Magnetic Hardy inequalities in L^p setting

Cristian-Mihai, CAZACU

University of Bucharest, Romania
& ISMMA, Romanian Academy

Joint work with David Krejčiřík (CZ), Nguyen Lam (Canada), Ari Laptev (UK)

Partially supported by CNCS-UEFISCDI Grant No. PN-III-P1-1.1-TE-2021-1539

Analysis and Operator Theory Seminar,
The Ohio State University, USA, 25 April 2024
Based on

David Krejčiřík (Czech Technical University, Prague, CZ)
Nguyen Lam (Memorial University of Newfoundland, Canada)
Ari Laptev (Imperial College London, UK)
The p-Laplacian $-\Delta_p$

- **The case** $p = 2$: $-\Delta_p = -\Delta = \sum_{j=1}^{d} \frac{\partial^2}{\partial x_j^2}$.

$$-\Delta_p u := -\text{div}(|\nabla u|^{p-2} \nabla u), \quad p > 1.$$

The associated $L^2(\mathbb{R}^d)$ quadratic form h_p of $-\Delta_p$ is given by

$$h_p[u] = \int_{\mathbb{R}^d} |\nabla u|^p \, dx, \quad \forall u \in \mathcal{D}(h_p) := W^{1,p}(\mathbb{R}^d). \quad (1)$$

and the sesquilinear form: for $u \in \mathcal{D}(h_p), v \in \mathcal{D}(h_{p'})$

$$h_p(u, v) := (-\Delta_p u, v)_{L^2(\mathbb{R}^d)} = \int_{\mathbb{R}^d} (-\Delta_p u) v \, dx$$

$$= \int_{\mathbb{R}^d} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx.$$
Dirichlet/Lagrange principle

A solution to the problem $-\Delta_p u = f$ + Dirichlet BC:

$$u \in W_0^{1,p} : h_p(u,v) = \langle f, v \rangle, \quad \forall v \in W_0^{1,p}. \quad (2)$$

Define $E : W_0^{1,p} \rightarrow \mathbb{R}$,

$$E(\varphi) := \frac{1}{p} h_p[\varphi] - \langle f, \varphi \rangle.$$

- u solution for (2) $\iff E(u) = \min_{\varphi \in W_0^{1,p}} E(v)$.
- E has a minimum if $h_p[\cdot]$ is ”positive” enough (coercive, etc).
Some definitions

- We say that $-\Delta_p$ is a **non-negative operator** if

$$-\Delta_p \geq 0 :\iff h_p[u] \geq 0, \quad \forall u \in \mathcal{D}(h_p);$$

- $-\Delta_p$ is a **subcritical operator** if $-\Delta_p$ satisfies a Hardy-type inequality, i.e. there exists $V \in L^1_{\text{loc}}(\mathbb{R}^d)$, $V \neq 0$, such that

$$-\Delta_p \cdot \geq V|\cdot|^{p-2}\cdot,$$

in the sense of L^2 quadratic forms:

$$h_p[u] \geq \int_{\mathbb{R}^d} V|u|^p \, dx, \quad \forall u \in W^{1,p}(\mathbb{R}^d).$$

- Otherwise, $-\Delta_p$ is a **critical operator** (i.e. there is NO Hardy inequality for $-\Delta_p$).
Let $d \geq 2$ and $1 \leq p < d$. If $u \in W^{1,p}(\mathbb{R}^d)$ then $u/|x| \in L^p(\mathbb{R}^d)$ and it satisfies

$$\int_{\mathbb{R}^d} |\nabla u|^p \, dx \geq \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx,$$

$$\mu_{p,d} := \left(\frac{d - p}{p} \right)^p. \quad (3)$$

Moreover, the constant $\mu_{p,d}$ is optimal in the sense that (3) does not hold with any bigger constant.
Criticality versus sub-criticality of $-\Delta_p$

- $p < d \Rightarrow -\Delta_p$ is sub-critical (by Hardy Inequality): with $V(x) := \mu_{p,d}/|x|^p$, i.e.

$$- \Delta_p \cdot \geq \mu_{p,d} \frac{|x|^{p-2}}{|x|^p} \quad (4)$$

- $p \geq d \Rightarrow -\Delta_p$ is critical:

Proposition

*Let $p \geq d$. If $V \in L^1_{\text{loc}}(\mathbb{R}^d)$ is a non-negative potential such that

$$\int_{\mathbb{R}^d} |\nabla u|^p \, dx \geq \int_{\mathbb{R}^d} V|u|^p \, dx, \quad \forall u \in C_c^\infty(\mathbb{R}^d), \quad (5)$$

then $V = 0$ a.e. in \mathbb{R}^d.***

- $p < d \Rightarrow H := -\Delta_p - \mu_{p,d} \frac{|x|^{p-2}}{|x|^p}$? (Obviously $H \geq 0$).
$H := -\Delta_p - \mu_{p,d} \frac{|p-2|}{|x|^p}$ is critical for $p < d$:

Proposition

Let $1 \leq p < d$. If $V \in L^1_{\text{loc}}(\mathbb{R}^d)$ is a non-negative potential such that

$$
\int_{\mathbb{R}^d} |\nabla u|^p \, dx - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx \geq \int_{\mathbb{R}^d} V|u|^p \, dx, \quad \forall u \in C_c^\infty(\mathbb{R}^d),
$$

(6)

then $V = 0$ a.e. in \mathbb{R}^d.
Consider a smooth magnetic potential $A : \mathbb{R}^d \to \mathbb{R}^d$, The magnetic p-Laplacian is formally defined on $C^\infty_c(\mathbb{R}^d)$ by

$$\Delta_{A,p} u := \text{div}_A(|\nabla_A u|^{p-2}\nabla_A u),$$

(7)

where the magnetic gradient and magnetic divergence are given by

$$\nabla_A u := \nabla u + iA(x)u; \quad \text{div}_A F := \text{div}F + iA \cdot F,$$

(8)

for any smooth vector field $F : \mathbb{R}^d \to \mathbb{C}^d$.

- Of course, if $A = 0$ then $\Delta_{A,p} = \Delta_p$.
The associated form $h_{A,p}$ of the magnetic p-Laplacian $\Delta_{A,p}$

For all $u \in \mathcal{D}(h_{A,p}) := C_c^\infty(\mathbb{R}^d)$

$$h_{A,p}[u] := \int_{\mathbb{R}^d} |\nabla_A u|^p \, dx = \int_{\mathbb{R}^d} |\nabla u + iA(x)u|^p \, dx,$$

where the norm $\| \cdot \|$ with respect to which the closure is taken is given by

$$\|u\| := \sqrt[p]{h_{A,p}[u] + \|u\|_{L^p(\mathbb{R}^d)}^p}.$$

- We extend the notions of subcriticality/criticality also to $-\Delta_{A,p}$.
• The magnetic field (2 diff. form):
\[B : \mathbb{R}^d \to \mathbb{R}^{d \times d} \text{ smooth, } dB = 0 \]
, i.e. \(\exists A \) with \(dA = B \), \((B_{ij} = A_{j,x_i} - A_{i,x_j}) \)

• The choice of \(A \) does not matter to much...

If \(A, \tilde{A} : \mathbb{R}^d \to \mathbb{R}^d \) s.t. \(dA = d\tilde{A} = B \) then there exists a scalar field \(\phi : \mathbb{R}^d \to \mathbb{R} \) such that \(A - \tilde{A} = d\phi \). It is easy to see that

\[\mathcal{D}(h_{A,p}) = \mathcal{D}(h_{\tilde{A},p}) \quad \text{and} \quad h_{A,p}[\psi] = h_{\tilde{A},p}[\psi e^{i\phi}], \quad \forall \psi \in C_c^\infty(\mathbb{R}^d). \]

(9)
The diamagnetic inequality/Kato’s inequality

- Diamagnetic inequality:

\[|\nabla_A u(x)| \geq |\nabla |u|(x)| \quad \text{a.e. } x \in \mathbb{R}^d, \forall u \in \mathcal{D}(h_{A,p}). \quad (10) \]

Then

\[\int_{\mathbb{R}^d} |\nabla_A u|^p \, dx \geq \int_{\mathbb{R}^d} |\nabla |u|^p \, dx \]

- So, all the inequalities valid for the standard p-Laplacian transfer to the magnetic p-Laplacian.

- BUT can we improve them?
Let \(p \geq d \) and \(B \) be a smooth and closed magnetic field with \(B \neq 0 \). Then there exists a constant \(C_{B,p,d} > 0 \) such that for any magnetic potential \(A \) with \(dA = B \) we have

\[
\int_{\mathbb{R}^d} |\nabla A u|^p \, dx \geq C_{B,p,d} \int_{\mathbb{R}^d} \rho(x) |u|^p \, dx, \quad \forall u \in \mathcal{D}(h_{A,p}), \quad (11)
\]

where

\[
\rho(x) := \frac{1}{|x|^d (|\log |x||^p + |x|^{p-d})}.
\]

- \(p \geq d \Rightarrow -\Delta_{A,p} \) is sub-critical \((-\Delta_p \) is critical)!
Previously known results (the case $p = d = 2$)

- $B \neq 0$, with $\rho(x) = \frac{1}{1+|x|^2|\log|x||^2}$ in [C.-Krejcirik 2016]
- $B \neq 0$, under the additional condition $\frac{1}{2\pi} \int_{\mathbb{R}^2} *B \ dx \notin \mathbb{Z}$ where $*B := B_{12}$ it was proved with $\rho(x) = \frac{1}{1+|x|^2}$ in [Laptev-Weidl, 1998].
- $B \neq 0 +$ compactly supported + unbounded ρ, done in [Cassano-Franceschi-Krejcirik-Prandi, 2023]
- For Aharonov-Bohm type $A(x) = \psi \left(\frac{x}{|x|} \right) \frac{(-x_2,x_1)}{|x|^2}$ it was shown with $\rho(x) = 1/|x|^2$ also in [Laptev-Weidl, 1998].
Main results

Sketch of proof \(\int_{\mathbb{R}^d} |\nabla_A u|^p \, dx \geq C \int_{\mathbb{R}^d} \rho(x) |u|^p \, dx \),
\[
\rho(x) := \frac{1}{|x|^d (|\log |x||^p + |x|^{p-d})}.
\]

Step 1 If \(p \geq d \) then for all \(u \in C_c^\infty (B_{\tilde R}(0)) \)
\[
\int_{B_{\tilde R}(0)} |\nabla u|^p \, dx \geq \left(\frac{p-1}{p} \right)^p \frac{1}{\tilde R^{p-d}} \int_{B_{\tilde R}(0)} \frac{|u|^p}{|x|^d (\log \frac{\tilde R}{|x|})^p} \, dx.
\]

Step 2 If \(p \neq d \) then
\[
\int_{B_c^\varepsilon_{\tilde R}(0)} |\nabla u|^p \, dx \geq \left| \frac{d-p}{p} \right|^p \int_{B_c^\varepsilon_{\tilde R}(0)} \frac{|u|^p}{|x|^p} \, dx, \quad \forall u \in C_c^\infty (B_c^\varepsilon_{\tilde R}(0)).
\]

Step 3 If \(p = d \) then \(\forall u \in C_c^\infty (B_c^\varepsilon_{\tilde R}(0)) \)
\[
\int_{B_c^\varepsilon_{\tilde R}(0)} |\nabla u|^d \, dx \geq \left(\frac{d-1}{d} \right)^d \int_{B_c^\varepsilon_{\tilde R}(0)} \frac{|u|^d}{|x|^d (\log \frac{\tilde R}{|x|})^d} \, dx
\]
Sketch of proof of \(\int_{\mathbb{R}^d} |\nabla_A u|^p \, dx \geq C \int_{\mathbb{R}^d} \rho(x)|u|^p \, dx \),

\[\rho(x) := \frac{1}{|x|^d(|\log|x|)|p+|x|^{p-d})}. \]

Lemma

Let \(d \geq 2 \) and \(1 < p < \infty \). Assume also that \(B \neq 0 \) and let \(A \) be such that \(B = dA \). Let \(R > 1 \) be fixed and consider the annular domain \(\Omega_R := B_R(0) \setminus B_{\frac{1}{R}}(0) \). Then we define

\[\mu_B(R) := \inf_{u \in W^{1,p}(\Omega_R), u \neq 0} \frac{\int_{\Omega_R} |(\nabla + iA)u|^p \, dx}{\int_{\Omega_R} |u|^p \, dx}. \] \hspace{1cm} (12)

Then \(\mu_B \neq 0 \) on \((1, \infty)\).

PROOF = Steps 1-3 + Lemma + diamagnetic inequality + a localization argument.
What about the sub-criticality of $H_A := -\Delta_{A,p} - \mu_{p,d} \frac{|p-2|}{|x|^p}$ when $p < d$?

Theorem (C-Krejcirik-Lam-Laptev, NON 2024)

Let $2 \leq p < d$ and B be a smooth and closed magnetic field with $B \neq 0$. Then there exists a constant $c(p) > 0$ such that for any vector field A with $dA = B$ we have

$$\int_{\mathbb{R}^d} |\nabla_A u|^p \, dx - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx \geq c(p) \int_{\mathbb{R}^d} \left| \nabla_A (u |x|^{d-p}) \right|^p |x|^{p-d} \, dx,$$

(13)

The constant $c(p)$ in (13) is explicitly given by

$$c(p) := \inf_{(s,t) \in \mathbb{R}^2 \setminus \{(0,0)\}} \frac{\left[t^2 + s^2 + 2s + 1 \right]^{p/2}}{[t^2 + s^2]^{p/2}} - 1 - ps \in (0, 1) \tag{14}$$

- The optimal value of the constant $c(p)$ is an interesting open problem.
- The case $1 < p < 2$ remains open.
Proof of Theorem (ineq (13))

(Step 1) First we prove the free-magnetic case:

Corollary

For any $2 \leq p < d$ there exists a positive constant $c(p)$ such that

\[
\int_{\mathbb{R}^d} |\nabla u|^p \, dx - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx \geq c(p) \int_{\mathbb{R}^d} \left| \nabla (u|x|^{\frac{d-p}{p}}) \right|^p |x|^{p-d} \, dx, \quad \forall u
\]

(15)

- For $p = 2$ (15) becomes an identity with $c(2) = 1$ ([Brezis-Vazquez 1997]):

\[
\int_{\mathbb{R}^d} |\nabla u|^2 \, dx - \frac{(d - 2)^2}{4} \int_{\mathbb{R}^d} \frac{|u|^2}{|x|^2} \, dx = \int_{\mathbb{R}^d} \left| \nabla (u|x|^{\frac{d-2}{2}}) \right|^2 |x|^{2-d} \, dx
\]

which gives rise to many applications...

- With the help of Corollary... $H := -\Delta_p - \mu_{p,d} \frac{|.|^{p-2}}{|x|^p}$ is subcritical in bounded domains, etc.
Proof of Theorem (ineq (13))

(15) is a consequence of the identity

\[
\int_{\mathbb{R}^d} |\nabla u|^p \, dx - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx
= \int_{\mathbb{R}^d} C_p \left(\nabla u, |x|^{d-p} \nabla \left(u |x|^{\frac{d-p}{p}} \right) \right) \, dx,
\]

where

\[
C_p (\alpha, \beta) = |\alpha|^p - |\alpha - \beta|^p - p |\alpha - \beta|^{p-2} \text{Re} (\alpha - \beta) \cdot \bar{\beta}
\]

Then easily show that

\[
C_p (\alpha, \beta) \geq c_p |\beta|^p , \alpha, \beta \in \mathbb{C}^d,
\]

where \(c(p) := \inf_{(s,t) \in \mathbb{R}^2 \setminus \{(0,0)\}} \frac{[t^2 + s^2 + 2s + 1]^{\frac{p}{2}} - 1 - ps}{[t^2 + s^2]^{\frac{p}{2}}} \in (0, 1) \)
Proof of Theorem (ineq. (13))

(Step 2)

\[
|\nabla_A u|^p - C_p \left(\nabla_A u, |x|^{-\frac{d-p}{p}} \nabla \left(u |x|^{\frac{d-p}{p}} \right) \right) \\
= |\nabla u|^p - C_p \left(\nabla u, |x|^{-\frac{d-p}{p}} \nabla \left(u |x|^{\frac{d-p}{p}} \right) \right) .
\]

where \(C_p (\alpha, \beta) = |\alpha|^p - |\alpha - \beta|^p - p |\alpha - \beta|^{p-2} \text{Re} (\alpha - \beta) \cdot \overline{\beta} \)

(Step 3) In view of (Step 2) + (16):

\[
\int_{\mathbb{R}^d} |\nabla_A u|^p \, dx - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx
\]

\[
= \int_{\mathbb{R}^d} C_p \left(\nabla_A u, |x|^{-\frac{d-p}{p}} \nabla \left(u |x|^{\frac{d-p}{p}} \right) \right) \, dx, \quad (17)
\]

(Step 4) \(C_p (\alpha, \beta) \geq c_p |\beta|^p + (17) = \text{END OF PROOF.} \)
Theorem (C.-Krejcirik-Lam-Laptev, NON 2024)

Let $2 \leq p < d$ and B be a smooth and closed magnetic field with $B \neq 0$. Then there exists a constant $C_{B,p,d} > 0$ such that for any vector field A with $dA = B$ we have

$$\int_{\mathbb{R}^d} |\nabla_A u|^p - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx \geq C_{B,p,d} \int_{\mathbb{R}^d} \rho(x)|u|^p \, dx, \quad \forall u \in \mathcal{D}(h_{A,p}),$$

(18)

where

$$\rho(x) := \frac{1}{|x|^p (1 + |\log|x||^p)}.$$

- $2 \leq p < d \Rightarrow H_A = -\Delta_{A,p} - \mu_{p,d} \frac{|\cdot|^{p-2}}{|x|^p}$ is sub-critical

 $(-\Delta_p - \mu_{p,d} \frac{|\cdot|^{p-2}}{|x|^p}$ is critical !)

- This improves our previous result in [C.-Krejcirik, 2016, Thm. 1.1] from L^2 to the L^p setting by obtaining also an unbounded weight ρ.

\[2 \leq p < d \Rightarrow H_A = -\Delta_{A,p} - \mu_{p,d} \frac{|\cdot|^{p-2}}{|x|^p}\text{ is sub-critical}
\]

\[(-\Delta_p - \mu_{p,d} \frac{|\cdot|^{p-2}}{|x|^p}\text{ is critical !})
\]

\[\text{This improves our previous result in [C.-Krejcirik, 2016, Thm. 1.1] from } L^2 \text{ to the } L^p \text{ setting by obtaining also an unbounded weight } \rho.
\]
Main results

Sketch of proof

\[
\int_{\mathbb{R}^d} |\nabla_A u|^p - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx \, dx \geq C \int_{\mathbb{R}^d} \rho(x) |u|^p \, dx,
\]

\[
\rho(x) := \frac{1}{|x|^d (|\log |x||^{p+1})}.
\]

Step 2 If \(p < d \) then

\[
\int_{B_{\tilde{R}}^c(0)} \left| \nabla \left(u |x|^{\frac{d-p}{p}} \right) \right|^p |x|^{p-d} \, dx \geq \left(\frac{p-1}{p} \right)^p \int_{B_{\tilde{R}}(0)} \frac{|u|^p}{|x|^p \left(\log \frac{\tilde{R}}{|x|} \right)^p} \, dx
\]

Step 3 If \(p \neq d \) then

\[
\int_{B_{\tilde{R}}^c(0)} \left| \nabla \left(u |x|^{\frac{d-p}{p}} \right) \right|^p |x|^{p-d} \, dx \geq \left(\frac{p-1}{p} \right)^p \int_{B_{\tilde{R}}^c(0)} \frac{|u|^p}{|x|^p \left(\log \frac{\tilde{R}}{|x|} \right)^p} \, dx
\]
Sketch of proof of

\[\int_{\mathbb{R}^d} |\nabla_A u|^p - \mu_{p,d} \int_{\mathbb{R}^d} \frac{|u|^p}{|x|^p} \, dx \, dx \geq C \int_{\mathbb{R}^d} \rho(x)|u|^p \, dx, \]

\[\rho(x) := \frac{1}{|x|^p(|\log|x||)^{p+1}}. \]

Lemma

Let \(d \geq 2 \) and \(1 < p < \infty \). Assume also that \(B \neq 0 \) and let \(A \) be such that \(B = dA \). Let \(R > 1 \) be fixed and consider the annular domain \(\Omega_R := B_R(0) \setminus B_{\frac{1}{R}}(0) \). Then we define

\[\mu_B(R) := \inf_{u \in W^{1,p}(\Omega_R), u \neq 0} \frac{\int_{\Omega_R} |(\nabla + iA)u|^p \, dx}{\int_{\Omega_R} |u|^p \, dx}. \]

(19)

Then \(\mu_B \neq 0 \) on \((1, \infty)\).

PROOF = Steps 1-3 + Lemma + diamagnetic inequality + a localization argument
Finally, let us discuss the Aharonov–Bohm potential

\[A_\beta(x) = \beta \frac{(x_2, -x_1)}{|x|^2}, \quad \beta \in \mathbb{R}, \]

in the case of dimension \(d = 2 \).
Main results

Aharonov-Bohm potentials

Theorem (C.-Krejcirik-Lam-Laptev, NON 2024)

Let $d = 2$, $1 \leq p < 2$ and let A_{β} be given by (20). If $\beta \notin \mathbb{Z}$, then there exists a constant

$$
\lambda_{\beta}(p) > \left(\frac{2 - p}{p} \right)^{p}
$$

such that

$$
\int_{\mathbb{R}^2} |\nabla A_{\beta} u|^p \, dx \geq \lambda_{\beta}(p) \int_{\mathbb{R}^2} \frac{|u|^p}{|x|^p} \, dx, \quad \forall u \in C^\infty_c(\mathbb{R}^2).
$$

(21)

- This improves the sharp constant $\lambda_{\beta}(p)$ with respect to the non-magnetic case.
- The case $p = 2$: $\lambda(2) = \text{dist}(\beta, \mathbb{Z})^2$ (for test functions $u \in C^\infty_c(\mathbb{R}^2 \setminus \{0\})$ due to [Laptev-Weidl, 1998]
• **Open problem:** \(\lambda_\beta(p) =? \)

Sketch of proof of (21).

\[
\lambda(\beta, p) := \inf_{u \in W^{1,p}(0,2\pi), u(0) = u(2\pi)} \frac{\int_0^{2\pi} |\partial_\varphi u + i\beta u|^p \, d\varphi}{\int_0^{2\pi} |u|^p \, d\varphi}
\]

(22)

Then we have \(\lambda(\beta, p) > 0 \) if \(\beta \notin \mathbb{Z} \).

• **Open problem:** \(\lambda(\beta, p) =? \)
\[
\left(\int_{\mathbb{R}^2} |\nabla_A u|^p \, dx \right)^{\frac{2}{p}} = \left(\int_0^\infty \int_0^{2\pi} \left[|\partial_r u|^2 + \frac{|\partial_\varphi u + i\beta u|^2}{r^2} \right] \frac{p}{2} \, d\varphi \, dr \right)^{\frac{2}{p}}
\]

\[
= \left\| \frac{|\partial_r u|^2}{p} + \frac{|\partial_\varphi u + i\beta u|^2}{r^2} \right\|_{\frac{p}{2}}
\]

\[
\frac{p}{2} < 1 : \quad \geq \left\| \frac{|\partial_r u|^2}{p} \right\|_{\frac{p}{2}} + \left\| \frac{|\partial_\varphi u + i\beta u|^2}{r^2} \right\|_{\frac{p}{2}}
\]

\[
= \left\| \frac{|\partial_r u|^p}{p^1} \right\|_{\frac{2}{p}} + \left\| \frac{|\partial_\varphi u + i\beta u|^p}{r^p} \right\|_{1}
\]

\[
(Hardy+ (22)) \geq \left[\left(\frac{2-p}{p} \right)^2 + \lambda (\beta, p) \right] \left(\int_{\mathbb{R}^2} \frac{|u|^p}{|x|^p} \, dx \right)^{\frac{2}{p}}
\]
A mean value magnetic L^p inequality:

Theorem (cf. Thm. 2.1.1, Aermark, PhD Thesis Stockholm 2014)

Let $d = 2$, $1 < p < 2$ and let A_β be given by (20). Then

$$
\left(\frac{\| \nabla A_\beta u \|_{L^p(\mathbb{R}^2)} + \| \nabla A_\beta \bar{u} \|_{L^p(\mathbb{R}^2)} }{2} \right)^p \geq \left(\frac{\sqrt{(2 - p)^2 + \beta^2 p^2}}{p} \right)^p \int_{\mathbb{R}^2} \frac{|u|^p}{|x|^p} \ dx
$$

(23)

for any $u \in C_\infty^c(\mathbb{R}^2)$.

- Notice that $|\nabla A_\beta \bar{u}| = |\nabla - A_\beta u|$, but not $|\nabla A_\beta \bar{u}| = |\nabla A_\beta u|$ in general, unless u is real valued test function. In this latter case inequality (23) reduces to (21) with

$$
\lambda(p) = \left(\frac{\sqrt{(2 - p)^2 + \beta^2 p^2}}{p} \right) > \left(\frac{2 - p}{p} \right)^p , \text{ provided } \beta \neq 0.
$$

- Although this answers partially to our question the general case still remains open.
Some other recent developments on magnetic inequalities: [Fanelli-Krejcirik-Laptev-Vega 2020], [Lam-Lu, 2023], [Lu-Yang, 2024], [Fanelli-Kovarik], etc..

Thank you for your attention!