
Julia for Mathematical Programming (JuMP)

Milad Dehghani Filabadi

PhD. Candidate

ISE, OSU

March 2024

2

B.Sc. in Industrial Engineering
Specializations:
• Statistics, Operations research
• Reliability Analysis in Transportation

Networks

M.Sc. in Management Sciences
Specialization:
• Optimization under uncertainty
• Power system management and economy

Ph.D. in Industrial Engineering, exc. Spring 2024
Specialization:
• Mixed-integer programming
• Computational analysis
• Reliability analysis, Statistical learning

Education Background

OR and Data Scientist Intern
• Data cleaning
• Machine learning algorithms
• Developing forecast algorithms
• Optimization modeling

3

Research Background

Working papers implemented in Julia

• Filabadi, M. D., Chen, C.. (2024a). An Exponential Conic
Programming Relaxation for Signomial Programs.

• Filabadi, M. D., Chen, C., & Conejo, A. (2024b). Mixed-
Integer Exponential Conic Relaxation for Optimal
Power-Gas Problem.C++

C++

MATLAB

Julia

C++

Python/Julia

Julia

4

Why Julia for Mathematical Programming?

❑ Julia is a high-performance programming language known for its:

➢ Speed (near C++ performance)

➢ Ease of use (is user-friendly such as Python or MATLAB)

➢ Very powerful for computational research

❑ Julia for Mathematical Programming (JuMP):

➢ simplifies the formulation and solution of mathematical optimization problems.

➢ provides a convenient syntax for defining optimization variables

❑ Julia community is very active and growing, ensuring continuous development and
support for mathematical programming tasks and packages.

Julia for Mathematical Programming (JuMP)

5

Julia Installation

❑Download and Install Julia

✓ Step 1: Visit the JuliaLang website (https://julialang.org/).

✓ Step 2: Run the downloaded installer.

❑Setting Up Visual Studio Code

✓ Step 1 Download and install Visual Studio Code from https://code.visualstudio.com/

✓ Step 2: Open Visual Studio Code and navigate to the Extensions view (Ctrl+Shift+X).

✓ Step 3: Search for "Julia" and click "Install" on the Julia extension by julialang.

❑Open Julia REPL in Visual Studio Code

✓ Navigate the Julia REPL from the top-right icon

✓ Click on “Julia: Execute active File in REPL”

Julia for Mathematical Programming (JuMP)

https://julialang.org/
https://code.visualstudio.com/

6

❑Add Required Packages: After installation and

opening a Julia REPL, install packages in Terminal:

❑Open package environment: Type] in the Terminal.

❑Check Installed Packages: Type st in package

environment

❑Exit Package environment: Type Ctrl+C.

Julia for Mathematical Programming (JuMP)

7

❑Required Packages for Optimization:

❑JuMP

❑MathOptInterface

❑Solver: Gurobi, Mosek, or your preferred solver

➢ You need to download the solver and install it first

❑MosekTools for special type of problems: Conic programming

❑Plots for visualizations

My packages:

Julia for Mathematical Programming (JuMP)

8

Example 1:

Julia for Mathematical Programming (JuMP)

𝑀𝑎𝑥 8𝑥1 + 10𝑥2 + 9𝑥3

𝑠. 𝑡. 𝑥1 + 3𝑥2 + 2𝑥3 ≤ 14

 𝑥1 + 5𝑥2 + 3𝑥3 ≤ 12.5

 𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑀𝑎𝑥 𝑐𝑥

𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏

 𝑥 ≥ 0

𝐴 =
1 3 2
1 5 3

𝑐 = 8,10,9

𝑏 = 14, 12.5 𝑇

9

Conic Programming: An extension of linear programming

where 𝐾 is a convex cone.

min 𝑐𝑇 𝑥
 𝐴𝑥 ≤ 𝑏

 𝑥 ∈ 𝐾

𝐾𝑁 = {𝑥 ∈ 𝑅𝑛: 𝑥𝑖 ≥ 0, 𝑖 = 1, … , 𝑛}1. Non-negative orthant:

2. Second-order cone:

3. Exponential cone:

Introduction to MINLP:

𝐾𝑆𝑂𝐶 = {𝑥 ∈ 𝑅𝑛: 𝑥1
2 + ⋯ + 𝑥𝑛−1

2 ≤ 𝑥𝑛
2}

𝐾exp = 𝑐𝑙{𝑥 ∈ 𝑅3: 𝑥2e
𝑥1
𝑥2 ≤ 𝑥3}

Mosek is the only solver to solve problems with 𝐾𝑒𝑥𝑝

10

Example 2:

Julia for Mathematical Programming (JuMP)

𝑀𝑖𝑛 𝑦1 + 𝑦2

𝑠. 𝑡. 𝑦1
2 +𝑦2

2 ≤ 4

 (𝑦1 − 3)2 + 𝑦2
2 ≤ 4

 𝑦1, 𝑦2 free

𝑦1

𝑦2

𝐾𝑆𝑂𝐶 = {𝑥 ∈ 𝑅𝑛: 𝑥1
2 + ⋯ + 𝑥𝑛−1

2 ≤ 𝑥𝑛
2}

2; 𝑦1 ; 𝑦2 ∈ 𝐾𝑆𝑂𝐶

2; 𝑦1 − 3 ; 𝑦2 ∈ 𝐾𝑆𝑂𝐶

𝑦1
∗, 𝑦2

∗ = (1.5, −1.3229)

𝑥𝑛; 𝑥1; … ; 𝑥𝑛−1 ∈ 𝐾𝑆𝑂𝐶
Implementation

11

Example 3:

Julia for Mathematical Programming (JuMP)

𝑀𝑖𝑛 𝑦1 + 𝑦2

𝑠. 𝑡. 𝑦1
2 +𝑦2

2 ≤ 4

 (𝑦1 − 3)2 + 𝑦2
2 ≤ 4

 𝑒𝑦1−2 ≤ 𝑦2

 𝑦1, 𝑦2 free

2; 𝑥1 ; 𝑥2 ∈ 𝐾𝑆𝑂𝐶

2; 𝑥1 − 3 ; 𝑥2 ∈ 𝐾𝑆𝑂𝐶

𝑦1
∗, 𝑦2

∗ = (1.036, 0.3816)

𝑥1; 𝑥2; 𝑥3 ∈ 𝐾exp Implementation

𝐾exp = 𝑐𝑙{𝑥 ∈ 𝑅3: 𝑥2e
𝑥1
𝑥2 ≤ 𝑥3}

𝑦1 − 2; 1; 𝑦2 ∈ 𝐾exp

𝑦1

𝑦2

12

❑Reading materials:

✓ Mosek website: https://docs.mosek.com/modeling-cookbook/index.html

✓ Mosek cookbook: https://docs.mosek.com/MOSEKModelingCookbook-v2.pdf

✓ My sample codes on github: https://github.com/miladdf94/Julia_Examples

Julia for Mathematical Programming (JuMP)

https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/MOSEKModelingCookbook-v2.pdf
https://github.com/miladdf94/Julia_Examples

13

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

