

Julia for Mathematical Programming (JuMP)

Milad Dehghani Filabadi PhD. Candidate ISE, OSU March 2024

Education Background

- **B.Sc. in Industrial Engineering** Specializations:
- Statistics, Operations research
- Reliability Analysis in Transportation
 Networks

M.Sc. in Management Sciences Specialization:

- Optimization under uncertainty
- Power system management and economy

Ph.D. in Industrial Engineering, exc. Spring 2024 Specialization:

- Mixed-integer programming
- Computational analysis
- Reliability analysis, Statistical learning

BAYER E R

OR and Data Scientist Intern

THE OHIO STATE UNIVERSITY

- Data cleaning
- Machine learning algorithms
- Developing forecast algorithms
- Optimization modeling

Research Background

EN.	Milad Dehghani Filabadi		All	Sin	ice 2019		
	The	Citations h-index	90 6	90 6		Wo	
	Ohio State University	i10-index	5		5		
10 100	Cutting Plane Algorithms Mixed-Integer Programming Polynomial Ontimization	0 articles	0 articles not available		article		• Fila
	Robust Optimization Power System Optimization	not availab			ailable		
		Based on f	funding ma	andate	es		• Fila
TITLE			CITED BY		YEAR		Int
Robust optimis systems with w MD Filabadi, SP A IET Renewable Po	ation framework for SCED problem in mixed / rind uncertainty ızad ower Generation 14 (14), 2563 – 2572	AC-HVDC powe	r :	24	2020	C++	Po
Effective budget of uncertainty for classes of robust optimization M Dehghani Filabadi, H Mahmoudzadeh INFORMS Journal on Optimization 4 (3), 249-277			:	22	2022	C++	
A new stochastic model for bus rapid transit scheduling with uncertainty MD Filabadi, A Asadi, R Giahi, AT Ardakani, A Azadeh Future Transportation 2 (1), 165-183				14	2022	MATLAB	
Robust-and-cheap framework for network resilience: A novel mixed-integer formulation and solution method MD Filabadi arXiv preprint arXiv:2110.09694				12	2021	Julia	
Robust optimization for SCED in AC-HVDC power systems M Dehghani Filabadi University of Waterloo				12	2019	C++	
A new paradigr research M Dehghani Filaba Acad Lett 2, 4775	Nnew paradigm in addressing data uncertainty: Discussion and future esearch Il Dehghani Filabadi Incad Lett 2, 4775			6	2022	Python	/Julia
Mixed-integer exponential conic optimization for reliability enhancement of power distribution systems MD Filabadi, C Chen, A Conejo Optimization and Engineering, 1-27					2023	Julia	

THE OHIO STATE UNIVERSITY

Working papers implemented in Julia

- Filabadi, M. D., Chen, C.. (2024a). An Exponential Conic Programming Relaxation for Signomial Programs.
- Filabadi, M. D., Chen, C., & Conejo, A. (2024b). Mixed-Integer Exponential Conic Relaxation for Optimal Power-Gas Problem.

Why Julia for Mathematical Programming?

□ Julia is a high-performance programming language known for its:

- Speed (near C++ performance)
- Ease of use (is user-friendly such as Python or MATLAB)
- Very powerful for computational research

□ Julia for Mathematical Programming (JuMP):

- simplifies the formulation and solution of mathematical optimization problems.
- provides a convenient syntax for defining optimization variables

□ Julia community is very active and growing, ensuring continuous development and support for mathematical programming tasks and packages.

Julia Installation

Download and Install Julia

- ✓ Step 1: Visit the JuliaLang website (<u>https://julialang.org/</u>).
- ✓ Step 2: Run the downloaded installer.

Setting Up Visual Studio Code

- ✓ Step 1 Download and install Visual Studio Code from https://code.visualstudio.com/
- ✓ Step 2: Open Visual Studio Code and navigate to the Extensions view (Ctrl+Shift+X).
- ✓ Step 3: Search for "Julia" and click "Install" on the Julia extension by julialang.

Open Julia REPL in Visual Studio Code

- ✓ Navigate the Julia REPL from the top-right icon
- ✓ Click on "Julia: Execute active File in REPL"

Add Required Packages: After installation and opening a Julia REPL, install packages in Terminal:

Open package environment: Type] in the Terminal.

Check Installed Packages: Type st in package environment

Exit Package environment: Type **Ctrl+C**.

6

(@v1.9) pkg> st

(@v1.9) pkg> ^C

□ Required Packages for Optimization:

- JuMP
- MathOptInterface
- Solver: Gurobi, Mosek, or your preferred solver
 - You need to download the solver and install it first
- □ MosekTools for special type of problems: Conic programming
- □Plots for visualizations

My packages:

Example 1:

 $Max \quad 8x_1 + 10x_2 + 9x_3$ s.t. $x_1 + 3x_2 + 2x_3 \le 14$ $x_1 + 5x_2 + 3x_3 \le 12.5$ $x_1, x_2, x_3 \ge 0$

Maxcx $A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 5 & 3 \end{bmatrix}$ s.t. $Ax \le b$ c = (8,10,9) $x \ge 0$ $b = (14, 12.5)^T$

Conic Programming: An extension of linear programming

 $\min c^T x$ $Ax \le b$ $x \in K$

where *K* is a <u>convex cone</u>.

1. Non-negative orthant: $K_N = \{x \in \mathbb{R}^n : x_i \ge 0, i = 1, ..., n\}$

3. Exponential cone:

 $K_{SOC} = \{ x \in \mathbb{R}^n : \ x_1^2 + \dots + x_{n-1}^2 \le x_n^2 \}$ $K_{exp} = cl\{ x \in \mathbb{R}^3 : \ x_2 e^{\frac{x_1}{x_2}} \le x_3 \}$

Mosek is the only solver to solve problems with K_{exp}

The Ohio State University

Julia for Mathematical Programming (JuMP)

 $(y_1^*, y_2^*) = (1.5, -1.3229)$

10

Julia for Mathematical Programming (JuMP)

□ Reading materials:

- ✓ Mosek website: <u>https://docs.mosek.com/modeling-cookbook/index.html</u>
- ✓ Mosek cookbook: <u>https://docs.mosek.com/MOSEKModelingCookbook-v</u>
- ✓ My sample codes on github: <u>https://github.com/miladdf94/Julia_Examp</u>

Thank you