Using biocontrol in vegetable & fruit crops

Celeste Welty Ohio State University August 2014

Topics

- Cast of characters
- Types of biocontrol
 - Conservation
 - -Augmentation
- Examples
 - -Greenhouse
 - -Field

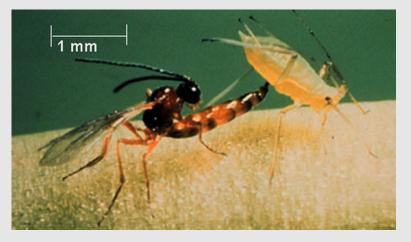
Biological Control

- = control of pest by other organisms that act as natural enemies
- Term used since 1930s

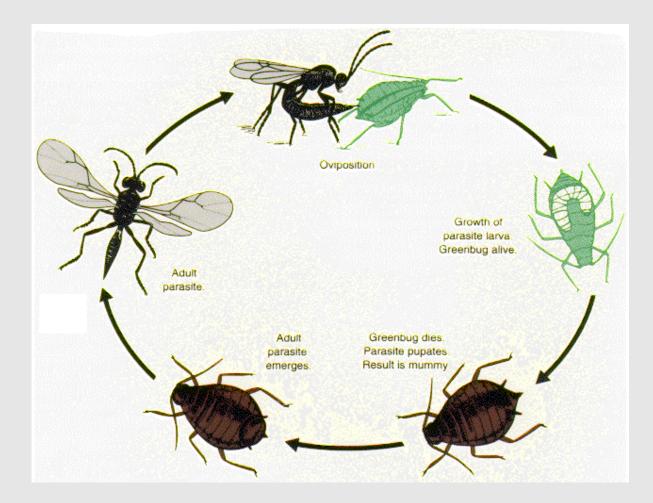
Biological 'Control'?

- Control = maintaining pest population below the EIL
- Sometimes preventive
- Sometimes rescue
 - -Might not do the whole job
- But can be 'free'

Natural enemy categories


- Predators
- Parasitoids
- (Microbes)

Natural enemy categories: Predators

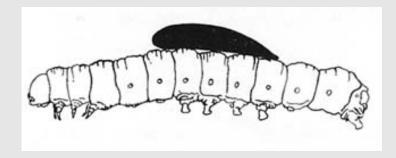

- Consume the entire prey
- Develop at expense of <u>more</u> than one prey item
- Prey usually killed & consumed <u>quickly</u>
- Predator often larger than prey

Natural enemy categories: Parasitoids

- Lay egg in or on host insect
- Develop at expense of a single host
- Host is usually killed <u>slowly</u>
- Enemy usually <u>smaller</u> than host

Parasitoids: typical life cycle

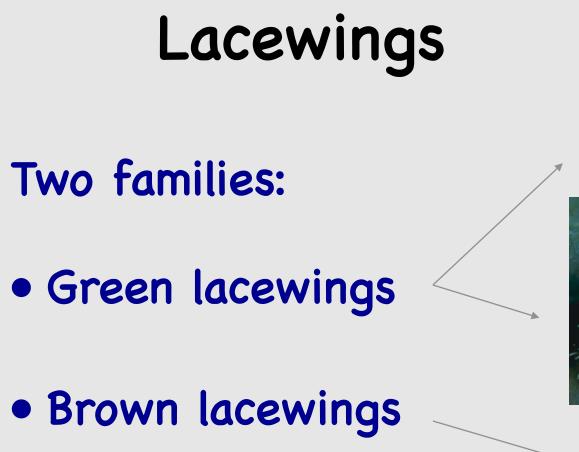
Categories of parasitoids


 Endoparasites

 Develop inside body of host

 Ectoparasites

 Feed externally, attach to outside of host



Microbes (micro-organisms)

- Categories
 - -Bacteria
 - -Fungi
 - -Viruses
 - -Nematodes
 - -Protozoans
- Cause <u>disease</u> in insect
- Applied by same methods as chemical control
- Not included in today's workshop

Predatory Arthropods

- Lacewings
- Some beetles
- Some bugs
- Some flies
- Some wasps
- Some thrips
- Some mites



Predatory Beetles

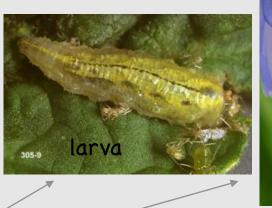
- Lady beetles
- Ground beetles

- Rove beetles –
- Soldier beetles

Predatory Bugs

Stink bugs

- Spined soldier bug
- Twospotted stink bug
- Flower bugs
 - -Minute pirate bug
 - Insideous flower bug
- Damsel bugs
- Assassin bugs
- Big-eyed bugs



Predatory Flies

Hover flies
 (flower flies)
 (syrphid flies)

adult

- Aphid midges
- Robber flies

Other Predators

- Wasps:
 - -Yellowjackets
- Thrips:
 - -Black hunter thrips
- Mites:
 - -Phytoseiid mites

- Some wasps
- Some flies

- Some wasps
 - Braconids
 - On hornworm: *Cotesia congregata*
 - On imported cabbageworm: *Cotesia glomerata*
 - On aphids: Diaeretiella rapae
 - Ichneumonids
 - On diamondback: Diadegma insulare
 - Other families
 - On whiteflies: Encarsia
 - On eggs: Trichogramma

- Some flies
 - Tachinids
 - On squash bug: Trichopoda pennipes
 - On striped cucumber beetle: *Celatoria setosa*

Some species attack eggs **

Some species attack larvae

- Some species attack pupa
- Some species attack adults

****** prevent the most damage

& Vertebrate predators eat insects!

- Bats
- Toads
- Birds
- Geese
- Hogs

Categories of Biological Control

- 'Natural' (local species)
- Importation (exotic species)
- Conservation (local species)
- Augmentation (local species)

Categories of Biological Control: 'Natural'

 Happens without intervention of humans

 Very common in structuring populations in nature

 Assumes that a normal biotic component keeps population suppressed

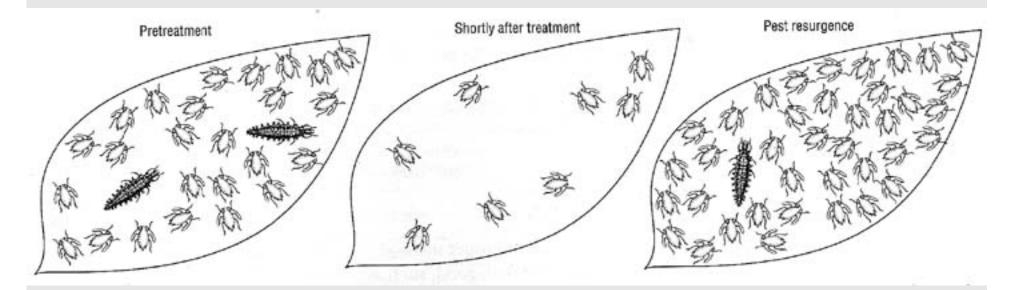
Categories of Biological Control: Importation

- Also known as 'classical biocontrol'
- Used to control pests of exotic origin
- Assumption that in native zone, pest has natural enemies

Importation biocontrol

- Steps (by USDA):
 - -Foreign exploration
 - -Quarantine
 - -Release
 - -Evaluation
- Strict permits used
- Can spread after release

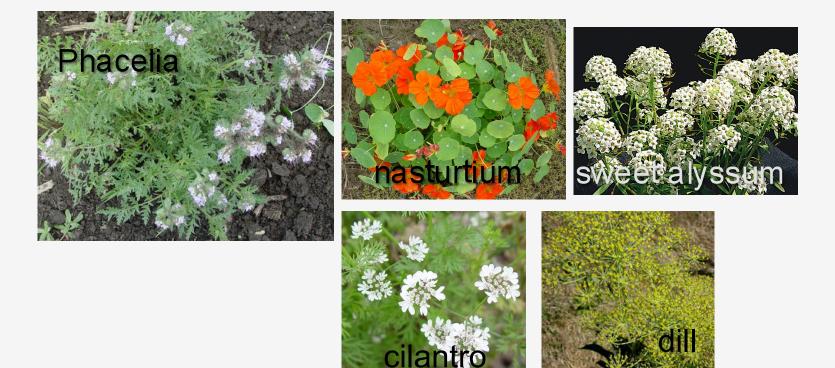
Categories of Biological Control: Conservation


- For pests with natural enemies present, but <u>not enough</u> enemies to keep pest suppressed
- Enhance enemy activity
 - -by practices <u>not</u> to do
 - -by practices to <u>do</u>

Conservation: typically involves multiple local species

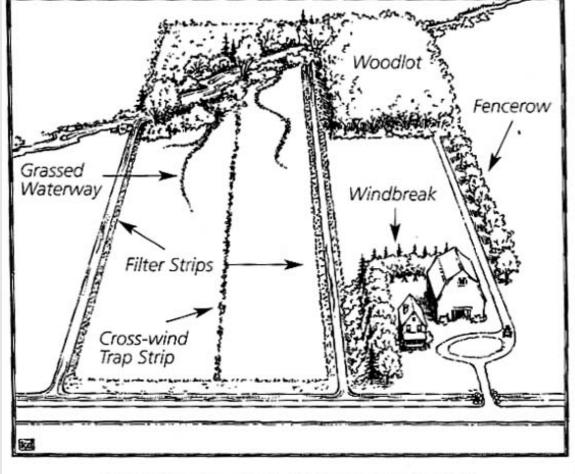
• What <u>not</u> to do?

-Do not use broad-spectrum insecticides



- What to <u>do</u>? Provide resources to enhance enemy activity:
 - -Add pollen source
 - -Add nectar source
 - -Spray sugar/protein mix
 - -Provide winter shelter

Insectary planting: refuge for natural enemies



- sugar/protein food source:
 - -'Pred Feed'
 - 2.5 kg/hectare in cotton
 - -'Insect Food' from Rincon-Vitova
 - •0.5 1 lb per gallon water

• Provide diversity of habitats

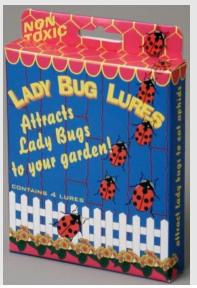
-Hedgerows

-Windbreaks

Farm with many types of conservation buffers

- Commercial lures
 - -Spined soldier bug
 - -Ladybug

-General


Pesticide Free, Non-Toxicl

Attracts Lady Bugs and Lacewings that prey on pest insects in your garden!

Categories of Biological Control: Augmentation

- For pests with local natural enemies present but not enough enemies to keep pest suppressed
- Buy & release additional natural enemies

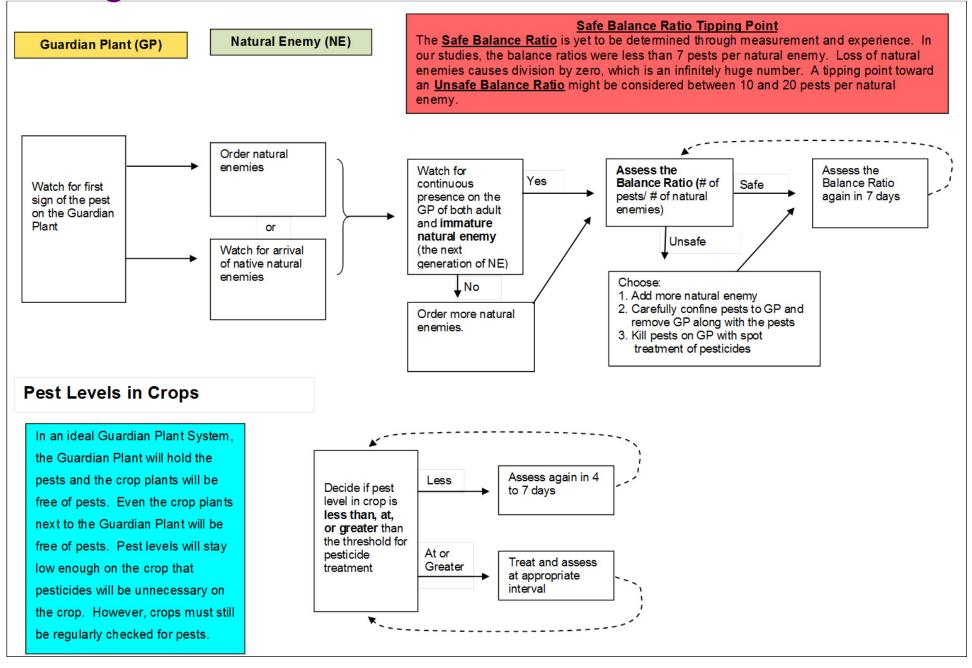
Conservation & augmentation: banker plants

- Provide a 'nursery' of alternate food for the natural enemy
- = A plant infested by a pest
- Must be a very <u>host-specific</u> pest!
- Example: hanging baskets of wheat infested with grain aphids in greenhouse tomatoes

Augmentation: guardian plants

- Used in greenhouse
- Dual-purpose:
 - -Pull pests
 - like an indicator plant or trap crop
 - -Support natural enemies
 - like banker plants
- Benefits
 - -Saves scouting time

- -Need fewer shipments from insectary
- Example: marigolds in pepper; beans in tomato; lantana in herbs


How to start a biocontrol program

- Focus on one crop
- Select natural enemy
 - -Do before season starts
 - -Learn biology & ecology
- Decide on protocol
 - -Monitor pest
 - -Use threshold to plan releases
 - -Place orders early
- Release
 - -Observe quality control
- Evaluation

Ratio of enemy to pest??

- 1:10 a general rule
- 'Safe balance ratio':
 - 1-7 pests/enemy
- 'Unsafe balance ratio'
 - 10-20 pests/enemy

Augmentation flow chart from IPM Labs Inc.

Augmentation

- -Sweet corn & peppers for European corn borer control
- Conservation
 - -Cabbage for caterpillar control

Trichogramma (say: TRICK – o – gram – ma)

Tiny wasps Lay their eggs in pest eggs

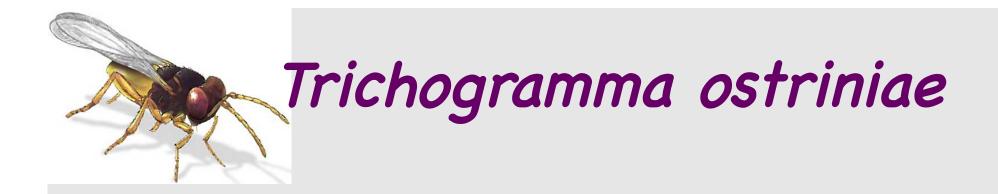
Trichogramma egg parasitoids

- As of 1985, the most widely augmented enemy in the world
- Older all-purpose species:
 - Trichogramma minutum (trees; East)
 - T. pretiosum (row crops, vineyards)
 - T. platneri (orchards; west)
- Newly discovered specialists:
 - T. brassicae = T. maidis
 - T. nubilalis
 - T. ostriniae *

Biocontrol of European corn borer

- Egg parasitoid
- Trichogramma ostriniae
- Research trials
 - -Sweet corn: since 1991
 - MA, NY
 - -Peppers: since 2002
 - VA, NY, PA, ME, MA, MD, DE

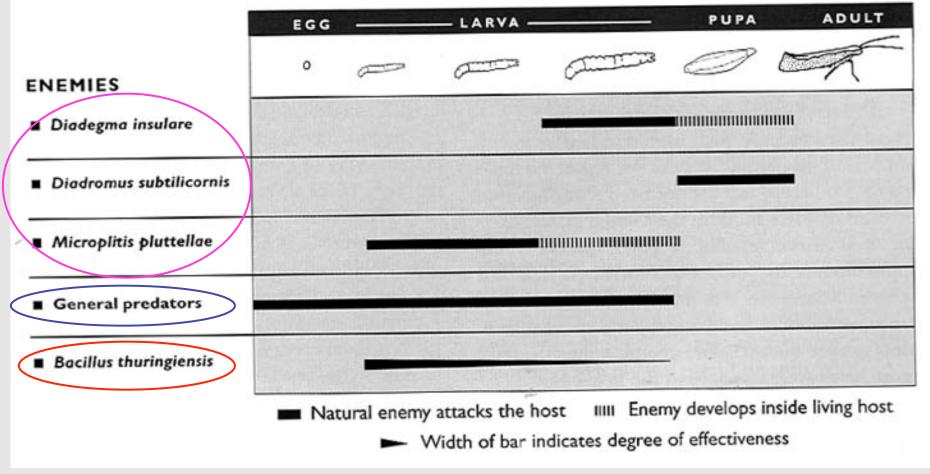
Trichogramma ostriniae on sweet corn


- 1st: inundative, every 2-3 days
- Later: inoculative, early
 - -Eggs glued on cards
 - -Inoculative: <u>One</u> release of 30,000 wasps per acre when crop is knee-high
 - -Place on plants or on wood stakes
 - -Place at 1 or more sites per acre
 - -Parasitism up to 52 days after release
- Does not overwinter in NY

Trichogramma ostriniae on peppers

- VA, PA, MA, 2002–03

 -4 to 5 inundative releases/year
 Average 49% parasitism
- VA, PA, MD, DE 2005-06
 -3 releases/year cost \$50/ha
- KY 2005-06
 - -4 releases/year; only 4.4% parasitism
- Mass. 2012
 - -4 releases, 1 week apart, midJul-midAug
 - -1st 90,000/A then 120,000/A



• References:

- -Cornell Univ. fact sheet, 2008, 'Using *Trichogramma ostriniae* to help manage European corn borer in sweet corn, peppers, and potatoes'
- -U. Mass. Article, 2012, 'Peppers: Biological control of ECB'
- Source:
 - -IPM Labs, Locke NY (ipmlabs.com)

Diamondback moth on cabbage

Diadegma insulare, Parasitoid of Diamondback Moth Larvae

Adult wasp Diamondback larvae Photo by Andrei Sourakov

Diamondback & Biocontrol

- Diadegma insulare

 small wasp, 1/4" long
 black body, red/brown marks
- Life cycle:

adult wasp lays egg in older caterpillar
wasp larva develops inside caterpillar
new adult wasp emerges from pupa

Diamondback pupae

Healthy pupa

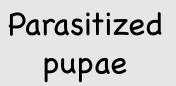


Photo by J. Ogrodnick

Diamondback & Biocontrol

• % of diamondback larvae attacked:

- 53 to 88% in Wisconsin study
- -46 to 69% in Virginia study

• Helps to provide flowers:

-Nectar source for wasp

- Wasps live longer, lay more eggs, sting host faster
- -Wild: yellow rocket, wild mustard
- Cultivated: sweet alyssum

Integrated bio & chemical control in cabbage

- Early & mid-season (April to July)

 if imported cabbageworm &/or
 diamondback dominant
 use only B.t.
- Mid- to late-season (August)

 if cabbage looper dominant pest
 use Confirm, SpinTor, or Proclaim
- Late season (Sept.-October)

 if cabbage looper dominant pest
 use pyrethroids

New resource: a smartphone app!

- Name: Good Bugs +
- Platforms:
 - -For iPhone now
 - -Coming soon for Android
- \$2.99 (via the App Store)
- Topics:
 - -Natural enemies: i.d., biology, mgmt
 - -Pollinators
 - -Native plants that support them

The End