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1 Preface

In these notes, the expressions V; denotes the volume of a d-dimensional sphere of radius R
and Qg1 denotes the solid angle a d-dimensional sphere (or equivalently, the surface area of
a d-dimensional sphere of unit radius)El These expressions are given by

7.(.d/2 2ﬂ.d/2

—R%, Qi1 = .
L(1+5) r(s)

(1)

‘/Cl:

For example, for d = 1,2, and 3, these are

IThe d — 1 subscript refers to the fact that the fact that the surface area of a d-dimensional sphere is
(d — 1)-dimensional. It’s also useful to use d — 1 as the subscript, since the surface area of a d-dimensional
sphere of radius R is given by Sq_1 = Qq_1 R L.



2 Summation definition

Intensive quantities A can generally be expressed in the form

1
A= v > ale), (2)

)

where Vj is the d-dimensional volume of the system, the sum is over all possible single-
particle states ¢, and ¢; is the energy of the single-particle state i. In the continuum limit
(thermodynamic limit), we can similarly define intensive quantities through

A= /OO a(e)g(e) de, (3)

where g(e) is called the density of states (DOS). Setting Egs. [2] and [3] equal to each other,
we obtain

- Zale) = / Za<e>g<e>de, (4)

which implies that the DOS is given by

90 = 3 Yble—e) | )

as we can verify by inserting this into the right-hand side of Eq. [4}

| wt@gtarae= [ ato iZ (e - >] de
_ Vidz/_: a()5(e — ;) de
1
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2.1 Examples of Egs. [2| and [3] for a fermionic system

As concrete examples of Eqgs. 2] and [3], let’s consider a fermionic system, whose distribution
is the Fermi—Dirac distribution
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We can describe the system’s number density n = N/V, and energy density u = U/Vy (where
U= Etot) as

2.2 Example: Ideal Fermi gas

Consider an ideal, nonrelativistic Fermi gas comprised of electrons of mass m with an energy—
momentum relation
h2k?

om

e(k)
The DOS is given by Eq. [5], which reads

gle) = Vidz(s(e —€). (10)

(9)

We can rewrite the sum over single-particle states as a sum over single-particle momenta
> ey, )
i k;

where the factor of 2 is due to the fact that there are two different single-particle states
corresponding to a given momentum k; (spin up and spin down). In the continuum limit,

we use the prescription
dek;
> =% [ o (12)
k;

to rewrite Eq. [I0] as
g(e) = 2/5(6 —€) ((;:)id = (272r)d /5(6 — ) dK . (13)

. . . . . . 1
We can use rotational invariance to rewrite the integration element as dk’ = Qq_1k'*"* dk’,
so we obtain

29— > / 10— / QQ_ > / 10— /
g(e) = (27;1);/0 5(e — VK dk' = (2;’);/0 Sle — VK Ak

Changing the integral to an energy integral through

2me’ 1 /m
r r_ = ’
k' = P dk' = h”_Qe’ de’, (14)
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we obtain

d/2
— Mgd—%ﬁg(e)
2d/2 rd
= m?/? E(d—2)/29(6)
2d/27lﬂd/2hdr(g)
m®2d
= 20/2rd/2pdT (1 + %l)

=229 (¢) .

We thus find that the DOS for an ideal d-dimensional Fermi gas is given by

ma/2d
(2m)42RI0(1 4 £)

g(e) = D29 (¢) . (15)

3 Derivative definition

For a d-dimensional thermodynamic system of volume V,, the DOS g(e) is defined by

_dn

==, (16)

g(e)

Then, g(¢) de is the number of states per unit volume in the energy interval (e, € + de).

3.1 Example: Ideal Fermi gas

Consider an ideal, nonrelativistic Fermi gas comprised of electrons of mass m with an energy—
momentum relation

e(k) = Z:L (17)

in a d-dimensional box of volume V; = L%. Since all of the energies are nonnegative, we will
multiply g(€) by the step function 6(e) to make sure that we only integrate from e = 0 to oo
if we use the DOS inside an integral:

dn
gle) = Lo(e (18)
We can rewrite this using the chain rule as
dn dk
gle) = 26(6) (19
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The derivative on the right can simply be obtained from Eq. [I7}

gk _ dv2me v2m 1 /m _yp (20)
de de h 2m/e RV 2°

For the other derivative, we need to find an expression for n. In this d-dimensional box of
volume L%, n is given by

N
We need to find N now, which we will find by looking at the problem in d-dimensional
k-space.

For a given value of k, we can consider a corresponding sphere of radius k£ = |k| in d-
dimensional k-space whose volume is

SECE

Vd(k) = F(l i g)

(22)

We now imagine dividing this sphere into cubic cells of length ke and volume k2. In the

large k limit (k >> keen), the number of cells that fit inside the sphere is therefore

Va(k)
Ky

cell

N, cells —

(23)

Now, we know that we can only have two particles (with opposite spins) of momentum k
per k-space volume (27/L)%, which means that for this problem we can use

2

kcell = f (24)
to find the number of particles that fit in a d-dimensional k-space sphere of radius k:
Vy(k)  2x¥?kd L\ Lk
N = 2Ny = 2( ) _2m - (_> - —. (25)
Inserting this into Eq. 21} we find
k?d
n= . 26
2d_17Td/2F<1 + g) ( )
We can now compute the k derivative of n:
d ki1d
an_ —. (27)
dk  2-17d/2D(1 + §)
In terms of e, this is
(d=1)/2 d—1)/2
dn _ d 2me _ m@ D% €a-D/2 (98
dk 20 17d2(1 4 ) \ B2 20=D/2d2Ra10(1 + 4)
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Using this derivative and the one we computed in Eq. we have

d-1)/2
g(e) = m\D2d 6(UH)/Zl @671/29(6)
2(d=1)/2d/2pd=1D(1 4 2) h\ 2
_ md/2d
= 2d/27rd/2hdr(1 + %l)

ed=2/20(e) .

We thus find that the DOS for an ideal d-dimensional Fermi gas is given by

m2d
- 24/27d/2pdT (1 + 2)

9(€) 20(e) |, (29)

which agrees with Eq. [I5]

4 Useful expressions

The DOS is useful for computing thermodynamic quantities, such as the following:

=

n N _ Vi ;nF/B(Ei) = /_Z ngp/p(€)g(e) de (30)

d d

==

IS
Il

- Vidz eimp/p(€;) = /_OO enpyp(€)g(e) de, (31)

i o0

where U = Eiq is the system’s total energy and ng/p(e) denotes the system’s distribution,
i.e. the Fermi—Dirac distribution ng(€) or the Bose-Einstein distribution ng(e).

For a fermionic system at 7' = 0, the Fermi-Dirac distribution is just np(e) = 6(—¢)0(e — ).
The chemical potential at 7' = 0 is called the Fermi energy:
_ RPkE

Er=p(T=0)= "

, (32)

so the integral expressions for n and u become
Er
n —/ g(€) de, (33)
0
Er
u= / cgle) de. (34)
0
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