efficacy |
|---------------|-----|----------|
| Coragen       | 1   | E        |
| Orthene       | 7   | E        |
| Mustang       | 1   | G        |
| Pounce/Ambush | 3   | G        |
| Warrior       | 5   | G        |
| Baythroid     | 7   | G        |
| Brigade       | 7   | G        |
| Radiant       | 1   | G        |
| Intrepid      | 1   | G        |
| Confirm       | 7   | G        |
| Asana         | 7   | F        |
| Sevin         | 3   | F        |
| Lannate       | 3   | F        |
| B.t.          | 0   | F        |

#### **European Corn Borer on Peppers**


When temperature average: -Only 2 generations likely -Need 4 to 6 sprays total
When very hot: -3 generations likely -Need 8 to 10 sprays total

## Spray B.t. on peppers


- Bacillus thuringiensis products:
  - -Javelin, CryMax, Agree, Deliver (Certis)
  - -DiPel, XenTari (Valent)
- Controls caterpillars:
  - -European corn borer
  - -Hornworms
- Apply twice per week




#### Marketable yield of red bell peppers in 4 harvests (cumulative) after 5 insecticide applications at 10-day spray interval, Fremont, Ohio, 2013



## Marketable yield of red bell peppers after insecticides at 7-day interval, 2014





#### **Occasional pests in peppers**



- Corn earworm \_\_\_\_
- Fall armyworm
- Beet armyworm
- Hornworms





#### **Beet Armyworm**

- Pepper & tomato
- Leaves & fruit
- Scout for window-paning on upper youngest leaves
- Green, usually striped, 1 1/4"
- <u>Not</u> susceptible to pyrethroids







#### **Beet Armyworm**

- Monitor moths with pheromone trap
- Scout field if any moths caught
- Abundant at some sites in Ohio 2004:
  - June: most with 1-10 moths per trap per week
  - July: most with 3-60; up to 223
  - August: most with 25-100; up to 330





#### **Beet Armyworm**

- Insecticide choices:
  - Confirm/Intrepid excellent
  - Avaunt
  - Proclaim
  - Radiant
  - Radiant
  - B.t. aizawai\*
  - Orthene
  - Baythroid
  - Warrior
  - -Asana
  - Lannate

excellent excellent excellent (young worms) good (older worms) fair poor poor poor poor

\*aizawai strain in Agree, XenTari

poor

# **Worms in Cole Crops:** cabbage, broccoli, collards, kale, turnip

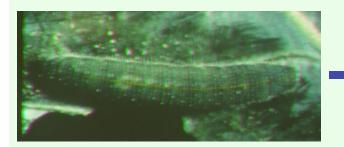


- pests & natural enemies
- scouting & thresholds
- using BT & insecticides

#### **Caterpillars on cole crops**

-Diamondback moth

–Imported cabbageworm


-Cabbage looper







#### Parasitoid wasps attack caterpillars



Imported cabbageworm



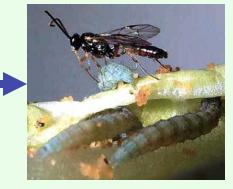
Cotesia





#### **Cabbage looper**




Cotesia adults emerging

Cotes ia adult wasp

Copidosoma floridanum wasps emerging from one cocoon



**Diamondback moth** 

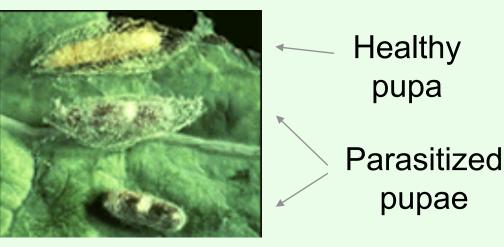


Diadegma insulare oviposits on larvae

# **Diadegma insulare**, Parasitoid of Diamondback Moth Larvae



- small wasp, 1/4" long
- black body, red/brown marks
- adult wasp lays egg in older caterpillar
- new adult wasp emerges from pupa


### **Diamondback & Biocontrol**

### % of diamondback larvae attacked:

- 53 to 88% in Wisconsin study
- -46 to 69% in Virginia study
- -24 to 36% in Ohio study

Diamondback pupae

Photo by J. Ogrodnick



### Floral resources help biocontrol

- Provide nectar: food for adult parasitoids
  - -wasps live longer
  - lay more eggs
  - -sting host faster



- Attracts some biocontrol agents'
- Can be scarce in conventional fields
- Wild: yellow rocket, wild mustard
- Cultivated: sweet alyssum
- Trials with alyssum, 2011 & 2012



Does cabbage need insecticide treatment for caterpillars?

- If <u>few</u> worms: no
- If <u>many</u> worms: yes
- If <u>some</u> worms: need help

### **Caterpillar management**

- Decisions (weekly)
  - Need to apply insecticide?
  - Which insecticide?
- Constraints
  - Resistance to insecticides
- Tools
  - Scouting
  - Thresholds

### **Management Decisions**

- Scouting = how many worms are in field?
- Thresholds = is the number of worms more or less than what the plant can tolerate?

### Management decisions using scouting & thresholds

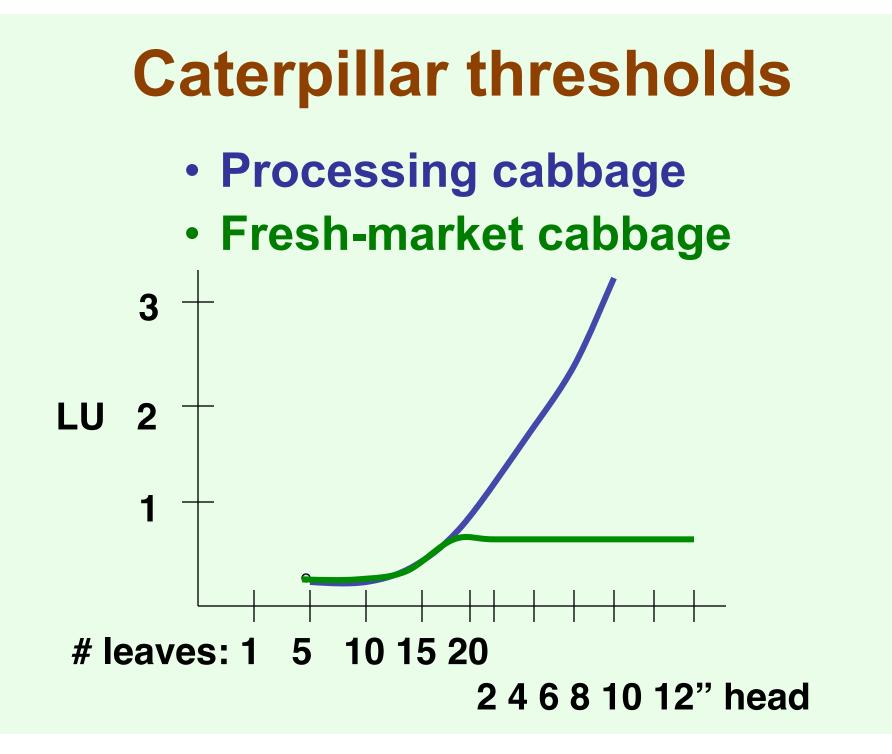
- Formal: at start
- Casual: after experience

### **Basis for cabbage thresholds**

- Number of worms tolerated by crop depends on plant size
- Different worm species eat at different rates
- <u>Air temperature</u> affects feeding rate of worms

### Larval Units (LU)

- 1 LU = 1 large cabbage looper
- 1 LU = 1.4 small cabbage loopers




1 LU = 1.4 large imported cabbageworms1 LU = 10 small imported cabbageworms



1 LU = 10 diamondback larvae





### Thresholds, Processing Cabbage

| Avg<br>temp | Threshold<br>(Avg Larval Units per plant) |         |        |
|-------------|-------------------------------------------|---------|--------|
|             | 4-leaf                                    | 16-leaf | 6"head |
| 60°F        | 0.08                                      | 1.46    | 6.25   |
| <b>70°F</b> | 0.04                                      | 0.69    | 2.94   |
| 80°F        | 0.03                                      | 0.48    | 2.04   |

See handout for complete list of temperatures and plant stages

### Cabbage weekly scouting steps

- **1. Determine crop stage**
- 2. Determine sample size
  - Fixed:
    - young (<8 leaf): 4 plants @ 10 segments</li>
    - older (>8 leaf): 2 plants @ 10 segments
  - -Variable: 1 4 plants @ 10 segments
- 3. Randomly choose plants to inspect
- 4. Inspect plants for target pests
- 5. Record # of pests per category

### **Decision-making steps**

- 1. Determine average number of caterpillars per plant for 3 species
- 2. Convert to total Larval Units
- 3. Find action <u>threshold</u> (for crop growth stage & temperature)
- 4. <u>Compare</u> current LU with threshold LU

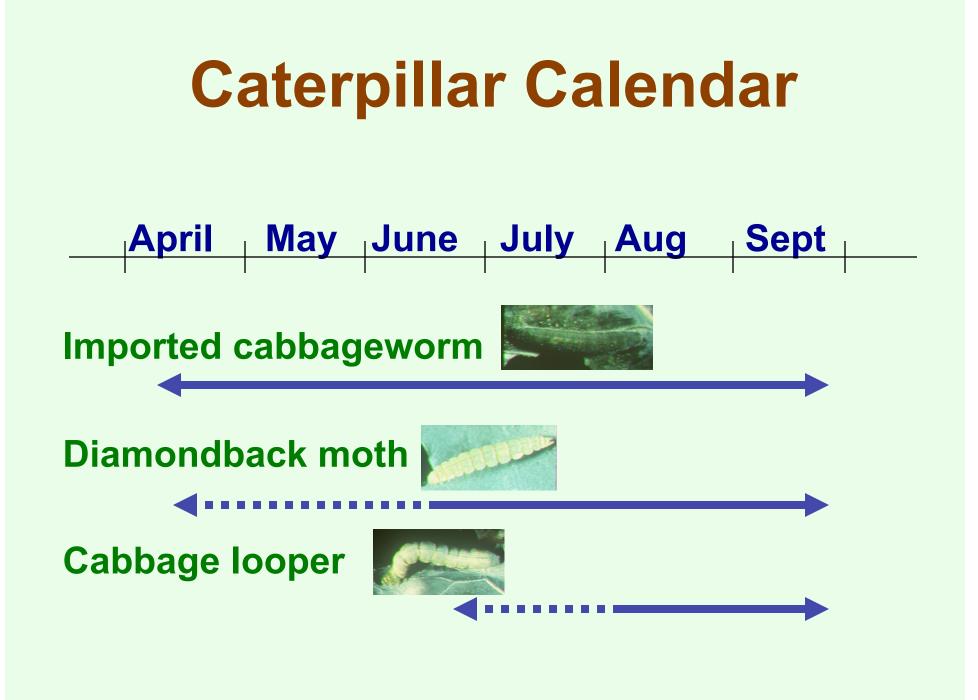
### Caterpillar Response to Insecticides

- Imported cabbageworm:
   –Easiest to kill
- Cabbage looper:
  - -Most difficult to kill
- Diamondback:

 Usually difficult but varies with population's history of resistance

### Cabbage Insecticide Efficacy

| Product           | Caterpillar species |                 |                   |
|-------------------|---------------------|-----------------|-------------------|
|                   | Imported<br>cab'wm  | Diamond<br>back | Cabbage<br>looper |
| Avaunt            | good                | excel.          | excel.            |
| B.t. (DiPel)      | good                | good            | fair              |
| Confirm, Intrepid | good                | fair            | good/excel        |
| Proclaim          | good                | excel.          | fair/good         |
| SpinTor, Radiant  | good                | excel.          | good              |
| pyrethroids       | good                | good            | good              |
| Lannate           |                     |                 |                   |
| Sevin             |                     |                 |                   |


# Integration of chemical control & biological control

- Depends on choosing a <u>selective</u> insecticide
  - -Kills caterpillars
  - -Does not kill parasitoids
  - -Use microbial insecticide, BT
    - 'DiPel', 'Javelin', 'XenTari' etc.

# Insecticides for caterpillar management on cole crops

| Insecticide  | <i>Imported</i><br><i>cabbage-</i><br><i>worm</i> | Diamond-<br>back moth | <i>Cabbage</i><br><i>looper</i> | Natural<br>enemies |
|--------------|---------------------------------------------------|-----------------------|---------------------------------|--------------------|
| Conventional | Excellent control                                 | Fair<br>control       | Good<br>control                 | Poor<br>survival   |
| B.t.         | Good<br>control                                   | Good<br>control       | Fair<br>control                 | Excellent survival |

Thus B.t. works best when diamondback moth or imported cabbageworm is dominant pest



# Calendar for integrated bio & chemical control in cabbage

- Early & mid-season (April to July)

   –if imported cabbageworm &/or
   diamondback dominant
  - -use only B.t.
- Mid- to late-season (August) —if cabbage looper dominant pest
  - -use Confirm, SpinTor, or Proclaim
- Late season (Sept.-October)
  - –if cabbage looper dominant pest
    –use pyrethroids

B.t. for control of caterpillars

### What is B.t.?

- A natural soil-borne bacterium
- Species: <u>Bacillus</u> <u>thuringiensis</u>
- This bacterium produces crystallike proteins that kill certain insects
- Found world-wide
- Produced by fermentation methods
- Discovered 1915; used since 1957

### How does B.t. work?

- B.t. must be <u>eaten</u> by target insect
- B.t. contains <u>toxins</u> that are activated by insect's gut enzymes
- toxins paralyze digestive tract
- feeding stops within <u>2 hours</u>
- death takes 1 5 days

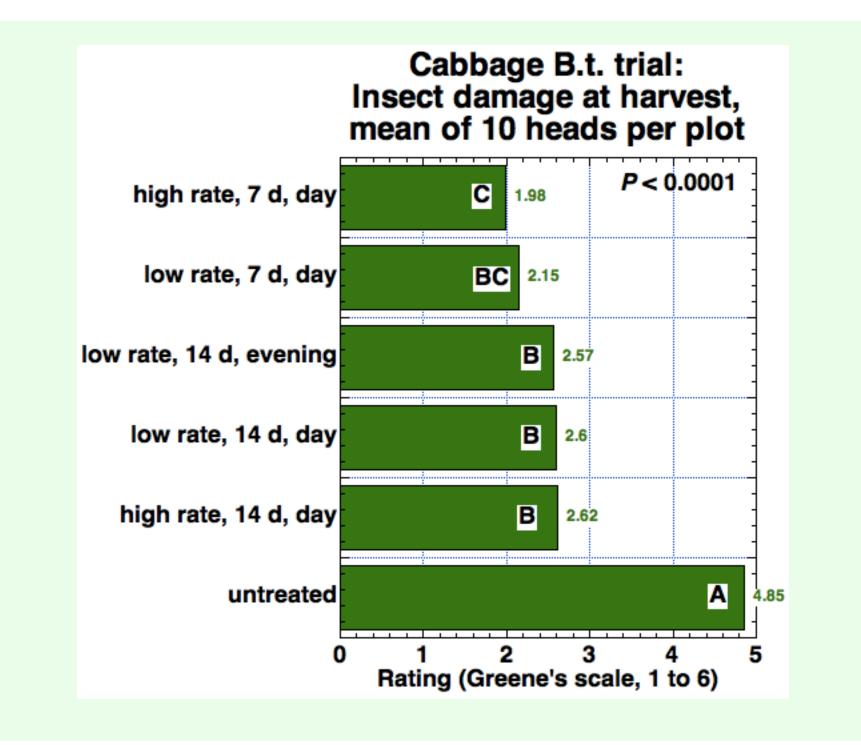
### **B.t. products**

- For caterpillar control:
  - -DiPel, XenTari, Biobit (Valent)
  - -Javelin, Agree, CryMax, Deliver (Certis)
- For Colorado potato beetle: –Novodor (Valent)

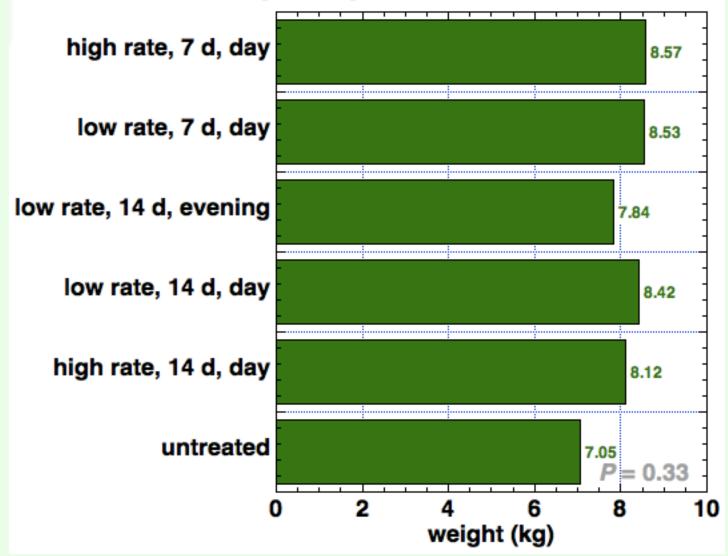
### **B.t. performance**

- Sometimes erratic:
  - -Breakdown in U.V. light
  - -Reduced toxicity against older larvae
  - –Incomplete spray coverage
  - -Too long a spray interval
- Best if:
  - -Target young larvae
  - –Apply at frequent intervals
  - -Get thorough coverage
    - Lot of water (>35 gal/A)
    - Good pressure (60 psi)

# How are B.t. sprays most effective?


- Rate?
- Frequency?
- Time of day?

# Field trial on B.t. in cabbage, 2012


- cv 'Bravo'
- Transplanted 18 May
- Scouted weekly for insects
- 1<sup>st</sup> spray 18 days after planting
- Sprays for 11 weeks
- Harvest 20 August

### **B.t. trial: Treatments**

| Treat-<br>ment | Rate of Dipel DF | Frequency     | Time    |
|----------------|------------------|---------------|---------|
| 1              | -                | -             | -       |
| 2              | Low (0.5 lb/A    | Every 7 days  | daytime |
| 3              | Low (0.5 lb/A)   | Every 14 days | daytime |
| 4              | High (1.0 lb/A)  | Every 7 days  | daytime |
| 5              | High (1.0 lb/A)  | Every 14 days | daytime |
| 6              | Low (0.5 lb/A)   | Every 14 days | evening |



#### Cabbage B.t. trial: Weight (kg) of 3 heads at harvest



### **B.t. trial: Conclusions**

- Frequency more important than rate

   Every 7 days better than every 14 days
   Low rate as effective as high rate
- Daytime spray as effective as evening spray

### Cole crop pests: mechanical control by row covers







#### 18 important caterpillar pests on veg crops

| Сгор                | Pest                                                                                                              |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Sweet corn          | Corn earworm +<br>European corn borer +<br>Fall armyworm +<br>Western bean cutworm<br>Armyworm<br>Black cutworm + |
| Pepper, tomato      | Tobacco hornwormVariegated cutwormYellow-striped armywormStalk borer +Beet armyworm                               |
| Cole crops & greens | Imported cabbageworm<br>Diamondback moth<br>Cabbage looper +<br>Cross-striped cabbageworm<br>Zebra caterpillar +  |
| Squash & pumpkins   | Squash vine borer                                                                                                 |
| Parsley             | Parsleyworm                                                                                                       |

the end

#### Info on fruit & veg. pests u.osu.edu/pestmanagement/

#### Questions? e-mail: welty.1@osu.edu office phone: 614 292 2803 cell phone: 614 746 2429