Using Integrated Pest Management (IPM) in Vegetable & Fruit Gardens

Celeste Welty Extension Entomologist March 2020

Topics

- Management srategies
- Components of IPM
- Overview of tactics *

Insect roles

- The bad
 - -Pests
- The good

- -Natural enemies
- -Pollinators
- -Decomposers
- The neutral

Types of pests: based on damage

- Direct damage —
- Indirect damage -

- Disease transmission (vector)
- Contamination

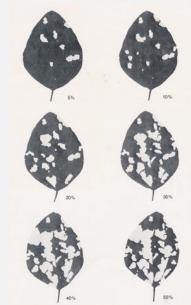
Types of pests: based on frequency of occurrence

- Key pest
- Occasional, sporadic pest
- Rare pest
- Potential pest

Strategies of Pest Management

- Acceptance (do nothing)
- Eradication
 - -eliminate pest populations
- Suppression

-reduce pest to tolerable levels


Integrated Pest Management (IPM)

- a <u>comprehensive</u> approach to dealing with pests
 - strives to reduce pest status to tolerable levels
 - using multiple tactics
 - effective
 - economically sound
 - ecologically compatible

Components of IPM

- Monitoring
- Action thresholds
- Multiple tactics

1) Monitoring

- Techniques
 - -Scouting
 - -Knockdown
 - -Sweeping
 - -Trapping

2) Action threshold

- Pest density or amount of damage at which action should be taken to prevent an increasing pest population from causing economic damage
- More developed for farm crops than for garden crops

Garden action thresholds: collards

Pest	Threshold	Insecticide	
		Natural	Synthetic
Flea beetles	>5 beetle holes per leaf & >5 beetles per plant	pyreth- rins + PBO	carbaryl (Sevin)
Caterpillars: • Imported cabbageworm	>1 larva/plant	B.t. (DiPel)	esfenvale- rate (Bug- B-Gon)
Diamondback moth	>2 larvae/plant		
Cabbage looper	>0.5 larva/plant		
Aphids	>1 colony/leaf	soap	endosulfan (Thiodan)

3) Multiple tactics

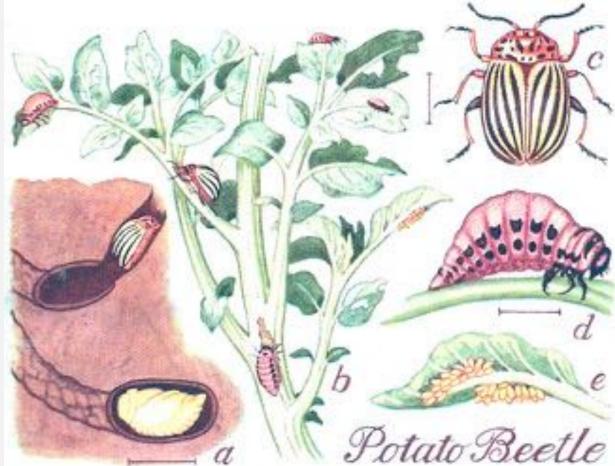
IPM uses <u>combination</u> of tactics:

- Mechanical
- Cultural
- Biological
- Microbial
- Chemical

3) Multiple tactics

Preventive optionsRemedial options

Do chemicals fit in IPM or not?


IPM Continuum

No Chemicals Intensive Chemicals

Approaches to pest management by suppression: Organic vs other

- More concern with restoring checks & balances
- Willingness to use tactics:
 - -More <u>knowledge</u> intensive
 - -More <u>labor</u> intensive
 - -More expensive
- Use chemicals or not???

Pest management: the search for a weak link in pest's life cycle

Mechanical Controls

- Exclusion
- Removal

Exclusion by barriers

- Row covers **
- Netting, screening
- Paper bags
- Localized shields
- **Copper barriers**
- **Trenches (deep furrows)**
- **Plant collars**
- **Fences**

Row covers to exclude pests

- Install on day of planting
- Remove
 - When first flowers appear (cucurbits)
 - At final harvest (broccoli, beans)

Row covers to exclude pests

- Lightweight —'Insect Barrier', 'Agri-bon 15'
 - -90% light transmission (vs 70-85% for <u>heavier</u> covers for frost protection)
 - -Sources:
 - Johnny's Selected Seed: \$24. (10' x 50')
 - Gardens Alive: \$10. (8' x 20')

Row covers

- Use with or w/o hoops
- Must be anchored tightly
- Be prepared to mend rips


Cages to exclude garden pests

- Bell cloche
 - -\$30/3
- Pest Control Pop-up
 - \$25 for 4' x 4' x 1'
 - \$45 for 4' x 4' x 4'

(Gardeners Supply Company)

Exclusion by netting

- Periodical cicada
- Birds

Exclusion by fruit bagging

Paper bags:

- Apples
- Grapes

Mechanical Control by Removal

- Shelter traps
- Attraction traps
- By beating/shaking *
- Removal by vacuum
- By aspirator
- Removal by hand

Removal by shelter traps

Gypsy moth

- Board trap (shingle trap) for squash bug
 - Tree bands for caterpillars

Squash bug

Codling moth

Removal by attraction traps

- Dish of beer for slugs
 - Catches many slugs
 - Often not significant decrease in population

Removal by tapping or shaking

- Tap plants by broom or hand
- Tap into bucket or tray
- Daily
- Example: Colorado potato beetle (adults, larvae)

Removal by aspirator

- Aspirator = Mouth-operated suction device
- \$8 14 from:
 - -BioQuip
 - -Forestry Suppliers
 - -Gempler's

 Good for flea beetles, bean leaf beetle, cucumber beetle

Removal by hand

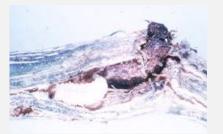
- Labor intensive
- Target pests:
 - Conspicuous pests
 - Pests not too active
 - In relatively restricted area
- Examples
 - Spinach leafminer (infested leaves)
 - Hornworms
 - Asparagus beetle (eggs)
 - Japanese beetle

Sanitation

- Collect and destroy/compost:
 —Culled fruit
 - -Crop residue (after harvest)
- Plant clean nursery stock

Cultural Control

- How soil is prepared —Till vs no-till
- Which crops are planted —Trap cropping *
- Where crops are planted -Crop rotation
- When crops are planted —Delayed planting *
- How crop is maintained
 - -Irrigation
 - -Weeding


Delayed planting

Cucumber beetle

- -Problem if plant in late May
- -Less problem if plant in mid-June
- Squash vine borer

Bean leaf beetle

-Peak populations in May, July

-Fewer in June

Trap cropping

- Lure pest away from main crop to a more attractive crop
- Then kill beetles in trap crop —Mechanical
 - -Chemical

Cantaloupe (main crop)

Cultural control: trade-offs

Example: Straw Mulch

- Benefits
 - -Moisture retention
 - -Weed suppression

- -Reduces soil splash
- -Reduces fungal spore dispersal
- Makes some pest problems worse
 - -E.g. cucumber beetles, slugs

Biological Control

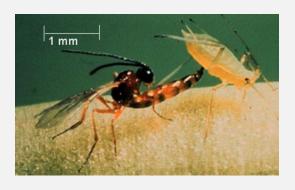
- Control of pest by other organisms that act as natural enemies
- Common natural enemies
 - -Predators
 - -Parasitoids

Biological Control: Predators

- Develop at expense of more than one prey item
- Predator often <u>larger</u> than prey
- Prey usually killed & consumed <u>quickly</u>

Predators

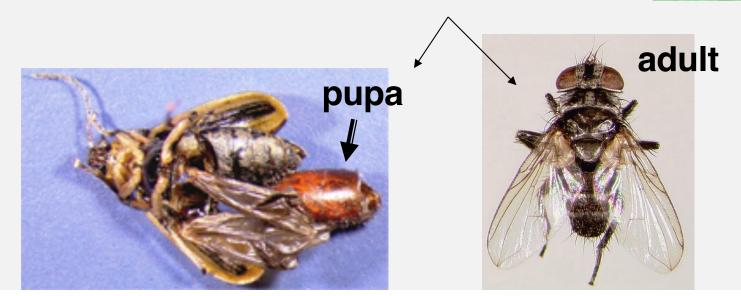
- Green lacewings
- Lady beetles
- Insideous flower bug
- Damsel & assassin bugs
- Hover flies



arva

Biological Control: Parasitoids

- Develop at expense of a <u>single</u> host
- Lay egg in or on host insect
- Host is usually killed <u>slowly</u>


Parasitoids

- Some wasps
 - -Braconid wasps
 - On hornworm: Cotesia congregata
 - On imported cabbageworm: Cotesia glomeratus
 - On aphids: Diaeretiella rapae
 - -Ichneumonid wasps
 - On diamondback: Diadegma insulare
 - -Other wasps
 - On whiteflies: Encarsia
 - On caterpillar eggs: Trichogramma

Parasitoids

- Tachinid flies
 - -On squash bug: *Trichopoda pennipes*
 - -On striped cucumber beetle: Celatoria setosa

Natural enemy roles

- Predators: many generalists
- Parasitoids: many specialists

& Vertebrate predators eat insects!

- Bats
- Toads
- Birds
- Geese
- Hogs

Biological control by conservation of local natural enemies

- Avoid broad-spectrum insecticides
- Provide supplemental food:
 - -Pollen & nectar (refuge planting)
 - -Spray sugar water
 - -Spray Wheast (whey + yeast)
 - -Alternate prey (banker plants)
- Provide winter shelter
- Attract with lures

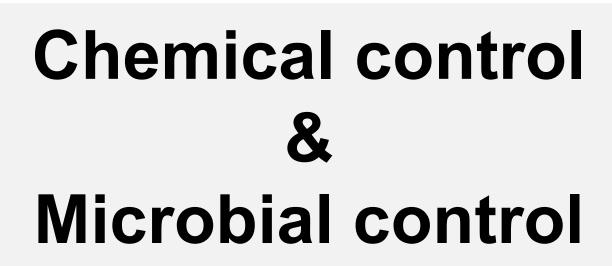
Insectary planting as refuge for natural enemies

- Adult parasitoids need <u>nectar</u>
- Adult predators need pollen
- Plant flowering border to enhance biocontrol

Biological control by augmentation of local natural enemies

- Buy from insectary ____
 - Planet Natural (MT)
 - Arbico (AZ)
 - GreenMethods (VT)
- Collect and transfer

Augmentation: Collect & transfer


- What to do?
 - -Hunt for generalist predators
 - -Collect them
 - -Transfer them to crop
- Who, where, when?
 - -Ladybug larvae on Spirea in May
 - –Lacewings & aphid midges on apple leaves in early June
 - -Damsel bugs on alfalfa, April-June

- Toxins (insecticides)
- Repellents
- Attractants
- Microorganisms

Does chemical = nasty?

Trends in pesticides:

- Current type of products
 - -More 'Reduced-risk' products
 - -More 'Biological' products
 - -More options for organic gardens

Characteristics

- -More expensive
- -More narrow-spectrum
- -Not as persistent
- -Smaller dose per area

Disadvantages of chemical control

- Toxic to non-target organisms
 - -Natural enemies
 - -Pollinating bees
 - -Humans
 - -Wildlife & pets
- Environmental contamination
- Resistance can develop

Advantages of chemical control

- Dependable
- Easy to obtain & apply
- Kill pest quickly
- Cheap (?)

Chemical control: categories

- By origin
 - -Natural
 - -Synthetic
- By mode of action
 - -Nerve poisons
 - -Suffocation agents
 - -Respiration disruptors
 - –Insect growth regulators

OMRI: The Organic Materials Review Institute

- Certified organic growers
- List of products
- Crops & processing

Example of label with OMRI logo

Insecticides, by Origin

Natural

- –Minerals & elementals
- –Oils & soaps
- -Abrasion agents: diatomaceous earth OMRI

ok

OMRI

not

ok

- -Botanicals (plants)
- -Microbials
- -Compounds derived from microbes
- Synthetic
 - -Mimics of natural insect hormones
 - -Petroleum-based synthetic chemicals

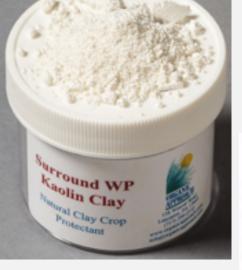
Note on <u>natural</u> insecticides

- Can be toxic to natural enemies
- "Natural" is not always good!

Insect control products on OMRI List

- Behavioral control
 - pheromone mating disruption
- Microbial control
 - viruses
 - bacteria: B.t. (DiPel)
- Smothering agents
 - soaps
 - oils
- Nerve poisons
 - spinosad (Entrust)
 - pyrethrins (PyGanic)
- Repellents
 - kaolin (Surround)
 - neem
 - garlic

Smothering or suffocation agents


- oils:
 - -from petroleum
 - -from plants
- insecticidal soaps:

–potassium salts of fatty acids

Minerals & elementals

- kaolin ('Surround')
- iron
 phosphate
- sulfur

Use as a Dust or Spray

- Controls Black Spot, Powdery Mildew, Leaf Spot, Rust and Brown Canker on Roses.
 Controls Listed Diseases & Inserts on Shruhs
- Controls Listed Diseases & Insects on Shrubs Flowers, Vegetables and Fruits.
- Controls Thrips, Rust Mites, Red Spider Mites and Two Spotted Mites on Citrus.
 Controls Chiggers.

KEEP OUT OF REACH OF CHILDREN CAUTION See Back Panel For Additional Precautionary Statements NET WEIGHT 2 LBS.

'Surround At Home'

- A.I. = kaolin (clay)
- 'Particle film technology'
- Broad spectrum crop protectant
- Photosynthesis not affected

Abrasion agent: Diatomaceous earth

- Silicon dioxide = fossilized remains of algae
- Disrupts water balance
- For indoor pests: sold alone
- For food crops: sold in mix with pyrethrins
- Not rainfast

Insecticides from plants (botanicals)

- pyrethrum (chrysanthemum)
- azadirachtin (neem tree)

Not on OMRI list:

nicotine (tobacco)

• Pyrethrins

- = Pyrethrum?
- = Pyrethroids?

Pyrethrum: the raw natural product from dried flowers

- Dalmatian Chrysanthemum (Chrysanthemum cinerariaefolium)
- Persian Chrysanthemum (Chrysanthemum coccineum)
- Pyrethrins: the extracted active ingredients from pyrethrum
 - pyrethrin I
 - pyrethrin II
 - cinerin I
 - cinerin II
 - jasmolin I
 - jasmolin II

Pyrethroids: synthetic mimics of pyrethrins

Examples of products available

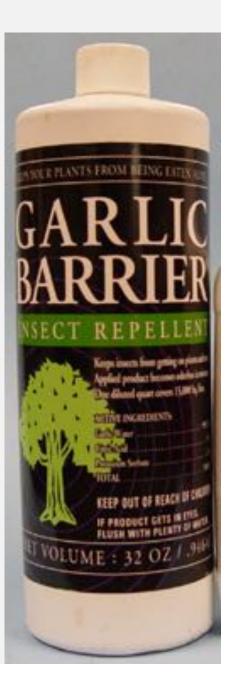
- pyrethrins (alone)
 - MGK's 'PyGanic 1.4 EC'
- pyrethrins + soap
 - -Safer 'Tomato & Vegetable Insect Killer'
 - -Safer 'Yard & Garden Insect Killer'
- pyrethrins + oil
 - OHP's 'Pycana'
- pyrethrins + PBO
 - MGK's 'EverGreen Pro'
 - Bonide 'Pyrethrin Garden Insect Spray'
 - Bonide 'Japanese Beetle Killer'
 - FoxFarm 'Don't Bug Me'
 - Garden Safe 'Multi-Purpose Garden Insect Killer'
 - Garden Safe 'Houseplant & Garden Insect Killer'

What's PBO?

• **PBO** = piperonyl butoxide

- Semi-synthetic derivative of safrole
- Safrole is extracted from sassafras
- A synergist: when mixed with some insecticides, makes them more active
 - -Most common with pyrethrins
 - -Also with pyrethroids & carbamates
- Prevents enzymes from detoxifying the a.i. before it acts on target site

Allowed for organic? Effective?


ingredient(s)	status	efficacy in lab tests
pyrethrum	on OMRI list	n/a
pyrethrins alone	on OMRI list	fair/poor
pyrethrins + soap	on OMRI list	fair/poor
pyrethrins + oil	on OMRI list	fair/poor
pyrethrins + PBO	not OMRI list	good
pyrethroids	not OMRI list	excellent

Repellents from plants:

capsaicin

garlic /

Insecticides derived from microorganisms: **Spinosad**

- Dow: Entrust
- Bonide: Capt. Jack's Deadbug Brew
- Fertilome: Borer, Bagworm, Leafminer & Tent Caterpillar spray
- GreenLight: Lawn & Garden Spray Spinosad Concentrate
- Monterey: Garden Insect Spray
- Gardens Alive: Bulls-Eye
 Bioinsecticide

Insecticides derived from microorganisms: spinosad in 'Entrust'

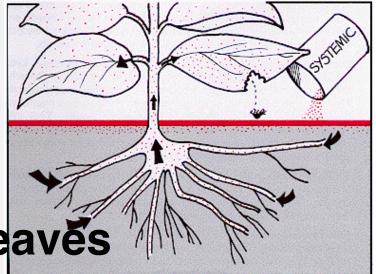
- Excellent for caterpillar control
- Use 3 6 fl oz/acre
- \$403 489/quart!

Nerve poisons

- pyrethroids (6)
- neo-nicotinoids (imidacloprid, acetamiprid)
- carbamates carbaryl (Sevin)
- organo-phosphates (malathion)

RTU *vs* RTS

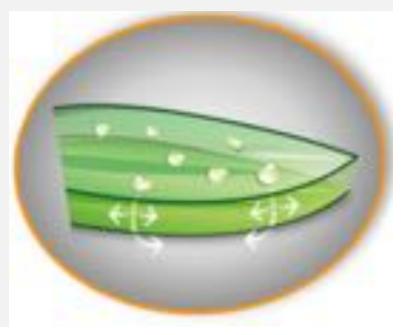
Systemic pesticides


- Chemical that moves from the point of application to another part of target
- Two types
 - -True
 - -Translaminar

Systemics for gardens

- imidacloprid
- acetamiprid

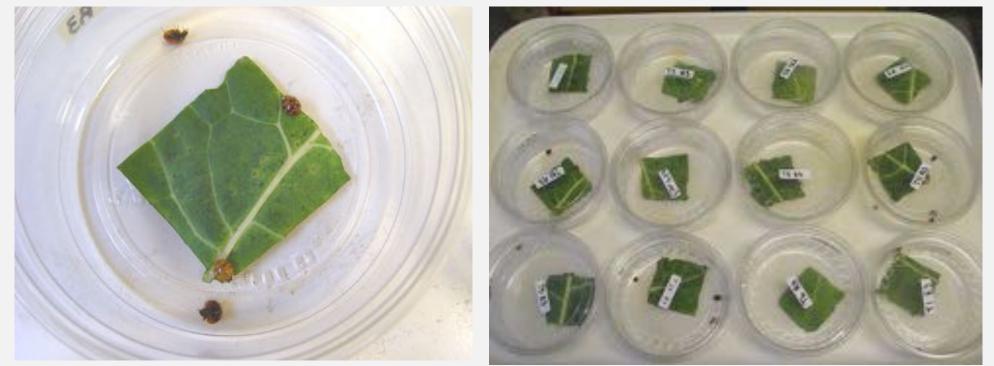
Types of Systemics



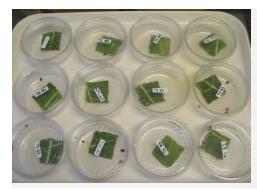
• True systemic:

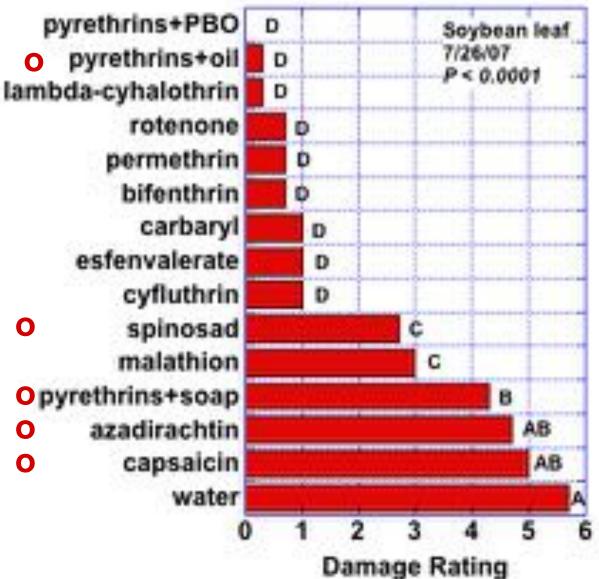
- -Apply to root, moves to leaves
- -Apply to leaf, moves to root

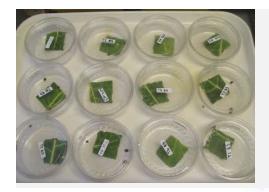
Types of Systemics

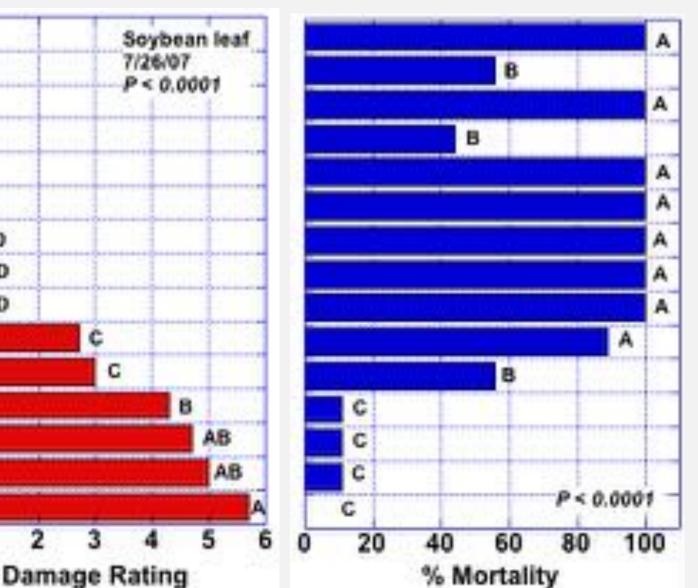

- True systemic:
 - -Apply to root, moves to leaves
 - -Apply to leaf, moves to root
- Translaminar:
 - -Or 'limited systemic'
 - -Apply to top of leaf
 - -Moves inside leaf or to underside of leaf

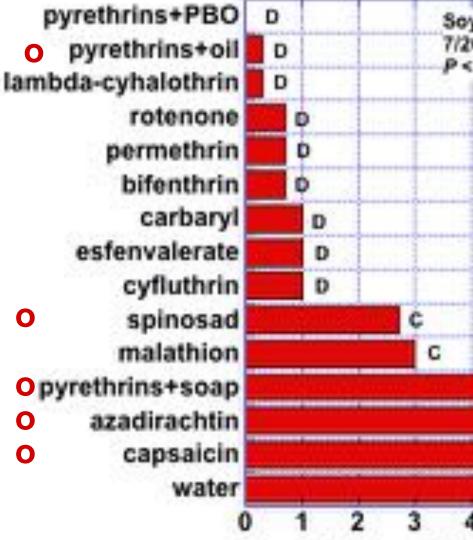
Types of Systemics


- Some products can be both types
- E.g. imidacloprid insecticide:
 - —<u>True</u> systemic when applied to <u>roots</u>, active for several weeks
 - -<u>Translaminar</u> when applied to <u>foliage</u>, active for only 1-2 weeks

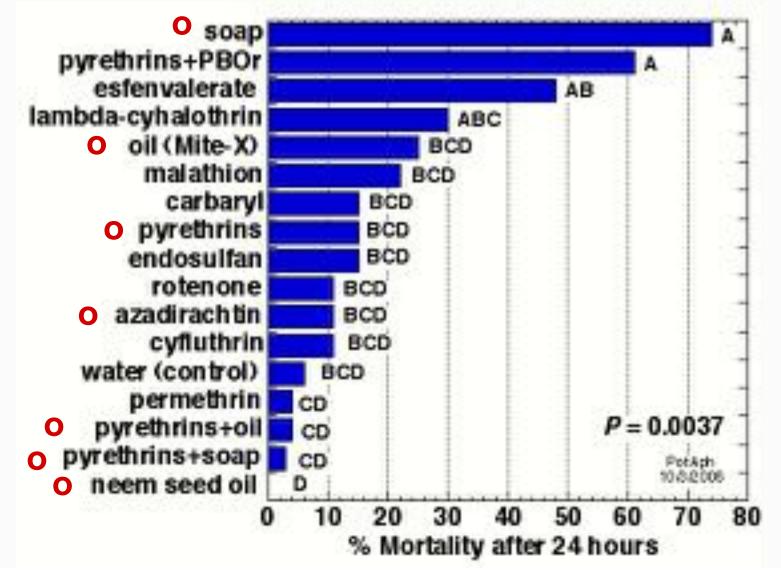

Lab bioassays to evaluate insecticide efficacy

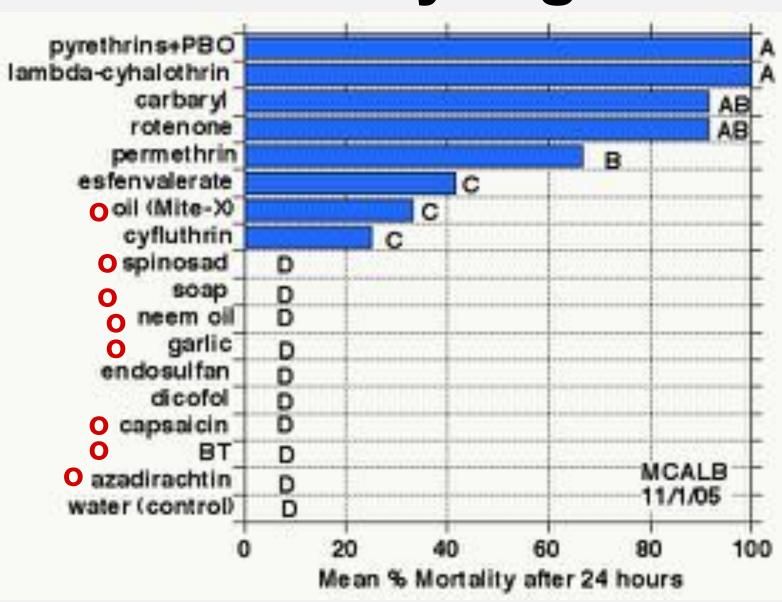

- Defoliation
- Mortality





Bean leaf beetle





Potato Aphid

tested on tomato leaves, 10/3/2006 3 replicates/treatment, 10 aphids/replicate

What about harm to natural enemies?

Trends in insecticide efficacy

spectrum	Exc./Good	Good/Fair	Fair/Poor
broad	acetamiprid bifenthrin carbaryl cyfluthrin esfenvalerate lambda-cyhalothrin pyrethrins + PBO	azadirachtin malathion permethrin pyrethrins + oil pyrethrins + soap	pyrethrins neem seed oil garlic capsaicin
narrow	B.T. spinosad soap	oil	

in red if on OMRI list

Trends in insecticide efficacy

spectrum	Exc./Good	Good/Fair	Fair/Poor
broad	acetamiprid bifenthrin carbaryl cyfluthrin esfenvalerate lambda-cyhalothrin pyrethrins + PBO	azadirachtin 🖈 malathion permethrin pyrethrins + oil pyrethrins + soap	pyrethrins neem seed oil garlic capsaicin
narrow	B.T. spinosad soap	oil	

in red if on OMRI list

Conclusions: insecticide choices

User's general preference	Best bets
Natural products only (OMRI)*	1) spinosad
	2) soap
Natural-based products only (non-OMRI)	pyrethrins+PBO
Conventional products only	carbaryl (Sevin) or permethrin (Eight)
Anything goes	pyrethrins+PBO

* Note lack of effective beetle control product

How can pests be managed organically?

- Maximize non-chemical tactics: -Knowledge & labor intensive
- Can include chemical control
 - -Only if biorational products chosen
 - -Usually as last resort
 - -Efficacy mostly fair at best
 - –Do not assume that "natural" = good

the end

Info on fruit & veg. pests u.osu.edu/pestmanagement

Questions? e-mail: welty.1@osu.edu office phone: 614 292 2803 cell phone: 614 746 2429