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1 Preface

In these notes, the expressions Vd denotes the volume of a d-dimensional sphere of radius R
and Ωd−1 denotes the solid angle a d-dimensional sphere (or equivalently, the surface area of
a d-dimensional sphere of unit radius).1 These expressions are given by

Vd =
πd/2

Γ(1 + d
2
)
Rd , Ωd−1 =

2πd/2

Γ(d
2
)
. (1)

For example, for d = 1, 2, and 3, these are

d = 1 : V1 = 2R , Ω0 = 2 ,

d = 2 : V2 = πR2 , Ω1 = 2π ,

d = 3 : V3 =
4

3
πR3 , Ω2 = 4π .

1The d − 1 subscript refers to the fact that the fact that the surface area of a d-dimensional sphere is
(d− 1)-dimensional. It’s also useful to use d− 1 as the subscript, since the surface area of a d-dimensional
sphere of radius R is given by Sd−1 = Ωd−1R

d−1.
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2 Summation definition

Intensive quantities A can generally be expressed in the form

A =
1

Vd

∑
i

a(εi) , (2)

where Vd is the d-dimensional volume of the system, the sum is over all possible single-
particle states i, and εi is the energy of the single-particle state i. In the continuum limit
(thermodynamic limit), we can similarly define intensive quantities through

A =

∫ ∞
−∞

a(ε)g(ε) dε , (3)

where g(ε) is called the density of states (DOS). Setting Eqs. 2 and 3 equal to each other,
we obtain

1

Vd

∑
i

a(εi) =

∫ ∞
−∞

a(ε)g(ε) dε , (4)

which implies that the DOS is given by

g(ε) =
1

Vd

∑
i

δ(ε− εi) , (5)

as we can verify by inserting this into the right-hand side of Eq. 4:∫ ∞
−∞

a(ε)g(ε) dε =

∫ ∞
−∞

a(ε)

[
1

Vd

∑
i

δ(ε− εi)

]
dε

=
1

Vd

∑
i

∫ ∞
−∞

a(ε)δ(ε− εi) dε

=
1

Vd

∑
i

a(εi) . X

2.1 Examples of Eqs. 2 and 3 for a fermionic system

As concrete examples of Eqs. 2 and 3, let’s consider a fermionic system, whose distribution
is the Fermi–Dirac distribution

nF (ε) =
1

e(ε−µ)/kBT + 1
. (6)
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We can describe the system’s number density n ≡ N/Vd and energy density u ≡ U/Vd (where
U = Etot) as

n =
1

Vd

∑
i

nF (εi) =

∫ ∞
−∞

nF (ε)g(ε) dε , (7)

u =
1

Vd

∑
i

εinF (εi) =

∫ ∞
−∞

εnF (ε)g(ε) dε . (8)

2.2 Example: Ideal Fermi gas

Consider an ideal, nonrelativistic Fermi gas comprised of electrons of mass m with an energy–
momentum relation

ε(k) =
~2k2

2m
. (9)

The DOS is given by Eq. 5, which reads

g(ε) =
1

Vd

∑
i

δ(ε− εi) . (10)

We can rewrite the sum over single-particle states as a sum over single-particle momenta∑
i

→ 2
∑
ki

, (11)

where the factor of 2 is due to the fact that there are two different single-particle states
corresponding to a given momentum ki (spin up and spin down). In the continuum limit,
we use the prescription ∑

ki

→ Vd

∫
ddki
(2π)d

(12)

to rewrite Eq. 10 as

g(ε) = 2

∫
δ(ε− εi)

ddki
(2π)d

=
2

(2π)d

∫
δ(ε− ε′) ddk′ . (13)

We can use rotational invariance to rewrite the integration element as ddk′ = Ωd−1k
′d−1 dk′,

so we obtain

g(ε) =
2Ωd−1

(2π)d

∫ ∞
0

δ(ε− ε′)k′d−1 dk′ = 2Ωd−1

(2π)d

∫ ∞
0

δ(ε− ε′)k′d−1 dk′ .

Changing the integral to an energy integral through

k′ =

√
2mε′

~
, dk′ =

1

~

√
m

2ε′
dε′ , (14)
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we obtain

g(ε) =
2Ωd−1

(2π)d

∫ ∞
0

δ(ε− ε′)
(√

2mε′

~

)d−1
1

~

√
m

2ε′
dε′

=
md/2Ωd−1

2d/2πd~d
ε(d−2)/2θ(ε)

=
md/2

2d/2−1πd/2~dΓ(d
2
)
ε(d−2)/2θ(ε)

=
md/2d

2d/2πd/2~dΓ(1 + d
2
)
ε(d−2)/2θ(ε) .

We thus find that the DOS for an ideal d-dimensional Fermi gas is given by

g(ε) =
md/2d

(2π)d/2~dΓ(1 + d
2
)
ε(d−2)/2θ(ε) . (15)

3 Derivative definition

For a d-dimensional thermodynamic system of volume Vd, the DOS g(ε) is defined by

g(ε) ≡ dn

dε
. (16)

Then, g(ε) dε is the number of states per unit volume in the energy interval (ε, ε+ dε).

3.1 Example: Ideal Fermi gas

Consider an ideal, nonrelativistic Fermi gas comprised of electrons of mass m with an energy–
momentum relation

ε(k) =
~2k2

2m
(17)

in a d-dimensional box of volume Vd = Ld. Since all of the energies are nonnegative, we will
multiply g(ε) by the step function θ(ε) to make sure that we only integrate from ε = 0 to ∞
if we use the DOS inside an integral:

g(ε) =
dn

dε
θ(ε) . (18)

We can rewrite this using the chain rule as

g(ε) =
dn

dk

dk

dε
θ(ε) . (19)
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The derivative on the right can simply be obtained from Eq. 17:

dk

dε
=

d

dε

√
2mε

~
=

√
2m

2~
√
ε

=
1

~

√
m

2
ε−1/2 . (20)

For the other derivative, we need to find an expression for n. In this d-dimensional box of
volume Ld, n is given by

n =
N

Ld
. (21)

We need to find N now, which we will find by looking at the problem in d-dimensional
k-space.

For a given value of k, we can consider a corresponding sphere of radius k ≡ |k| in d-
dimensional k-space whose volume is

Vd(k) =
πd/2

Γ(1 + d
2
)
kd . (22)

We now imagine dividing this sphere into cubic cells of length kcell and volume kdcell. In the
large k limit (k � kcell), the number of cells that fit inside the sphere is therefore

Ncells =
Vd(k)

kdcell
. (23)

Now, we know that we can only have two particles (with opposite spins) of momentum k
per k-space volume (2π/L)d, which means that for this problem we can use

kcell =
2π

L
(24)

to find the number of particles that fit in a d-dimensional k-space sphere of radius k:

N = 2Ncells =
2Vd(k)

kdcell
=

2πd/2kd

Γ(1 + d
2
)

(
L

2π

)d
=

Ldkd

2d−1πd/2Γ(1 + d
2
)
. (25)

Inserting this into Eq. 21, we find

n =
kd

2d−1πd/2Γ(1 + d
2
)
. (26)

We can now compute the k derivative of n:

dn

dk
=

kd−1d

2d−1πd/2Γ(1 + d
2
)
. (27)

In terms of ε, this is

dn

dk
=

d

2d−1πd/2Γ(1 + d
2
)

(
2mε

~2

)(d−1)/2

=
m(d−1)/2d

2(d−1)/2πd/2~d−1Γ(1 + d
2
)
ε(d−1)/2 . (28)
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Using this derivative and the one we computed in Eq. 20, we have

g(ε) =
m(d−1)/2d

2(d−1)/2πd/2~d−1Γ(1 + d
2
)
ε(d−1)/2

1

~

√
m

2
ε−1/2θ(ε)

=
md/2d

2d/2πd/2~dΓ(1 + d
2
)
ε(d−2)/2θ(ε) .

We thus find that the DOS for an ideal d-dimensional Fermi gas is given by

g(ε) =
md/2d

2d/2πd/2~dΓ(1 + d
2
)
ε(d−2)/2θ(ε) , (29)

which agrees with Eq. 15.

4 Useful expressions

The DOS is useful for computing thermodynamic quantities, such as the following:

n ≡ N

Vd
=

1

Vd

∑
i

nF/B(εi) =

∫ ∞
−∞

nF/B(ε)g(ε) dε , (30)

u ≡ U

Vd
=

1

Vd

∑
i

εinF/B(εi) =

∫ ∞
−∞

εnF/B(ε)g(ε) dε , (31)

where U = Etot is the system’s total energy and nF/B(ε) denotes the system’s distribution,
i.e. the Fermi–Dirac distribution nF (ε) or the Bose–Einstein distribution nB(ε).

For a fermionic system at T = 0, the Fermi–Dirac distribution is just nF (ε) = θ(−ε)θ(ε−µ).
The chemical potential at T = 0 is called the Fermi energy:

EF ≡ µ(T = 0) =
~2k2F
2m

, (32)

so the integral expressions for n and u become

n =

∫ EF

0

g(ε) dε , (33)

u =

∫ EF

0

εg(ε) dε . (34)
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