Apple Pest Management Using an Organic Approach

Celeste Welty Extension Entomologist Ohio State University

March 2007

Fruit pest management

- Part 1: Overview of strategies & tactics
- Part 2: Putting tactics together in a seasonal program for apples

Pest Management

- Strategies
 - -Do nothing
 - -Eradication
 - –Prevention **
 - -Suppression *
- Tactics
 - -Cultural
 - -Mechanial *
 - -Biological
 - -Behavioral
 - -Microbial *
 - -Chemical

- Minimize infestations by choosing appropriate crop management practices
- Categories:
 - -Crop location
 - -Crop selection
 - -How crop is maintained

Crop location

- -Do not plant near alternate hosts (or remove alternate hosts)
 - **Example: blackberry psyllid**
 - Winter hosts: pines, spruces, cedars, hemlocks
 - Do not plant blackberries within 1/8 mile of conifers; mile better

- Crop selection
 - -Choose resistant varieties
 - Not many examples for insects
 - Aphid resistant raspberries
 - -Ground cover (between tree rows in orchards)
 - Broadleaf covers better refuge for predatory mites —
 - For better biocontrol, use broadleaf rather than grass ground cover

Crop selection

–Intercropping with a refuge planting for natural enemies

- Adult parasitoids need nectar
- Adult predators need pollen
- Plant flowering border at field edge to enhance biocontrol
- E.g. sweet alyssum by cabbage

- How crop is maintained
 - -Pruning
 - -Mowing
 - -Sanitation ('clean culture')
 - -Fertilizer
 - -Plant growth regulators
 - -Weed control
 - -Irrigation/hosing

How crop is maintained

-Pruning

- E.g. pears, summer pruning of water sprouts helps control pear psylla
- E.g. raspberries: prune out raspberry cane borer and rednecked cane borer in larval stage (in stems)

- How crop is maintained
 - -Sanitation or 'clean culture'
 - Collect and compost dropped fruit to destroy pests inside fruit

- How crop is maintained
 - -Sanitation or 'clean culture'
 - Collect and compost dropped fruit to destroy pests inside fruit

- How crop is maintained —weed management
 - -E.g.: Tarnished plant bug on strawberry
 - Weeds are also host plants
 - Especially weeds that flower early (before strawberries bloom)
 - Do not disturb (pull, mow) the weeds while your plants are in the susceptible stage

 How crop is maintained —Mowing between rows

Tarnished plant bug on peach:

- –Move from grassy ground cover & weeds into fruit trees when grass mowed
- -Where insecticides are used, better to spray then mow, not mow then spray


- How crop is maintained —Fertilizer
 - Some pests like plants with excess nitrogen (e.g. some aphids)
 - -Plant growth regulators (PGR)
 - If succulent plant growth is suppressed by PGR, can limit pests (e.g. aphids on apple trees)

- Use mechanical tactics to prevent or delay pests from infesting a site; use tools <u>not</u> needed for purposes other than pest management
- Exclusion
- Removal

- Exclusion by barriers
 - Netting, screening
 - Paper bags
 - Localized shields
 - Copper barrier

- Exclusion by netting
 - Periodical cicada
 - Birds

- Exclusion by paper bags
 - Apples
 - Grapes

- Exclusion by localized shields
 - Wrapping tree trunk with paper to prevent attack by flatheaded borers

- Exclusion by copper barrier
 - Slugs, snails

- Removal trapping
 - Shelter traps
 - Visual traps
 - Scented traps
- Removal by hand
- (Removal by vacuum)

Removal by shelter traps Tree bands for caterpillars

Gypsy moth

- Removal by scented traps
 - Japanese beetle

- Removal by Visual traps + Scented traps
- Apple maggot:
 - Red sphere
 - Fruit volatile lure
 - Attracts female
 A.M. flies
 - Use 1 trap per 100 real fruit

- Hand Removal
 - For conspicuous pests
 - For pests not too active
 - In relatively restricted area
 - Labor available
- Limb-jarring (Beating)
 - Plum curculio

Biological Control

- = control of pest by other organisms that act as natural enemies
- 2 main categories:
 - -Parasitoids
 - -Predators

Natural enemies of pests

- Parasitoids
 - -Some wasps
 - -Some flies

Predatory Beetles

- Lady beetles
- Ground beetles
- Rove beetles →
- Soldier beetles

Lacewings

• Green lacewings

• Brown lacewings

Predatory Bugs

Stink bugs

- -Spined soldier bug
- -Twospotted stink bug
- Flower bugs
 - -Minute pirate bug
 - -Insideous flower bug
- Damsel bugs
- Assassin bugs —
- Big-eyed bugs

Predatory Flies

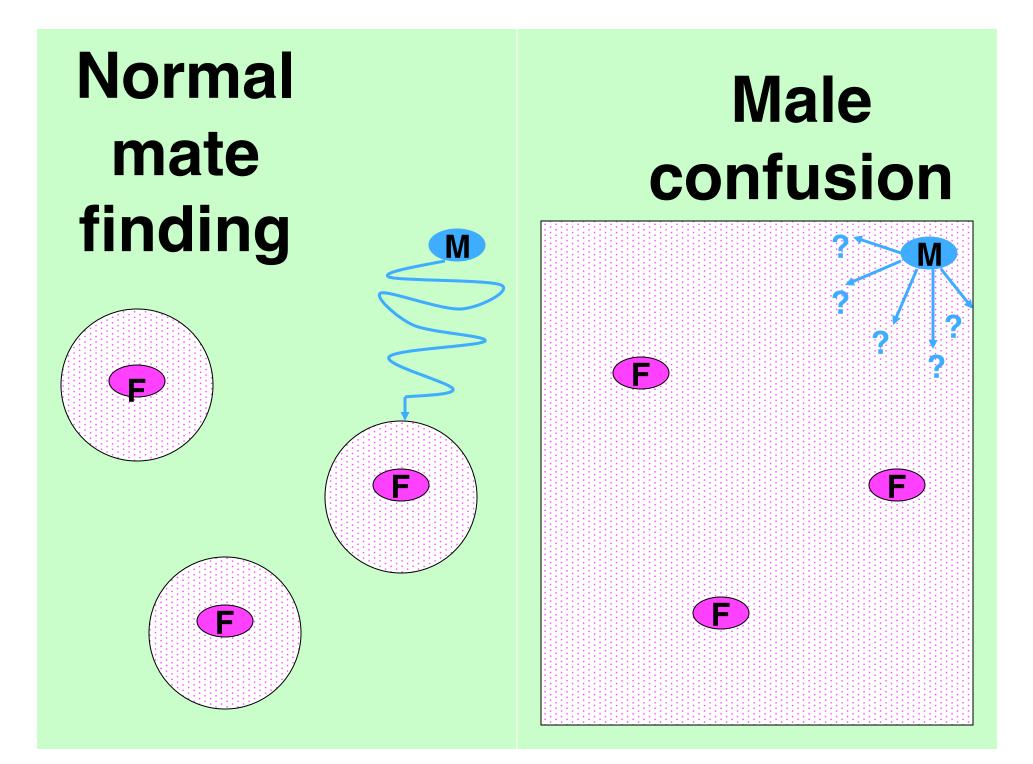
• Hover flies (flower flies)

- Aphid midges
- Robber flies

Predatory mites in orchards

- White mites (Family Phytoseiidae)
 - Neoseiulus fallacis (=Amblyseius fallacis)
 - Typhlodromus pyri

- Yellow mites (Family Stigmaeidae)
 - -Zetzellia mali
 - -Agistemus fleschneri



Categories of Biological Control

- 'Natural' (local species)
- Importation (exotic species)
- Conservation (local species) **
- Augmentation (local species)

Behavioral Control

- Control a pest population by interfering with its normal behavior
- Pheromone mating disruption
 - -Male confusion technique
 - -Attract-and-kill technique
 - -General rule: <u>5 acre minimum</u>
 - -Being used for:
 - Oriental fruit moth (peach)
 - Peachtree borers (peach)
 - Codling moth (apple)

Types of Products for Mating Disruption

- Manual dispensers
 —Twist tie ('rope')
 - -Patch -
 - -Clip
 - -Spiral
- Puffers
- Sprayable micro-encapsulated

Attract-and-kill technique

Example:

- Product 'Last Call CM'
- Codling moth
- Apple, pear
- Made by IPM Tech
- Manual dispenser pump
- Rate: 1200 droplets per acre
- Claims to work well in small or irregular orchards

Microbial Control

- Control by micro-organisms that cause disease in insect
- Bacteria

-BT sprays

-(Transgenic BT plants)

- Viruses **
- (fungi)
- (nematodes)
- (protozoans)

Chemical control

- OMRI-approved insecticides

 spinosad (Entrust)
 - -kaolin (Surround)
 - -Soaps
 - -Oils
 - -Pyrethrins

Tactics that involve products applied in orchard

- Some tactics...
 - -Behavioral controls
 - -Microbial controls
 - -Chemical controls
- Some on OMRI list, some not

OMRI-approved products

- Behavioral control

 Pheromone mating disruption
- Microbial control
 - -virus
 - -B.T. (DiPel)
- Chemical control
 - -spinosad (Entrust)
 - -kaolin (Surround)
 - -Soaps
 - -Oils
 - -Pyrethrins

Part 2

Fruit Crops: Insect/Disease Problems

- Require least inputs
 - **–Blueberries**
 - -Raspberries
 - -Strawberries
 - -Grapes
- Require most inputs
 - -Peaches
 - **–**Apples

Stages of Apple Growth

3-36108.28

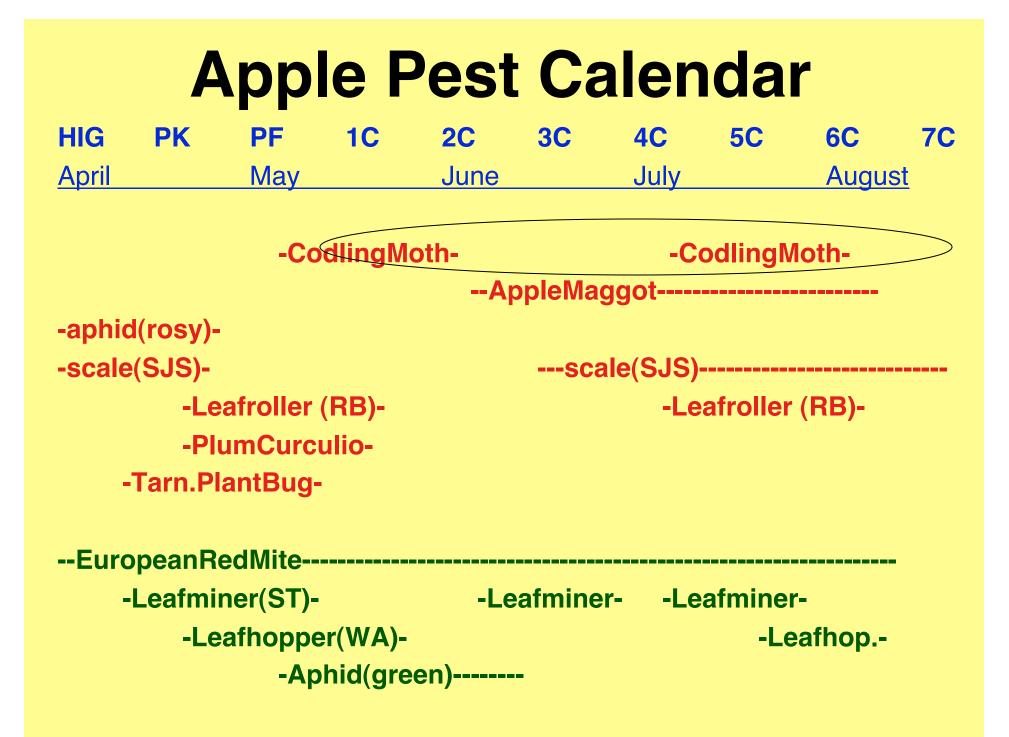
3-088899 Tot

3-HALKINGH BALK

a_most cluster

1-1017-894

4-PVOLPHM


3-REF BLOOM

\$-PUL BODY

1-FOLF KIDON

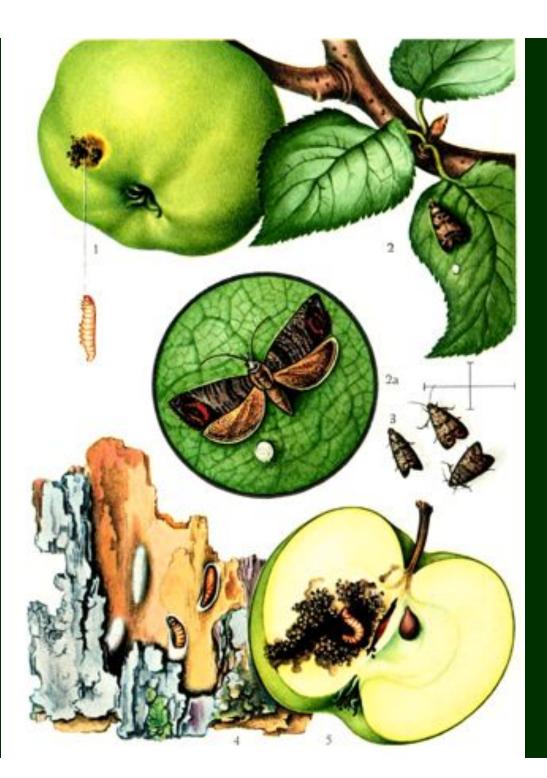
Biological control of apple pests by naturally occurring predators & parasitoids

Pest	Enemy
European red mite	Predatory mites
Green apple aphid	cecidomyid fly (orange maggot)
Rosy apple aphid	Hover flies, lady beetles
Spotted tentiform leafminer	Parasitoid wasps

Apple Pest Management Tactics

- Integrated control
 - -Chemical control
 - Needed for codling moth
 - Use <u>selective</u> insecticide
 - —Biological control of mites & other foliar pests
 - Conserve natural predators

Codling Moth in Apples



- The key pest in apple fruit
- Young larva enters fruit, tunnels to seeds at core

Codling Moth Life cycle

1st generation in May/June

2nd generation in July/August

Codling Moth Management Overview

- Cultural
 - -Sanitation: Clean bins
 - -Cut down abandoned orchards
- Behavioral modification
 - -Pheromone mating disruption
- Microbial sprays
 - -Virus sprays
- Chemical sprays
 - -Insecticides

Codling Moth in Apples

- Mechanical controls:
 - Trunk bandsFruit bagging

Codling moth management

Factors affecting insecticide efficacy:

- Timing
- Choice of materials
- Spray volume

Insecticide timing for codling moth

- Use 2 sprays per generation
- First spray when eggs begin to hatch
- Second spray 14 days later

Predicting Codling Moth Egg Hatch

- Eggs begin to hatch:

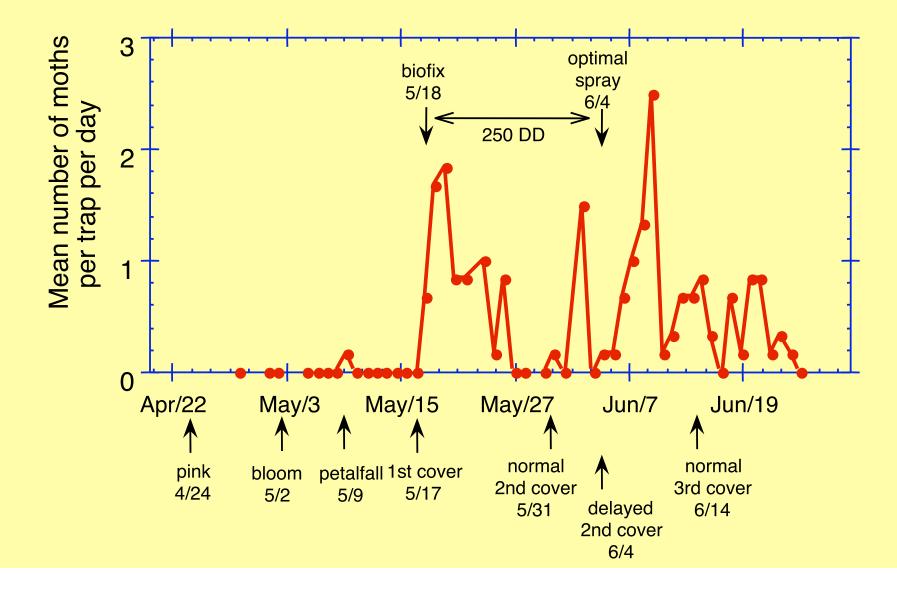
 About 2 to 3 weeks after moths begin to fly (often Memorial Day +/- 1 week)
 More exactly, 250 degree-days (base 50F) after moths begin sustained flight
- Rule developed ~30 years ago (Mich. '76)

Traps for Codling Moth

- Trap choices:
 Sticky trap
 Multi-Pher (bucket) trap
- Use pheromone lure
- 'Biofix' is the date that sustained flight begins

Degree-Days (DD)

- Common way to summarize development time
- Can be used to predict insect activity
- For one day, DD = (average temp) minus (threshold temp)
- Accumulate DD over consecutive days


Degree-Days Example

Day	Temp. max	Temp. min	Temp. avg	DD (base 50)	DD Cumul.
1	62	52	57	7	7
2	66	50	58	8	15
3	58	54	56	6	21
4	70	56	63	13	34

Insecticide timing for codling moth

- Use 2 sprays per generation
- First spray when eggs begin to hatch (250 degree-days after biofix)
- Second spray 14 days later

Codling Moth, 1996 Pheromone Trapping at O.S.U. Orchard, Columbus

Products for control of apple pests

- OMRI approved products
 - -spinosad (Entrust)
 - –virus for codling moth (Virosoft CP4; Cyd-X; Carpovirusine)
 - -kaolin (Surround)
 - -B.T. for caterpillars (DiPel)
 - -Pheromone mating disruption if >5 acres

Codling moth granulosis virus

- Products
 - -'Cyd-X'
 - -'Carpovirusine'
 - -'Virosoft CP4'
- Action
 - **—Only limited fruit protection**
 - -Significantly reduces surviving population

CpGV = *Cydia pomonella* Granulosis Virus (or Granulovirus)

- Granules are viral occlusion bodies
- Applied when eggs are hatching
- Granules ingested by young larvae before or during entry into fruit
- Host death within 3-7 days
- Breaks down in UV light
- Half-life 4-8 days

CpGV Orchard Trials: on pears in California 2003 (very high pest pressure)

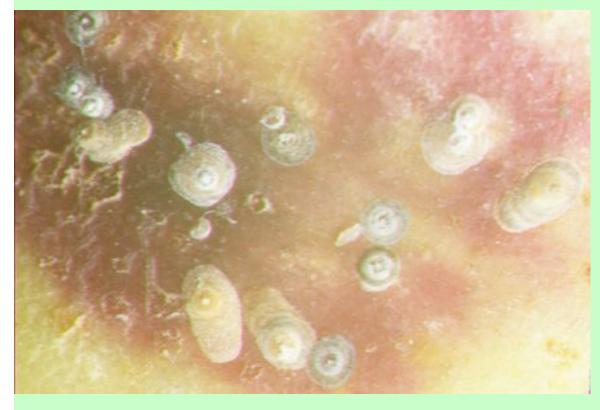
Treatment	% CM infested fruit
Imidan/Guthion (3 ap.)	3.7 a
Entrust (11 ap.)	3.9 a
Cyd-X (11 ap.)	26.9 b
Carpovirusine (11 ap.)	30.5 b
untreated	70.2 c

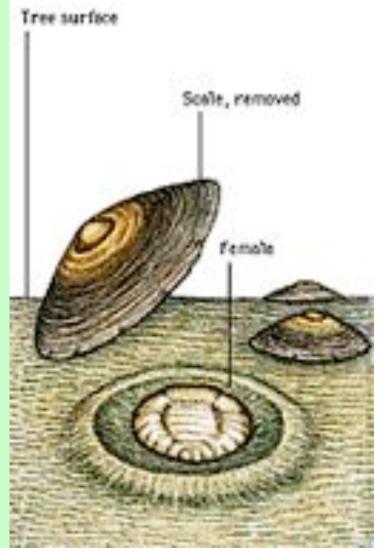
CpGV Orchard Trials: apple in NC 2004

Treatment	% of fruit with entries
Rimon	0.5 a
Cyd-X	0.8 ab
Rimon/Guthion	1.3 ab
Assail/Intrepid	2.3 ab
Intrepid/Calypso/Spintor	2.8 ab
Danitol/Guthion	3.0 ab
Calypso/Intrepid	4.0 ab
Imidan/Guthion	4.5 abc
Guthion/Rimon	4.8 abc
Experimental/Intrepid	5.8 abc
Assail/Intrepid	6.0 bc
Calypso/Intrepid	9.8 cd
untreated	14.5 d

For all: 2 applications for 1st generation, 3 applications for 2nd generation; 14-day interval

'Surround'


Suggested Program for Apple


Time	Event	Product
PF	PlumCurc.	Surround
1C	CodMoth-1	Entrust
2C	CodMoth-1	Entrust
3C	-	virus
4C	CodMoth-2	Pyganic
5C	CodMoth-2	Pyganic
6C	-	virus
7C	-	virus
8C	-	virus

- Sucking pest
- Injures fruit & bark
- Overwinters on bark
- Disperses to fruit in crawler stage
 (starts mid-June)

Insecticide spray options:

- Dormant
 - -Oil
 - -Lime sulfur
- Post-bloom
 - -Insecticidal soap

Management at dormant stage, in late winter or early spring:

- Use oil to smother the overwintering population on bark
- Or use lime sulfur

Oil spray:

- Best control of scale if applied before buds swell
- Prevent damage to tree by applying when temperature above freezing within a day of application
- Apply <u>dilute</u> (2 oz oil in 100 oz water; spray to run-off), cover all bark

 Post-bloom control options that target crawler stage

-Insecticidal soap

When are crawlers crawling?

- Start about 4-6 weeks after bloom
- Usually in mid-June
- Emergence lasts several weeks

When are crawlers crawling?

- Use black sticky tape (electrical tape)
- Wrap sticky-side out around branch
- Look for tiny bright yellow crawlers

Apple Maggot

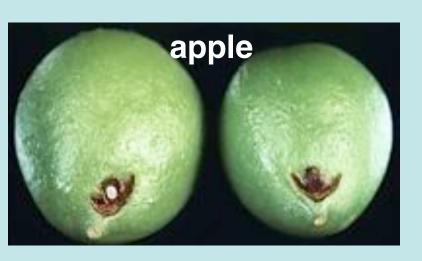
- A key pest in northern USA
- Not a pest in southern USA
- Variable in Ohio

Apple Maggot

- Adult fly lays egg on fruit
- Larva tunnels through fruit
- Pupation in soil

Apple Maggot

- Adult female fly attracted to round red object
- Sticky ball trap for mechanical control: 1 trap per 100 real fruit


Plum curculio

- External damage on apples from egg-laying
- Internal damage on plum, peach, cherry, blueberry from larvae tunnelling

Plum curculio

- Not many effective tactics
- Mechanical control:
 - -Limb jarring (beating) on first warm humid nights near petalfall
- Chemical control:

-Kaolin ('Surround') at petal-fall

Cultural control of peachtree borers

- Train trees to form wide angles
- Promote healthy trees
- Avoid practices that injure bark
 - -Over load of fruit
 - –Improper pruning
 - -Mowing injury
 - -Fertilizing
 - –Damage during harvest

Mechanical control of peachtree borers

- 'Worming'
- Effective
- Insert knife or wire into entry hole
- Smash the larvae!
- Do in early spring or late fall
- Practical in small plantings