## Using multiple tactics to manage pests on vegetables

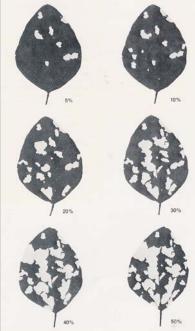






Celeste Welty Extension Entomologist Ohio State University January 2017

## Topics


- Overview of management tactics
- Examples of common pests & options for managing them
  - -Vine crops
  - -Cole crops

## Components of Integrated Pest Management (IPM)

- Monitoring —
- Action thresholds
- Multiple tactics
  - -Preventive options
  - -Remedial options







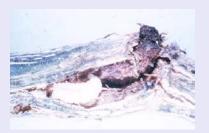
### IPM uses a <u>combination</u> of tactics

- Cultural
- Host Plant Resistance
- Mechanical
- Biological
- Behavioral
- Microbial
- Chemical
- Genetic
- Regulatory

### IPM uses a <u>combination</u> of tactics

- Cultural \*
- Host Plant Resistance
- Mechanical \*
- Biological \*
- Behavioral
- Microbial \*
- Chemical \*
- Genetic
- Regulatory

## **Cultural Controls**

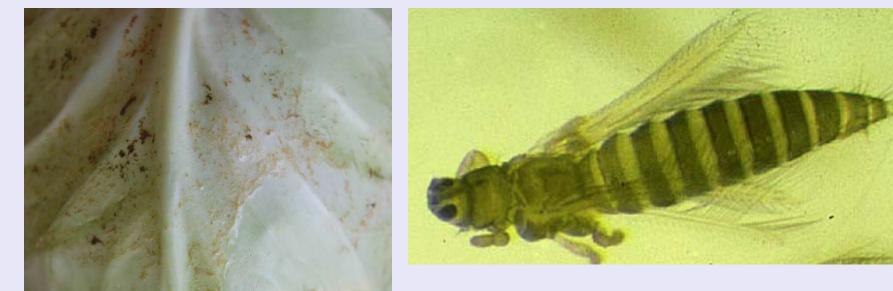

- Minimize infestations by choosing appropriate crop management practices
- What crop is selected
- **o** Where crop is planted
- **o** When crop operations occur
- **o** How field is prepared & planted
- **o** How crop is maintained
- Trade-offs usually occur

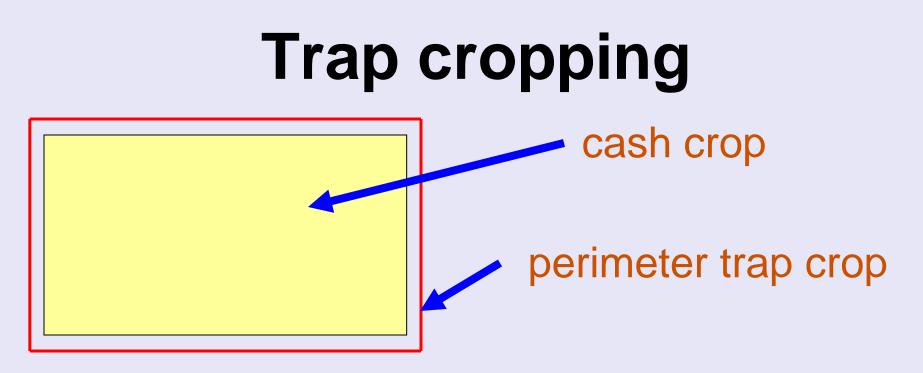
## **Delayed planting**

• Cucumber beetle



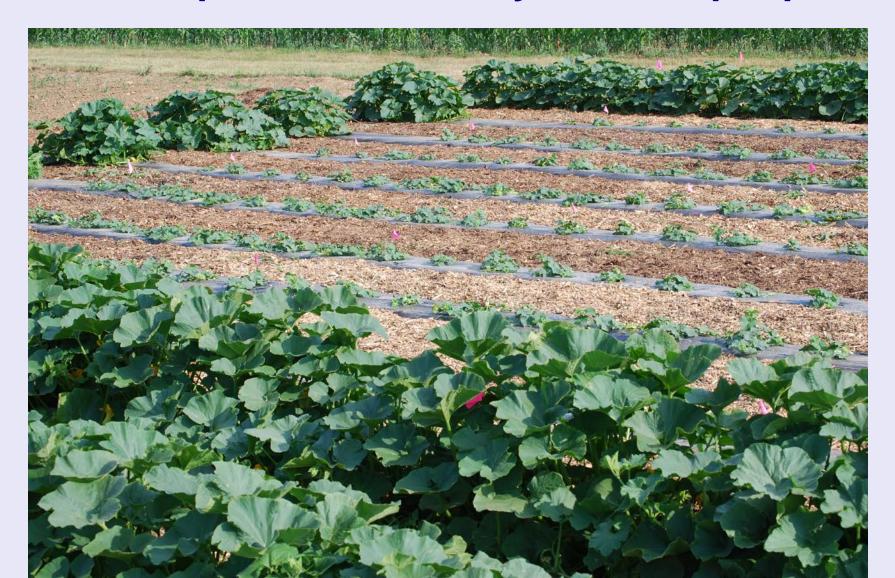
- -Problem if plant in mid-May
- -Less problem if plant in early June
- Squash vine borer
  - -Same





- Bean leaf beetle
  - -Peak populations in May, July
  - -Fewer in June



## **Cover Crops**


- Used to protect soil over winter
- Affects onion thrips
  - **–Overwinters in small grains**
  - -Does best in wheat
  - -Does poorly in rye





- Lure pest away from main crop to a more attractive crop
- Planting time options
  - -Same time
  - -2 weeks early for trap crop

## Perimeter trap crop Cantaloupe surrounded by Buttercup squash



## Cultural control: trade-offs

- **Example: Straw Mulch**
- Benefits
  - -Moisture retention
  - -Weed suppression



- -Reduces soil splash
- -Reduces fungal spore dispersal
- Makes some pest problems worse –cucumber beetles, slugs

## **Mechanical Controls**

- Tactics to prevent or delay pests from infesting a site
- Tactics not needed for purposes other than pest management
- 2 types:
  - Exclusion
  - Removal

## **Exclusion by barriers**

- Row covers \*\*
- Netting, screening
- Paper bags —
- Localized shields
- Copper barriers
- Trenches (deep furrows)
- Plant collars —
- Fences







- Lightweight

   -'Agri-bon 15', 'Insect Barrier'
  - -90% light transmission (vs 70-85% for <u>heavier</u> covers for frost protection)
  - -Sources:
    - Johnny's Selected Seed: \$67. (10' x 250')
    - Gardens Alive: \$35. (5' x 110')

- Beetles on beans
- Leafhoppers on beans
- Worms on cole crops
- Disease vectors:
  - -Beetles on cucumbers (before flowering)
  - -Aphids

- Install on day of planting
- Remove
  - When first flowers appear (cucurbits)
  - At final harvest (broccoli, beans)







- Use with or w/o hoops
- Must be anchored tightly





## Mechanical Control by Removal

- By beating/shaking
- Removal trapping \_
- Removal by vacuum
- Removal by hand
- By aspirator



## Removal by beating or shaking



- Hold bucket under plant
- Tap plants with broom
- Then kill pests mechanically
- Repeat daily
- Works for Colorado potato beetle (adults, larvae)





## **Removal by aspirator**



- Aspirator = Mouth-operated suction device
- \$8 14 from:
  - -BioQuip
  - -Forestry Suppliers
  - -Gempler's



 Good for flea beetles, bean leaf beetle, cucumber beetle



## **Removal by hand**

- Labor intensive
- Target pests:
  - Conspicuous pests
  - Pests not too active
  - In relatively restricted area
- Examples
  - Spinach leafminer (infested leaves)
  - Hornworms
  - Asparagus beetle (eggs)
  - Japanese beetle



## **Removal by sanitation**

- Collect and destroy/compost: -Culled fruit
  - -Crop residue (after harvest)
- Plant clean nursery stock

## **Biological Control**

- Control of pest by other organisms that act as natural enemies
- Overview of common natural enemies
  - -Predators
  - -Parasitoids
- Tactics of biocontrol

















## **Predators**









- Develop at expense of more than one prey item
- Predator often larger than prey

### Prey usually killed & consumed quickly





## **Predators**

- Green lacewings
- Lady beetles
- Insidious flower bug
- Damsel bugs
- Hover flies









adult



larva







## **Parasitoids**





- Develop at expense of a single host
- Lay egg in or on host insect
- Host is usually killed slowly



## & Vertebrate predators eat insects!

- Bats
- Toads
- Birds
- Geese
- Hogs



## **Biological Control**

- Conservation tactics
  - -Avoid broad-spectrum insecticides
  - -Provide refuge planting
- Augmentation tactics
  - -Buy from insectary
    - Rincon-Vitova in California
  - -Collect locally, then transfer















# Refuge planting for natural enemies



- Adult parasitoids need <u>nectar</u>
- Adult predators need <u>pollen</u>
- Plant flowering border at field edge to enhance biocontrol

# Refuge planting for natural enemies



### Phacelia

### sweet alyssum \*

### nasturtium

cilantro

dill







## Augmentation: Collect & transfer

- What to do?
  - -Hunt for generalist predators
  - -Collect them
  - -Transfer them to crop
- Who, where, when?
  - -Ladybug larvae on Spirea in May
  - –Lacewings & aphid midges on apple leaves in early June
  - -Damsel bugs on alfalfa, April-June









## **Chemical Control**

### • Options:

### -Use no chemicals

### -Use conventional insecticides

-Use chemicals allowed for organic farms (on OMRI list)

### Insect control products on the OMRI List

### Behavioral control

- pheromone mating disruption

### Microbial control

- viruses
- B.t. (DiPel)

### Smothering agents

- soaps
- oils

### Nerve poisons

- spinosad (Entrust)
- pyrethrins (PyGanic)

### Repellents

- kaolin (Surround)
- neem
- garlic

### Insect control products on the OMRI List

### Behavioral control

- pheromone mating disruption

### Microbial control

- viruses
- B.t. (DiPel) \*

### Smothering agents

- soaps
- oils

### Nerve poisons

- spinosad (Entrust) \*
- pyrethrins (PyGanic)

### Repellents

- kaolin (Surround) \*
- neem
- garlic

## Insecticides

- OMRI-listed, <u>narrow</u> spectrum
  - -viruses (Gemstar)
  - -pheromones (CheckMate-TPW)
  - -bacteria (B.t.: Dipel)
- OMRI-listed, <u>broad</u> spectrum
  - -soaps
  - -oils
  - -botanicals: neem, pyrethrins
  - -fungi: Beauveria

## Spinosad in 'Entrust SC'

- Targets:
  - -Mostly caterpillars
  - -Some thrips, beetles, leafminers
- Expensive! (\$689 for 1 quart at Johnny's Seeds)



 Rates 1.5 to 10 fl oz/A (most 3 - 4 fl oz/A)

#### **Repellent: 'Surround'**







**Crop Protectant** 

Such as cucumber, summer and winter squash, pumpkin, citron melon, muskmelon, and watermelon

| PEST                                                                  | LBS/ACRE | APPLICATION INSTRUCTIONS                                                                                              |
|-----------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------|
| Cucumber beetle,<br>grasshoppers                                      | 25-50    | Suppression only*. Start prior to infestation, applying every 5-7 days, with the first two applications 3 days apart. |
| Powdery mildew                                                        |          | Suppression only*. Apply every 7-14 days as required to maintain coverage.                                            |
| Sunburn and heat stress                                               | 25-100   | See I D.                                                                                                              |
| *If complete control is needed, consider using supplemental controls. |          |                                                                                                                       |



## **Microbial Insecticides**

- Bacteria
  - -B.t. (sprayable!): Dipel
- Viruses
  - Gemstar
- Fungi
  - Beauveria bassiana (Mycotrol, Naturalis)
- Protozoans
  - Nosema (Hopper Stopper; Nolo Bait)
- Nematodes
  - Steinernema carpocapsae (Millenium)
  - Heterorhabditis bacteriophora (Symbion)

### What is B.t.?

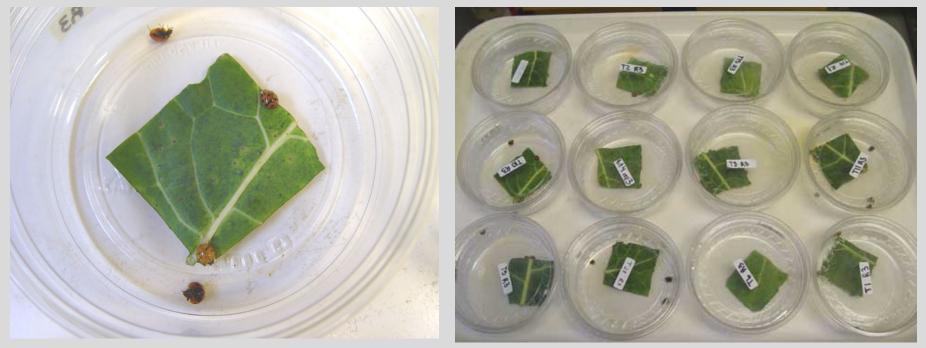
- A natural soil-borne bacterium
- Species: <u>Bacillus</u> <u>thuringiensis</u>
- This bacterium produces crystallike proteins that kill certain insects
- Found world-wide
- Produced by fermentation methods
- Discovered 1915; used since 1957

### How does B.t. work?

- B.t. must be <u>eaten</u> by target insect
- B.t. contains <u>toxins</u> that are activated by insect's gut enzymes
- toxins paralyze insect's digestive tract
- feeding stops within <u>2 hours</u> after eating B.t.
- death takes 1 5 days

# B.t. products for caterpillar control

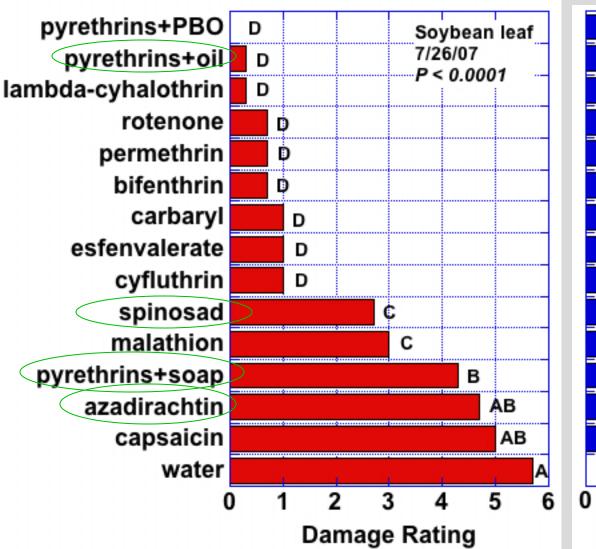
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

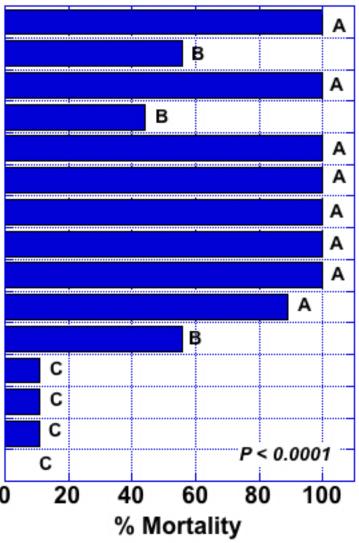

- **DiPel** (Valent)
- XenTari (Valent)
- Biobit (Valent)
- Javelin (Certis)
- Agree (Certis)



## **B.t. performance**

- Sometimes erratic due to:
  - -Breakdown in U.V. light
  - -Reduced toxicity against older larvae
  - –Incomplete spray coverage
  - -Too long a spray interval
- Best if:
  - -Target young larvae
  - -Apply at 3-7 day intervals
  - -Get thorough coverage
    - Lot of water (>35 gal/A)
    - Good pressure (60 psi)


# Lab bioassays to evaluate insecticide efficacy




## DefoliationMortality



#### **Bean Leaf Beetle**

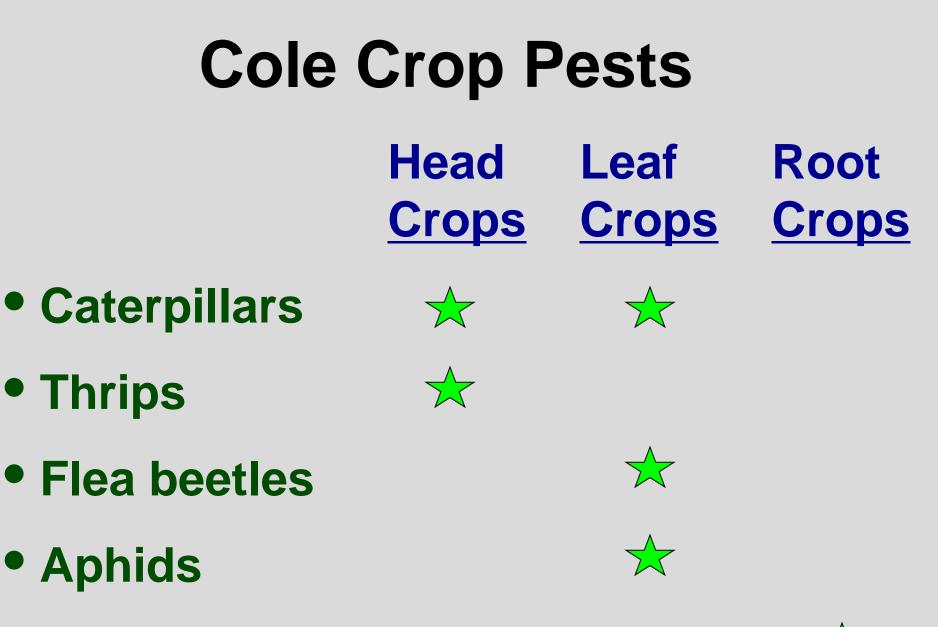




## **Trends in efficacy**

| spectrum      | Exc./Good                                                                                       | Good/Fair                                     | Fair/Poor                                                                   |
|---------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|
| broad         | pyrethrins + PBO<br>carbaryl<br>esfenvalerate<br>lambda-cyhalothrin<br>cyfluthrin<br>bifenthrin | permethrin<br>malathion<br>pyrethrins<br>+oil | neem seed oil<br>azadirachtin<br>capsaicin<br>garlic<br>pyrethrins<br>+soap |
| less<br>broad | <mark>spinosad</mark><br>endosulfan<br>rotenone                                                 | kaolin                                        |                                                                             |
| narrow        | dicofol<br>soap<br>oil                                                                          | B.T.                                          |                                                                             |

#### in red if on OMRI list


# Can biological & chemical control ever be integrated?

- Use <u>selective</u> chemical
  - -Kills pest but not natural enemies
  - -Allows natural enemies to help kill pest
  - -Example: B.t. (Dipel)
  - Use product with very short residual activity
  - Example: soap

#### **Tactics for common pests**

Cole crops

Vine crops

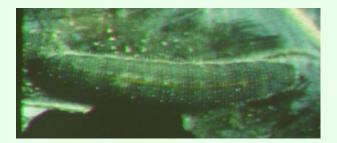


Root maggots

## Tactics for cole crop pests

 $\frac{1}{2}$ 

 $\mathbf{\mathbf{x}}$ 


**<u>Cultural</u> <u>Biological</u> <u>Chemical</u></u>** 

- Caterpillars
- Thrips
- Flea beetles
- Aphids
- Root maggots

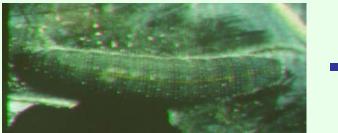


 $\overline{}$ 

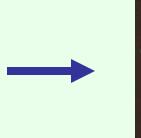
#### **Cole crops: 3 Caterpillar Species**



#### Imported cabbageworm




#### Cabbage looper




#### Diamondback moth

#### **3 Caterpillar Species & their parasitoids**



Imported cabbageworm





*Cotesia* larvae spinning cocoons



*Cotesia* adult wasp



Cabbage looper



Diamondback moth



*Copidosoma floridanum* wasps emerging from one cocoon



*Diadegma insulare* oviposits on larvae

Biological & microbial control of caterpillars on cole crops

- Use the microbial insecticide BT as a selective insecticide, spray or dust
  - 'DiPel', 'Xentari', etc.
  - Kills caterpillars
  - Does not kill parasitoids
  - Allows natural enemies to help kill pests
- Spinosad also easy on parasitoids
- Plant border of sweet alyssum to attract parasitoids

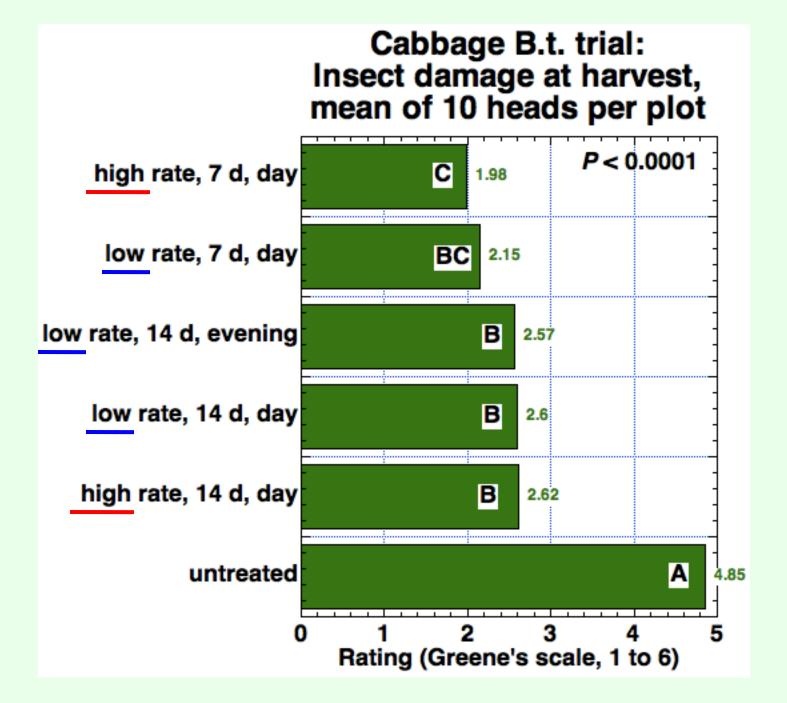




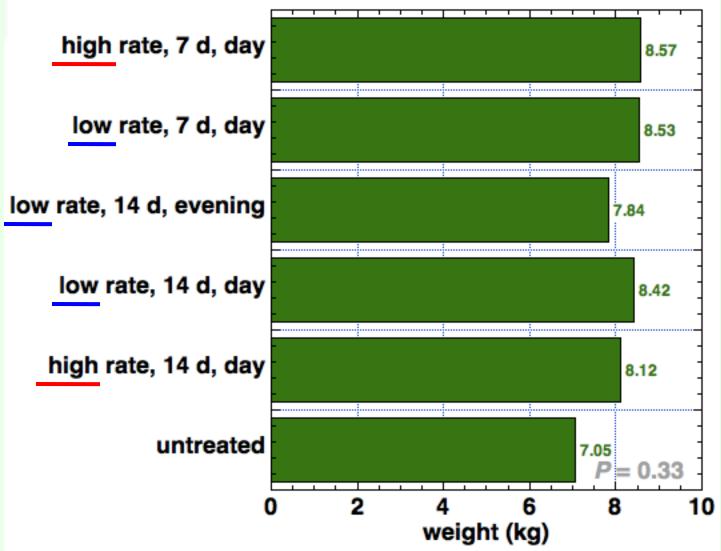
How are B.t. sprays most effective for cabbageworm control?

• Rate?

• Frequency?


• Time of day?

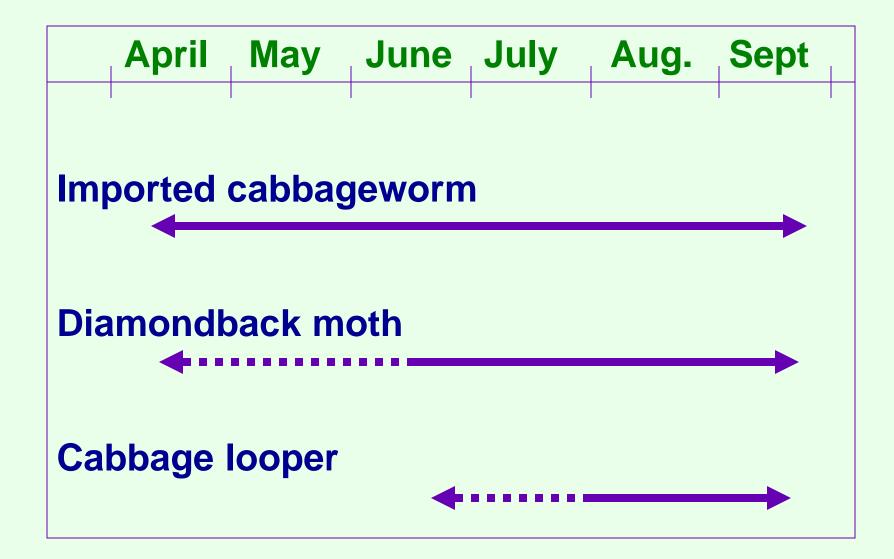
### Cabbage trial, 2012


- cv 'Bravo'
- Transplanted 18 May
- Scouted weekly for insects
- 1<sup>st</sup> spray 18 days after planting
- Sprays for 11 weeks
- Harvest 20 August

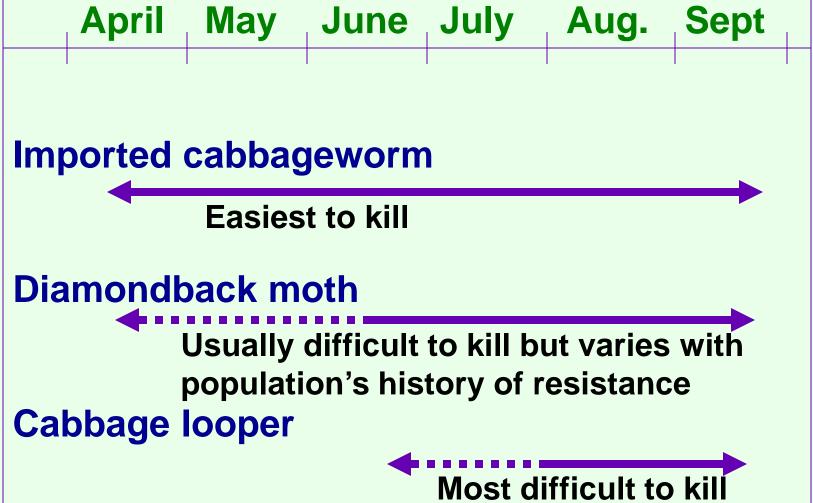
#### **Cabbage B.t. treatments**

| Treat-<br>ment | Rate of<br>Dipel DF | Frequency     | Time    |
|----------------|---------------------|---------------|---------|
| 1              | -                   | -             | -       |
| 2              | Low (0.5 lb/A       | Every 7 days  | daytime |
| 3              | Low (0.5 lb/A)      | Every 14 days | daytime |
| 4              | High (1.0 lb/A)     | Every 7 days  | daytime |
| 5              | High (1.0 lb/A)     | Every 14 days | daytime |
| 6              | Low (0.5 lb/A)      | Every 14 days | evening |




#### Cabbage B.t. trial: Weight (kg) of 3 heads at harvest




### **B.t. trial conclusions**

- Frequency more important than rate
  - -Every 7 days better than every 14 days
  - -Low rate as effective as high rate
- Daytime spray as effective as evening spray

### Cabbage caterpillar calendar







# Insecticides for caterpillar management on cole crops

| Insecticide                     | <i>Imported</i><br><i>cabbage-</i><br><i>worm</i> | Diamond-<br>back moth                                       | Cabbage<br>looper            | Natural<br>enemies    |
|---------------------------------|---------------------------------------------------|-------------------------------------------------------------|------------------------------|-----------------------|
| Conventional                    | Excellent<br>control                              | Fair<br>control                                             | Good<br>control              | Poor<br>survival      |
| B.t.<br>Thus B.t.<br>imported o | <b>Good</b><br>works best v<br>cabbagewor         | <b>Good</b><br>vhendiamon<br><b>Centrol</b><br>m is dominar | Fair<br>dbackrmoth<br>t pest | Excellent<br>©urvival |

### **Insecticide Calendar**

- Early & mid-season (April to July)

   if imported cabbageworm &/or
   diamondback dominant
   use only B.t.
- Mid- to late season (August)

   –if cabbage looper dominant pest
   –use Confirm, SpinTor, or Proclaim
- Late season (Sept.-October)

–if cabbage looper dominant pest
–use pyrethroids (Baythroid, etc.)

#### **Thrips on Cabbage**



| Less damage: | More damage: |
|--------------|--------------|
| Bravo        | Azan         |
| Fresco       | Atria        |
| Cheers       | Coleguard    |
| Titanic 90   | Megaton      |
| KingCole     | Upton        |
| Superkraut   | Hinova       |
|              | Krautpacker  |
|              | Rodolpho     |
|              | Superdane    |

Data on >80 varieties C.Hoy, K.Scaife, M.Kleinhenz

### Cultural controls for thrips





- Select thrips-tolerant variety
- Choose winter cover crop
  - -Thrips do best in wheat
  - -Thrips do poorly in rye
- Avoid planting near wheat

-Thrips infestation often follows wheat harvest

## Planting date & Cabbage Maggot

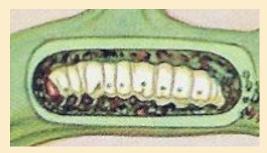
 Crop most susceptible if in <u>seedling</u> stage when new adults are laying eggs



- Emergence of the adults:
  - on different calendar dates each year
  - -but always at the same time that certain well known plants are flowering

| GEN. | PLANT             | AVG. BLOOM (Ohio) |
|------|-------------------|-------------------|
| 1    | yellow rocket     | early May         |
| 2    | day lilies        | late June         |
| 3    | Canada thistle    | early August      |
| 4    | New England aster | early Sept.       |

# Choose planting date to avoid cabbage maggot


- Do not <u>transplant</u> during the time that these plants are blooming
- Do not <u>seed</u> approximately 2 weeks before these plants are blooming
- Ideal time to seed is toward the tail end of bloom period, because seedlings would appear:
  - -just after maggot flies disappear
  - -well before the next flight begins

### Managing Insect Pests in Commercial Vine Crops









#### **Cucurbit Pests**

- Cucumber beetles \*\*
- Aphids
- Two-spotted spider mite
- Squash bug
- Squash vine borer



### Cucumber beetles

#### Important damage:

- Chew seedlings
- Transmit bacterial wilt
- Chew on fruit surface
- Less critical damage:
- Chew on flowers
- Larvae chew on roots









#### Natural enemy of cucumber beetles

- Parasitoid fly, Celatoria
- Looks like a small house fly
- Kills adult cucumber beetles
- Common in Ohio
  - Striped cucumber beetle, adults:
    - 0 to 38% in survey 13 farms, 2003 & 2004
  - Spotted cucumber beetle, adults:
    - 4% at 1 site, 2000
- We need to encourage its survival!







#### **Beetle infected with nematodes**

Cultural controls & cucumber beetles

- Plant late (mid-June)
   After initial peak invasion
- Avoid straw mulch

-Favors development of larvae in soil

# Perimeter trap crop Squash more attractive than cantaloupe





#### Good in recent trials with cantaloupe



# Cucumber beetles & conventional insecticides

- <u>Seed</u> applied systemics – FarMore FI 400 (since 2009)
- <u>Soil</u> applied systemics
  - Admire Pro (since 2000) or generics
     Platinum 2SC
- Foliar applied
  - Before flowering:
    - Sevin; Pounce or other pyrethroids
  - During flowering:
    - No good choices due to honey bee toxicity
    - Never spray in morning; best in evening

#### Admire applied in-furrow provides excellent control of striped cucumber beetle on pumpkin seedlings



## Seed Treatment

- For direct-seeded crops
- Advantages



- Efficacy equal to in-furrow treatment
- Convenience; easier application
- Much lower rate of A.I. per acre
  - Compare to in-furrow:
  - ~25 times less (pumpkins at 3,000 seeds/A)
  - ~2 times less (pickles at 45,000 seeds/A)
- Control good during critical cotyledon to 2-leaf stage
- Control not lasting past 2-leaf stage

Cucumber beetle management by mass trapping



#### **Cucumber Beetle Kairomone Trap**



- Developed by Trécé Inc.
- Poison bait: cucurbitacin + carbaryl (inside trap)
- Volatile lure: mimic squash flowers
- Most effective <u>before</u> flowers form



#### Potted squash plants treated with soil drench of Admire





One trapping station = one trap & one box of **3 potted** plants treated with **Admire** 

#### 5 traps at the edge of 1 plot traps 20 ft apart



# Cucumber beetle management options

| Category   | Tactics                                                                   |
|------------|---------------------------------------------------------------------------|
| Cultural   | Delay planting (early June)<br>Plant early trap crop<br>Avoid straw mulch |
| Mechanical | Row cover (seedlings)<br>Early trap-out                                   |
| Biological | Conserve parasitoids (no spray)                                           |
| Chemical   | Buy treated seed<br>Rescue spray                                          |

## **Cucurbit Pests**

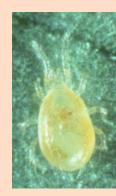
- Cucumber beetles
- Aphids
- Two-spotted spider mite
- Squash bug
- Squash vine borer

### **Aphids & Viruses on Cucurbits**

- Tactics tested:
  - -Stylet oil
  - -Row covers
  - -Reflective mulch






- -Soil-applied systemic insecticides
- -Foliar insecticides
- All helped control aphids but none affected virus
- Best hope is resistant varieties



## **Spider Mites**



- Tolerable at low density
- Suppressed by natural predators
- Flare up in hot dry weather
- Soft control:
  - Insecticidal soap
  - Hort. Oil
- Chemical control:
  - Agri-Mek or others





## **Squash Bug: Biological control**





- Feather-legged fly
  - -Trichopoda pennipes
  - -parasitoid
  - –lays egg on adult or large nymph
  - –common in Ohio
- Egg parasitoid wasps

#### **Squash Bug: Cultural control**

- Rotate with non-curcurbit crops
- Promote early growth of crop
- \* Destroy crop remains

## Squash Bug: Mechanical control

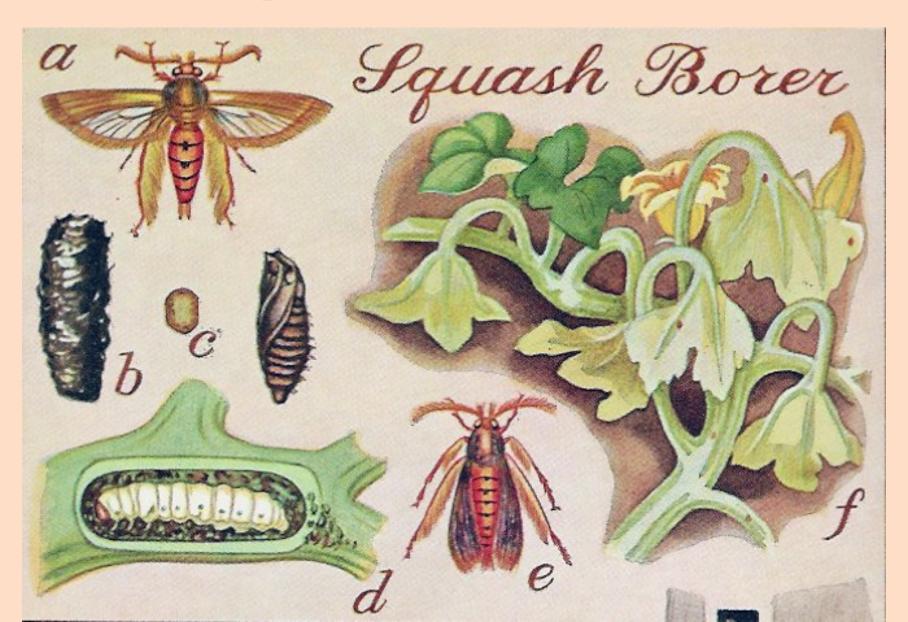
#### Shelter trap

- -Board trap or shingle trap
- -On ground under squash plant
- -Check daily in early morning
- –Decide how to kill
- Row covers (until flower)
- Hand-pick egg masses





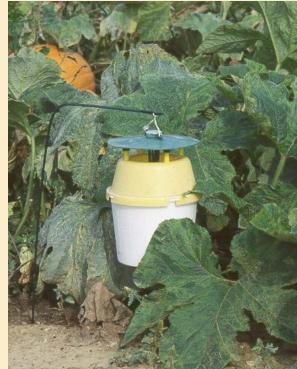





### **Squash Bug: Chemical control**

#### Challenges

- -Nymphs more susceptible than adults
- -Hard to contact in canopy
- -Need good spray pressure
- Insecticide choices:
  - -Pyrethroids (Ambush, Asana, Baythroid, Capture, Danitol, Permethrin, Pounce) = good
    -Sevin = poor


#### **Squash Vine Borer**



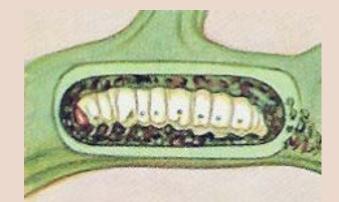
Squash vine borer: trap for monitoring

- pheromone lure available to attract adult male moths
- trap helpful with timing insecticide to target hatching eggs





## Squash Vine Borer: Chemical Control


#### • Timing:

- -4 sprays, 1 week apart
- -At time of egg hatch
- Estimate by catch of moths in trap
- Peak hatch usually early July
- Products: pyrethroid (Ambush, Asana, Baythroid, Brigade, Danitol, Permethrin, Pounce) or EverGreen (pyrethrins + PBO)
- Direct spray at <u>base</u> of stems

## Squash Vine Borer: Management

- Cultural
  - -Plant late for main crop
  - -Small planting early as trap crop
- Mechanical
  - -Row covers (until flowering)
- Chemical

   Insecticide



#### **Cucurbit pest management**

| Category   | Tactics                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------|
| Cultural   | Delay planting (early June)<br>Plant early trap crop<br>Avoid straw mulch<br>Crop rotation          |
| Mechanical | Row cover (seedlings)<br>Shelter traps<br>Hand-pick eggs<br>Destroy crop remnants<br>Early trap-out |
| Biological | Conserve natural enemies                                                                            |
|            | Dense transford a sol                                                                               |

#### **Questions?**